1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_error.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_log_recover.h"
35 #include "xfs_trans_priv.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_rw.h"
39 #include "xfs_trace.h"
40
41 kmem_zone_t *xfs_log_ticket_zone;
42
43 /* Local miscellaneous function prototypes */
44 STATIC int xlog_commit_record(struct log *log, struct xlog_ticket *ticket,
45 xlog_in_core_t **, xfs_lsn_t *);
46 STATIC xlog_t * xlog_alloc_log(xfs_mount_t *mp,
47 xfs_buftarg_t *log_target,
48 xfs_daddr_t blk_offset,
49 int num_bblks);
50 STATIC int xlog_space_left(struct log *log, atomic64_t *head);
51 STATIC int xlog_sync(xlog_t *log, xlog_in_core_t *iclog);
52 STATIC void xlog_dealloc_log(xlog_t *log);
53
54 /* local state machine functions */
55 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
56 STATIC void xlog_state_do_callback(xlog_t *log,int aborted, xlog_in_core_t *iclog);
57 STATIC int xlog_state_get_iclog_space(xlog_t *log,
58 int len,
59 xlog_in_core_t **iclog,
60 xlog_ticket_t *ticket,
61 int *continued_write,
62 int *logoffsetp);
63 STATIC int xlog_state_release_iclog(xlog_t *log,
64 xlog_in_core_t *iclog);
65 STATIC void xlog_state_switch_iclogs(xlog_t *log,
66 xlog_in_core_t *iclog,
67 int eventual_size);
68 STATIC void xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog);
69
70 STATIC void xlog_grant_push_ail(struct log *log,
71 int need_bytes);
72 STATIC void xlog_regrant_reserve_log_space(xlog_t *log,
73 xlog_ticket_t *ticket);
74 STATIC void xlog_ungrant_log_space(xlog_t *log,
75 xlog_ticket_t *ticket);
76
77 #if defined(DEBUG)
78 STATIC void xlog_verify_dest_ptr(xlog_t *log, char *ptr);
79 STATIC void xlog_verify_grant_tail(struct log *log);
80 STATIC void xlog_verify_iclog(xlog_t *log, xlog_in_core_t *iclog,
81 int count, boolean_t syncing);
82 STATIC void xlog_verify_tail_lsn(xlog_t *log, xlog_in_core_t *iclog,
83 xfs_lsn_t tail_lsn);
84 #else
85 #define xlog_verify_dest_ptr(a,b)
86 #define xlog_verify_grant_tail(a)
87 #define xlog_verify_iclog(a,b,c,d)
88 #define xlog_verify_tail_lsn(a,b,c)
89 #endif
90
91 STATIC int xlog_iclogs_empty(xlog_t *log);
92
93 static void
xlog_grant_sub_space(struct log * log,atomic64_t * head,int bytes)94 xlog_grant_sub_space(
95 struct log *log,
96 atomic64_t *head,
97 int bytes)
98 {
99 int64_t head_val = atomic64_read(head);
100 int64_t new, old;
101
102 do {
103 int cycle, space;
104
105 xlog_crack_grant_head_val(head_val, &cycle, &space);
106
107 space -= bytes;
108 if (space < 0) {
109 space += log->l_logsize;
110 cycle--;
111 }
112
113 old = head_val;
114 new = xlog_assign_grant_head_val(cycle, space);
115 head_val = atomic64_cmpxchg(head, old, new);
116 } while (head_val != old);
117 }
118
119 static void
xlog_grant_add_space(struct log * log,atomic64_t * head,int bytes)120 xlog_grant_add_space(
121 struct log *log,
122 atomic64_t *head,
123 int bytes)
124 {
125 int64_t head_val = atomic64_read(head);
126 int64_t new, old;
127
128 do {
129 int tmp;
130 int cycle, space;
131
132 xlog_crack_grant_head_val(head_val, &cycle, &space);
133
134 tmp = log->l_logsize - space;
135 if (tmp > bytes)
136 space += bytes;
137 else {
138 space = bytes - tmp;
139 cycle++;
140 }
141
142 old = head_val;
143 new = xlog_assign_grant_head_val(cycle, space);
144 head_val = atomic64_cmpxchg(head, old, new);
145 } while (head_val != old);
146 }
147
148 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)149 xlog_grant_head_init(
150 struct xlog_grant_head *head)
151 {
152 xlog_assign_grant_head(&head->grant, 1, 0);
153 INIT_LIST_HEAD(&head->waiters);
154 spin_lock_init(&head->lock);
155 }
156
157 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)158 xlog_grant_head_wake_all(
159 struct xlog_grant_head *head)
160 {
161 struct xlog_ticket *tic;
162
163 spin_lock(&head->lock);
164 list_for_each_entry(tic, &head->waiters, t_queue)
165 wake_up_process(tic->t_task);
166 spin_unlock(&head->lock);
167 }
168
169 static inline int
xlog_ticket_reservation(struct log * log,struct xlog_grant_head * head,struct xlog_ticket * tic)170 xlog_ticket_reservation(
171 struct log *log,
172 struct xlog_grant_head *head,
173 struct xlog_ticket *tic)
174 {
175 if (head == &log->l_write_head) {
176 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
177 return tic->t_unit_res;
178 } else {
179 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
180 return tic->t_unit_res * tic->t_cnt;
181 else
182 return tic->t_unit_res;
183 }
184 }
185
186 STATIC bool
xlog_grant_head_wake(struct log * log,struct xlog_grant_head * head,int * free_bytes)187 xlog_grant_head_wake(
188 struct log *log,
189 struct xlog_grant_head *head,
190 int *free_bytes)
191 {
192 struct xlog_ticket *tic;
193 int need_bytes;
194
195 list_for_each_entry(tic, &head->waiters, t_queue) {
196 need_bytes = xlog_ticket_reservation(log, head, tic);
197 if (*free_bytes < need_bytes)
198 return false;
199
200 *free_bytes -= need_bytes;
201 trace_xfs_log_grant_wake_up(log, tic);
202 wake_up_process(tic->t_task);
203 }
204
205 return true;
206 }
207
208 STATIC int
xlog_grant_head_wait(struct log * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)209 xlog_grant_head_wait(
210 struct log *log,
211 struct xlog_grant_head *head,
212 struct xlog_ticket *tic,
213 int need_bytes)
214 {
215 list_add_tail(&tic->t_queue, &head->waiters);
216
217 do {
218 if (XLOG_FORCED_SHUTDOWN(log))
219 goto shutdown;
220 xlog_grant_push_ail(log, need_bytes);
221
222 __set_current_state(TASK_UNINTERRUPTIBLE);
223 spin_unlock(&head->lock);
224
225 XFS_STATS_INC(xs_sleep_logspace);
226
227 trace_xfs_log_grant_sleep(log, tic);
228 schedule();
229 trace_xfs_log_grant_wake(log, tic);
230
231 spin_lock(&head->lock);
232 if (XLOG_FORCED_SHUTDOWN(log))
233 goto shutdown;
234 } while (xlog_space_left(log, &head->grant) < need_bytes);
235
236 list_del_init(&tic->t_queue);
237 return 0;
238 shutdown:
239 list_del_init(&tic->t_queue);
240 return XFS_ERROR(EIO);
241 }
242
243 /*
244 * Atomically get the log space required for a log ticket.
245 *
246 * Once a ticket gets put onto head->waiters, it will only return after the
247 * needed reservation is satisfied.
248 *
249 * This function is structured so that it has a lock free fast path. This is
250 * necessary because every new transaction reservation will come through this
251 * path. Hence any lock will be globally hot if we take it unconditionally on
252 * every pass.
253 *
254 * As tickets are only ever moved on and off head->waiters under head->lock, we
255 * only need to take that lock if we are going to add the ticket to the queue
256 * and sleep. We can avoid taking the lock if the ticket was never added to
257 * head->waiters because the t_queue list head will be empty and we hold the
258 * only reference to it so it can safely be checked unlocked.
259 */
260 STATIC int
xlog_grant_head_check(struct log * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)261 xlog_grant_head_check(
262 struct log *log,
263 struct xlog_grant_head *head,
264 struct xlog_ticket *tic,
265 int *need_bytes)
266 {
267 int free_bytes;
268 int error = 0;
269
270 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
271
272 /*
273 * If there are other waiters on the queue then give them a chance at
274 * logspace before us. Wake up the first waiters, if we do not wake
275 * up all the waiters then go to sleep waiting for more free space,
276 * otherwise try to get some space for this transaction.
277 */
278 *need_bytes = xlog_ticket_reservation(log, head, tic);
279 free_bytes = xlog_space_left(log, &head->grant);
280 if (!list_empty_careful(&head->waiters)) {
281 spin_lock(&head->lock);
282 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
283 free_bytes < *need_bytes) {
284 error = xlog_grant_head_wait(log, head, tic,
285 *need_bytes);
286 }
287 spin_unlock(&head->lock);
288 } else if (free_bytes < *need_bytes) {
289 spin_lock(&head->lock);
290 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
291 spin_unlock(&head->lock);
292 }
293
294 return error;
295 }
296
297 static void
xlog_tic_reset_res(xlog_ticket_t * tic)298 xlog_tic_reset_res(xlog_ticket_t *tic)
299 {
300 tic->t_res_num = 0;
301 tic->t_res_arr_sum = 0;
302 tic->t_res_num_ophdrs = 0;
303 }
304
305 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)306 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
307 {
308 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
309 /* add to overflow and start again */
310 tic->t_res_o_flow += tic->t_res_arr_sum;
311 tic->t_res_num = 0;
312 tic->t_res_arr_sum = 0;
313 }
314
315 tic->t_res_arr[tic->t_res_num].r_len = len;
316 tic->t_res_arr[tic->t_res_num].r_type = type;
317 tic->t_res_arr_sum += len;
318 tic->t_res_num++;
319 }
320
321 /*
322 * Replenish the byte reservation required by moving the grant write head.
323 */
324 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)325 xfs_log_regrant(
326 struct xfs_mount *mp,
327 struct xlog_ticket *tic)
328 {
329 struct log *log = mp->m_log;
330 int need_bytes;
331 int error = 0;
332
333 if (XLOG_FORCED_SHUTDOWN(log))
334 return XFS_ERROR(EIO);
335
336 XFS_STATS_INC(xs_try_logspace);
337
338 /*
339 * This is a new transaction on the ticket, so we need to change the
340 * transaction ID so that the next transaction has a different TID in
341 * the log. Just add one to the existing tid so that we can see chains
342 * of rolling transactions in the log easily.
343 */
344 tic->t_tid++;
345
346 xlog_grant_push_ail(log, tic->t_unit_res);
347
348 tic->t_curr_res = tic->t_unit_res;
349 xlog_tic_reset_res(tic);
350
351 if (tic->t_cnt > 0)
352 return 0;
353
354 trace_xfs_log_regrant(log, tic);
355
356 error = xlog_grant_head_check(log, &log->l_write_head, tic,
357 &need_bytes);
358 if (error)
359 goto out_error;
360
361 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
362 trace_xfs_log_regrant_exit(log, tic);
363 xlog_verify_grant_tail(log);
364 return 0;
365
366 out_error:
367 /*
368 * If we are failing, make sure the ticket doesn't have any current
369 * reservations. We don't want to add this back when the ticket/
370 * transaction gets cancelled.
371 */
372 tic->t_curr_res = 0;
373 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
374 return error;
375 }
376
377 /*
378 * Reserve log space and return a ticket corresponding the reservation.
379 *
380 * Each reservation is going to reserve extra space for a log record header.
381 * When writes happen to the on-disk log, we don't subtract the length of the
382 * log record header from any reservation. By wasting space in each
383 * reservation, we prevent over allocation problems.
384 */
385 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,__uint8_t client,bool permanent,uint t_type)386 xfs_log_reserve(
387 struct xfs_mount *mp,
388 int unit_bytes,
389 int cnt,
390 struct xlog_ticket **ticp,
391 __uint8_t client,
392 bool permanent,
393 uint t_type)
394 {
395 struct log *log = mp->m_log;
396 struct xlog_ticket *tic;
397 int need_bytes;
398 int error = 0;
399
400 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
401
402 if (XLOG_FORCED_SHUTDOWN(log))
403 return XFS_ERROR(EIO);
404
405 XFS_STATS_INC(xs_try_logspace);
406
407 ASSERT(*ticp == NULL);
408 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
409 KM_SLEEP | KM_MAYFAIL);
410 if (!tic)
411 return XFS_ERROR(ENOMEM);
412
413 tic->t_trans_type = t_type;
414 *ticp = tic;
415
416 xlog_grant_push_ail(log, tic->t_unit_res * tic->t_cnt);
417
418 trace_xfs_log_reserve(log, tic);
419
420 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
421 &need_bytes);
422 if (error)
423 goto out_error;
424
425 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
426 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
427 trace_xfs_log_reserve_exit(log, tic);
428 xlog_verify_grant_tail(log);
429 return 0;
430
431 out_error:
432 /*
433 * If we are failing, make sure the ticket doesn't have any current
434 * reservations. We don't want to add this back when the ticket/
435 * transaction gets cancelled.
436 */
437 tic->t_curr_res = 0;
438 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
439 return error;
440 }
441
442
443 /*
444 * NOTES:
445 *
446 * 1. currblock field gets updated at startup and after in-core logs
447 * marked as with WANT_SYNC.
448 */
449
450 /*
451 * This routine is called when a user of a log manager ticket is done with
452 * the reservation. If the ticket was ever used, then a commit record for
453 * the associated transaction is written out as a log operation header with
454 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
455 * a given ticket. If the ticket was one with a permanent reservation, then
456 * a few operations are done differently. Permanent reservation tickets by
457 * default don't release the reservation. They just commit the current
458 * transaction with the belief that the reservation is still needed. A flag
459 * must be passed in before permanent reservations are actually released.
460 * When these type of tickets are not released, they need to be set into
461 * the inited state again. By doing this, a start record will be written
462 * out when the next write occurs.
463 */
464 xfs_lsn_t
xfs_log_done(struct xfs_mount * mp,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,uint flags)465 xfs_log_done(
466 struct xfs_mount *mp,
467 struct xlog_ticket *ticket,
468 struct xlog_in_core **iclog,
469 uint flags)
470 {
471 struct log *log = mp->m_log;
472 xfs_lsn_t lsn = 0;
473
474 if (XLOG_FORCED_SHUTDOWN(log) ||
475 /*
476 * If nothing was ever written, don't write out commit record.
477 * If we get an error, just continue and give back the log ticket.
478 */
479 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
480 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
481 lsn = (xfs_lsn_t) -1;
482 if (ticket->t_flags & XLOG_TIC_PERM_RESERV) {
483 flags |= XFS_LOG_REL_PERM_RESERV;
484 }
485 }
486
487
488 if ((ticket->t_flags & XLOG_TIC_PERM_RESERV) == 0 ||
489 (flags & XFS_LOG_REL_PERM_RESERV)) {
490 trace_xfs_log_done_nonperm(log, ticket);
491
492 /*
493 * Release ticket if not permanent reservation or a specific
494 * request has been made to release a permanent reservation.
495 */
496 xlog_ungrant_log_space(log, ticket);
497 xfs_log_ticket_put(ticket);
498 } else {
499 trace_xfs_log_done_perm(log, ticket);
500
501 xlog_regrant_reserve_log_space(log, ticket);
502 /* If this ticket was a permanent reservation and we aren't
503 * trying to release it, reset the inited flags; so next time
504 * we write, a start record will be written out.
505 */
506 ticket->t_flags |= XLOG_TIC_INITED;
507 }
508
509 return lsn;
510 }
511
512 /*
513 * Attaches a new iclog I/O completion callback routine during
514 * transaction commit. If the log is in error state, a non-zero
515 * return code is handed back and the caller is responsible for
516 * executing the callback at an appropriate time.
517 */
518 int
xfs_log_notify(struct xfs_mount * mp,struct xlog_in_core * iclog,xfs_log_callback_t * cb)519 xfs_log_notify(
520 struct xfs_mount *mp,
521 struct xlog_in_core *iclog,
522 xfs_log_callback_t *cb)
523 {
524 int abortflg;
525
526 spin_lock(&iclog->ic_callback_lock);
527 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
528 if (!abortflg) {
529 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
530 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
531 cb->cb_next = NULL;
532 *(iclog->ic_callback_tail) = cb;
533 iclog->ic_callback_tail = &(cb->cb_next);
534 }
535 spin_unlock(&iclog->ic_callback_lock);
536 return abortflg;
537 }
538
539 int
xfs_log_release_iclog(struct xfs_mount * mp,struct xlog_in_core * iclog)540 xfs_log_release_iclog(
541 struct xfs_mount *mp,
542 struct xlog_in_core *iclog)
543 {
544 if (xlog_state_release_iclog(mp->m_log, iclog)) {
545 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
546 return EIO;
547 }
548
549 return 0;
550 }
551
552 /*
553 * Mount a log filesystem
554 *
555 * mp - ubiquitous xfs mount point structure
556 * log_target - buftarg of on-disk log device
557 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
558 * num_bblocks - Number of BBSIZE blocks in on-disk log
559 *
560 * Return error or zero.
561 */
562 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)563 xfs_log_mount(
564 xfs_mount_t *mp,
565 xfs_buftarg_t *log_target,
566 xfs_daddr_t blk_offset,
567 int num_bblks)
568 {
569 int error;
570
571 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
572 xfs_notice(mp, "Mounting Filesystem");
573 else {
574 xfs_notice(mp,
575 "Mounting filesystem in no-recovery mode. Filesystem will be inconsistent.");
576 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
577 }
578
579 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
580 if (IS_ERR(mp->m_log)) {
581 error = -PTR_ERR(mp->m_log);
582 goto out;
583 }
584
585 /*
586 * Initialize the AIL now we have a log.
587 */
588 error = xfs_trans_ail_init(mp);
589 if (error) {
590 xfs_warn(mp, "AIL initialisation failed: error %d", error);
591 goto out_free_log;
592 }
593 mp->m_log->l_ailp = mp->m_ail;
594
595 /*
596 * skip log recovery on a norecovery mount. pretend it all
597 * just worked.
598 */
599 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
600 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
601
602 if (readonly)
603 mp->m_flags &= ~XFS_MOUNT_RDONLY;
604
605 error = xlog_recover(mp->m_log);
606
607 if (readonly)
608 mp->m_flags |= XFS_MOUNT_RDONLY;
609 if (error) {
610 xfs_warn(mp, "log mount/recovery failed: error %d",
611 error);
612 goto out_destroy_ail;
613 }
614 }
615
616 /* Normal transactions can now occur */
617 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
618
619 /*
620 * Now the log has been fully initialised and we know were our
621 * space grant counters are, we can initialise the permanent ticket
622 * needed for delayed logging to work.
623 */
624 xlog_cil_init_post_recovery(mp->m_log);
625
626 return 0;
627
628 out_destroy_ail:
629 xfs_trans_ail_destroy(mp);
630 out_free_log:
631 xlog_dealloc_log(mp->m_log);
632 out:
633 return error;
634 }
635
636 /*
637 * Finish the recovery of the file system. This is separate from
638 * the xfs_log_mount() call, because it depends on the code in
639 * xfs_mountfs() to read in the root and real-time bitmap inodes
640 * between calling xfs_log_mount() and here.
641 *
642 * mp - ubiquitous xfs mount point structure
643 */
644 int
xfs_log_mount_finish(xfs_mount_t * mp)645 xfs_log_mount_finish(xfs_mount_t *mp)
646 {
647 int error;
648
649 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY))
650 error = xlog_recover_finish(mp->m_log);
651 else {
652 error = 0;
653 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
654 }
655
656 return error;
657 }
658
659 /*
660 * Final log writes as part of unmount.
661 *
662 * Mark the filesystem clean as unmount happens. Note that during relocation
663 * this routine needs to be executed as part of source-bag while the
664 * deallocation must not be done until source-end.
665 */
666
667 /*
668 * Unmount record used to have a string "Unmount filesystem--" in the
669 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
670 * We just write the magic number now since that particular field isn't
671 * currently architecture converted and "nUmount" is a bit foo.
672 * As far as I know, there weren't any dependencies on the old behaviour.
673 */
674
675 int
xfs_log_unmount_write(xfs_mount_t * mp)676 xfs_log_unmount_write(xfs_mount_t *mp)
677 {
678 xlog_t *log = mp->m_log;
679 xlog_in_core_t *iclog;
680 #ifdef DEBUG
681 xlog_in_core_t *first_iclog;
682 #endif
683 xlog_ticket_t *tic = NULL;
684 xfs_lsn_t lsn;
685 int error;
686
687 /*
688 * Don't write out unmount record on read-only mounts.
689 * Or, if we are doing a forced umount (typically because of IO errors).
690 */
691 if (mp->m_flags & XFS_MOUNT_RDONLY)
692 return 0;
693
694 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
695 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
696
697 #ifdef DEBUG
698 first_iclog = iclog = log->l_iclog;
699 do {
700 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
701 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
702 ASSERT(iclog->ic_offset == 0);
703 }
704 iclog = iclog->ic_next;
705 } while (iclog != first_iclog);
706 #endif
707 if (! (XLOG_FORCED_SHUTDOWN(log))) {
708 error = xfs_log_reserve(mp, 600, 1, &tic,
709 XFS_LOG, 0, XLOG_UNMOUNT_REC_TYPE);
710 if (!error) {
711 /* the data section must be 32 bit size aligned */
712 struct {
713 __uint16_t magic;
714 __uint16_t pad1;
715 __uint32_t pad2; /* may as well make it 64 bits */
716 } magic = {
717 .magic = XLOG_UNMOUNT_TYPE,
718 };
719 struct xfs_log_iovec reg = {
720 .i_addr = &magic,
721 .i_len = sizeof(magic),
722 .i_type = XLOG_REG_TYPE_UNMOUNT,
723 };
724 struct xfs_log_vec vec = {
725 .lv_niovecs = 1,
726 .lv_iovecp = ®,
727 };
728
729 /* remove inited flag, and account for space used */
730 tic->t_flags = 0;
731 tic->t_curr_res -= sizeof(magic);
732 error = xlog_write(log, &vec, tic, &lsn,
733 NULL, XLOG_UNMOUNT_TRANS);
734 /*
735 * At this point, we're umounting anyway,
736 * so there's no point in transitioning log state
737 * to IOERROR. Just continue...
738 */
739 }
740
741 if (error)
742 xfs_alert(mp, "%s: unmount record failed", __func__);
743
744
745 spin_lock(&log->l_icloglock);
746 iclog = log->l_iclog;
747 atomic_inc(&iclog->ic_refcnt);
748 xlog_state_want_sync(log, iclog);
749 spin_unlock(&log->l_icloglock);
750 error = xlog_state_release_iclog(log, iclog);
751
752 spin_lock(&log->l_icloglock);
753 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
754 iclog->ic_state == XLOG_STATE_DIRTY)) {
755 if (!XLOG_FORCED_SHUTDOWN(log)) {
756 xlog_wait(&iclog->ic_force_wait,
757 &log->l_icloglock);
758 } else {
759 spin_unlock(&log->l_icloglock);
760 }
761 } else {
762 spin_unlock(&log->l_icloglock);
763 }
764 if (tic) {
765 trace_xfs_log_umount_write(log, tic);
766 xlog_ungrant_log_space(log, tic);
767 xfs_log_ticket_put(tic);
768 }
769 } else {
770 /*
771 * We're already in forced_shutdown mode, couldn't
772 * even attempt to write out the unmount transaction.
773 *
774 * Go through the motions of sync'ing and releasing
775 * the iclog, even though no I/O will actually happen,
776 * we need to wait for other log I/Os that may already
777 * be in progress. Do this as a separate section of
778 * code so we'll know if we ever get stuck here that
779 * we're in this odd situation of trying to unmount
780 * a file system that went into forced_shutdown as
781 * the result of an unmount..
782 */
783 spin_lock(&log->l_icloglock);
784 iclog = log->l_iclog;
785 atomic_inc(&iclog->ic_refcnt);
786
787 xlog_state_want_sync(log, iclog);
788 spin_unlock(&log->l_icloglock);
789 error = xlog_state_release_iclog(log, iclog);
790
791 spin_lock(&log->l_icloglock);
792
793 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
794 || iclog->ic_state == XLOG_STATE_DIRTY
795 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
796
797 xlog_wait(&iclog->ic_force_wait,
798 &log->l_icloglock);
799 } else {
800 spin_unlock(&log->l_icloglock);
801 }
802 }
803
804 return error;
805 } /* xfs_log_unmount_write */
806
807 /*
808 * Deallocate log structures for unmount/relocation.
809 *
810 * We need to stop the aild from running before we destroy
811 * and deallocate the log as the aild references the log.
812 */
813 void
xfs_log_unmount(xfs_mount_t * mp)814 xfs_log_unmount(xfs_mount_t *mp)
815 {
816 xfs_trans_ail_destroy(mp);
817 xlog_dealloc_log(mp->m_log);
818 }
819
820 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)821 xfs_log_item_init(
822 struct xfs_mount *mp,
823 struct xfs_log_item *item,
824 int type,
825 const struct xfs_item_ops *ops)
826 {
827 item->li_mountp = mp;
828 item->li_ailp = mp->m_ail;
829 item->li_type = type;
830 item->li_ops = ops;
831 item->li_lv = NULL;
832
833 INIT_LIST_HEAD(&item->li_ail);
834 INIT_LIST_HEAD(&item->li_cil);
835 }
836
837 /*
838 * Wake up processes waiting for log space after we have moved the log tail.
839 */
840 void
xfs_log_space_wake(struct xfs_mount * mp)841 xfs_log_space_wake(
842 struct xfs_mount *mp)
843 {
844 struct log *log = mp->m_log;
845 int free_bytes;
846
847 if (XLOG_FORCED_SHUTDOWN(log))
848 return;
849
850 if (!list_empty_careful(&log->l_write_head.waiters)) {
851 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
852
853 spin_lock(&log->l_write_head.lock);
854 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
855 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
856 spin_unlock(&log->l_write_head.lock);
857 }
858
859 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
860 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
861
862 spin_lock(&log->l_reserve_head.lock);
863 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
864 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
865 spin_unlock(&log->l_reserve_head.lock);
866 }
867 }
868
869 /*
870 * Determine if we have a transaction that has gone to disk
871 * that needs to be covered. To begin the transition to the idle state
872 * firstly the log needs to be idle (no AIL and nothing in the iclogs).
873 * If we are then in a state where covering is needed, the caller is informed
874 * that dummy transactions are required to move the log into the idle state.
875 *
876 * Because this is called as part of the sync process, we should also indicate
877 * that dummy transactions should be issued in anything but the covered or
878 * idle states. This ensures that the log tail is accurately reflected in
879 * the log at the end of the sync, hence if a crash occurrs avoids replay
880 * of transactions where the metadata is already on disk.
881 */
882 int
xfs_log_need_covered(xfs_mount_t * mp)883 xfs_log_need_covered(xfs_mount_t *mp)
884 {
885 int needed = 0;
886 xlog_t *log = mp->m_log;
887
888 if (!xfs_fs_writable(mp))
889 return 0;
890
891 spin_lock(&log->l_icloglock);
892 switch (log->l_covered_state) {
893 case XLOG_STATE_COVER_DONE:
894 case XLOG_STATE_COVER_DONE2:
895 case XLOG_STATE_COVER_IDLE:
896 break;
897 case XLOG_STATE_COVER_NEED:
898 case XLOG_STATE_COVER_NEED2:
899 if (!xfs_ail_min_lsn(log->l_ailp) &&
900 xlog_iclogs_empty(log)) {
901 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
902 log->l_covered_state = XLOG_STATE_COVER_DONE;
903 else
904 log->l_covered_state = XLOG_STATE_COVER_DONE2;
905 }
906 /* FALLTHRU */
907 default:
908 needed = 1;
909 break;
910 }
911 spin_unlock(&log->l_icloglock);
912 return needed;
913 }
914
915 /*
916 * We may be holding the log iclog lock upon entering this routine.
917 */
918 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)919 xlog_assign_tail_lsn(
920 struct xfs_mount *mp)
921 {
922 xfs_lsn_t tail_lsn;
923 struct log *log = mp->m_log;
924
925 /*
926 * To make sure we always have a valid LSN for the log tail we keep
927 * track of the last LSN which was committed in log->l_last_sync_lsn,
928 * and use that when the AIL was empty and xfs_ail_min_lsn returns 0.
929 *
930 * If the AIL has been emptied we also need to wake any process
931 * waiting for this condition.
932 */
933 tail_lsn = xfs_ail_min_lsn(mp->m_ail);
934 if (!tail_lsn)
935 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
936 atomic64_set(&log->l_tail_lsn, tail_lsn);
937 return tail_lsn;
938 }
939
940 /*
941 * Return the space in the log between the tail and the head. The head
942 * is passed in the cycle/bytes formal parms. In the special case where
943 * the reserve head has wrapped passed the tail, this calculation is no
944 * longer valid. In this case, just return 0 which means there is no space
945 * in the log. This works for all places where this function is called
946 * with the reserve head. Of course, if the write head were to ever
947 * wrap the tail, we should blow up. Rather than catch this case here,
948 * we depend on other ASSERTions in other parts of the code. XXXmiken
949 *
950 * This code also handles the case where the reservation head is behind
951 * the tail. The details of this case are described below, but the end
952 * result is that we return the size of the log as the amount of space left.
953 */
954 STATIC int
xlog_space_left(struct log * log,atomic64_t * head)955 xlog_space_left(
956 struct log *log,
957 atomic64_t *head)
958 {
959 int free_bytes;
960 int tail_bytes;
961 int tail_cycle;
962 int head_cycle;
963 int head_bytes;
964
965 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
966 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
967 tail_bytes = BBTOB(tail_bytes);
968 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
969 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
970 else if (tail_cycle + 1 < head_cycle)
971 return 0;
972 else if (tail_cycle < head_cycle) {
973 ASSERT(tail_cycle == (head_cycle - 1));
974 free_bytes = tail_bytes - head_bytes;
975 } else {
976 /*
977 * The reservation head is behind the tail.
978 * In this case we just want to return the size of the
979 * log as the amount of space left.
980 */
981 xfs_alert(log->l_mp,
982 "xlog_space_left: head behind tail\n"
983 " tail_cycle = %d, tail_bytes = %d\n"
984 " GH cycle = %d, GH bytes = %d",
985 tail_cycle, tail_bytes, head_cycle, head_bytes);
986 ASSERT(0);
987 free_bytes = log->l_logsize;
988 }
989 return free_bytes;
990 }
991
992
993 /*
994 * Log function which is called when an io completes.
995 *
996 * The log manager needs its own routine, in order to control what
997 * happens with the buffer after the write completes.
998 */
999 void
xlog_iodone(xfs_buf_t * bp)1000 xlog_iodone(xfs_buf_t *bp)
1001 {
1002 xlog_in_core_t *iclog = bp->b_fspriv;
1003 xlog_t *l = iclog->ic_log;
1004 int aborted = 0;
1005
1006 /*
1007 * Race to shutdown the filesystem if we see an error.
1008 */
1009 if (XFS_TEST_ERROR((xfs_buf_geterror(bp)), l->l_mp,
1010 XFS_ERRTAG_IODONE_IOERR, XFS_RANDOM_IODONE_IOERR)) {
1011 xfs_buf_ioerror_alert(bp, __func__);
1012 xfs_buf_stale(bp);
1013 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1014 /*
1015 * This flag will be propagated to the trans-committed
1016 * callback routines to let them know that the log-commit
1017 * didn't succeed.
1018 */
1019 aborted = XFS_LI_ABORTED;
1020 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1021 aborted = XFS_LI_ABORTED;
1022 }
1023
1024 /* log I/O is always issued ASYNC */
1025 ASSERT(XFS_BUF_ISASYNC(bp));
1026 xlog_state_done_syncing(iclog, aborted);
1027 /*
1028 * do not reference the buffer (bp) here as we could race
1029 * with it being freed after writing the unmount record to the
1030 * log.
1031 */
1032
1033 } /* xlog_iodone */
1034
1035 /*
1036 * Return size of each in-core log record buffer.
1037 *
1038 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1039 *
1040 * If the filesystem blocksize is too large, we may need to choose a
1041 * larger size since the directory code currently logs entire blocks.
1042 */
1043
1044 STATIC void
xlog_get_iclog_buffer_size(xfs_mount_t * mp,xlog_t * log)1045 xlog_get_iclog_buffer_size(xfs_mount_t *mp,
1046 xlog_t *log)
1047 {
1048 int size;
1049 int xhdrs;
1050
1051 if (mp->m_logbufs <= 0)
1052 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1053 else
1054 log->l_iclog_bufs = mp->m_logbufs;
1055
1056 /*
1057 * Buffer size passed in from mount system call.
1058 */
1059 if (mp->m_logbsize > 0) {
1060 size = log->l_iclog_size = mp->m_logbsize;
1061 log->l_iclog_size_log = 0;
1062 while (size != 1) {
1063 log->l_iclog_size_log++;
1064 size >>= 1;
1065 }
1066
1067 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1068 /* # headers = size / 32k
1069 * one header holds cycles from 32k of data
1070 */
1071
1072 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1073 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1074 xhdrs++;
1075 log->l_iclog_hsize = xhdrs << BBSHIFT;
1076 log->l_iclog_heads = xhdrs;
1077 } else {
1078 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1079 log->l_iclog_hsize = BBSIZE;
1080 log->l_iclog_heads = 1;
1081 }
1082 goto done;
1083 }
1084
1085 /* All machines use 32kB buffers by default. */
1086 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1087 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1088
1089 /* the default log size is 16k or 32k which is one header sector */
1090 log->l_iclog_hsize = BBSIZE;
1091 log->l_iclog_heads = 1;
1092
1093 done:
1094 /* are we being asked to make the sizes selected above visible? */
1095 if (mp->m_logbufs == 0)
1096 mp->m_logbufs = log->l_iclog_bufs;
1097 if (mp->m_logbsize == 0)
1098 mp->m_logbsize = log->l_iclog_size;
1099 } /* xlog_get_iclog_buffer_size */
1100
1101
1102 /*
1103 * This routine initializes some of the log structure for a given mount point.
1104 * Its primary purpose is to fill in enough, so recovery can occur. However,
1105 * some other stuff may be filled in too.
1106 */
1107 STATIC xlog_t *
xlog_alloc_log(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)1108 xlog_alloc_log(xfs_mount_t *mp,
1109 xfs_buftarg_t *log_target,
1110 xfs_daddr_t blk_offset,
1111 int num_bblks)
1112 {
1113 xlog_t *log;
1114 xlog_rec_header_t *head;
1115 xlog_in_core_t **iclogp;
1116 xlog_in_core_t *iclog, *prev_iclog=NULL;
1117 xfs_buf_t *bp;
1118 int i;
1119 int error = ENOMEM;
1120 uint log2_size = 0;
1121
1122 log = kmem_zalloc(sizeof(xlog_t), KM_MAYFAIL);
1123 if (!log) {
1124 xfs_warn(mp, "Log allocation failed: No memory!");
1125 goto out;
1126 }
1127
1128 log->l_mp = mp;
1129 log->l_targ = log_target;
1130 log->l_logsize = BBTOB(num_bblks);
1131 log->l_logBBstart = blk_offset;
1132 log->l_logBBsize = num_bblks;
1133 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1134 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1135
1136 log->l_prev_block = -1;
1137 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1138 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1139 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1140 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1141
1142 xlog_grant_head_init(&log->l_reserve_head);
1143 xlog_grant_head_init(&log->l_write_head);
1144
1145 error = EFSCORRUPTED;
1146 if (xfs_sb_version_hassector(&mp->m_sb)) {
1147 log2_size = mp->m_sb.sb_logsectlog;
1148 if (log2_size < BBSHIFT) {
1149 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1150 log2_size, BBSHIFT);
1151 goto out_free_log;
1152 }
1153
1154 log2_size -= BBSHIFT;
1155 if (log2_size > mp->m_sectbb_log) {
1156 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1157 log2_size, mp->m_sectbb_log);
1158 goto out_free_log;
1159 }
1160
1161 /* for larger sector sizes, must have v2 or external log */
1162 if (log2_size && log->l_logBBstart > 0 &&
1163 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1164 xfs_warn(mp,
1165 "log sector size (0x%x) invalid for configuration.",
1166 log2_size);
1167 goto out_free_log;
1168 }
1169 }
1170 log->l_sectBBsize = 1 << log2_size;
1171
1172 xlog_get_iclog_buffer_size(mp, log);
1173
1174 error = ENOMEM;
1175 bp = xfs_buf_alloc(mp->m_logdev_targp, 0, log->l_iclog_size, 0);
1176 if (!bp)
1177 goto out_free_log;
1178 bp->b_iodone = xlog_iodone;
1179 ASSERT(xfs_buf_islocked(bp));
1180 log->l_xbuf = bp;
1181
1182 spin_lock_init(&log->l_icloglock);
1183 init_waitqueue_head(&log->l_flush_wait);
1184
1185 /* log record size must be multiple of BBSIZE; see xlog_rec_header_t */
1186 ASSERT((XFS_BUF_SIZE(bp) & BBMASK) == 0);
1187
1188 iclogp = &log->l_iclog;
1189 /*
1190 * The amount of memory to allocate for the iclog structure is
1191 * rather funky due to the way the structure is defined. It is
1192 * done this way so that we can use different sizes for machines
1193 * with different amounts of memory. See the definition of
1194 * xlog_in_core_t in xfs_log_priv.h for details.
1195 */
1196 ASSERT(log->l_iclog_size >= 4096);
1197 for (i=0; i < log->l_iclog_bufs; i++) {
1198 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1199 if (!*iclogp)
1200 goto out_free_iclog;
1201
1202 iclog = *iclogp;
1203 iclog->ic_prev = prev_iclog;
1204 prev_iclog = iclog;
1205
1206 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1207 log->l_iclog_size, 0);
1208 if (!bp)
1209 goto out_free_iclog;
1210
1211 bp->b_iodone = xlog_iodone;
1212 iclog->ic_bp = bp;
1213 iclog->ic_data = bp->b_addr;
1214 #ifdef DEBUG
1215 log->l_iclog_bak[i] = (xfs_caddr_t)&(iclog->ic_header);
1216 #endif
1217 head = &iclog->ic_header;
1218 memset(head, 0, sizeof(xlog_rec_header_t));
1219 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1220 head->h_version = cpu_to_be32(
1221 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1222 head->h_size = cpu_to_be32(log->l_iclog_size);
1223 /* new fields */
1224 head->h_fmt = cpu_to_be32(XLOG_FMT);
1225 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1226
1227 iclog->ic_size = XFS_BUF_SIZE(bp) - log->l_iclog_hsize;
1228 iclog->ic_state = XLOG_STATE_ACTIVE;
1229 iclog->ic_log = log;
1230 atomic_set(&iclog->ic_refcnt, 0);
1231 spin_lock_init(&iclog->ic_callback_lock);
1232 iclog->ic_callback_tail = &(iclog->ic_callback);
1233 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1234
1235 ASSERT(xfs_buf_islocked(iclog->ic_bp));
1236 init_waitqueue_head(&iclog->ic_force_wait);
1237 init_waitqueue_head(&iclog->ic_write_wait);
1238
1239 iclogp = &iclog->ic_next;
1240 }
1241 *iclogp = log->l_iclog; /* complete ring */
1242 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1243
1244 error = xlog_cil_init(log);
1245 if (error)
1246 goto out_free_iclog;
1247 return log;
1248
1249 out_free_iclog:
1250 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1251 prev_iclog = iclog->ic_next;
1252 if (iclog->ic_bp)
1253 xfs_buf_free(iclog->ic_bp);
1254 kmem_free(iclog);
1255 }
1256 spinlock_destroy(&log->l_icloglock);
1257 xfs_buf_free(log->l_xbuf);
1258 out_free_log:
1259 kmem_free(log);
1260 out:
1261 return ERR_PTR(-error);
1262 } /* xlog_alloc_log */
1263
1264
1265 /*
1266 * Write out the commit record of a transaction associated with the given
1267 * ticket. Return the lsn of the commit record.
1268 */
1269 STATIC int
xlog_commit_record(struct log * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * commitlsnp)1270 xlog_commit_record(
1271 struct log *log,
1272 struct xlog_ticket *ticket,
1273 struct xlog_in_core **iclog,
1274 xfs_lsn_t *commitlsnp)
1275 {
1276 struct xfs_mount *mp = log->l_mp;
1277 int error;
1278 struct xfs_log_iovec reg = {
1279 .i_addr = NULL,
1280 .i_len = 0,
1281 .i_type = XLOG_REG_TYPE_COMMIT,
1282 };
1283 struct xfs_log_vec vec = {
1284 .lv_niovecs = 1,
1285 .lv_iovecp = ®,
1286 };
1287
1288 ASSERT_ALWAYS(iclog);
1289 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1290 XLOG_COMMIT_TRANS);
1291 if (error)
1292 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1293 return error;
1294 }
1295
1296 /*
1297 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1298 * log space. This code pushes on the lsn which would supposedly free up
1299 * the 25% which we want to leave free. We may need to adopt a policy which
1300 * pushes on an lsn which is further along in the log once we reach the high
1301 * water mark. In this manner, we would be creating a low water mark.
1302 */
1303 STATIC void
xlog_grant_push_ail(struct log * log,int need_bytes)1304 xlog_grant_push_ail(
1305 struct log *log,
1306 int need_bytes)
1307 {
1308 xfs_lsn_t threshold_lsn = 0;
1309 xfs_lsn_t last_sync_lsn;
1310 int free_blocks;
1311 int free_bytes;
1312 int threshold_block;
1313 int threshold_cycle;
1314 int free_threshold;
1315
1316 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1317
1318 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1319 free_blocks = BTOBBT(free_bytes);
1320
1321 /*
1322 * Set the threshold for the minimum number of free blocks in the
1323 * log to the maximum of what the caller needs, one quarter of the
1324 * log, and 256 blocks.
1325 */
1326 free_threshold = BTOBB(need_bytes);
1327 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1328 free_threshold = MAX(free_threshold, 256);
1329 if (free_blocks >= free_threshold)
1330 return;
1331
1332 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1333 &threshold_block);
1334 threshold_block += free_threshold;
1335 if (threshold_block >= log->l_logBBsize) {
1336 threshold_block -= log->l_logBBsize;
1337 threshold_cycle += 1;
1338 }
1339 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1340 threshold_block);
1341 /*
1342 * Don't pass in an lsn greater than the lsn of the last
1343 * log record known to be on disk. Use a snapshot of the last sync lsn
1344 * so that it doesn't change between the compare and the set.
1345 */
1346 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1347 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1348 threshold_lsn = last_sync_lsn;
1349
1350 /*
1351 * Get the transaction layer to kick the dirty buffers out to
1352 * disk asynchronously. No point in trying to do this if
1353 * the filesystem is shutting down.
1354 */
1355 if (!XLOG_FORCED_SHUTDOWN(log))
1356 xfs_ail_push(log->l_ailp, threshold_lsn);
1357 }
1358
1359 /*
1360 * The bdstrat callback function for log bufs. This gives us a central
1361 * place to trap bufs in case we get hit by a log I/O error and need to
1362 * shutdown. Actually, in practice, even when we didn't get a log error,
1363 * we transition the iclogs to IOERROR state *after* flushing all existing
1364 * iclogs to disk. This is because we don't want anymore new transactions to be
1365 * started or completed afterwards.
1366 */
1367 STATIC int
xlog_bdstrat(struct xfs_buf * bp)1368 xlog_bdstrat(
1369 struct xfs_buf *bp)
1370 {
1371 struct xlog_in_core *iclog = bp->b_fspriv;
1372
1373 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1374 xfs_buf_ioerror(bp, EIO);
1375 xfs_buf_stale(bp);
1376 xfs_buf_ioend(bp, 0);
1377 /*
1378 * It would seem logical to return EIO here, but we rely on
1379 * the log state machine to propagate I/O errors instead of
1380 * doing it here.
1381 */
1382 return 0;
1383 }
1384
1385 xfs_buf_iorequest(bp);
1386 return 0;
1387 }
1388
1389 /*
1390 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1391 * fashion. Previously, we should have moved the current iclog
1392 * ptr in the log to point to the next available iclog. This allows further
1393 * write to continue while this code syncs out an iclog ready to go.
1394 * Before an in-core log can be written out, the data section must be scanned
1395 * to save away the 1st word of each BBSIZE block into the header. We replace
1396 * it with the current cycle count. Each BBSIZE block is tagged with the
1397 * cycle count because there in an implicit assumption that drives will
1398 * guarantee that entire 512 byte blocks get written at once. In other words,
1399 * we can't have part of a 512 byte block written and part not written. By
1400 * tagging each block, we will know which blocks are valid when recovering
1401 * after an unclean shutdown.
1402 *
1403 * This routine is single threaded on the iclog. No other thread can be in
1404 * this routine with the same iclog. Changing contents of iclog can there-
1405 * fore be done without grabbing the state machine lock. Updating the global
1406 * log will require grabbing the lock though.
1407 *
1408 * The entire log manager uses a logical block numbering scheme. Only
1409 * log_sync (and then only bwrite()) know about the fact that the log may
1410 * not start with block zero on a given device. The log block start offset
1411 * is added immediately before calling bwrite().
1412 */
1413
1414 STATIC int
xlog_sync(xlog_t * log,xlog_in_core_t * iclog)1415 xlog_sync(xlog_t *log,
1416 xlog_in_core_t *iclog)
1417 {
1418 xfs_caddr_t dptr; /* pointer to byte sized element */
1419 xfs_buf_t *bp;
1420 int i;
1421 uint count; /* byte count of bwrite */
1422 uint count_init; /* initial count before roundup */
1423 int roundoff; /* roundoff to BB or stripe */
1424 int split = 0; /* split write into two regions */
1425 int error;
1426 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1427
1428 XFS_STATS_INC(xs_log_writes);
1429 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1430
1431 /* Add for LR header */
1432 count_init = log->l_iclog_hsize + iclog->ic_offset;
1433
1434 /* Round out the log write size */
1435 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1436 /* we have a v2 stripe unit to use */
1437 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1438 } else {
1439 count = BBTOB(BTOBB(count_init));
1440 }
1441 roundoff = count - count_init;
1442 ASSERT(roundoff >= 0);
1443 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1444 roundoff < log->l_mp->m_sb.sb_logsunit)
1445 ||
1446 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1447 roundoff < BBTOB(1)));
1448
1449 /* move grant heads by roundoff in sync */
1450 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1451 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1452
1453 /* put cycle number in every block */
1454 xlog_pack_data(log, iclog, roundoff);
1455
1456 /* real byte length */
1457 if (v2) {
1458 iclog->ic_header.h_len =
1459 cpu_to_be32(iclog->ic_offset + roundoff);
1460 } else {
1461 iclog->ic_header.h_len =
1462 cpu_to_be32(iclog->ic_offset);
1463 }
1464
1465 bp = iclog->ic_bp;
1466 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1467
1468 XFS_STATS_ADD(xs_log_blocks, BTOBB(count));
1469
1470 /* Do we need to split this write into 2 parts? */
1471 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1472 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1473 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1474 iclog->ic_bwritecnt = 2; /* split into 2 writes */
1475 } else {
1476 iclog->ic_bwritecnt = 1;
1477 }
1478 XFS_BUF_SET_COUNT(bp, count);
1479 bp->b_fspriv = iclog;
1480 XFS_BUF_ZEROFLAGS(bp);
1481 XFS_BUF_ASYNC(bp);
1482 bp->b_flags |= XBF_SYNCIO;
1483
1484 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1485 bp->b_flags |= XBF_FUA;
1486
1487 /*
1488 * Flush the data device before flushing the log to make
1489 * sure all meta data written back from the AIL actually made
1490 * it to disk before stamping the new log tail LSN into the
1491 * log buffer. For an external log we need to issue the
1492 * flush explicitly, and unfortunately synchronously here;
1493 * for an internal log we can simply use the block layer
1494 * state machine for preflushes.
1495 */
1496 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1497 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1498 else
1499 bp->b_flags |= XBF_FLUSH;
1500 }
1501
1502 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1503 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1504
1505 xlog_verify_iclog(log, iclog, count, B_TRUE);
1506
1507 /* account for log which doesn't start at block #0 */
1508 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1509 /*
1510 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1511 * is shutting down.
1512 */
1513 XFS_BUF_WRITE(bp);
1514
1515 error = xlog_bdstrat(bp);
1516 if (error) {
1517 xfs_buf_ioerror_alert(bp, "xlog_sync");
1518 return error;
1519 }
1520 if (split) {
1521 bp = iclog->ic_log->l_xbuf;
1522 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1523 xfs_buf_associate_memory(bp,
1524 (char *)&iclog->ic_header + count, split);
1525 bp->b_fspriv = iclog;
1526 XFS_BUF_ZEROFLAGS(bp);
1527 XFS_BUF_ASYNC(bp);
1528 bp->b_flags |= XBF_SYNCIO;
1529 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1530 bp->b_flags |= XBF_FUA;
1531 dptr = bp->b_addr;
1532 /*
1533 * Bump the cycle numbers at the start of each block
1534 * since this part of the buffer is at the start of
1535 * a new cycle. Watch out for the header magic number
1536 * case, though.
1537 */
1538 for (i = 0; i < split; i += BBSIZE) {
1539 be32_add_cpu((__be32 *)dptr, 1);
1540 if (be32_to_cpu(*(__be32 *)dptr) == XLOG_HEADER_MAGIC_NUM)
1541 be32_add_cpu((__be32 *)dptr, 1);
1542 dptr += BBSIZE;
1543 }
1544
1545 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1546 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1547
1548 /* account for internal log which doesn't start at block #0 */
1549 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1550 XFS_BUF_WRITE(bp);
1551 error = xlog_bdstrat(bp);
1552 if (error) {
1553 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1554 return error;
1555 }
1556 }
1557 return 0;
1558 } /* xlog_sync */
1559
1560
1561 /*
1562 * Deallocate a log structure
1563 */
1564 STATIC void
xlog_dealloc_log(xlog_t * log)1565 xlog_dealloc_log(xlog_t *log)
1566 {
1567 xlog_in_core_t *iclog, *next_iclog;
1568 int i;
1569
1570 xlog_cil_destroy(log);
1571
1572 /*
1573 * always need to ensure that the extra buffer does not point to memory
1574 * owned by another log buffer before we free it.
1575 */
1576 xfs_buf_set_empty(log->l_xbuf, log->l_iclog_size);
1577 xfs_buf_free(log->l_xbuf);
1578
1579 iclog = log->l_iclog;
1580 for (i=0; i<log->l_iclog_bufs; i++) {
1581 xfs_buf_free(iclog->ic_bp);
1582 next_iclog = iclog->ic_next;
1583 kmem_free(iclog);
1584 iclog = next_iclog;
1585 }
1586 spinlock_destroy(&log->l_icloglock);
1587
1588 log->l_mp->m_log = NULL;
1589 kmem_free(log);
1590 } /* xlog_dealloc_log */
1591
1592 /*
1593 * Update counters atomically now that memcpy is done.
1594 */
1595 /* ARGSUSED */
1596 static inline void
xlog_state_finish_copy(xlog_t * log,xlog_in_core_t * iclog,int record_cnt,int copy_bytes)1597 xlog_state_finish_copy(xlog_t *log,
1598 xlog_in_core_t *iclog,
1599 int record_cnt,
1600 int copy_bytes)
1601 {
1602 spin_lock(&log->l_icloglock);
1603
1604 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1605 iclog->ic_offset += copy_bytes;
1606
1607 spin_unlock(&log->l_icloglock);
1608 } /* xlog_state_finish_copy */
1609
1610
1611
1612
1613 /*
1614 * print out info relating to regions written which consume
1615 * the reservation
1616 */
1617 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1618 xlog_print_tic_res(
1619 struct xfs_mount *mp,
1620 struct xlog_ticket *ticket)
1621 {
1622 uint i;
1623 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1624
1625 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1626 static char *res_type_str[XLOG_REG_TYPE_MAX] = {
1627 "bformat",
1628 "bchunk",
1629 "efi_format",
1630 "efd_format",
1631 "iformat",
1632 "icore",
1633 "iext",
1634 "ibroot",
1635 "ilocal",
1636 "iattr_ext",
1637 "iattr_broot",
1638 "iattr_local",
1639 "qformat",
1640 "dquot",
1641 "quotaoff",
1642 "LR header",
1643 "unmount",
1644 "commit",
1645 "trans header"
1646 };
1647 static char *trans_type_str[XFS_TRANS_TYPE_MAX] = {
1648 "SETATTR_NOT_SIZE",
1649 "SETATTR_SIZE",
1650 "INACTIVE",
1651 "CREATE",
1652 "CREATE_TRUNC",
1653 "TRUNCATE_FILE",
1654 "REMOVE",
1655 "LINK",
1656 "RENAME",
1657 "MKDIR",
1658 "RMDIR",
1659 "SYMLINK",
1660 "SET_DMATTRS",
1661 "GROWFS",
1662 "STRAT_WRITE",
1663 "DIOSTRAT",
1664 "WRITE_SYNC",
1665 "WRITEID",
1666 "ADDAFORK",
1667 "ATTRINVAL",
1668 "ATRUNCATE",
1669 "ATTR_SET",
1670 "ATTR_RM",
1671 "ATTR_FLAG",
1672 "CLEAR_AGI_BUCKET",
1673 "QM_SBCHANGE",
1674 "DUMMY1",
1675 "DUMMY2",
1676 "QM_QUOTAOFF",
1677 "QM_DQALLOC",
1678 "QM_SETQLIM",
1679 "QM_DQCLUSTER",
1680 "QM_QINOCREATE",
1681 "QM_QUOTAOFF_END",
1682 "SB_UNIT",
1683 "FSYNC_TS",
1684 "GROWFSRT_ALLOC",
1685 "GROWFSRT_ZERO",
1686 "GROWFSRT_FREE",
1687 "SWAPEXT"
1688 };
1689
1690 xfs_warn(mp,
1691 "xlog_write: reservation summary:\n"
1692 " trans type = %s (%u)\n"
1693 " unit res = %d bytes\n"
1694 " current res = %d bytes\n"
1695 " total reg = %u bytes (o/flow = %u bytes)\n"
1696 " ophdrs = %u (ophdr space = %u bytes)\n"
1697 " ophdr + reg = %u bytes\n"
1698 " num regions = %u\n",
1699 ((ticket->t_trans_type <= 0 ||
1700 ticket->t_trans_type > XFS_TRANS_TYPE_MAX) ?
1701 "bad-trans-type" : trans_type_str[ticket->t_trans_type-1]),
1702 ticket->t_trans_type,
1703 ticket->t_unit_res,
1704 ticket->t_curr_res,
1705 ticket->t_res_arr_sum, ticket->t_res_o_flow,
1706 ticket->t_res_num_ophdrs, ophdr_spc,
1707 ticket->t_res_arr_sum +
1708 ticket->t_res_o_flow + ophdr_spc,
1709 ticket->t_res_num);
1710
1711 for (i = 0; i < ticket->t_res_num; i++) {
1712 uint r_type = ticket->t_res_arr[i].r_type;
1713 xfs_warn(mp, "region[%u]: %s - %u bytes\n", i,
1714 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
1715 "bad-rtype" : res_type_str[r_type-1]),
1716 ticket->t_res_arr[i].r_len);
1717 }
1718
1719 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
1720 "xlog_write: reservation ran out. Need to up reservation");
1721 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1722 }
1723
1724 /*
1725 * Calculate the potential space needed by the log vector. Each region gets
1726 * its own xlog_op_header_t and may need to be double word aligned.
1727 */
1728 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector)1729 xlog_write_calc_vec_length(
1730 struct xlog_ticket *ticket,
1731 struct xfs_log_vec *log_vector)
1732 {
1733 struct xfs_log_vec *lv;
1734 int headers = 0;
1735 int len = 0;
1736 int i;
1737
1738 /* acct for start rec of xact */
1739 if (ticket->t_flags & XLOG_TIC_INITED)
1740 headers++;
1741
1742 for (lv = log_vector; lv; lv = lv->lv_next) {
1743 headers += lv->lv_niovecs;
1744
1745 for (i = 0; i < lv->lv_niovecs; i++) {
1746 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
1747
1748 len += vecp->i_len;
1749 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
1750 }
1751 }
1752
1753 ticket->t_res_num_ophdrs += headers;
1754 len += headers * sizeof(struct xlog_op_header);
1755
1756 return len;
1757 }
1758
1759 /*
1760 * If first write for transaction, insert start record We can't be trying to
1761 * commit if we are inited. We can't have any "partial_copy" if we are inited.
1762 */
1763 static int
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)1764 xlog_write_start_rec(
1765 struct xlog_op_header *ophdr,
1766 struct xlog_ticket *ticket)
1767 {
1768 if (!(ticket->t_flags & XLOG_TIC_INITED))
1769 return 0;
1770
1771 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1772 ophdr->oh_clientid = ticket->t_clientid;
1773 ophdr->oh_len = 0;
1774 ophdr->oh_flags = XLOG_START_TRANS;
1775 ophdr->oh_res2 = 0;
1776
1777 ticket->t_flags &= ~XLOG_TIC_INITED;
1778
1779 return sizeof(struct xlog_op_header);
1780 }
1781
1782 static xlog_op_header_t *
xlog_write_setup_ophdr(struct log * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)1783 xlog_write_setup_ophdr(
1784 struct log *log,
1785 struct xlog_op_header *ophdr,
1786 struct xlog_ticket *ticket,
1787 uint flags)
1788 {
1789 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
1790 ophdr->oh_clientid = ticket->t_clientid;
1791 ophdr->oh_res2 = 0;
1792
1793 /* are we copying a commit or unmount record? */
1794 ophdr->oh_flags = flags;
1795
1796 /*
1797 * We've seen logs corrupted with bad transaction client ids. This
1798 * makes sure that XFS doesn't generate them on. Turn this into an EIO
1799 * and shut down the filesystem.
1800 */
1801 switch (ophdr->oh_clientid) {
1802 case XFS_TRANSACTION:
1803 case XFS_VOLUME:
1804 case XFS_LOG:
1805 break;
1806 default:
1807 xfs_warn(log->l_mp,
1808 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
1809 ophdr->oh_clientid, ticket);
1810 return NULL;
1811 }
1812
1813 return ophdr;
1814 }
1815
1816 /*
1817 * Set up the parameters of the region copy into the log. This has
1818 * to handle region write split across multiple log buffers - this
1819 * state is kept external to this function so that this code can
1820 * can be written in an obvious, self documenting manner.
1821 */
1822 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)1823 xlog_write_setup_copy(
1824 struct xlog_ticket *ticket,
1825 struct xlog_op_header *ophdr,
1826 int space_available,
1827 int space_required,
1828 int *copy_off,
1829 int *copy_len,
1830 int *last_was_partial_copy,
1831 int *bytes_consumed)
1832 {
1833 int still_to_copy;
1834
1835 still_to_copy = space_required - *bytes_consumed;
1836 *copy_off = *bytes_consumed;
1837
1838 if (still_to_copy <= space_available) {
1839 /* write of region completes here */
1840 *copy_len = still_to_copy;
1841 ophdr->oh_len = cpu_to_be32(*copy_len);
1842 if (*last_was_partial_copy)
1843 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
1844 *last_was_partial_copy = 0;
1845 *bytes_consumed = 0;
1846 return 0;
1847 }
1848
1849 /* partial write of region, needs extra log op header reservation */
1850 *copy_len = space_available;
1851 ophdr->oh_len = cpu_to_be32(*copy_len);
1852 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
1853 if (*last_was_partial_copy)
1854 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
1855 *bytes_consumed += *copy_len;
1856 (*last_was_partial_copy)++;
1857
1858 /* account for new log op header */
1859 ticket->t_curr_res -= sizeof(struct xlog_op_header);
1860 ticket->t_res_num_ophdrs++;
1861
1862 return sizeof(struct xlog_op_header);
1863 }
1864
1865 static int
xlog_write_copy_finish(struct log * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)1866 xlog_write_copy_finish(
1867 struct log *log,
1868 struct xlog_in_core *iclog,
1869 uint flags,
1870 int *record_cnt,
1871 int *data_cnt,
1872 int *partial_copy,
1873 int *partial_copy_len,
1874 int log_offset,
1875 struct xlog_in_core **commit_iclog)
1876 {
1877 if (*partial_copy) {
1878 /*
1879 * This iclog has already been marked WANT_SYNC by
1880 * xlog_state_get_iclog_space.
1881 */
1882 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1883 *record_cnt = 0;
1884 *data_cnt = 0;
1885 return xlog_state_release_iclog(log, iclog);
1886 }
1887
1888 *partial_copy = 0;
1889 *partial_copy_len = 0;
1890
1891 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
1892 /* no more space in this iclog - push it. */
1893 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
1894 *record_cnt = 0;
1895 *data_cnt = 0;
1896
1897 spin_lock(&log->l_icloglock);
1898 xlog_state_want_sync(log, iclog);
1899 spin_unlock(&log->l_icloglock);
1900
1901 if (!commit_iclog)
1902 return xlog_state_release_iclog(log, iclog);
1903 ASSERT(flags & XLOG_COMMIT_TRANS);
1904 *commit_iclog = iclog;
1905 }
1906
1907 return 0;
1908 }
1909
1910 /*
1911 * Write some region out to in-core log
1912 *
1913 * This will be called when writing externally provided regions or when
1914 * writing out a commit record for a given transaction.
1915 *
1916 * General algorithm:
1917 * 1. Find total length of this write. This may include adding to the
1918 * lengths passed in.
1919 * 2. Check whether we violate the tickets reservation.
1920 * 3. While writing to this iclog
1921 * A. Reserve as much space in this iclog as can get
1922 * B. If this is first write, save away start lsn
1923 * C. While writing this region:
1924 * 1. If first write of transaction, write start record
1925 * 2. Write log operation header (header per region)
1926 * 3. Find out if we can fit entire region into this iclog
1927 * 4. Potentially, verify destination memcpy ptr
1928 * 5. Memcpy (partial) region
1929 * 6. If partial copy, release iclog; otherwise, continue
1930 * copying more regions into current iclog
1931 * 4. Mark want sync bit (in simulation mode)
1932 * 5. Release iclog for potential flush to on-disk log.
1933 *
1934 * ERRORS:
1935 * 1. Panic if reservation is overrun. This should never happen since
1936 * reservation amounts are generated internal to the filesystem.
1937 * NOTES:
1938 * 1. Tickets are single threaded data structures.
1939 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
1940 * syncing routine. When a single log_write region needs to span
1941 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
1942 * on all log operation writes which don't contain the end of the
1943 * region. The XLOG_END_TRANS bit is used for the in-core log
1944 * operation which contains the end of the continued log_write region.
1945 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
1946 * we don't really know exactly how much space will be used. As a result,
1947 * we don't update ic_offset until the end when we know exactly how many
1948 * bytes have been written out.
1949 */
1950 int
xlog_write(struct log * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags)1951 xlog_write(
1952 struct log *log,
1953 struct xfs_log_vec *log_vector,
1954 struct xlog_ticket *ticket,
1955 xfs_lsn_t *start_lsn,
1956 struct xlog_in_core **commit_iclog,
1957 uint flags)
1958 {
1959 struct xlog_in_core *iclog = NULL;
1960 struct xfs_log_iovec *vecp;
1961 struct xfs_log_vec *lv;
1962 int len;
1963 int index;
1964 int partial_copy = 0;
1965 int partial_copy_len = 0;
1966 int contwr = 0;
1967 int record_cnt = 0;
1968 int data_cnt = 0;
1969 int error;
1970
1971 *start_lsn = 0;
1972
1973 len = xlog_write_calc_vec_length(ticket, log_vector);
1974
1975 /*
1976 * Region headers and bytes are already accounted for.
1977 * We only need to take into account start records and
1978 * split regions in this function.
1979 */
1980 if (ticket->t_flags & XLOG_TIC_INITED)
1981 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1982
1983 /*
1984 * Commit record headers need to be accounted for. These
1985 * come in as separate writes so are easy to detect.
1986 */
1987 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
1988 ticket->t_curr_res -= sizeof(xlog_op_header_t);
1989
1990 if (ticket->t_curr_res < 0)
1991 xlog_print_tic_res(log->l_mp, ticket);
1992
1993 index = 0;
1994 lv = log_vector;
1995 vecp = lv->lv_iovecp;
1996 while (lv && index < lv->lv_niovecs) {
1997 void *ptr;
1998 int log_offset;
1999
2000 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2001 &contwr, &log_offset);
2002 if (error)
2003 return error;
2004
2005 ASSERT(log_offset <= iclog->ic_size - 1);
2006 ptr = iclog->ic_datap + log_offset;
2007
2008 /* start_lsn is the first lsn written to. That's all we need. */
2009 if (!*start_lsn)
2010 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2011
2012 /*
2013 * This loop writes out as many regions as can fit in the amount
2014 * of space which was allocated by xlog_state_get_iclog_space().
2015 */
2016 while (lv && index < lv->lv_niovecs) {
2017 struct xfs_log_iovec *reg = &vecp[index];
2018 struct xlog_op_header *ophdr;
2019 int start_rec_copy;
2020 int copy_len;
2021 int copy_off;
2022
2023 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2024 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2025
2026 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2027 if (start_rec_copy) {
2028 record_cnt++;
2029 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2030 start_rec_copy);
2031 }
2032
2033 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2034 if (!ophdr)
2035 return XFS_ERROR(EIO);
2036
2037 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2038 sizeof(struct xlog_op_header));
2039
2040 len += xlog_write_setup_copy(ticket, ophdr,
2041 iclog->ic_size-log_offset,
2042 reg->i_len,
2043 ©_off, ©_len,
2044 &partial_copy,
2045 &partial_copy_len);
2046 xlog_verify_dest_ptr(log, ptr);
2047
2048 /* copy region */
2049 ASSERT(copy_len >= 0);
2050 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2051 xlog_write_adv_cnt(&ptr, &len, &log_offset, copy_len);
2052
2053 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2054 record_cnt++;
2055 data_cnt += contwr ? copy_len : 0;
2056
2057 error = xlog_write_copy_finish(log, iclog, flags,
2058 &record_cnt, &data_cnt,
2059 &partial_copy,
2060 &partial_copy_len,
2061 log_offset,
2062 commit_iclog);
2063 if (error)
2064 return error;
2065
2066 /*
2067 * if we had a partial copy, we need to get more iclog
2068 * space but we don't want to increment the region
2069 * index because there is still more is this region to
2070 * write.
2071 *
2072 * If we completed writing this region, and we flushed
2073 * the iclog (indicated by resetting of the record
2074 * count), then we also need to get more log space. If
2075 * this was the last record, though, we are done and
2076 * can just return.
2077 */
2078 if (partial_copy)
2079 break;
2080
2081 if (++index == lv->lv_niovecs) {
2082 lv = lv->lv_next;
2083 index = 0;
2084 if (lv)
2085 vecp = lv->lv_iovecp;
2086 }
2087 if (record_cnt == 0) {
2088 if (!lv)
2089 return 0;
2090 break;
2091 }
2092 }
2093 }
2094
2095 ASSERT(len == 0);
2096
2097 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2098 if (!commit_iclog)
2099 return xlog_state_release_iclog(log, iclog);
2100
2101 ASSERT(flags & XLOG_COMMIT_TRANS);
2102 *commit_iclog = iclog;
2103 return 0;
2104 }
2105
2106
2107 /*****************************************************************************
2108 *
2109 * State Machine functions
2110 *
2111 *****************************************************************************
2112 */
2113
2114 /* Clean iclogs starting from the head. This ordering must be
2115 * maintained, so an iclog doesn't become ACTIVE beyond one that
2116 * is SYNCING. This is also required to maintain the notion that we use
2117 * a ordered wait queue to hold off would be writers to the log when every
2118 * iclog is trying to sync to disk.
2119 *
2120 * State Change: DIRTY -> ACTIVE
2121 */
2122 STATIC void
xlog_state_clean_log(xlog_t * log)2123 xlog_state_clean_log(xlog_t *log)
2124 {
2125 xlog_in_core_t *iclog;
2126 int changed = 0;
2127
2128 iclog = log->l_iclog;
2129 do {
2130 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2131 iclog->ic_state = XLOG_STATE_ACTIVE;
2132 iclog->ic_offset = 0;
2133 ASSERT(iclog->ic_callback == NULL);
2134 /*
2135 * If the number of ops in this iclog indicate it just
2136 * contains the dummy transaction, we can
2137 * change state into IDLE (the second time around).
2138 * Otherwise we should change the state into
2139 * NEED a dummy.
2140 * We don't need to cover the dummy.
2141 */
2142 if (!changed &&
2143 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2144 XLOG_COVER_OPS)) {
2145 changed = 1;
2146 } else {
2147 /*
2148 * We have two dirty iclogs so start over
2149 * This could also be num of ops indicates
2150 * this is not the dummy going out.
2151 */
2152 changed = 2;
2153 }
2154 iclog->ic_header.h_num_logops = 0;
2155 memset(iclog->ic_header.h_cycle_data, 0,
2156 sizeof(iclog->ic_header.h_cycle_data));
2157 iclog->ic_header.h_lsn = 0;
2158 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2159 /* do nothing */;
2160 else
2161 break; /* stop cleaning */
2162 iclog = iclog->ic_next;
2163 } while (iclog != log->l_iclog);
2164
2165 /* log is locked when we are called */
2166 /*
2167 * Change state for the dummy log recording.
2168 * We usually go to NEED. But we go to NEED2 if the changed indicates
2169 * we are done writing the dummy record.
2170 * If we are done with the second dummy recored (DONE2), then
2171 * we go to IDLE.
2172 */
2173 if (changed) {
2174 switch (log->l_covered_state) {
2175 case XLOG_STATE_COVER_IDLE:
2176 case XLOG_STATE_COVER_NEED:
2177 case XLOG_STATE_COVER_NEED2:
2178 log->l_covered_state = XLOG_STATE_COVER_NEED;
2179 break;
2180
2181 case XLOG_STATE_COVER_DONE:
2182 if (changed == 1)
2183 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2184 else
2185 log->l_covered_state = XLOG_STATE_COVER_NEED;
2186 break;
2187
2188 case XLOG_STATE_COVER_DONE2:
2189 if (changed == 1)
2190 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2191 else
2192 log->l_covered_state = XLOG_STATE_COVER_NEED;
2193 break;
2194
2195 default:
2196 ASSERT(0);
2197 }
2198 }
2199 } /* xlog_state_clean_log */
2200
2201 STATIC xfs_lsn_t
xlog_get_lowest_lsn(xlog_t * log)2202 xlog_get_lowest_lsn(
2203 xlog_t *log)
2204 {
2205 xlog_in_core_t *lsn_log;
2206 xfs_lsn_t lowest_lsn, lsn;
2207
2208 lsn_log = log->l_iclog;
2209 lowest_lsn = 0;
2210 do {
2211 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2212 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2213 if ((lsn && !lowest_lsn) ||
2214 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2215 lowest_lsn = lsn;
2216 }
2217 }
2218 lsn_log = lsn_log->ic_next;
2219 } while (lsn_log != log->l_iclog);
2220 return lowest_lsn;
2221 }
2222
2223
2224 STATIC void
xlog_state_do_callback(xlog_t * log,int aborted,xlog_in_core_t * ciclog)2225 xlog_state_do_callback(
2226 xlog_t *log,
2227 int aborted,
2228 xlog_in_core_t *ciclog)
2229 {
2230 xlog_in_core_t *iclog;
2231 xlog_in_core_t *first_iclog; /* used to know when we've
2232 * processed all iclogs once */
2233 xfs_log_callback_t *cb, *cb_next;
2234 int flushcnt = 0;
2235 xfs_lsn_t lowest_lsn;
2236 int ioerrors; /* counter: iclogs with errors */
2237 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2238 int funcdidcallbacks; /* flag: function did callbacks */
2239 int repeats; /* for issuing console warnings if
2240 * looping too many times */
2241 int wake = 0;
2242
2243 spin_lock(&log->l_icloglock);
2244 first_iclog = iclog = log->l_iclog;
2245 ioerrors = 0;
2246 funcdidcallbacks = 0;
2247 repeats = 0;
2248
2249 do {
2250 /*
2251 * Scan all iclogs starting with the one pointed to by the
2252 * log. Reset this starting point each time the log is
2253 * unlocked (during callbacks).
2254 *
2255 * Keep looping through iclogs until one full pass is made
2256 * without running any callbacks.
2257 */
2258 first_iclog = log->l_iclog;
2259 iclog = log->l_iclog;
2260 loopdidcallbacks = 0;
2261 repeats++;
2262
2263 do {
2264
2265 /* skip all iclogs in the ACTIVE & DIRTY states */
2266 if (iclog->ic_state &
2267 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2268 iclog = iclog->ic_next;
2269 continue;
2270 }
2271
2272 /*
2273 * Between marking a filesystem SHUTDOWN and stopping
2274 * the log, we do flush all iclogs to disk (if there
2275 * wasn't a log I/O error). So, we do want things to
2276 * go smoothly in case of just a SHUTDOWN w/o a
2277 * LOG_IO_ERROR.
2278 */
2279 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2280 /*
2281 * Can only perform callbacks in order. Since
2282 * this iclog is not in the DONE_SYNC/
2283 * DO_CALLBACK state, we skip the rest and
2284 * just try to clean up. If we set our iclog
2285 * to DO_CALLBACK, we will not process it when
2286 * we retry since a previous iclog is in the
2287 * CALLBACK and the state cannot change since
2288 * we are holding the l_icloglock.
2289 */
2290 if (!(iclog->ic_state &
2291 (XLOG_STATE_DONE_SYNC |
2292 XLOG_STATE_DO_CALLBACK))) {
2293 if (ciclog && (ciclog->ic_state ==
2294 XLOG_STATE_DONE_SYNC)) {
2295 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2296 }
2297 break;
2298 }
2299 /*
2300 * We now have an iclog that is in either the
2301 * DO_CALLBACK or DONE_SYNC states. The other
2302 * states (WANT_SYNC, SYNCING, or CALLBACK were
2303 * caught by the above if and are going to
2304 * clean (i.e. we aren't doing their callbacks)
2305 * see the above if.
2306 */
2307
2308 /*
2309 * We will do one more check here to see if we
2310 * have chased our tail around.
2311 */
2312
2313 lowest_lsn = xlog_get_lowest_lsn(log);
2314 if (lowest_lsn &&
2315 XFS_LSN_CMP(lowest_lsn,
2316 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2317 iclog = iclog->ic_next;
2318 continue; /* Leave this iclog for
2319 * another thread */
2320 }
2321
2322 iclog->ic_state = XLOG_STATE_CALLBACK;
2323
2324
2325 /*
2326 * update the last_sync_lsn before we drop the
2327 * icloglock to ensure we are the only one that
2328 * can update it.
2329 */
2330 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2331 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2332 atomic64_set(&log->l_last_sync_lsn,
2333 be64_to_cpu(iclog->ic_header.h_lsn));
2334
2335 } else
2336 ioerrors++;
2337
2338 spin_unlock(&log->l_icloglock);
2339
2340 /*
2341 * Keep processing entries in the callback list until
2342 * we come around and it is empty. We need to
2343 * atomically see that the list is empty and change the
2344 * state to DIRTY so that we don't miss any more
2345 * callbacks being added.
2346 */
2347 spin_lock(&iclog->ic_callback_lock);
2348 cb = iclog->ic_callback;
2349 while (cb) {
2350 iclog->ic_callback_tail = &(iclog->ic_callback);
2351 iclog->ic_callback = NULL;
2352 spin_unlock(&iclog->ic_callback_lock);
2353
2354 /* perform callbacks in the order given */
2355 for (; cb; cb = cb_next) {
2356 cb_next = cb->cb_next;
2357 cb->cb_func(cb->cb_arg, aborted);
2358 }
2359 spin_lock(&iclog->ic_callback_lock);
2360 cb = iclog->ic_callback;
2361 }
2362
2363 loopdidcallbacks++;
2364 funcdidcallbacks++;
2365
2366 spin_lock(&log->l_icloglock);
2367 ASSERT(iclog->ic_callback == NULL);
2368 spin_unlock(&iclog->ic_callback_lock);
2369 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2370 iclog->ic_state = XLOG_STATE_DIRTY;
2371
2372 /*
2373 * Transition from DIRTY to ACTIVE if applicable.
2374 * NOP if STATE_IOERROR.
2375 */
2376 xlog_state_clean_log(log);
2377
2378 /* wake up threads waiting in xfs_log_force() */
2379 wake_up_all(&iclog->ic_force_wait);
2380
2381 iclog = iclog->ic_next;
2382 } while (first_iclog != iclog);
2383
2384 if (repeats > 5000) {
2385 flushcnt += repeats;
2386 repeats = 0;
2387 xfs_warn(log->l_mp,
2388 "%s: possible infinite loop (%d iterations)",
2389 __func__, flushcnt);
2390 }
2391 } while (!ioerrors && loopdidcallbacks);
2392
2393 /*
2394 * make one last gasp attempt to see if iclogs are being left in
2395 * limbo..
2396 */
2397 #ifdef DEBUG
2398 if (funcdidcallbacks) {
2399 first_iclog = iclog = log->l_iclog;
2400 do {
2401 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2402 /*
2403 * Terminate the loop if iclogs are found in states
2404 * which will cause other threads to clean up iclogs.
2405 *
2406 * SYNCING - i/o completion will go through logs
2407 * DONE_SYNC - interrupt thread should be waiting for
2408 * l_icloglock
2409 * IOERROR - give up hope all ye who enter here
2410 */
2411 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2412 iclog->ic_state == XLOG_STATE_SYNCING ||
2413 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2414 iclog->ic_state == XLOG_STATE_IOERROR )
2415 break;
2416 iclog = iclog->ic_next;
2417 } while (first_iclog != iclog);
2418 }
2419 #endif
2420
2421 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2422 wake = 1;
2423 spin_unlock(&log->l_icloglock);
2424
2425 if (wake)
2426 wake_up_all(&log->l_flush_wait);
2427 }
2428
2429
2430 /*
2431 * Finish transitioning this iclog to the dirty state.
2432 *
2433 * Make sure that we completely execute this routine only when this is
2434 * the last call to the iclog. There is a good chance that iclog flushes,
2435 * when we reach the end of the physical log, get turned into 2 separate
2436 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2437 * routine. By using the reference count bwritecnt, we guarantee that only
2438 * the second completion goes through.
2439 *
2440 * Callbacks could take time, so they are done outside the scope of the
2441 * global state machine log lock.
2442 */
2443 STATIC void
xlog_state_done_syncing(xlog_in_core_t * iclog,int aborted)2444 xlog_state_done_syncing(
2445 xlog_in_core_t *iclog,
2446 int aborted)
2447 {
2448 xlog_t *log = iclog->ic_log;
2449
2450 spin_lock(&log->l_icloglock);
2451
2452 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2453 iclog->ic_state == XLOG_STATE_IOERROR);
2454 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2455 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2456
2457
2458 /*
2459 * If we got an error, either on the first buffer, or in the case of
2460 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2461 * and none should ever be attempted to be written to disk
2462 * again.
2463 */
2464 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2465 if (--iclog->ic_bwritecnt == 1) {
2466 spin_unlock(&log->l_icloglock);
2467 return;
2468 }
2469 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2470 }
2471
2472 /*
2473 * Someone could be sleeping prior to writing out the next
2474 * iclog buffer, we wake them all, one will get to do the
2475 * I/O, the others get to wait for the result.
2476 */
2477 wake_up_all(&iclog->ic_write_wait);
2478 spin_unlock(&log->l_icloglock);
2479 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2480 } /* xlog_state_done_syncing */
2481
2482
2483 /*
2484 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2485 * sleep. We wait on the flush queue on the head iclog as that should be
2486 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2487 * we will wait here and all new writes will sleep until a sync completes.
2488 *
2489 * The in-core logs are used in a circular fashion. They are not used
2490 * out-of-order even when an iclog past the head is free.
2491 *
2492 * return:
2493 * * log_offset where xlog_write() can start writing into the in-core
2494 * log's data space.
2495 * * in-core log pointer to which xlog_write() should write.
2496 * * boolean indicating this is a continued write to an in-core log.
2497 * If this is the last write, then the in-core log's offset field
2498 * needs to be incremented, depending on the amount of data which
2499 * is copied.
2500 */
2501 STATIC int
xlog_state_get_iclog_space(xlog_t * log,int len,xlog_in_core_t ** iclogp,xlog_ticket_t * ticket,int * continued_write,int * logoffsetp)2502 xlog_state_get_iclog_space(xlog_t *log,
2503 int len,
2504 xlog_in_core_t **iclogp,
2505 xlog_ticket_t *ticket,
2506 int *continued_write,
2507 int *logoffsetp)
2508 {
2509 int log_offset;
2510 xlog_rec_header_t *head;
2511 xlog_in_core_t *iclog;
2512 int error;
2513
2514 restart:
2515 spin_lock(&log->l_icloglock);
2516 if (XLOG_FORCED_SHUTDOWN(log)) {
2517 spin_unlock(&log->l_icloglock);
2518 return XFS_ERROR(EIO);
2519 }
2520
2521 iclog = log->l_iclog;
2522 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2523 XFS_STATS_INC(xs_log_noiclogs);
2524
2525 /* Wait for log writes to have flushed */
2526 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2527 goto restart;
2528 }
2529
2530 head = &iclog->ic_header;
2531
2532 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2533 log_offset = iclog->ic_offset;
2534
2535 /* On the 1st write to an iclog, figure out lsn. This works
2536 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2537 * committing to. If the offset is set, that's how many blocks
2538 * must be written.
2539 */
2540 if (log_offset == 0) {
2541 ticket->t_curr_res -= log->l_iclog_hsize;
2542 xlog_tic_add_region(ticket,
2543 log->l_iclog_hsize,
2544 XLOG_REG_TYPE_LRHEADER);
2545 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2546 head->h_lsn = cpu_to_be64(
2547 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2548 ASSERT(log->l_curr_block >= 0);
2549 }
2550
2551 /* If there is enough room to write everything, then do it. Otherwise,
2552 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2553 * bit is on, so this will get flushed out. Don't update ic_offset
2554 * until you know exactly how many bytes get copied. Therefore, wait
2555 * until later to update ic_offset.
2556 *
2557 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2558 * can fit into remaining data section.
2559 */
2560 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2561 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2562
2563 /*
2564 * If I'm the only one writing to this iclog, sync it to disk.
2565 * We need to do an atomic compare and decrement here to avoid
2566 * racing with concurrent atomic_dec_and_lock() calls in
2567 * xlog_state_release_iclog() when there is more than one
2568 * reference to the iclog.
2569 */
2570 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2571 /* we are the only one */
2572 spin_unlock(&log->l_icloglock);
2573 error = xlog_state_release_iclog(log, iclog);
2574 if (error)
2575 return error;
2576 } else {
2577 spin_unlock(&log->l_icloglock);
2578 }
2579 goto restart;
2580 }
2581
2582 /* Do we have enough room to write the full amount in the remainder
2583 * of this iclog? Or must we continue a write on the next iclog and
2584 * mark this iclog as completely taken? In the case where we switch
2585 * iclogs (to mark it taken), this particular iclog will release/sync
2586 * to disk in xlog_write().
2587 */
2588 if (len <= iclog->ic_size - iclog->ic_offset) {
2589 *continued_write = 0;
2590 iclog->ic_offset += len;
2591 } else {
2592 *continued_write = 1;
2593 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2594 }
2595 *iclogp = iclog;
2596
2597 ASSERT(iclog->ic_offset <= iclog->ic_size);
2598 spin_unlock(&log->l_icloglock);
2599
2600 *logoffsetp = log_offset;
2601 return 0;
2602 } /* xlog_state_get_iclog_space */
2603
2604 /* The first cnt-1 times through here we don't need to
2605 * move the grant write head because the permanent
2606 * reservation has reserved cnt times the unit amount.
2607 * Release part of current permanent unit reservation and
2608 * reset current reservation to be one units worth. Also
2609 * move grant reservation head forward.
2610 */
2611 STATIC void
xlog_regrant_reserve_log_space(xlog_t * log,xlog_ticket_t * ticket)2612 xlog_regrant_reserve_log_space(xlog_t *log,
2613 xlog_ticket_t *ticket)
2614 {
2615 trace_xfs_log_regrant_reserve_enter(log, ticket);
2616
2617 if (ticket->t_cnt > 0)
2618 ticket->t_cnt--;
2619
2620 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2621 ticket->t_curr_res);
2622 xlog_grant_sub_space(log, &log->l_write_head.grant,
2623 ticket->t_curr_res);
2624 ticket->t_curr_res = ticket->t_unit_res;
2625 xlog_tic_reset_res(ticket);
2626
2627 trace_xfs_log_regrant_reserve_sub(log, ticket);
2628
2629 /* just return if we still have some of the pre-reserved space */
2630 if (ticket->t_cnt > 0)
2631 return;
2632
2633 xlog_grant_add_space(log, &log->l_reserve_head.grant,
2634 ticket->t_unit_res);
2635
2636 trace_xfs_log_regrant_reserve_exit(log, ticket);
2637
2638 ticket->t_curr_res = ticket->t_unit_res;
2639 xlog_tic_reset_res(ticket);
2640 } /* xlog_regrant_reserve_log_space */
2641
2642
2643 /*
2644 * Give back the space left from a reservation.
2645 *
2646 * All the information we need to make a correct determination of space left
2647 * is present. For non-permanent reservations, things are quite easy. The
2648 * count should have been decremented to zero. We only need to deal with the
2649 * space remaining in the current reservation part of the ticket. If the
2650 * ticket contains a permanent reservation, there may be left over space which
2651 * needs to be released. A count of N means that N-1 refills of the current
2652 * reservation can be done before we need to ask for more space. The first
2653 * one goes to fill up the first current reservation. Once we run out of
2654 * space, the count will stay at zero and the only space remaining will be
2655 * in the current reservation field.
2656 */
2657 STATIC void
xlog_ungrant_log_space(xlog_t * log,xlog_ticket_t * ticket)2658 xlog_ungrant_log_space(xlog_t *log,
2659 xlog_ticket_t *ticket)
2660 {
2661 int bytes;
2662
2663 if (ticket->t_cnt > 0)
2664 ticket->t_cnt--;
2665
2666 trace_xfs_log_ungrant_enter(log, ticket);
2667 trace_xfs_log_ungrant_sub(log, ticket);
2668
2669 /*
2670 * If this is a permanent reservation ticket, we may be able to free
2671 * up more space based on the remaining count.
2672 */
2673 bytes = ticket->t_curr_res;
2674 if (ticket->t_cnt > 0) {
2675 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
2676 bytes += ticket->t_unit_res*ticket->t_cnt;
2677 }
2678
2679 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
2680 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
2681
2682 trace_xfs_log_ungrant_exit(log, ticket);
2683
2684 xfs_log_space_wake(log->l_mp);
2685 }
2686
2687 /*
2688 * Flush iclog to disk if this is the last reference to the given iclog and
2689 * the WANT_SYNC bit is set.
2690 *
2691 * When this function is entered, the iclog is not necessarily in the
2692 * WANT_SYNC state. It may be sitting around waiting to get filled.
2693 *
2694 *
2695 */
2696 STATIC int
xlog_state_release_iclog(xlog_t * log,xlog_in_core_t * iclog)2697 xlog_state_release_iclog(
2698 xlog_t *log,
2699 xlog_in_core_t *iclog)
2700 {
2701 int sync = 0; /* do we sync? */
2702
2703 if (iclog->ic_state & XLOG_STATE_IOERROR)
2704 return XFS_ERROR(EIO);
2705
2706 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
2707 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
2708 return 0;
2709
2710 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2711 spin_unlock(&log->l_icloglock);
2712 return XFS_ERROR(EIO);
2713 }
2714 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
2715 iclog->ic_state == XLOG_STATE_WANT_SYNC);
2716
2717 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
2718 /* update tail before writing to iclog */
2719 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
2720 sync++;
2721 iclog->ic_state = XLOG_STATE_SYNCING;
2722 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
2723 xlog_verify_tail_lsn(log, iclog, tail_lsn);
2724 /* cycle incremented when incrementing curr_block */
2725 }
2726 spin_unlock(&log->l_icloglock);
2727
2728 /*
2729 * We let the log lock go, so it's possible that we hit a log I/O
2730 * error or some other SHUTDOWN condition that marks the iclog
2731 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
2732 * this iclog has consistent data, so we ignore IOERROR
2733 * flags after this point.
2734 */
2735 if (sync)
2736 return xlog_sync(log, iclog);
2737 return 0;
2738 } /* xlog_state_release_iclog */
2739
2740
2741 /*
2742 * This routine will mark the current iclog in the ring as WANT_SYNC
2743 * and move the current iclog pointer to the next iclog in the ring.
2744 * When this routine is called from xlog_state_get_iclog_space(), the
2745 * exact size of the iclog has not yet been determined. All we know is
2746 * that every data block. We have run out of space in this log record.
2747 */
2748 STATIC void
xlog_state_switch_iclogs(xlog_t * log,xlog_in_core_t * iclog,int eventual_size)2749 xlog_state_switch_iclogs(xlog_t *log,
2750 xlog_in_core_t *iclog,
2751 int eventual_size)
2752 {
2753 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
2754 if (!eventual_size)
2755 eventual_size = iclog->ic_offset;
2756 iclog->ic_state = XLOG_STATE_WANT_SYNC;
2757 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
2758 log->l_prev_block = log->l_curr_block;
2759 log->l_prev_cycle = log->l_curr_cycle;
2760
2761 /* roll log?: ic_offset changed later */
2762 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
2763
2764 /* Round up to next log-sunit */
2765 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
2766 log->l_mp->m_sb.sb_logsunit > 1) {
2767 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
2768 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
2769 }
2770
2771 if (log->l_curr_block >= log->l_logBBsize) {
2772 log->l_curr_cycle++;
2773 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
2774 log->l_curr_cycle++;
2775 log->l_curr_block -= log->l_logBBsize;
2776 ASSERT(log->l_curr_block >= 0);
2777 }
2778 ASSERT(iclog == log->l_iclog);
2779 log->l_iclog = iclog->ic_next;
2780 } /* xlog_state_switch_iclogs */
2781
2782 /*
2783 * Write out all data in the in-core log as of this exact moment in time.
2784 *
2785 * Data may be written to the in-core log during this call. However,
2786 * we don't guarantee this data will be written out. A change from past
2787 * implementation means this routine will *not* write out zero length LRs.
2788 *
2789 * Basically, we try and perform an intelligent scan of the in-core logs.
2790 * If we determine there is no flushable data, we just return. There is no
2791 * flushable data if:
2792 *
2793 * 1. the current iclog is active and has no data; the previous iclog
2794 * is in the active or dirty state.
2795 * 2. the current iclog is drity, and the previous iclog is in the
2796 * active or dirty state.
2797 *
2798 * We may sleep if:
2799 *
2800 * 1. the current iclog is not in the active nor dirty state.
2801 * 2. the current iclog dirty, and the previous iclog is not in the
2802 * active nor dirty state.
2803 * 3. the current iclog is active, and there is another thread writing
2804 * to this particular iclog.
2805 * 4. a) the current iclog is active and has no other writers
2806 * b) when we return from flushing out this iclog, it is still
2807 * not in the active nor dirty state.
2808 */
2809 int
_xfs_log_force(struct xfs_mount * mp,uint flags,int * log_flushed)2810 _xfs_log_force(
2811 struct xfs_mount *mp,
2812 uint flags,
2813 int *log_flushed)
2814 {
2815 struct log *log = mp->m_log;
2816 struct xlog_in_core *iclog;
2817 xfs_lsn_t lsn;
2818
2819 XFS_STATS_INC(xs_log_force);
2820
2821 xlog_cil_force(log);
2822
2823 spin_lock(&log->l_icloglock);
2824
2825 iclog = log->l_iclog;
2826 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2827 spin_unlock(&log->l_icloglock);
2828 return XFS_ERROR(EIO);
2829 }
2830
2831 /* If the head iclog is not active nor dirty, we just attach
2832 * ourselves to the head and go to sleep.
2833 */
2834 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2835 iclog->ic_state == XLOG_STATE_DIRTY) {
2836 /*
2837 * If the head is dirty or (active and empty), then
2838 * we need to look at the previous iclog. If the previous
2839 * iclog is active or dirty we are done. There is nothing
2840 * to sync out. Otherwise, we attach ourselves to the
2841 * previous iclog and go to sleep.
2842 */
2843 if (iclog->ic_state == XLOG_STATE_DIRTY ||
2844 (atomic_read(&iclog->ic_refcnt) == 0
2845 && iclog->ic_offset == 0)) {
2846 iclog = iclog->ic_prev;
2847 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2848 iclog->ic_state == XLOG_STATE_DIRTY)
2849 goto no_sleep;
2850 else
2851 goto maybe_sleep;
2852 } else {
2853 if (atomic_read(&iclog->ic_refcnt) == 0) {
2854 /* We are the only one with access to this
2855 * iclog. Flush it out now. There should
2856 * be a roundoff of zero to show that someone
2857 * has already taken care of the roundoff from
2858 * the previous sync.
2859 */
2860 atomic_inc(&iclog->ic_refcnt);
2861 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2862 xlog_state_switch_iclogs(log, iclog, 0);
2863 spin_unlock(&log->l_icloglock);
2864
2865 if (xlog_state_release_iclog(log, iclog))
2866 return XFS_ERROR(EIO);
2867
2868 if (log_flushed)
2869 *log_flushed = 1;
2870 spin_lock(&log->l_icloglock);
2871 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
2872 iclog->ic_state != XLOG_STATE_DIRTY)
2873 goto maybe_sleep;
2874 else
2875 goto no_sleep;
2876 } else {
2877 /* Someone else is writing to this iclog.
2878 * Use its call to flush out the data. However,
2879 * the other thread may not force out this LR,
2880 * so we mark it WANT_SYNC.
2881 */
2882 xlog_state_switch_iclogs(log, iclog, 0);
2883 goto maybe_sleep;
2884 }
2885 }
2886 }
2887
2888 /* By the time we come around again, the iclog could've been filled
2889 * which would give it another lsn. If we have a new lsn, just
2890 * return because the relevant data has been flushed.
2891 */
2892 maybe_sleep:
2893 if (flags & XFS_LOG_SYNC) {
2894 /*
2895 * We must check if we're shutting down here, before
2896 * we wait, while we're holding the l_icloglock.
2897 * Then we check again after waking up, in case our
2898 * sleep was disturbed by a bad news.
2899 */
2900 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2901 spin_unlock(&log->l_icloglock);
2902 return XFS_ERROR(EIO);
2903 }
2904 XFS_STATS_INC(xs_log_force_sleep);
2905 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
2906 /*
2907 * No need to grab the log lock here since we're
2908 * only deciding whether or not to return EIO
2909 * and the memory read should be atomic.
2910 */
2911 if (iclog->ic_state & XLOG_STATE_IOERROR)
2912 return XFS_ERROR(EIO);
2913 if (log_flushed)
2914 *log_flushed = 1;
2915 } else {
2916
2917 no_sleep:
2918 spin_unlock(&log->l_icloglock);
2919 }
2920 return 0;
2921 }
2922
2923 /*
2924 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
2925 * about errors or whether the log was flushed or not. This is the normal
2926 * interface to use when trying to unpin items or move the log forward.
2927 */
2928 void
xfs_log_force(xfs_mount_t * mp,uint flags)2929 xfs_log_force(
2930 xfs_mount_t *mp,
2931 uint flags)
2932 {
2933 int error;
2934
2935 error = _xfs_log_force(mp, flags, NULL);
2936 if (error)
2937 xfs_warn(mp, "%s: error %d returned.", __func__, error);
2938 }
2939
2940 /*
2941 * Force the in-core log to disk for a specific LSN.
2942 *
2943 * Find in-core log with lsn.
2944 * If it is in the DIRTY state, just return.
2945 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
2946 * state and go to sleep or return.
2947 * If it is in any other state, go to sleep or return.
2948 *
2949 * Synchronous forces are implemented with a signal variable. All callers
2950 * to force a given lsn to disk will wait on a the sv attached to the
2951 * specific in-core log. When given in-core log finally completes its
2952 * write to disk, that thread will wake up all threads waiting on the
2953 * sv.
2954 */
2955 int
_xfs_log_force_lsn(struct xfs_mount * mp,xfs_lsn_t lsn,uint flags,int * log_flushed)2956 _xfs_log_force_lsn(
2957 struct xfs_mount *mp,
2958 xfs_lsn_t lsn,
2959 uint flags,
2960 int *log_flushed)
2961 {
2962 struct log *log = mp->m_log;
2963 struct xlog_in_core *iclog;
2964 int already_slept = 0;
2965
2966 ASSERT(lsn != 0);
2967
2968 XFS_STATS_INC(xs_log_force);
2969
2970 lsn = xlog_cil_force_lsn(log, lsn);
2971 if (lsn == NULLCOMMITLSN)
2972 return 0;
2973
2974 try_again:
2975 spin_lock(&log->l_icloglock);
2976 iclog = log->l_iclog;
2977 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2978 spin_unlock(&log->l_icloglock);
2979 return XFS_ERROR(EIO);
2980 }
2981
2982 do {
2983 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
2984 iclog = iclog->ic_next;
2985 continue;
2986 }
2987
2988 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2989 spin_unlock(&log->l_icloglock);
2990 return 0;
2991 }
2992
2993 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
2994 /*
2995 * We sleep here if we haven't already slept (e.g.
2996 * this is the first time we've looked at the correct
2997 * iclog buf) and the buffer before us is going to
2998 * be sync'ed. The reason for this is that if we
2999 * are doing sync transactions here, by waiting for
3000 * the previous I/O to complete, we can allow a few
3001 * more transactions into this iclog before we close
3002 * it down.
3003 *
3004 * Otherwise, we mark the buffer WANT_SYNC, and bump
3005 * up the refcnt so we can release the log (which
3006 * drops the ref count). The state switch keeps new
3007 * transaction commits from using this buffer. When
3008 * the current commits finish writing into the buffer,
3009 * the refcount will drop to zero and the buffer will
3010 * go out then.
3011 */
3012 if (!already_slept &&
3013 (iclog->ic_prev->ic_state &
3014 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3015 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3016
3017 XFS_STATS_INC(xs_log_force_sleep);
3018
3019 xlog_wait(&iclog->ic_prev->ic_write_wait,
3020 &log->l_icloglock);
3021 if (log_flushed)
3022 *log_flushed = 1;
3023 already_slept = 1;
3024 goto try_again;
3025 }
3026 atomic_inc(&iclog->ic_refcnt);
3027 xlog_state_switch_iclogs(log, iclog, 0);
3028 spin_unlock(&log->l_icloglock);
3029 if (xlog_state_release_iclog(log, iclog))
3030 return XFS_ERROR(EIO);
3031 if (log_flushed)
3032 *log_flushed = 1;
3033 spin_lock(&log->l_icloglock);
3034 }
3035
3036 if ((flags & XFS_LOG_SYNC) && /* sleep */
3037 !(iclog->ic_state &
3038 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3039 /*
3040 * Don't wait on completion if we know that we've
3041 * gotten a log write error.
3042 */
3043 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3044 spin_unlock(&log->l_icloglock);
3045 return XFS_ERROR(EIO);
3046 }
3047 XFS_STATS_INC(xs_log_force_sleep);
3048 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3049 /*
3050 * No need to grab the log lock here since we're
3051 * only deciding whether or not to return EIO
3052 * and the memory read should be atomic.
3053 */
3054 if (iclog->ic_state & XLOG_STATE_IOERROR)
3055 return XFS_ERROR(EIO);
3056
3057 if (log_flushed)
3058 *log_flushed = 1;
3059 } else { /* just return */
3060 spin_unlock(&log->l_icloglock);
3061 }
3062
3063 return 0;
3064 } while (iclog != log->l_iclog);
3065
3066 spin_unlock(&log->l_icloglock);
3067 return 0;
3068 }
3069
3070 /*
3071 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3072 * about errors or whether the log was flushed or not. This is the normal
3073 * interface to use when trying to unpin items or move the log forward.
3074 */
3075 void
xfs_log_force_lsn(xfs_mount_t * mp,xfs_lsn_t lsn,uint flags)3076 xfs_log_force_lsn(
3077 xfs_mount_t *mp,
3078 xfs_lsn_t lsn,
3079 uint flags)
3080 {
3081 int error;
3082
3083 error = _xfs_log_force_lsn(mp, lsn, flags, NULL);
3084 if (error)
3085 xfs_warn(mp, "%s: error %d returned.", __func__, error);
3086 }
3087
3088 /*
3089 * Called when we want to mark the current iclog as being ready to sync to
3090 * disk.
3091 */
3092 STATIC void
xlog_state_want_sync(xlog_t * log,xlog_in_core_t * iclog)3093 xlog_state_want_sync(xlog_t *log, xlog_in_core_t *iclog)
3094 {
3095 assert_spin_locked(&log->l_icloglock);
3096
3097 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3098 xlog_state_switch_iclogs(log, iclog, 0);
3099 } else {
3100 ASSERT(iclog->ic_state &
3101 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3102 }
3103 }
3104
3105
3106 /*****************************************************************************
3107 *
3108 * TICKET functions
3109 *
3110 *****************************************************************************
3111 */
3112
3113 /*
3114 * Free a used ticket when its refcount falls to zero.
3115 */
3116 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3117 xfs_log_ticket_put(
3118 xlog_ticket_t *ticket)
3119 {
3120 ASSERT(atomic_read(&ticket->t_ref) > 0);
3121 if (atomic_dec_and_test(&ticket->t_ref))
3122 kmem_zone_free(xfs_log_ticket_zone, ticket);
3123 }
3124
3125 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3126 xfs_log_ticket_get(
3127 xlog_ticket_t *ticket)
3128 {
3129 ASSERT(atomic_read(&ticket->t_ref) > 0);
3130 atomic_inc(&ticket->t_ref);
3131 return ticket;
3132 }
3133
3134 /*
3135 * Allocate and initialise a new log ticket.
3136 */
3137 xlog_ticket_t *
xlog_ticket_alloc(struct log * log,int unit_bytes,int cnt,char client,bool permanent,int alloc_flags)3138 xlog_ticket_alloc(
3139 struct log *log,
3140 int unit_bytes,
3141 int cnt,
3142 char client,
3143 bool permanent,
3144 int alloc_flags)
3145 {
3146 struct xlog_ticket *tic;
3147 uint num_headers;
3148 int iclog_space;
3149
3150 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3151 if (!tic)
3152 return NULL;
3153
3154 /*
3155 * Permanent reservations have up to 'cnt'-1 active log operations
3156 * in the log. A unit in this case is the amount of space for one
3157 * of these log operations. Normal reservations have a cnt of 1
3158 * and their unit amount is the total amount of space required.
3159 *
3160 * The following lines of code account for non-transaction data
3161 * which occupy space in the on-disk log.
3162 *
3163 * Normal form of a transaction is:
3164 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3165 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3166 *
3167 * We need to account for all the leadup data and trailer data
3168 * around the transaction data.
3169 * And then we need to account for the worst case in terms of using
3170 * more space.
3171 * The worst case will happen if:
3172 * - the placement of the transaction happens to be such that the
3173 * roundoff is at its maximum
3174 * - the transaction data is synced before the commit record is synced
3175 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3176 * Therefore the commit record is in its own Log Record.
3177 * This can happen as the commit record is called with its
3178 * own region to xlog_write().
3179 * This then means that in the worst case, roundoff can happen for
3180 * the commit-rec as well.
3181 * The commit-rec is smaller than padding in this scenario and so it is
3182 * not added separately.
3183 */
3184
3185 /* for trans header */
3186 unit_bytes += sizeof(xlog_op_header_t);
3187 unit_bytes += sizeof(xfs_trans_header_t);
3188
3189 /* for start-rec */
3190 unit_bytes += sizeof(xlog_op_header_t);
3191
3192 /*
3193 * for LR headers - the space for data in an iclog is the size minus
3194 * the space used for the headers. If we use the iclog size, then we
3195 * undercalculate the number of headers required.
3196 *
3197 * Furthermore - the addition of op headers for split-recs might
3198 * increase the space required enough to require more log and op
3199 * headers, so take that into account too.
3200 *
3201 * IMPORTANT: This reservation makes the assumption that if this
3202 * transaction is the first in an iclog and hence has the LR headers
3203 * accounted to it, then the remaining space in the iclog is
3204 * exclusively for this transaction. i.e. if the transaction is larger
3205 * than the iclog, it will be the only thing in that iclog.
3206 * Fundamentally, this means we must pass the entire log vector to
3207 * xlog_write to guarantee this.
3208 */
3209 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3210 num_headers = howmany(unit_bytes, iclog_space);
3211
3212 /* for split-recs - ophdrs added when data split over LRs */
3213 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3214
3215 /* add extra header reservations if we overrun */
3216 while (!num_headers ||
3217 howmany(unit_bytes, iclog_space) > num_headers) {
3218 unit_bytes += sizeof(xlog_op_header_t);
3219 num_headers++;
3220 }
3221 unit_bytes += log->l_iclog_hsize * num_headers;
3222
3223 /* for commit-rec LR header - note: padding will subsume the ophdr */
3224 unit_bytes += log->l_iclog_hsize;
3225
3226 /* for roundoff padding for transaction data and one for commit record */
3227 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3228 log->l_mp->m_sb.sb_logsunit > 1) {
3229 /* log su roundoff */
3230 unit_bytes += 2*log->l_mp->m_sb.sb_logsunit;
3231 } else {
3232 /* BB roundoff */
3233 unit_bytes += 2*BBSIZE;
3234 }
3235
3236 atomic_set(&tic->t_ref, 1);
3237 tic->t_task = current;
3238 INIT_LIST_HEAD(&tic->t_queue);
3239 tic->t_unit_res = unit_bytes;
3240 tic->t_curr_res = unit_bytes;
3241 tic->t_cnt = cnt;
3242 tic->t_ocnt = cnt;
3243 tic->t_tid = random32();
3244 tic->t_clientid = client;
3245 tic->t_flags = XLOG_TIC_INITED;
3246 tic->t_trans_type = 0;
3247 if (permanent)
3248 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3249
3250 xlog_tic_reset_res(tic);
3251
3252 return tic;
3253 }
3254
3255
3256 /******************************************************************************
3257 *
3258 * Log debug routines
3259 *
3260 ******************************************************************************
3261 */
3262 #if defined(DEBUG)
3263 /*
3264 * Make sure that the destination ptr is within the valid data region of
3265 * one of the iclogs. This uses backup pointers stored in a different
3266 * part of the log in case we trash the log structure.
3267 */
3268 void
xlog_verify_dest_ptr(struct log * log,char * ptr)3269 xlog_verify_dest_ptr(
3270 struct log *log,
3271 char *ptr)
3272 {
3273 int i;
3274 int good_ptr = 0;
3275
3276 for (i = 0; i < log->l_iclog_bufs; i++) {
3277 if (ptr >= log->l_iclog_bak[i] &&
3278 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3279 good_ptr++;
3280 }
3281
3282 if (!good_ptr)
3283 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3284 }
3285
3286 /*
3287 * Check to make sure the grant write head didn't just over lap the tail. If
3288 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3289 * the cycles differ by exactly one and check the byte count.
3290 *
3291 * This check is run unlocked, so can give false positives. Rather than assert
3292 * on failures, use a warn-once flag and a panic tag to allow the admin to
3293 * determine if they want to panic the machine when such an error occurs. For
3294 * debug kernels this will have the same effect as using an assert but, unlinke
3295 * an assert, it can be turned off at runtime.
3296 */
3297 STATIC void
xlog_verify_grant_tail(struct log * log)3298 xlog_verify_grant_tail(
3299 struct log *log)
3300 {
3301 int tail_cycle, tail_blocks;
3302 int cycle, space;
3303
3304 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3305 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3306 if (tail_cycle != cycle) {
3307 if (cycle - 1 != tail_cycle &&
3308 !(log->l_flags & XLOG_TAIL_WARN)) {
3309 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3310 "%s: cycle - 1 != tail_cycle", __func__);
3311 log->l_flags |= XLOG_TAIL_WARN;
3312 }
3313
3314 if (space > BBTOB(tail_blocks) &&
3315 !(log->l_flags & XLOG_TAIL_WARN)) {
3316 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3317 "%s: space > BBTOB(tail_blocks)", __func__);
3318 log->l_flags |= XLOG_TAIL_WARN;
3319 }
3320 }
3321 }
3322
3323 /* check if it will fit */
3324 STATIC void
xlog_verify_tail_lsn(xlog_t * log,xlog_in_core_t * iclog,xfs_lsn_t tail_lsn)3325 xlog_verify_tail_lsn(xlog_t *log,
3326 xlog_in_core_t *iclog,
3327 xfs_lsn_t tail_lsn)
3328 {
3329 int blocks;
3330
3331 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3332 blocks =
3333 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3334 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3335 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3336 } else {
3337 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3338
3339 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3340 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3341
3342 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3343 if (blocks < BTOBB(iclog->ic_offset) + 1)
3344 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3345 }
3346 } /* xlog_verify_tail_lsn */
3347
3348 /*
3349 * Perform a number of checks on the iclog before writing to disk.
3350 *
3351 * 1. Make sure the iclogs are still circular
3352 * 2. Make sure we have a good magic number
3353 * 3. Make sure we don't have magic numbers in the data
3354 * 4. Check fields of each log operation header for:
3355 * A. Valid client identifier
3356 * B. tid ptr value falls in valid ptr space (user space code)
3357 * C. Length in log record header is correct according to the
3358 * individual operation headers within record.
3359 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3360 * log, check the preceding blocks of the physical log to make sure all
3361 * the cycle numbers agree with the current cycle number.
3362 */
3363 STATIC void
xlog_verify_iclog(xlog_t * log,xlog_in_core_t * iclog,int count,boolean_t syncing)3364 xlog_verify_iclog(xlog_t *log,
3365 xlog_in_core_t *iclog,
3366 int count,
3367 boolean_t syncing)
3368 {
3369 xlog_op_header_t *ophead;
3370 xlog_in_core_t *icptr;
3371 xlog_in_core_2_t *xhdr;
3372 xfs_caddr_t ptr;
3373 xfs_caddr_t base_ptr;
3374 __psint_t field_offset;
3375 __uint8_t clientid;
3376 int len, i, j, k, op_len;
3377 int idx;
3378
3379 /* check validity of iclog pointers */
3380 spin_lock(&log->l_icloglock);
3381 icptr = log->l_iclog;
3382 for (i=0; i < log->l_iclog_bufs; i++) {
3383 if (icptr == NULL)
3384 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3385 icptr = icptr->ic_next;
3386 }
3387 if (icptr != log->l_iclog)
3388 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3389 spin_unlock(&log->l_icloglock);
3390
3391 /* check log magic numbers */
3392 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3393 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3394
3395 ptr = (xfs_caddr_t) &iclog->ic_header;
3396 for (ptr += BBSIZE; ptr < ((xfs_caddr_t)&iclog->ic_header) + count;
3397 ptr += BBSIZE) {
3398 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3399 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3400 __func__);
3401 }
3402
3403 /* check fields */
3404 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3405 ptr = iclog->ic_datap;
3406 base_ptr = ptr;
3407 ophead = (xlog_op_header_t *)ptr;
3408 xhdr = iclog->ic_data;
3409 for (i = 0; i < len; i++) {
3410 ophead = (xlog_op_header_t *)ptr;
3411
3412 /* clientid is only 1 byte */
3413 field_offset = (__psint_t)
3414 ((xfs_caddr_t)&(ophead->oh_clientid) - base_ptr);
3415 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3416 clientid = ophead->oh_clientid;
3417 } else {
3418 idx = BTOBBT((xfs_caddr_t)&(ophead->oh_clientid) - iclog->ic_datap);
3419 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3420 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3421 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3422 clientid = xlog_get_client_id(
3423 xhdr[j].hic_xheader.xh_cycle_data[k]);
3424 } else {
3425 clientid = xlog_get_client_id(
3426 iclog->ic_header.h_cycle_data[idx]);
3427 }
3428 }
3429 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3430 xfs_warn(log->l_mp,
3431 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3432 __func__, clientid, ophead,
3433 (unsigned long)field_offset);
3434
3435 /* check length */
3436 field_offset = (__psint_t)
3437 ((xfs_caddr_t)&(ophead->oh_len) - base_ptr);
3438 if (syncing == B_FALSE || (field_offset & 0x1ff)) {
3439 op_len = be32_to_cpu(ophead->oh_len);
3440 } else {
3441 idx = BTOBBT((__psint_t)&ophead->oh_len -
3442 (__psint_t)iclog->ic_datap);
3443 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3444 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3445 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3446 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3447 } else {
3448 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3449 }
3450 }
3451 ptr += sizeof(xlog_op_header_t) + op_len;
3452 }
3453 } /* xlog_verify_iclog */
3454 #endif
3455
3456 /*
3457 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3458 */
3459 STATIC int
xlog_state_ioerror(xlog_t * log)3460 xlog_state_ioerror(
3461 xlog_t *log)
3462 {
3463 xlog_in_core_t *iclog, *ic;
3464
3465 iclog = log->l_iclog;
3466 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3467 /*
3468 * Mark all the incore logs IOERROR.
3469 * From now on, no log flushes will result.
3470 */
3471 ic = iclog;
3472 do {
3473 ic->ic_state = XLOG_STATE_IOERROR;
3474 ic = ic->ic_next;
3475 } while (ic != iclog);
3476 return 0;
3477 }
3478 /*
3479 * Return non-zero, if state transition has already happened.
3480 */
3481 return 1;
3482 }
3483
3484 /*
3485 * This is called from xfs_force_shutdown, when we're forcibly
3486 * shutting down the filesystem, typically because of an IO error.
3487 * Our main objectives here are to make sure that:
3488 * a. the filesystem gets marked 'SHUTDOWN' for all interested
3489 * parties to find out, 'atomically'.
3490 * b. those who're sleeping on log reservations, pinned objects and
3491 * other resources get woken up, and be told the bad news.
3492 * c. nothing new gets queued up after (a) and (b) are done.
3493 * d. if !logerror, flush the iclogs to disk, then seal them off
3494 * for business.
3495 *
3496 * Note: for delayed logging the !logerror case needs to flush the regions
3497 * held in memory out to the iclogs before flushing them to disk. This needs
3498 * to be done before the log is marked as shutdown, otherwise the flush to the
3499 * iclogs will fail.
3500 */
3501 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3502 xfs_log_force_umount(
3503 struct xfs_mount *mp,
3504 int logerror)
3505 {
3506 xlog_t *log;
3507 int retval;
3508
3509 log = mp->m_log;
3510
3511 /*
3512 * If this happens during log recovery, don't worry about
3513 * locking; the log isn't open for business yet.
3514 */
3515 if (!log ||
3516 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3517 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3518 if (mp->m_sb_bp)
3519 XFS_BUF_DONE(mp->m_sb_bp);
3520 return 0;
3521 }
3522
3523 /*
3524 * Somebody could've already done the hard work for us.
3525 * No need to get locks for this.
3526 */
3527 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3528 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3529 return 1;
3530 }
3531 retval = 0;
3532
3533 /*
3534 * Flush the in memory commit item list before marking the log as
3535 * being shut down. We need to do it in this order to ensure all the
3536 * completed transactions are flushed to disk with the xfs_log_force()
3537 * call below.
3538 */
3539 if (!logerror)
3540 xlog_cil_force(log);
3541
3542 /*
3543 * mark the filesystem and the as in a shutdown state and wake
3544 * everybody up to tell them the bad news.
3545 */
3546 spin_lock(&log->l_icloglock);
3547 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3548 if (mp->m_sb_bp)
3549 XFS_BUF_DONE(mp->m_sb_bp);
3550
3551 /*
3552 * This flag is sort of redundant because of the mount flag, but
3553 * it's good to maintain the separation between the log and the rest
3554 * of XFS.
3555 */
3556 log->l_flags |= XLOG_IO_ERROR;
3557
3558 /*
3559 * If we hit a log error, we want to mark all the iclogs IOERROR
3560 * while we're still holding the loglock.
3561 */
3562 if (logerror)
3563 retval = xlog_state_ioerror(log);
3564 spin_unlock(&log->l_icloglock);
3565
3566 /*
3567 * We don't want anybody waiting for log reservations after this. That
3568 * means we have to wake up everybody queued up on reserveq as well as
3569 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3570 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3571 * action is protected by the grant locks.
3572 */
3573 xlog_grant_head_wake_all(&log->l_reserve_head);
3574 xlog_grant_head_wake_all(&log->l_write_head);
3575
3576 if (!(log->l_iclog->ic_state & XLOG_STATE_IOERROR)) {
3577 ASSERT(!logerror);
3578 /*
3579 * Force the incore logs to disk before shutting the
3580 * log down completely.
3581 */
3582 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3583
3584 spin_lock(&log->l_icloglock);
3585 retval = xlog_state_ioerror(log);
3586 spin_unlock(&log->l_icloglock);
3587 }
3588 /*
3589 * Wake up everybody waiting on xfs_log_force.
3590 * Callback all log item committed functions as if the
3591 * log writes were completed.
3592 */
3593 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3594
3595 #ifdef XFSERRORDEBUG
3596 {
3597 xlog_in_core_t *iclog;
3598
3599 spin_lock(&log->l_icloglock);
3600 iclog = log->l_iclog;
3601 do {
3602 ASSERT(iclog->ic_callback == 0);
3603 iclog = iclog->ic_next;
3604 } while (iclog != log->l_iclog);
3605 spin_unlock(&log->l_icloglock);
3606 }
3607 #endif
3608 /* return non-zero if log IOERROR transition had already happened */
3609 return retval;
3610 }
3611
3612 STATIC int
xlog_iclogs_empty(xlog_t * log)3613 xlog_iclogs_empty(xlog_t *log)
3614 {
3615 xlog_in_core_t *iclog;
3616
3617 iclog = log->l_iclog;
3618 do {
3619 /* endianness does not matter here, zero is zero in
3620 * any language.
3621 */
3622 if (iclog->ic_header.h_num_logops)
3623 return 0;
3624 iclog = iclog->ic_next;
3625 } while (iclog != log->l_iclog);
3626 return 1;
3627 }
3628