1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_inode_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_bmap.h"
20 #include "xfs_error.h"
21 #include "xfs_trace.h"
22 #include "xfs_da_format.h"
23 #include "xfs_da_btree.h"
24 #include "xfs_dir2_priv.h"
25 #include "xfs_attr_leaf.h"
26 #include "xfs_types.h"
27 #include "xfs_errortag.h"
28
29 struct kmem_cache *xfs_ifork_cache;
30
31 void
xfs_init_local_fork(struct xfs_inode * ip,int whichfork,const void * data,int64_t size)32 xfs_init_local_fork(
33 struct xfs_inode *ip,
34 int whichfork,
35 const void *data,
36 int64_t size)
37 {
38 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
39 int mem_size = size;
40 bool zero_terminate;
41
42 /*
43 * If we are using the local fork to store a symlink body we need to
44 * zero-terminate it so that we can pass it back to the VFS directly.
45 * Overallocate the in-memory fork by one for that and add a zero
46 * to terminate it below.
47 */
48 zero_terminate = S_ISLNK(VFS_I(ip)->i_mode);
49 if (zero_terminate)
50 mem_size++;
51
52 if (size) {
53 ifp->if_u1.if_data = kmem_alloc(mem_size, KM_NOFS);
54 memcpy(ifp->if_u1.if_data, data, size);
55 if (zero_terminate)
56 ifp->if_u1.if_data[size] = '\0';
57 } else {
58 ifp->if_u1.if_data = NULL;
59 }
60
61 ifp->if_bytes = size;
62 }
63
64 /*
65 * The file is in-lined in the on-disk inode.
66 */
67 STATIC int
xfs_iformat_local(struct xfs_inode * ip,struct xfs_dinode * dip,int whichfork,int size)68 xfs_iformat_local(
69 struct xfs_inode *ip,
70 struct xfs_dinode *dip,
71 int whichfork,
72 int size)
73 {
74 /*
75 * If the size is unreasonable, then something
76 * is wrong and we just bail out rather than crash in
77 * kmem_alloc() or memcpy() below.
78 */
79 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
80 xfs_warn(ip->i_mount,
81 "corrupt inode %llu (bad size %d for local fork, size = %zd).",
82 (unsigned long long) ip->i_ino, size,
83 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
84 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
85 "xfs_iformat_local", dip, sizeof(*dip),
86 __this_address);
87 return -EFSCORRUPTED;
88 }
89
90 xfs_init_local_fork(ip, whichfork, XFS_DFORK_PTR(dip, whichfork), size);
91 return 0;
92 }
93
94 /*
95 * The file consists of a set of extents all of which fit into the on-disk
96 * inode.
97 */
98 STATIC int
xfs_iformat_extents(struct xfs_inode * ip,struct xfs_dinode * dip,int whichfork)99 xfs_iformat_extents(
100 struct xfs_inode *ip,
101 struct xfs_dinode *dip,
102 int whichfork)
103 {
104 struct xfs_mount *mp = ip->i_mount;
105 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
106 int state = xfs_bmap_fork_to_state(whichfork);
107 xfs_extnum_t nex = xfs_dfork_nextents(dip, whichfork);
108 int size = nex * sizeof(xfs_bmbt_rec_t);
109 struct xfs_iext_cursor icur;
110 struct xfs_bmbt_rec *dp;
111 struct xfs_bmbt_irec new;
112 int i;
113
114 /*
115 * If the number of extents is unreasonable, then something is wrong and
116 * we just bail out rather than crash in kmem_alloc() or memcpy() below.
117 */
118 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, mp, whichfork))) {
119 xfs_warn(ip->i_mount, "corrupt inode %llu ((a)extents = %llu).",
120 ip->i_ino, nex);
121 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
122 "xfs_iformat_extents(1)", dip, sizeof(*dip),
123 __this_address);
124 return -EFSCORRUPTED;
125 }
126
127 ifp->if_bytes = 0;
128 ifp->if_u1.if_root = NULL;
129 ifp->if_height = 0;
130 if (size) {
131 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
132
133 xfs_iext_first(ifp, &icur);
134 for (i = 0; i < nex; i++, dp++) {
135 xfs_failaddr_t fa;
136
137 xfs_bmbt_disk_get_all(dp, &new);
138 fa = xfs_bmap_validate_extent(ip, whichfork, &new);
139 if (fa) {
140 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
141 "xfs_iformat_extents(2)",
142 dp, sizeof(*dp), fa);
143 return xfs_bmap_complain_bad_rec(ip, whichfork,
144 fa, &new);
145 }
146
147 xfs_iext_insert(ip, &icur, &new, state);
148 trace_xfs_read_extent(ip, &icur, state, _THIS_IP_);
149 xfs_iext_next(ifp, &icur);
150 }
151 }
152 return 0;
153 }
154
155 /*
156 * The file has too many extents to fit into
157 * the inode, so they are in B-tree format.
158 * Allocate a buffer for the root of the B-tree
159 * and copy the root into it. The i_extents
160 * field will remain NULL until all of the
161 * extents are read in (when they are needed).
162 */
163 STATIC int
xfs_iformat_btree(struct xfs_inode * ip,struct xfs_dinode * dip,int whichfork)164 xfs_iformat_btree(
165 struct xfs_inode *ip,
166 struct xfs_dinode *dip,
167 int whichfork)
168 {
169 struct xfs_mount *mp = ip->i_mount;
170 xfs_bmdr_block_t *dfp;
171 struct xfs_ifork *ifp;
172 /* REFERENCED */
173 int nrecs;
174 int size;
175 int level;
176
177 ifp = xfs_ifork_ptr(ip, whichfork);
178 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
179 size = XFS_BMAP_BROOT_SPACE(mp, dfp);
180 nrecs = be16_to_cpu(dfp->bb_numrecs);
181 level = be16_to_cpu(dfp->bb_level);
182
183 /*
184 * blow out if -- fork has less extents than can fit in
185 * fork (fork shouldn't be a btree format), root btree
186 * block has more records than can fit into the fork,
187 * or the number of extents is greater than the number of
188 * blocks.
189 */
190 if (unlikely(ifp->if_nextents <= XFS_IFORK_MAXEXT(ip, whichfork) ||
191 nrecs == 0 ||
192 XFS_BMDR_SPACE_CALC(nrecs) >
193 XFS_DFORK_SIZE(dip, mp, whichfork) ||
194 ifp->if_nextents > ip->i_nblocks) ||
195 level == 0 || level > XFS_BM_MAXLEVELS(mp, whichfork)) {
196 xfs_warn(mp, "corrupt inode %llu (btree).",
197 (unsigned long long) ip->i_ino);
198 xfs_inode_verifier_error(ip, -EFSCORRUPTED,
199 "xfs_iformat_btree", dfp, size,
200 __this_address);
201 return -EFSCORRUPTED;
202 }
203
204 ifp->if_broot_bytes = size;
205 ifp->if_broot = kmem_alloc(size, KM_NOFS);
206 ASSERT(ifp->if_broot != NULL);
207 /*
208 * Copy and convert from the on-disk structure
209 * to the in-memory structure.
210 */
211 xfs_bmdr_to_bmbt(ip, dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
212 ifp->if_broot, size);
213
214 ifp->if_bytes = 0;
215 ifp->if_u1.if_root = NULL;
216 ifp->if_height = 0;
217 return 0;
218 }
219
220 int
xfs_iformat_data_fork(struct xfs_inode * ip,struct xfs_dinode * dip)221 xfs_iformat_data_fork(
222 struct xfs_inode *ip,
223 struct xfs_dinode *dip)
224 {
225 struct inode *inode = VFS_I(ip);
226 int error;
227
228 /*
229 * Initialize the extent count early, as the per-format routines may
230 * depend on it. Use release semantics to set needextents /after/ we
231 * set the format. This ensures that we can use acquire semantics on
232 * needextents in xfs_need_iread_extents() and be guaranteed to see a
233 * valid format value after that load.
234 */
235 ip->i_df.if_format = dip->di_format;
236 ip->i_df.if_nextents = xfs_dfork_data_extents(dip);
237 smp_store_release(&ip->i_df.if_needextents,
238 ip->i_df.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
239
240 switch (inode->i_mode & S_IFMT) {
241 case S_IFIFO:
242 case S_IFCHR:
243 case S_IFBLK:
244 case S_IFSOCK:
245 ip->i_disk_size = 0;
246 inode->i_rdev = xfs_to_linux_dev_t(xfs_dinode_get_rdev(dip));
247 return 0;
248 case S_IFREG:
249 case S_IFLNK:
250 case S_IFDIR:
251 switch (ip->i_df.if_format) {
252 case XFS_DINODE_FMT_LOCAL:
253 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK,
254 be64_to_cpu(dip->di_size));
255 if (!error)
256 error = xfs_ifork_verify_local_data(ip);
257 return error;
258 case XFS_DINODE_FMT_EXTENTS:
259 return xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
260 case XFS_DINODE_FMT_BTREE:
261 return xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
262 default:
263 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
264 dip, sizeof(*dip), __this_address);
265 return -EFSCORRUPTED;
266 }
267 break;
268 default:
269 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
270 sizeof(*dip), __this_address);
271 return -EFSCORRUPTED;
272 }
273 }
274
275 static uint16_t
xfs_dfork_attr_shortform_size(struct xfs_dinode * dip)276 xfs_dfork_attr_shortform_size(
277 struct xfs_dinode *dip)
278 {
279 struct xfs_attr_shortform *atp =
280 (struct xfs_attr_shortform *)XFS_DFORK_APTR(dip);
281
282 return be16_to_cpu(atp->hdr.totsize);
283 }
284
285 void
xfs_ifork_init_attr(struct xfs_inode * ip,enum xfs_dinode_fmt format,xfs_extnum_t nextents)286 xfs_ifork_init_attr(
287 struct xfs_inode *ip,
288 enum xfs_dinode_fmt format,
289 xfs_extnum_t nextents)
290 {
291 /*
292 * Initialize the extent count early, as the per-format routines may
293 * depend on it. Use release semantics to set needextents /after/ we
294 * set the format. This ensures that we can use acquire semantics on
295 * needextents in xfs_need_iread_extents() and be guaranteed to see a
296 * valid format value after that load.
297 */
298 ip->i_af.if_format = format;
299 ip->i_af.if_nextents = nextents;
300 smp_store_release(&ip->i_af.if_needextents,
301 ip->i_af.if_format == XFS_DINODE_FMT_BTREE ? 1 : 0);
302 }
303
304 void
xfs_ifork_zap_attr(struct xfs_inode * ip)305 xfs_ifork_zap_attr(
306 struct xfs_inode *ip)
307 {
308 xfs_idestroy_fork(&ip->i_af);
309 memset(&ip->i_af, 0, sizeof(struct xfs_ifork));
310 ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
311 }
312
313 int
xfs_iformat_attr_fork(struct xfs_inode * ip,struct xfs_dinode * dip)314 xfs_iformat_attr_fork(
315 struct xfs_inode *ip,
316 struct xfs_dinode *dip)
317 {
318 xfs_extnum_t naextents = xfs_dfork_attr_extents(dip);
319 int error = 0;
320
321 /*
322 * Initialize the extent count early, as the per-format routines may
323 * depend on it.
324 */
325 xfs_ifork_init_attr(ip, dip->di_aformat, naextents);
326
327 switch (ip->i_af.if_format) {
328 case XFS_DINODE_FMT_LOCAL:
329 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK,
330 xfs_dfork_attr_shortform_size(dip));
331 if (!error)
332 error = xfs_ifork_verify_local_attr(ip);
333 break;
334 case XFS_DINODE_FMT_EXTENTS:
335 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
336 break;
337 case XFS_DINODE_FMT_BTREE:
338 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
339 break;
340 default:
341 xfs_inode_verifier_error(ip, error, __func__, dip,
342 sizeof(*dip), __this_address);
343 error = -EFSCORRUPTED;
344 break;
345 }
346
347 if (error)
348 xfs_ifork_zap_attr(ip);
349 return error;
350 }
351
352 /*
353 * Reallocate the space for if_broot based on the number of records
354 * being added or deleted as indicated in rec_diff. Move the records
355 * and pointers in if_broot to fit the new size. When shrinking this
356 * will eliminate holes between the records and pointers created by
357 * the caller. When growing this will create holes to be filled in
358 * by the caller.
359 *
360 * The caller must not request to add more records than would fit in
361 * the on-disk inode root. If the if_broot is currently NULL, then
362 * if we are adding records, one will be allocated. The caller must also
363 * not request that the number of records go below zero, although
364 * it can go to zero.
365 *
366 * ip -- the inode whose if_broot area is changing
367 * ext_diff -- the change in the number of records, positive or negative,
368 * requested for the if_broot array.
369 */
370 void
xfs_iroot_realloc(xfs_inode_t * ip,int rec_diff,int whichfork)371 xfs_iroot_realloc(
372 xfs_inode_t *ip,
373 int rec_diff,
374 int whichfork)
375 {
376 struct xfs_mount *mp = ip->i_mount;
377 int cur_max;
378 struct xfs_ifork *ifp;
379 struct xfs_btree_block *new_broot;
380 int new_max;
381 size_t new_size;
382 char *np;
383 char *op;
384
385 /*
386 * Handle the degenerate case quietly.
387 */
388 if (rec_diff == 0) {
389 return;
390 }
391
392 ifp = xfs_ifork_ptr(ip, whichfork);
393 if (rec_diff > 0) {
394 /*
395 * If there wasn't any memory allocated before, just
396 * allocate it now and get out.
397 */
398 if (ifp->if_broot_bytes == 0) {
399 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, rec_diff);
400 ifp->if_broot = kmem_alloc(new_size, KM_NOFS);
401 ifp->if_broot_bytes = (int)new_size;
402 return;
403 }
404
405 /*
406 * If there is already an existing if_broot, then we need
407 * to realloc() it and shift the pointers to their new
408 * location. The records don't change location because
409 * they are kept butted up against the btree block header.
410 */
411 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
412 new_max = cur_max + rec_diff;
413 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
414 ifp->if_broot = krealloc(ifp->if_broot, new_size,
415 GFP_NOFS | __GFP_NOFAIL);
416 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
417 ifp->if_broot_bytes);
418 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
419 (int)new_size);
420 ifp->if_broot_bytes = (int)new_size;
421 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
422 xfs_inode_fork_size(ip, whichfork));
423 memmove(np, op, cur_max * (uint)sizeof(xfs_fsblock_t));
424 return;
425 }
426
427 /*
428 * rec_diff is less than 0. In this case, we are shrinking the
429 * if_broot buffer. It must already exist. If we go to zero
430 * records, just get rid of the root and clear the status bit.
431 */
432 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
433 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
434 new_max = cur_max + rec_diff;
435 ASSERT(new_max >= 0);
436 if (new_max > 0)
437 new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
438 else
439 new_size = 0;
440 if (new_size > 0) {
441 new_broot = kmem_alloc(new_size, KM_NOFS);
442 /*
443 * First copy over the btree block header.
444 */
445 memcpy(new_broot, ifp->if_broot,
446 XFS_BMBT_BLOCK_LEN(ip->i_mount));
447 } else {
448 new_broot = NULL;
449 }
450
451 /*
452 * Only copy the records and pointers if there are any.
453 */
454 if (new_max > 0) {
455 /*
456 * First copy the records.
457 */
458 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
459 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
460 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
461
462 /*
463 * Then copy the pointers.
464 */
465 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
466 ifp->if_broot_bytes);
467 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
468 (int)new_size);
469 memcpy(np, op, new_max * (uint)sizeof(xfs_fsblock_t));
470 }
471 kmem_free(ifp->if_broot);
472 ifp->if_broot = new_broot;
473 ifp->if_broot_bytes = (int)new_size;
474 if (ifp->if_broot)
475 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
476 xfs_inode_fork_size(ip, whichfork));
477 return;
478 }
479
480
481 /*
482 * This is called when the amount of space needed for if_data
483 * is increased or decreased. The change in size is indicated by
484 * the number of bytes that need to be added or deleted in the
485 * byte_diff parameter.
486 *
487 * If the amount of space needed has decreased below the size of the
488 * inline buffer, then switch to using the inline buffer. Otherwise,
489 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
490 * to what is needed.
491 *
492 * ip -- the inode whose if_data area is changing
493 * byte_diff -- the change in the number of bytes, positive or negative,
494 * requested for the if_data array.
495 */
496 void
xfs_idata_realloc(struct xfs_inode * ip,int64_t byte_diff,int whichfork)497 xfs_idata_realloc(
498 struct xfs_inode *ip,
499 int64_t byte_diff,
500 int whichfork)
501 {
502 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
503 int64_t new_size = ifp->if_bytes + byte_diff;
504
505 ASSERT(new_size >= 0);
506 ASSERT(new_size <= xfs_inode_fork_size(ip, whichfork));
507
508 if (byte_diff == 0)
509 return;
510
511 if (new_size == 0) {
512 kmem_free(ifp->if_u1.if_data);
513 ifp->if_u1.if_data = NULL;
514 ifp->if_bytes = 0;
515 return;
516 }
517
518 ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, new_size,
519 GFP_NOFS | __GFP_NOFAIL);
520 ifp->if_bytes = new_size;
521 }
522
523 void
xfs_idestroy_fork(struct xfs_ifork * ifp)524 xfs_idestroy_fork(
525 struct xfs_ifork *ifp)
526 {
527 if (ifp->if_broot != NULL) {
528 kmem_free(ifp->if_broot);
529 ifp->if_broot = NULL;
530 }
531
532 switch (ifp->if_format) {
533 case XFS_DINODE_FMT_LOCAL:
534 kmem_free(ifp->if_u1.if_data);
535 ifp->if_u1.if_data = NULL;
536 break;
537 case XFS_DINODE_FMT_EXTENTS:
538 case XFS_DINODE_FMT_BTREE:
539 if (ifp->if_height)
540 xfs_iext_destroy(ifp);
541 break;
542 }
543 }
544
545 /*
546 * Convert in-core extents to on-disk form
547 *
548 * In the case of the data fork, the in-core and on-disk fork sizes can be
549 * different due to delayed allocation extents. We only copy on-disk extents
550 * here, so callers must always use the physical fork size to determine the
551 * size of the buffer passed to this routine. We will return the size actually
552 * used.
553 */
554 int
xfs_iextents_copy(struct xfs_inode * ip,struct xfs_bmbt_rec * dp,int whichfork)555 xfs_iextents_copy(
556 struct xfs_inode *ip,
557 struct xfs_bmbt_rec *dp,
558 int whichfork)
559 {
560 int state = xfs_bmap_fork_to_state(whichfork);
561 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
562 struct xfs_iext_cursor icur;
563 struct xfs_bmbt_irec rec;
564 int64_t copied = 0;
565
566 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
567 ASSERT(ifp->if_bytes > 0);
568
569 for_each_xfs_iext(ifp, &icur, &rec) {
570 if (isnullstartblock(rec.br_startblock))
571 continue;
572 ASSERT(xfs_bmap_validate_extent(ip, whichfork, &rec) == NULL);
573 xfs_bmbt_disk_set_all(dp, &rec);
574 trace_xfs_write_extent(ip, &icur, state, _RET_IP_);
575 copied += sizeof(struct xfs_bmbt_rec);
576 dp++;
577 }
578
579 ASSERT(copied > 0);
580 ASSERT(copied <= ifp->if_bytes);
581 return copied;
582 }
583
584 /*
585 * Each of the following cases stores data into the same region
586 * of the on-disk inode, so only one of them can be valid at
587 * any given time. While it is possible to have conflicting formats
588 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
589 * in EXTENTS format, this can only happen when the fork has
590 * changed formats after being modified but before being flushed.
591 * In these cases, the format always takes precedence, because the
592 * format indicates the current state of the fork.
593 */
594 void
xfs_iflush_fork(struct xfs_inode * ip,struct xfs_dinode * dip,struct xfs_inode_log_item * iip,int whichfork)595 xfs_iflush_fork(
596 struct xfs_inode *ip,
597 struct xfs_dinode *dip,
598 struct xfs_inode_log_item *iip,
599 int whichfork)
600 {
601 char *cp;
602 struct xfs_ifork *ifp;
603 xfs_mount_t *mp;
604 static const short brootflag[2] =
605 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
606 static const short dataflag[2] =
607 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
608 static const short extflag[2] =
609 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
610
611 if (!iip)
612 return;
613 ifp = xfs_ifork_ptr(ip, whichfork);
614 /*
615 * This can happen if we gave up in iformat in an error path,
616 * for the attribute fork.
617 */
618 if (!ifp) {
619 ASSERT(whichfork == XFS_ATTR_FORK);
620 return;
621 }
622 cp = XFS_DFORK_PTR(dip, whichfork);
623 mp = ip->i_mount;
624 switch (ifp->if_format) {
625 case XFS_DINODE_FMT_LOCAL:
626 if ((iip->ili_fields & dataflag[whichfork]) &&
627 (ifp->if_bytes > 0)) {
628 ASSERT(ifp->if_u1.if_data != NULL);
629 ASSERT(ifp->if_bytes <= xfs_inode_fork_size(ip, whichfork));
630 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
631 }
632 break;
633
634 case XFS_DINODE_FMT_EXTENTS:
635 if ((iip->ili_fields & extflag[whichfork]) &&
636 (ifp->if_bytes > 0)) {
637 ASSERT(ifp->if_nextents > 0);
638 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
639 whichfork);
640 }
641 break;
642
643 case XFS_DINODE_FMT_BTREE:
644 if ((iip->ili_fields & brootflag[whichfork]) &&
645 (ifp->if_broot_bytes > 0)) {
646 ASSERT(ifp->if_broot != NULL);
647 ASSERT(XFS_BMAP_BMDR_SPACE(ifp->if_broot) <=
648 xfs_inode_fork_size(ip, whichfork));
649 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
650 (xfs_bmdr_block_t *)cp,
651 XFS_DFORK_SIZE(dip, mp, whichfork));
652 }
653 break;
654
655 case XFS_DINODE_FMT_DEV:
656 if (iip->ili_fields & XFS_ILOG_DEV) {
657 ASSERT(whichfork == XFS_DATA_FORK);
658 xfs_dinode_put_rdev(dip,
659 linux_to_xfs_dev_t(VFS_I(ip)->i_rdev));
660 }
661 break;
662
663 default:
664 ASSERT(0);
665 break;
666 }
667 }
668
669 /* Convert bmap state flags to an inode fork. */
670 struct xfs_ifork *
xfs_iext_state_to_fork(struct xfs_inode * ip,int state)671 xfs_iext_state_to_fork(
672 struct xfs_inode *ip,
673 int state)
674 {
675 if (state & BMAP_COWFORK)
676 return ip->i_cowfp;
677 else if (state & BMAP_ATTRFORK)
678 return &ip->i_af;
679 return &ip->i_df;
680 }
681
682 /*
683 * Initialize an inode's copy-on-write fork.
684 */
685 void
xfs_ifork_init_cow(struct xfs_inode * ip)686 xfs_ifork_init_cow(
687 struct xfs_inode *ip)
688 {
689 if (ip->i_cowfp)
690 return;
691
692 ip->i_cowfp = kmem_cache_zalloc(xfs_ifork_cache,
693 GFP_NOFS | __GFP_NOFAIL);
694 ip->i_cowfp->if_format = XFS_DINODE_FMT_EXTENTS;
695 }
696
697 /* Verify the inline contents of the data fork of an inode. */
698 int
xfs_ifork_verify_local_data(struct xfs_inode * ip)699 xfs_ifork_verify_local_data(
700 struct xfs_inode *ip)
701 {
702 xfs_failaddr_t fa = NULL;
703
704 switch (VFS_I(ip)->i_mode & S_IFMT) {
705 case S_IFDIR:
706 fa = xfs_dir2_sf_verify(ip);
707 break;
708 case S_IFLNK:
709 fa = xfs_symlink_shortform_verify(ip);
710 break;
711 default:
712 break;
713 }
714
715 if (fa) {
716 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
717 ip->i_df.if_u1.if_data, ip->i_df.if_bytes, fa);
718 return -EFSCORRUPTED;
719 }
720
721 return 0;
722 }
723
724 /* Verify the inline contents of the attr fork of an inode. */
725 int
xfs_ifork_verify_local_attr(struct xfs_inode * ip)726 xfs_ifork_verify_local_attr(
727 struct xfs_inode *ip)
728 {
729 struct xfs_ifork *ifp = &ip->i_af;
730 xfs_failaddr_t fa;
731
732 if (!xfs_inode_has_attr_fork(ip))
733 fa = __this_address;
734 else
735 fa = xfs_attr_shortform_verify(ip);
736
737 if (fa) {
738 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
739 ifp->if_u1.if_data, ifp->if_bytes, fa);
740 return -EFSCORRUPTED;
741 }
742
743 return 0;
744 }
745
746 int
xfs_iext_count_may_overflow(struct xfs_inode * ip,int whichfork,int nr_to_add)747 xfs_iext_count_may_overflow(
748 struct xfs_inode *ip,
749 int whichfork,
750 int nr_to_add)
751 {
752 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
753 uint64_t max_exts;
754 uint64_t nr_exts;
755
756 if (whichfork == XFS_COW_FORK)
757 return 0;
758
759 max_exts = xfs_iext_max_nextents(xfs_inode_has_large_extent_counts(ip),
760 whichfork);
761
762 if (XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
763 max_exts = 10;
764
765 nr_exts = ifp->if_nextents + nr_to_add;
766 if (nr_exts < ifp->if_nextents || nr_exts > max_exts)
767 return -EFBIG;
768
769 return 0;
770 }
771
772 /*
773 * Upgrade this inode's extent counter fields to be able to handle a potential
774 * increase in the extent count by nr_to_add. Normally this is the same
775 * quantity that caused xfs_iext_count_may_overflow() to return -EFBIG.
776 */
777 int
xfs_iext_count_upgrade(struct xfs_trans * tp,struct xfs_inode * ip,uint nr_to_add)778 xfs_iext_count_upgrade(
779 struct xfs_trans *tp,
780 struct xfs_inode *ip,
781 uint nr_to_add)
782 {
783 ASSERT(nr_to_add <= XFS_MAX_EXTCNT_UPGRADE_NR);
784
785 if (!xfs_has_large_extent_counts(ip->i_mount) ||
786 xfs_inode_has_large_extent_counts(ip) ||
787 XFS_TEST_ERROR(false, ip->i_mount, XFS_ERRTAG_REDUCE_MAX_IEXTENTS))
788 return -EFBIG;
789
790 ip->i_diflags2 |= XFS_DIFLAG2_NREXT64;
791 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
792
793 return 0;
794 }
795