1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_btree.h"
16 #include "xfs_bmap_btree.h"
17 #include "xfs_bmap.h"
18 #include "xfs_bmap_util.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_space.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_iomap.h"
25 #include "xfs_trace.h"
26 #include "xfs_quota.h"
27 #include "xfs_dquot_item.h"
28 #include "xfs_dquot.h"
29 #include "xfs_reflink.h"
30
31 #define XFS_ALLOC_ALIGN(mp, off) \
32 (((off) >> mp->m_allocsize_log) << mp->m_allocsize_log)
33
34 static int
xfs_alert_fsblock_zero(xfs_inode_t * ip,xfs_bmbt_irec_t * imap)35 xfs_alert_fsblock_zero(
36 xfs_inode_t *ip,
37 xfs_bmbt_irec_t *imap)
38 {
39 xfs_alert_tag(ip->i_mount, XFS_PTAG_FSBLOCK_ZERO,
40 "Access to block zero in inode %llu "
41 "start_block: %llx start_off: %llx "
42 "blkcnt: %llx extent-state: %x",
43 (unsigned long long)ip->i_ino,
44 (unsigned long long)imap->br_startblock,
45 (unsigned long long)imap->br_startoff,
46 (unsigned long long)imap->br_blockcount,
47 imap->br_state);
48 return -EFSCORRUPTED;
49 }
50
51 int
xfs_bmbt_to_iomap(struct xfs_inode * ip,struct iomap * iomap,struct xfs_bmbt_irec * imap,unsigned int mapping_flags,u16 iomap_flags)52 xfs_bmbt_to_iomap(
53 struct xfs_inode *ip,
54 struct iomap *iomap,
55 struct xfs_bmbt_irec *imap,
56 unsigned int mapping_flags,
57 u16 iomap_flags)
58 {
59 struct xfs_mount *mp = ip->i_mount;
60 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
61
62 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
63 return xfs_alert_fsblock_zero(ip, imap);
64
65 if (imap->br_startblock == HOLESTARTBLOCK) {
66 iomap->addr = IOMAP_NULL_ADDR;
67 iomap->type = IOMAP_HOLE;
68 } else if (imap->br_startblock == DELAYSTARTBLOCK ||
69 isnullstartblock(imap->br_startblock)) {
70 iomap->addr = IOMAP_NULL_ADDR;
71 iomap->type = IOMAP_DELALLOC;
72 } else {
73 iomap->addr = BBTOB(xfs_fsb_to_db(ip, imap->br_startblock));
74 if (mapping_flags & IOMAP_DAX)
75 iomap->addr += target->bt_dax_part_off;
76
77 if (imap->br_state == XFS_EXT_UNWRITTEN)
78 iomap->type = IOMAP_UNWRITTEN;
79 else
80 iomap->type = IOMAP_MAPPED;
81
82 }
83 iomap->offset = XFS_FSB_TO_B(mp, imap->br_startoff);
84 iomap->length = XFS_FSB_TO_B(mp, imap->br_blockcount);
85 if (mapping_flags & IOMAP_DAX)
86 iomap->dax_dev = target->bt_daxdev;
87 else
88 iomap->bdev = target->bt_bdev;
89 iomap->flags = iomap_flags;
90
91 if (xfs_ipincount(ip) &&
92 (ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
93 iomap->flags |= IOMAP_F_DIRTY;
94 return 0;
95 }
96
97 static void
xfs_hole_to_iomap(struct xfs_inode * ip,struct iomap * iomap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)98 xfs_hole_to_iomap(
99 struct xfs_inode *ip,
100 struct iomap *iomap,
101 xfs_fileoff_t offset_fsb,
102 xfs_fileoff_t end_fsb)
103 {
104 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
105
106 iomap->addr = IOMAP_NULL_ADDR;
107 iomap->type = IOMAP_HOLE;
108 iomap->offset = XFS_FSB_TO_B(ip->i_mount, offset_fsb);
109 iomap->length = XFS_FSB_TO_B(ip->i_mount, end_fsb - offset_fsb);
110 iomap->bdev = target->bt_bdev;
111 iomap->dax_dev = target->bt_daxdev;
112 }
113
114 static inline xfs_fileoff_t
xfs_iomap_end_fsb(struct xfs_mount * mp,loff_t offset,loff_t count)115 xfs_iomap_end_fsb(
116 struct xfs_mount *mp,
117 loff_t offset,
118 loff_t count)
119 {
120 ASSERT(offset <= mp->m_super->s_maxbytes);
121 return min(XFS_B_TO_FSB(mp, offset + count),
122 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
123 }
124
125 static xfs_extlen_t
xfs_eof_alignment(struct xfs_inode * ip)126 xfs_eof_alignment(
127 struct xfs_inode *ip)
128 {
129 struct xfs_mount *mp = ip->i_mount;
130 xfs_extlen_t align = 0;
131
132 if (!XFS_IS_REALTIME_INODE(ip)) {
133 /*
134 * Round up the allocation request to a stripe unit
135 * (m_dalign) boundary if the file size is >= stripe unit
136 * size, and we are allocating past the allocation eof.
137 *
138 * If mounted with the "-o swalloc" option the alignment is
139 * increased from the strip unit size to the stripe width.
140 */
141 if (mp->m_swidth && xfs_has_swalloc(mp))
142 align = mp->m_swidth;
143 else if (mp->m_dalign)
144 align = mp->m_dalign;
145
146 if (align && XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, align))
147 align = 0;
148 }
149
150 return align;
151 }
152
153 /*
154 * Check if last_fsb is outside the last extent, and if so grow it to the next
155 * stripe unit boundary.
156 */
157 xfs_fileoff_t
xfs_iomap_eof_align_last_fsb(struct xfs_inode * ip,xfs_fileoff_t end_fsb)158 xfs_iomap_eof_align_last_fsb(
159 struct xfs_inode *ip,
160 xfs_fileoff_t end_fsb)
161 {
162 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, XFS_DATA_FORK);
163 xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
164 xfs_extlen_t align = xfs_eof_alignment(ip);
165 struct xfs_bmbt_irec irec;
166 struct xfs_iext_cursor icur;
167
168 ASSERT(!xfs_need_iread_extents(ifp));
169
170 /*
171 * Always round up the allocation request to the extent hint boundary.
172 */
173 if (extsz) {
174 if (align)
175 align = roundup_64(align, extsz);
176 else
177 align = extsz;
178 }
179
180 if (align) {
181 xfs_fileoff_t aligned_end_fsb = roundup_64(end_fsb, align);
182
183 xfs_iext_last(ifp, &icur);
184 if (!xfs_iext_get_extent(ifp, &icur, &irec) ||
185 aligned_end_fsb >= irec.br_startoff + irec.br_blockcount)
186 return aligned_end_fsb;
187 }
188
189 return end_fsb;
190 }
191
192 int
xfs_iomap_write_direct(struct xfs_inode * ip,xfs_fileoff_t offset_fsb,xfs_fileoff_t count_fsb,unsigned int flags,struct xfs_bmbt_irec * imap)193 xfs_iomap_write_direct(
194 struct xfs_inode *ip,
195 xfs_fileoff_t offset_fsb,
196 xfs_fileoff_t count_fsb,
197 unsigned int flags,
198 struct xfs_bmbt_irec *imap)
199 {
200 struct xfs_mount *mp = ip->i_mount;
201 struct xfs_trans *tp;
202 xfs_filblks_t resaligned;
203 int nimaps;
204 unsigned int dblocks, rblocks;
205 bool force = false;
206 int error;
207 int bmapi_flags = XFS_BMAPI_PREALLOC;
208 int nr_exts = XFS_IEXT_ADD_NOSPLIT_CNT;
209
210 ASSERT(count_fsb > 0);
211
212 resaligned = xfs_aligned_fsb_count(offset_fsb, count_fsb,
213 xfs_get_extsz_hint(ip));
214 if (unlikely(XFS_IS_REALTIME_INODE(ip))) {
215 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
216 rblocks = resaligned;
217 } else {
218 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
219 rblocks = 0;
220 }
221
222 error = xfs_qm_dqattach(ip);
223 if (error)
224 return error;
225
226 /*
227 * For DAX, we do not allocate unwritten extents, but instead we zero
228 * the block before we commit the transaction. Ideally we'd like to do
229 * this outside the transaction context, but if we commit and then crash
230 * we may not have zeroed the blocks and this will be exposed on
231 * recovery of the allocation. Hence we must zero before commit.
232 *
233 * Further, if we are mapping unwritten extents here, we need to zero
234 * and convert them to written so that we don't need an unwritten extent
235 * callback for DAX. This also means that we need to be able to dip into
236 * the reserve block pool for bmbt block allocation if there is no space
237 * left but we need to do unwritten extent conversion.
238 */
239 if (flags & IOMAP_DAX) {
240 bmapi_flags = XFS_BMAPI_CONVERT | XFS_BMAPI_ZERO;
241 if (imap->br_state == XFS_EXT_UNWRITTEN) {
242 force = true;
243 nr_exts = XFS_IEXT_WRITE_UNWRITTEN_CNT;
244 dblocks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
245 }
246 }
247
248 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, dblocks,
249 rblocks, force, &tp);
250 if (error)
251 return error;
252
253 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK, nr_exts);
254 if (error == -EFBIG)
255 error = xfs_iext_count_upgrade(tp, ip, nr_exts);
256 if (error)
257 goto out_trans_cancel;
258
259 /*
260 * From this point onwards we overwrite the imap pointer that the
261 * caller gave to us.
262 */
263 nimaps = 1;
264 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb, bmapi_flags, 0,
265 imap, &nimaps);
266 if (error)
267 goto out_trans_cancel;
268
269 /*
270 * Complete the transaction
271 */
272 error = xfs_trans_commit(tp);
273 if (error)
274 goto out_unlock;
275
276 /*
277 * Copy any maps to caller's array and return any error.
278 */
279 if (nimaps == 0) {
280 error = -ENOSPC;
281 goto out_unlock;
282 }
283
284 if (unlikely(!xfs_valid_startblock(ip, imap->br_startblock)))
285 error = xfs_alert_fsblock_zero(ip, imap);
286
287 out_unlock:
288 xfs_iunlock(ip, XFS_ILOCK_EXCL);
289 return error;
290
291 out_trans_cancel:
292 xfs_trans_cancel(tp);
293 goto out_unlock;
294 }
295
296 STATIC bool
xfs_quota_need_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t alloc_blocks)297 xfs_quota_need_throttle(
298 struct xfs_inode *ip,
299 xfs_dqtype_t type,
300 xfs_fsblock_t alloc_blocks)
301 {
302 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
303
304 if (!dq || !xfs_this_quota_on(ip->i_mount, type))
305 return false;
306
307 /* no hi watermark, no throttle */
308 if (!dq->q_prealloc_hi_wmark)
309 return false;
310
311 /* under the lo watermark, no throttle */
312 if (dq->q_blk.reserved + alloc_blocks < dq->q_prealloc_lo_wmark)
313 return false;
314
315 return true;
316 }
317
318 STATIC void
xfs_quota_calc_throttle(struct xfs_inode * ip,xfs_dqtype_t type,xfs_fsblock_t * qblocks,int * qshift,int64_t * qfreesp)319 xfs_quota_calc_throttle(
320 struct xfs_inode *ip,
321 xfs_dqtype_t type,
322 xfs_fsblock_t *qblocks,
323 int *qshift,
324 int64_t *qfreesp)
325 {
326 struct xfs_dquot *dq = xfs_inode_dquot(ip, type);
327 int64_t freesp;
328 int shift = 0;
329
330 /* no dq, or over hi wmark, squash the prealloc completely */
331 if (!dq || dq->q_blk.reserved >= dq->q_prealloc_hi_wmark) {
332 *qblocks = 0;
333 *qfreesp = 0;
334 return;
335 }
336
337 freesp = dq->q_prealloc_hi_wmark - dq->q_blk.reserved;
338 if (freesp < dq->q_low_space[XFS_QLOWSP_5_PCNT]) {
339 shift = 2;
340 if (freesp < dq->q_low_space[XFS_QLOWSP_3_PCNT])
341 shift += 2;
342 if (freesp < dq->q_low_space[XFS_QLOWSP_1_PCNT])
343 shift += 2;
344 }
345
346 if (freesp < *qfreesp)
347 *qfreesp = freesp;
348
349 /* only overwrite the throttle values if we are more aggressive */
350 if ((freesp >> shift) < (*qblocks >> *qshift)) {
351 *qblocks = freesp;
352 *qshift = shift;
353 }
354 }
355
356 /*
357 * If we don't have a user specified preallocation size, dynamically increase
358 * the preallocation size as the size of the file grows. Cap the maximum size
359 * at a single extent or less if the filesystem is near full. The closer the
360 * filesystem is to being full, the smaller the maximum preallocation.
361 */
362 STATIC xfs_fsblock_t
xfs_iomap_prealloc_size(struct xfs_inode * ip,int whichfork,loff_t offset,loff_t count,struct xfs_iext_cursor * icur)363 xfs_iomap_prealloc_size(
364 struct xfs_inode *ip,
365 int whichfork,
366 loff_t offset,
367 loff_t count,
368 struct xfs_iext_cursor *icur)
369 {
370 struct xfs_iext_cursor ncur = *icur;
371 struct xfs_bmbt_irec prev, got;
372 struct xfs_mount *mp = ip->i_mount;
373 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
374 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
375 int64_t freesp;
376 xfs_fsblock_t qblocks;
377 xfs_fsblock_t alloc_blocks = 0;
378 xfs_extlen_t plen;
379 int shift = 0;
380 int qshift = 0;
381
382 /*
383 * As an exception we don't do any preallocation at all if the file is
384 * smaller than the minimum preallocation and we are using the default
385 * dynamic preallocation scheme, as it is likely this is the only write
386 * to the file that is going to be done.
387 */
388 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_allocsize_blocks))
389 return 0;
390
391 /*
392 * Use the minimum preallocation size for small files or if we are
393 * writing right after a hole.
394 */
395 if (XFS_ISIZE(ip) < XFS_FSB_TO_B(mp, mp->m_dalign) ||
396 !xfs_iext_prev_extent(ifp, &ncur, &prev) ||
397 prev.br_startoff + prev.br_blockcount < offset_fsb)
398 return mp->m_allocsize_blocks;
399
400 /*
401 * Take the size of the preceding data extents as the basis for the
402 * preallocation size. Note that we don't care if the previous extents
403 * are written or not.
404 */
405 plen = prev.br_blockcount;
406 while (xfs_iext_prev_extent(ifp, &ncur, &got)) {
407 if (plen > XFS_MAX_BMBT_EXTLEN / 2 ||
408 isnullstartblock(got.br_startblock) ||
409 got.br_startoff + got.br_blockcount != prev.br_startoff ||
410 got.br_startblock + got.br_blockcount != prev.br_startblock)
411 break;
412 plen += got.br_blockcount;
413 prev = got;
414 }
415
416 /*
417 * If the size of the extents is greater than half the maximum extent
418 * length, then use the current offset as the basis. This ensures that
419 * for large files the preallocation size always extends to
420 * XFS_BMBT_MAX_EXTLEN rather than falling short due to things like stripe
421 * unit/width alignment of real extents.
422 */
423 alloc_blocks = plen * 2;
424 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
425 alloc_blocks = XFS_B_TO_FSB(mp, offset);
426 qblocks = alloc_blocks;
427
428 /*
429 * XFS_BMBT_MAX_EXTLEN is not a power of two value but we round the prealloc
430 * down to the nearest power of two value after throttling. To prevent
431 * the round down from unconditionally reducing the maximum supported
432 * prealloc size, we round up first, apply appropriate throttling, round
433 * down and cap the value to XFS_BMBT_MAX_EXTLEN.
434 */
435 alloc_blocks = XFS_FILEOFF_MIN(roundup_pow_of_two(XFS_MAX_BMBT_EXTLEN),
436 alloc_blocks);
437
438 freesp = percpu_counter_read_positive(&mp->m_fdblocks);
439 if (freesp < mp->m_low_space[XFS_LOWSP_5_PCNT]) {
440 shift = 2;
441 if (freesp < mp->m_low_space[XFS_LOWSP_4_PCNT])
442 shift++;
443 if (freesp < mp->m_low_space[XFS_LOWSP_3_PCNT])
444 shift++;
445 if (freesp < mp->m_low_space[XFS_LOWSP_2_PCNT])
446 shift++;
447 if (freesp < mp->m_low_space[XFS_LOWSP_1_PCNT])
448 shift++;
449 }
450
451 /*
452 * Check each quota to cap the prealloc size, provide a shift value to
453 * throttle with and adjust amount of available space.
454 */
455 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_USER, alloc_blocks))
456 xfs_quota_calc_throttle(ip, XFS_DQTYPE_USER, &qblocks, &qshift,
457 &freesp);
458 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_GROUP, alloc_blocks))
459 xfs_quota_calc_throttle(ip, XFS_DQTYPE_GROUP, &qblocks, &qshift,
460 &freesp);
461 if (xfs_quota_need_throttle(ip, XFS_DQTYPE_PROJ, alloc_blocks))
462 xfs_quota_calc_throttle(ip, XFS_DQTYPE_PROJ, &qblocks, &qshift,
463 &freesp);
464
465 /*
466 * The final prealloc size is set to the minimum of free space available
467 * in each of the quotas and the overall filesystem.
468 *
469 * The shift throttle value is set to the maximum value as determined by
470 * the global low free space values and per-quota low free space values.
471 */
472 alloc_blocks = min(alloc_blocks, qblocks);
473 shift = max(shift, qshift);
474
475 if (shift)
476 alloc_blocks >>= shift;
477 /*
478 * rounddown_pow_of_two() returns an undefined result if we pass in
479 * alloc_blocks = 0.
480 */
481 if (alloc_blocks)
482 alloc_blocks = rounddown_pow_of_two(alloc_blocks);
483 if (alloc_blocks > XFS_MAX_BMBT_EXTLEN)
484 alloc_blocks = XFS_MAX_BMBT_EXTLEN;
485
486 /*
487 * If we are still trying to allocate more space than is
488 * available, squash the prealloc hard. This can happen if we
489 * have a large file on a small filesystem and the above
490 * lowspace thresholds are smaller than XFS_BMBT_MAX_EXTLEN.
491 */
492 while (alloc_blocks && alloc_blocks >= freesp)
493 alloc_blocks >>= 4;
494 if (alloc_blocks < mp->m_allocsize_blocks)
495 alloc_blocks = mp->m_allocsize_blocks;
496 trace_xfs_iomap_prealloc_size(ip, alloc_blocks, shift,
497 mp->m_allocsize_blocks);
498 return alloc_blocks;
499 }
500
501 int
xfs_iomap_write_unwritten(xfs_inode_t * ip,xfs_off_t offset,xfs_off_t count,bool update_isize)502 xfs_iomap_write_unwritten(
503 xfs_inode_t *ip,
504 xfs_off_t offset,
505 xfs_off_t count,
506 bool update_isize)
507 {
508 xfs_mount_t *mp = ip->i_mount;
509 xfs_fileoff_t offset_fsb;
510 xfs_filblks_t count_fsb;
511 xfs_filblks_t numblks_fsb;
512 int nimaps;
513 xfs_trans_t *tp;
514 xfs_bmbt_irec_t imap;
515 struct inode *inode = VFS_I(ip);
516 xfs_fsize_t i_size;
517 uint resblks;
518 int error;
519
520 trace_xfs_unwritten_convert(ip, offset, count);
521
522 offset_fsb = XFS_B_TO_FSBT(mp, offset);
523 count_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
524 count_fsb = (xfs_filblks_t)(count_fsb - offset_fsb);
525
526 /*
527 * Reserve enough blocks in this transaction for two complete extent
528 * btree splits. We may be converting the middle part of an unwritten
529 * extent and in this case we will insert two new extents in the btree
530 * each of which could cause a full split.
531 *
532 * This reservation amount will be used in the first call to
533 * xfs_bmbt_split() to select an AG with enough space to satisfy the
534 * rest of the operation.
535 */
536 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0) << 1;
537
538 /* Attach dquots so that bmbt splits are accounted correctly. */
539 error = xfs_qm_dqattach(ip);
540 if (error)
541 return error;
542
543 do {
544 /*
545 * Set up a transaction to convert the range of extents
546 * from unwritten to real. Do allocations in a loop until
547 * we have covered the range passed in.
548 *
549 * Note that we can't risk to recursing back into the filesystem
550 * here as we might be asked to write out the same inode that we
551 * complete here and might deadlock on the iolock.
552 */
553 error = xfs_trans_alloc_inode(ip, &M_RES(mp)->tr_write, resblks,
554 0, true, &tp);
555 if (error)
556 return error;
557
558 error = xfs_iext_count_may_overflow(ip, XFS_DATA_FORK,
559 XFS_IEXT_WRITE_UNWRITTEN_CNT);
560 if (error == -EFBIG)
561 error = xfs_iext_count_upgrade(tp, ip,
562 XFS_IEXT_WRITE_UNWRITTEN_CNT);
563 if (error)
564 goto error_on_bmapi_transaction;
565
566 /*
567 * Modify the unwritten extent state of the buffer.
568 */
569 nimaps = 1;
570 error = xfs_bmapi_write(tp, ip, offset_fsb, count_fsb,
571 XFS_BMAPI_CONVERT, resblks, &imap,
572 &nimaps);
573 if (error)
574 goto error_on_bmapi_transaction;
575
576 /*
577 * Log the updated inode size as we go. We have to be careful
578 * to only log it up to the actual write offset if it is
579 * halfway into a block.
580 */
581 i_size = XFS_FSB_TO_B(mp, offset_fsb + count_fsb);
582 if (i_size > offset + count)
583 i_size = offset + count;
584 if (update_isize && i_size > i_size_read(inode))
585 i_size_write(inode, i_size);
586 i_size = xfs_new_eof(ip, i_size);
587 if (i_size) {
588 ip->i_disk_size = i_size;
589 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
590 }
591
592 error = xfs_trans_commit(tp);
593 xfs_iunlock(ip, XFS_ILOCK_EXCL);
594 if (error)
595 return error;
596
597 if (unlikely(!xfs_valid_startblock(ip, imap.br_startblock)))
598 return xfs_alert_fsblock_zero(ip, &imap);
599
600 if ((numblks_fsb = imap.br_blockcount) == 0) {
601 /*
602 * The numblks_fsb value should always get
603 * smaller, otherwise the loop is stuck.
604 */
605 ASSERT(imap.br_blockcount);
606 break;
607 }
608 offset_fsb += numblks_fsb;
609 count_fsb -= numblks_fsb;
610 } while (count_fsb > 0);
611
612 return 0;
613
614 error_on_bmapi_transaction:
615 xfs_trans_cancel(tp);
616 xfs_iunlock(ip, XFS_ILOCK_EXCL);
617 return error;
618 }
619
620 static inline bool
imap_needs_alloc(struct inode * inode,unsigned flags,struct xfs_bmbt_irec * imap,int nimaps)621 imap_needs_alloc(
622 struct inode *inode,
623 unsigned flags,
624 struct xfs_bmbt_irec *imap,
625 int nimaps)
626 {
627 /* don't allocate blocks when just zeroing */
628 if (flags & IOMAP_ZERO)
629 return false;
630 if (!nimaps ||
631 imap->br_startblock == HOLESTARTBLOCK ||
632 imap->br_startblock == DELAYSTARTBLOCK)
633 return true;
634 /* we convert unwritten extents before copying the data for DAX */
635 if ((flags & IOMAP_DAX) && imap->br_state == XFS_EXT_UNWRITTEN)
636 return true;
637 return false;
638 }
639
640 static inline bool
imap_needs_cow(struct xfs_inode * ip,unsigned int flags,struct xfs_bmbt_irec * imap,int nimaps)641 imap_needs_cow(
642 struct xfs_inode *ip,
643 unsigned int flags,
644 struct xfs_bmbt_irec *imap,
645 int nimaps)
646 {
647 if (!xfs_is_cow_inode(ip))
648 return false;
649
650 /* when zeroing we don't have to COW holes or unwritten extents */
651 if (flags & IOMAP_ZERO) {
652 if (!nimaps ||
653 imap->br_startblock == HOLESTARTBLOCK ||
654 imap->br_state == XFS_EXT_UNWRITTEN)
655 return false;
656 }
657
658 return true;
659 }
660
661 static int
xfs_ilock_for_iomap(struct xfs_inode * ip,unsigned flags,unsigned * lockmode)662 xfs_ilock_for_iomap(
663 struct xfs_inode *ip,
664 unsigned flags,
665 unsigned *lockmode)
666 {
667 unsigned int mode = *lockmode;
668 bool is_write = flags & (IOMAP_WRITE | IOMAP_ZERO);
669
670 /*
671 * COW writes may allocate delalloc space or convert unwritten COW
672 * extents, so we need to make sure to take the lock exclusively here.
673 */
674 if (xfs_is_cow_inode(ip) && is_write)
675 mode = XFS_ILOCK_EXCL;
676
677 /*
678 * Extents not yet cached requires exclusive access, don't block. This
679 * is an opencoded xfs_ilock_data_map_shared() call but with
680 * non-blocking behaviour.
681 */
682 if (xfs_need_iread_extents(&ip->i_df)) {
683 if (flags & IOMAP_NOWAIT)
684 return -EAGAIN;
685 mode = XFS_ILOCK_EXCL;
686 }
687
688 relock:
689 if (flags & IOMAP_NOWAIT) {
690 if (!xfs_ilock_nowait(ip, mode))
691 return -EAGAIN;
692 } else {
693 xfs_ilock(ip, mode);
694 }
695
696 /*
697 * The reflink iflag could have changed since the earlier unlocked
698 * check, so if we got ILOCK_SHARED for a write and but we're now a
699 * reflink inode we have to switch to ILOCK_EXCL and relock.
700 */
701 if (mode == XFS_ILOCK_SHARED && is_write && xfs_is_cow_inode(ip)) {
702 xfs_iunlock(ip, mode);
703 mode = XFS_ILOCK_EXCL;
704 goto relock;
705 }
706
707 *lockmode = mode;
708 return 0;
709 }
710
711 /*
712 * Check that the imap we are going to return to the caller spans the entire
713 * range that the caller requested for the IO.
714 */
715 static bool
imap_spans_range(struct xfs_bmbt_irec * imap,xfs_fileoff_t offset_fsb,xfs_fileoff_t end_fsb)716 imap_spans_range(
717 struct xfs_bmbt_irec *imap,
718 xfs_fileoff_t offset_fsb,
719 xfs_fileoff_t end_fsb)
720 {
721 if (imap->br_startoff > offset_fsb)
722 return false;
723 if (imap->br_startoff + imap->br_blockcount < end_fsb)
724 return false;
725 return true;
726 }
727
728 static int
xfs_direct_write_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)729 xfs_direct_write_iomap_begin(
730 struct inode *inode,
731 loff_t offset,
732 loff_t length,
733 unsigned flags,
734 struct iomap *iomap,
735 struct iomap *srcmap)
736 {
737 struct xfs_inode *ip = XFS_I(inode);
738 struct xfs_mount *mp = ip->i_mount;
739 struct xfs_bmbt_irec imap, cmap;
740 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
741 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
742 int nimaps = 1, error = 0;
743 bool shared = false;
744 u16 iomap_flags = 0;
745 unsigned int lockmode = XFS_ILOCK_SHARED;
746
747 ASSERT(flags & (IOMAP_WRITE | IOMAP_ZERO));
748
749 if (xfs_is_shutdown(mp))
750 return -EIO;
751
752 /*
753 * Writes that span EOF might trigger an IO size update on completion,
754 * so consider them to be dirty for the purposes of O_DSYNC even if
755 * there is no other metadata changes pending or have been made here.
756 */
757 if (offset + length > i_size_read(inode))
758 iomap_flags |= IOMAP_F_DIRTY;
759
760 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
761 if (error)
762 return error;
763
764 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
765 &nimaps, 0);
766 if (error)
767 goto out_unlock;
768
769 if (imap_needs_cow(ip, flags, &imap, nimaps)) {
770 error = -EAGAIN;
771 if (flags & IOMAP_NOWAIT)
772 goto out_unlock;
773
774 /* may drop and re-acquire the ilock */
775 error = xfs_reflink_allocate_cow(ip, &imap, &cmap, &shared,
776 &lockmode,
777 (flags & IOMAP_DIRECT) || IS_DAX(inode));
778 if (error)
779 goto out_unlock;
780 if (shared)
781 goto out_found_cow;
782 end_fsb = imap.br_startoff + imap.br_blockcount;
783 length = XFS_FSB_TO_B(mp, end_fsb) - offset;
784 }
785
786 if (imap_needs_alloc(inode, flags, &imap, nimaps))
787 goto allocate_blocks;
788
789 /*
790 * NOWAIT and OVERWRITE I/O needs to span the entire requested I/O with
791 * a single map so that we avoid partial IO failures due to the rest of
792 * the I/O range not covered by this map triggering an EAGAIN condition
793 * when it is subsequently mapped and aborting the I/O.
794 */
795 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY)) {
796 error = -EAGAIN;
797 if (!imap_spans_range(&imap, offset_fsb, end_fsb))
798 goto out_unlock;
799 }
800
801 /*
802 * For overwrite only I/O, we cannot convert unwritten extents without
803 * requiring sub-block zeroing. This can only be done under an
804 * exclusive IOLOCK, hence return -EAGAIN if this is not a written
805 * extent to tell the caller to try again.
806 */
807 if (flags & IOMAP_OVERWRITE_ONLY) {
808 error = -EAGAIN;
809 if (imap.br_state != XFS_EXT_NORM &&
810 ((offset | length) & mp->m_blockmask))
811 goto out_unlock;
812 }
813
814 xfs_iunlock(ip, lockmode);
815 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
816 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, iomap_flags);
817
818 allocate_blocks:
819 error = -EAGAIN;
820 if (flags & (IOMAP_NOWAIT | IOMAP_OVERWRITE_ONLY))
821 goto out_unlock;
822
823 /*
824 * We cap the maximum length we map to a sane size to keep the chunks
825 * of work done where somewhat symmetric with the work writeback does.
826 * This is a completely arbitrary number pulled out of thin air as a
827 * best guess for initial testing.
828 *
829 * Note that the values needs to be less than 32-bits wide until the
830 * lower level functions are updated.
831 */
832 length = min_t(loff_t, length, 1024 * PAGE_SIZE);
833 end_fsb = xfs_iomap_end_fsb(mp, offset, length);
834
835 if (offset + length > XFS_ISIZE(ip))
836 end_fsb = xfs_iomap_eof_align_last_fsb(ip, end_fsb);
837 else if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
838 end_fsb = min(end_fsb, imap.br_startoff + imap.br_blockcount);
839 xfs_iunlock(ip, lockmode);
840
841 error = xfs_iomap_write_direct(ip, offset_fsb, end_fsb - offset_fsb,
842 flags, &imap);
843 if (error)
844 return error;
845
846 trace_xfs_iomap_alloc(ip, offset, length, XFS_DATA_FORK, &imap);
847 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
848 iomap_flags | IOMAP_F_NEW);
849
850 out_found_cow:
851 xfs_iunlock(ip, lockmode);
852 length = XFS_FSB_TO_B(mp, cmap.br_startoff + cmap.br_blockcount);
853 trace_xfs_iomap_found(ip, offset, length - offset, XFS_COW_FORK, &cmap);
854 if (imap.br_startblock != HOLESTARTBLOCK) {
855 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0);
856 if (error)
857 return error;
858 }
859 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, IOMAP_F_SHARED);
860
861 out_unlock:
862 if (lockmode)
863 xfs_iunlock(ip, lockmode);
864 return error;
865 }
866
867 const struct iomap_ops xfs_direct_write_iomap_ops = {
868 .iomap_begin = xfs_direct_write_iomap_begin,
869 };
870
871 static int
xfs_dax_write_iomap_end(struct inode * inode,loff_t pos,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)872 xfs_dax_write_iomap_end(
873 struct inode *inode,
874 loff_t pos,
875 loff_t length,
876 ssize_t written,
877 unsigned flags,
878 struct iomap *iomap)
879 {
880 struct xfs_inode *ip = XFS_I(inode);
881
882 if (!xfs_is_cow_inode(ip))
883 return 0;
884
885 if (!written) {
886 xfs_reflink_cancel_cow_range(ip, pos, length, true);
887 return 0;
888 }
889
890 return xfs_reflink_end_cow(ip, pos, written);
891 }
892
893 const struct iomap_ops xfs_dax_write_iomap_ops = {
894 .iomap_begin = xfs_direct_write_iomap_begin,
895 .iomap_end = xfs_dax_write_iomap_end,
896 };
897
898 static int
xfs_buffered_write_iomap_begin(struct inode * inode,loff_t offset,loff_t count,unsigned flags,struct iomap * iomap,struct iomap * srcmap)899 xfs_buffered_write_iomap_begin(
900 struct inode *inode,
901 loff_t offset,
902 loff_t count,
903 unsigned flags,
904 struct iomap *iomap,
905 struct iomap *srcmap)
906 {
907 struct xfs_inode *ip = XFS_I(inode);
908 struct xfs_mount *mp = ip->i_mount;
909 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
910 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, count);
911 struct xfs_bmbt_irec imap, cmap;
912 struct xfs_iext_cursor icur, ccur;
913 xfs_fsblock_t prealloc_blocks = 0;
914 bool eof = false, cow_eof = false, shared = false;
915 int allocfork = XFS_DATA_FORK;
916 int error = 0;
917 unsigned int lockmode = XFS_ILOCK_EXCL;
918
919 if (xfs_is_shutdown(mp))
920 return -EIO;
921
922 /* we can't use delayed allocations when using extent size hints */
923 if (xfs_get_extsz_hint(ip))
924 return xfs_direct_write_iomap_begin(inode, offset, count,
925 flags, iomap, srcmap);
926
927 ASSERT(!XFS_IS_REALTIME_INODE(ip));
928
929 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
930 if (error)
931 return error;
932
933 if (XFS_IS_CORRUPT(mp, !xfs_ifork_has_extents(&ip->i_df)) ||
934 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BMAPIFORMAT)) {
935 error = -EFSCORRUPTED;
936 goto out_unlock;
937 }
938
939 XFS_STATS_INC(mp, xs_blk_mapw);
940
941 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
942 if (error)
943 goto out_unlock;
944
945 /*
946 * Search the data fork first to look up our source mapping. We
947 * always need the data fork map, as we have to return it to the
948 * iomap code so that the higher level write code can read data in to
949 * perform read-modify-write cycles for unaligned writes.
950 */
951 eof = !xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap);
952 if (eof)
953 imap.br_startoff = end_fsb; /* fake hole until the end */
954
955 /* We never need to allocate blocks for zeroing a hole. */
956 if ((flags & IOMAP_ZERO) && imap.br_startoff > offset_fsb) {
957 xfs_hole_to_iomap(ip, iomap, offset_fsb, imap.br_startoff);
958 goto out_unlock;
959 }
960
961 /*
962 * Search the COW fork extent list even if we did not find a data fork
963 * extent. This serves two purposes: first this implements the
964 * speculative preallocation using cowextsize, so that we also unshare
965 * block adjacent to shared blocks instead of just the shared blocks
966 * themselves. Second the lookup in the extent list is generally faster
967 * than going out to the shared extent tree.
968 */
969 if (xfs_is_cow_inode(ip)) {
970 if (!ip->i_cowfp) {
971 ASSERT(!xfs_is_reflink_inode(ip));
972 xfs_ifork_init_cow(ip);
973 }
974 cow_eof = !xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb,
975 &ccur, &cmap);
976 if (!cow_eof && cmap.br_startoff <= offset_fsb) {
977 trace_xfs_reflink_cow_found(ip, &cmap);
978 goto found_cow;
979 }
980 }
981
982 if (imap.br_startoff <= offset_fsb) {
983 /*
984 * For reflink files we may need a delalloc reservation when
985 * overwriting shared extents. This includes zeroing of
986 * existing extents that contain data.
987 */
988 if (!xfs_is_cow_inode(ip) ||
989 ((flags & IOMAP_ZERO) && imap.br_state != XFS_EXT_NORM)) {
990 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
991 &imap);
992 goto found_imap;
993 }
994
995 xfs_trim_extent(&imap, offset_fsb, end_fsb - offset_fsb);
996
997 /* Trim the mapping to the nearest shared extent boundary. */
998 error = xfs_bmap_trim_cow(ip, &imap, &shared);
999 if (error)
1000 goto out_unlock;
1001
1002 /* Not shared? Just report the (potentially capped) extent. */
1003 if (!shared) {
1004 trace_xfs_iomap_found(ip, offset, count, XFS_DATA_FORK,
1005 &imap);
1006 goto found_imap;
1007 }
1008
1009 /*
1010 * Fork all the shared blocks from our write offset until the
1011 * end of the extent.
1012 */
1013 allocfork = XFS_COW_FORK;
1014 end_fsb = imap.br_startoff + imap.br_blockcount;
1015 } else {
1016 /*
1017 * We cap the maximum length we map here to MAX_WRITEBACK_PAGES
1018 * pages to keep the chunks of work done where somewhat
1019 * symmetric with the work writeback does. This is a completely
1020 * arbitrary number pulled out of thin air.
1021 *
1022 * Note that the values needs to be less than 32-bits wide until
1023 * the lower level functions are updated.
1024 */
1025 count = min_t(loff_t, count, 1024 * PAGE_SIZE);
1026 end_fsb = xfs_iomap_end_fsb(mp, offset, count);
1027
1028 if (xfs_is_always_cow_inode(ip))
1029 allocfork = XFS_COW_FORK;
1030 }
1031
1032 error = xfs_qm_dqattach_locked(ip, false);
1033 if (error)
1034 goto out_unlock;
1035
1036 if (eof && offset + count > XFS_ISIZE(ip)) {
1037 /*
1038 * Determine the initial size of the preallocation.
1039 * We clean up any extra preallocation when the file is closed.
1040 */
1041 if (xfs_has_allocsize(mp))
1042 prealloc_blocks = mp->m_allocsize_blocks;
1043 else
1044 prealloc_blocks = xfs_iomap_prealloc_size(ip, allocfork,
1045 offset, count, &icur);
1046 if (prealloc_blocks) {
1047 xfs_extlen_t align;
1048 xfs_off_t end_offset;
1049 xfs_fileoff_t p_end_fsb;
1050
1051 end_offset = XFS_ALLOC_ALIGN(mp, offset + count - 1);
1052 p_end_fsb = XFS_B_TO_FSBT(mp, end_offset) +
1053 prealloc_blocks;
1054
1055 align = xfs_eof_alignment(ip);
1056 if (align)
1057 p_end_fsb = roundup_64(p_end_fsb, align);
1058
1059 p_end_fsb = min(p_end_fsb,
1060 XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes));
1061 ASSERT(p_end_fsb > offset_fsb);
1062 prealloc_blocks = p_end_fsb - end_fsb;
1063 }
1064 }
1065
1066 retry:
1067 error = xfs_bmapi_reserve_delalloc(ip, allocfork, offset_fsb,
1068 end_fsb - offset_fsb, prealloc_blocks,
1069 allocfork == XFS_DATA_FORK ? &imap : &cmap,
1070 allocfork == XFS_DATA_FORK ? &icur : &ccur,
1071 allocfork == XFS_DATA_FORK ? eof : cow_eof);
1072 switch (error) {
1073 case 0:
1074 break;
1075 case -ENOSPC:
1076 case -EDQUOT:
1077 /* retry without any preallocation */
1078 trace_xfs_delalloc_enospc(ip, offset, count);
1079 if (prealloc_blocks) {
1080 prealloc_blocks = 0;
1081 goto retry;
1082 }
1083 fallthrough;
1084 default:
1085 goto out_unlock;
1086 }
1087
1088 if (allocfork == XFS_COW_FORK) {
1089 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &cmap);
1090 goto found_cow;
1091 }
1092
1093 /*
1094 * Flag newly allocated delalloc blocks with IOMAP_F_NEW so we punch
1095 * them out if the write happens to fail.
1096 */
1097 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1098 trace_xfs_iomap_alloc(ip, offset, count, allocfork, &imap);
1099 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, IOMAP_F_NEW);
1100
1101 found_imap:
1102 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1103 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
1104
1105 found_cow:
1106 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1107 if (imap.br_startoff <= offset_fsb) {
1108 error = xfs_bmbt_to_iomap(ip, srcmap, &imap, flags, 0);
1109 if (error)
1110 return error;
1111 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1112 IOMAP_F_SHARED);
1113 }
1114
1115 xfs_trim_extent(&cmap, offset_fsb, imap.br_startoff - offset_fsb);
1116 return xfs_bmbt_to_iomap(ip, iomap, &cmap, flags, 0);
1117
1118 out_unlock:
1119 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1120 return error;
1121 }
1122
1123 static int
xfs_buffered_write_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)1124 xfs_buffered_write_iomap_end(
1125 struct inode *inode,
1126 loff_t offset,
1127 loff_t length,
1128 ssize_t written,
1129 unsigned flags,
1130 struct iomap *iomap)
1131 {
1132 struct xfs_inode *ip = XFS_I(inode);
1133 struct xfs_mount *mp = ip->i_mount;
1134 xfs_fileoff_t start_fsb;
1135 xfs_fileoff_t end_fsb;
1136 int error = 0;
1137
1138 if (iomap->type != IOMAP_DELALLOC)
1139 return 0;
1140
1141 /*
1142 * Behave as if the write failed if drop writes is enabled. Set the NEW
1143 * flag to force delalloc cleanup.
1144 */
1145 if (XFS_TEST_ERROR(false, mp, XFS_ERRTAG_DROP_WRITES)) {
1146 iomap->flags |= IOMAP_F_NEW;
1147 written = 0;
1148 }
1149
1150 /*
1151 * start_fsb refers to the first unused block after a short write. If
1152 * nothing was written, round offset down to point at the first block in
1153 * the range.
1154 */
1155 if (unlikely(!written))
1156 start_fsb = XFS_B_TO_FSBT(mp, offset);
1157 else
1158 start_fsb = XFS_B_TO_FSB(mp, offset + written);
1159 end_fsb = XFS_B_TO_FSB(mp, offset + length);
1160
1161 /*
1162 * Trim delalloc blocks if they were allocated by this write and we
1163 * didn't manage to write the whole range.
1164 *
1165 * We don't need to care about racing delalloc as we hold i_mutex
1166 * across the reserve/allocate/unreserve calls. If there are delalloc
1167 * blocks in the range, they are ours.
1168 */
1169 if ((iomap->flags & IOMAP_F_NEW) && start_fsb < end_fsb) {
1170 truncate_pagecache_range(VFS_I(ip), XFS_FSB_TO_B(mp, start_fsb),
1171 XFS_FSB_TO_B(mp, end_fsb) - 1);
1172
1173 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1174 end_fsb - start_fsb);
1175 if (error && !xfs_is_shutdown(mp)) {
1176 xfs_alert(mp, "%s: unable to clean up ino %lld",
1177 __func__, ip->i_ino);
1178 return error;
1179 }
1180 }
1181
1182 return 0;
1183 }
1184
1185 const struct iomap_ops xfs_buffered_write_iomap_ops = {
1186 .iomap_begin = xfs_buffered_write_iomap_begin,
1187 .iomap_end = xfs_buffered_write_iomap_end,
1188 };
1189
1190 static int
xfs_read_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1191 xfs_read_iomap_begin(
1192 struct inode *inode,
1193 loff_t offset,
1194 loff_t length,
1195 unsigned flags,
1196 struct iomap *iomap,
1197 struct iomap *srcmap)
1198 {
1199 struct xfs_inode *ip = XFS_I(inode);
1200 struct xfs_mount *mp = ip->i_mount;
1201 struct xfs_bmbt_irec imap;
1202 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1203 xfs_fileoff_t end_fsb = xfs_iomap_end_fsb(mp, offset, length);
1204 int nimaps = 1, error = 0;
1205 bool shared = false;
1206 unsigned int lockmode = XFS_ILOCK_SHARED;
1207
1208 ASSERT(!(flags & (IOMAP_WRITE | IOMAP_ZERO)));
1209
1210 if (xfs_is_shutdown(mp))
1211 return -EIO;
1212
1213 error = xfs_ilock_for_iomap(ip, flags, &lockmode);
1214 if (error)
1215 return error;
1216 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1217 &nimaps, 0);
1218 if (!error && (flags & IOMAP_REPORT))
1219 error = xfs_reflink_trim_around_shared(ip, &imap, &shared);
1220 xfs_iunlock(ip, lockmode);
1221
1222 if (error)
1223 return error;
1224 trace_xfs_iomap_found(ip, offset, length, XFS_DATA_FORK, &imap);
1225 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags,
1226 shared ? IOMAP_F_SHARED : 0);
1227 }
1228
1229 const struct iomap_ops xfs_read_iomap_ops = {
1230 .iomap_begin = xfs_read_iomap_begin,
1231 };
1232
1233 static int
xfs_seek_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1234 xfs_seek_iomap_begin(
1235 struct inode *inode,
1236 loff_t offset,
1237 loff_t length,
1238 unsigned flags,
1239 struct iomap *iomap,
1240 struct iomap *srcmap)
1241 {
1242 struct xfs_inode *ip = XFS_I(inode);
1243 struct xfs_mount *mp = ip->i_mount;
1244 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1245 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1246 xfs_fileoff_t cow_fsb = NULLFILEOFF, data_fsb = NULLFILEOFF;
1247 struct xfs_iext_cursor icur;
1248 struct xfs_bmbt_irec imap, cmap;
1249 int error = 0;
1250 unsigned lockmode;
1251
1252 if (xfs_is_shutdown(mp))
1253 return -EIO;
1254
1255 lockmode = xfs_ilock_data_map_shared(ip);
1256 error = xfs_iread_extents(NULL, ip, XFS_DATA_FORK);
1257 if (error)
1258 goto out_unlock;
1259
1260 if (xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) {
1261 /*
1262 * If we found a data extent we are done.
1263 */
1264 if (imap.br_startoff <= offset_fsb)
1265 goto done;
1266 data_fsb = imap.br_startoff;
1267 } else {
1268 /*
1269 * Fake a hole until the end of the file.
1270 */
1271 data_fsb = xfs_iomap_end_fsb(mp, offset, length);
1272 }
1273
1274 /*
1275 * If a COW fork extent covers the hole, report it - capped to the next
1276 * data fork extent:
1277 */
1278 if (xfs_inode_has_cow_data(ip) &&
1279 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &cmap))
1280 cow_fsb = cmap.br_startoff;
1281 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
1282 if (data_fsb < cow_fsb + cmap.br_blockcount)
1283 end_fsb = min(end_fsb, data_fsb);
1284 xfs_trim_extent(&cmap, offset_fsb, end_fsb);
1285 error = xfs_bmbt_to_iomap(ip, iomap, &cmap, flags,
1286 IOMAP_F_SHARED);
1287 /*
1288 * This is a COW extent, so we must probe the page cache
1289 * because there could be dirty page cache being backed
1290 * by this extent.
1291 */
1292 iomap->type = IOMAP_UNWRITTEN;
1293 goto out_unlock;
1294 }
1295
1296 /*
1297 * Else report a hole, capped to the next found data or COW extent.
1298 */
1299 if (cow_fsb != NULLFILEOFF && cow_fsb < data_fsb)
1300 imap.br_blockcount = cow_fsb - offset_fsb;
1301 else
1302 imap.br_blockcount = data_fsb - offset_fsb;
1303 imap.br_startoff = offset_fsb;
1304 imap.br_startblock = HOLESTARTBLOCK;
1305 imap.br_state = XFS_EXT_NORM;
1306 done:
1307 xfs_trim_extent(&imap, offset_fsb, end_fsb);
1308 error = xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
1309 out_unlock:
1310 xfs_iunlock(ip, lockmode);
1311 return error;
1312 }
1313
1314 const struct iomap_ops xfs_seek_iomap_ops = {
1315 .iomap_begin = xfs_seek_iomap_begin,
1316 };
1317
1318 static int
xfs_xattr_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)1319 xfs_xattr_iomap_begin(
1320 struct inode *inode,
1321 loff_t offset,
1322 loff_t length,
1323 unsigned flags,
1324 struct iomap *iomap,
1325 struct iomap *srcmap)
1326 {
1327 struct xfs_inode *ip = XFS_I(inode);
1328 struct xfs_mount *mp = ip->i_mount;
1329 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
1330 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + length);
1331 struct xfs_bmbt_irec imap;
1332 int nimaps = 1, error = 0;
1333 unsigned lockmode;
1334
1335 if (xfs_is_shutdown(mp))
1336 return -EIO;
1337
1338 lockmode = xfs_ilock_attr_map_shared(ip);
1339
1340 /* if there are no attribute fork or extents, return ENOENT */
1341 if (!xfs_inode_has_attr_fork(ip) || !ip->i_af.if_nextents) {
1342 error = -ENOENT;
1343 goto out_unlock;
1344 }
1345
1346 ASSERT(ip->i_af.if_format != XFS_DINODE_FMT_LOCAL);
1347 error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb, &imap,
1348 &nimaps, XFS_BMAPI_ATTRFORK);
1349 out_unlock:
1350 xfs_iunlock(ip, lockmode);
1351
1352 if (error)
1353 return error;
1354 ASSERT(nimaps);
1355 return xfs_bmbt_to_iomap(ip, iomap, &imap, flags, 0);
1356 }
1357
1358 const struct iomap_ops xfs_xattr_iomap_ops = {
1359 .iomap_begin = xfs_xattr_iomap_begin,
1360 };
1361
1362 int
xfs_zero_range(struct xfs_inode * ip,loff_t pos,loff_t len,bool * did_zero)1363 xfs_zero_range(
1364 struct xfs_inode *ip,
1365 loff_t pos,
1366 loff_t len,
1367 bool *did_zero)
1368 {
1369 struct inode *inode = VFS_I(ip);
1370
1371 if (IS_DAX(inode))
1372 return dax_zero_range(inode, pos, len, did_zero,
1373 &xfs_direct_write_iomap_ops);
1374 return iomap_zero_range(inode, pos, len, did_zero,
1375 &xfs_buffered_write_iomap_ops);
1376 }
1377
1378 int
xfs_truncate_page(struct xfs_inode * ip,loff_t pos,bool * did_zero)1379 xfs_truncate_page(
1380 struct xfs_inode *ip,
1381 loff_t pos,
1382 bool *did_zero)
1383 {
1384 struct inode *inode = VFS_I(ip);
1385
1386 if (IS_DAX(inode))
1387 return dax_truncate_page(inode, pos, did_zero,
1388 &xfs_direct_write_iomap_ops);
1389 return iomap_truncate_page(inode, pos, did_zero,
1390 &xfs_buffered_write_iomap_ops);
1391 }
1392