1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_inum.h"
22 #include "xfs_sb.h"
23 #include "xfs_ag.h"
24 #include "xfs_trans.h"
25 #include "xfs_mount.h"
26 #include "xfs_bmap_btree.h"
27 #include "xfs_dinode.h"
28 #include "xfs_inode.h"
29 #include "xfs_alloc.h"
30 #include "xfs_error.h"
31 #include "xfs_rw.h"
32 #include "xfs_iomap.h"
33 #include "xfs_vnodeops.h"
34 #include "xfs_trace.h"
35 #include "xfs_bmap.h"
36 #include <linux/gfp.h>
37 #include <linux/mpage.h>
38 #include <linux/pagevec.h>
39 #include <linux/writeback.h>
40 
41 
42 /*
43  * Prime number of hash buckets since address is used as the key.
44  */
45 #define NVSYNC		37
46 #define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
47 static wait_queue_head_t xfs_ioend_wq[NVSYNC];
48 
49 void __init
xfs_ioend_init(void)50 xfs_ioend_init(void)
51 {
52 	int i;
53 
54 	for (i = 0; i < NVSYNC; i++)
55 		init_waitqueue_head(&xfs_ioend_wq[i]);
56 }
57 
58 void
xfs_ioend_wait(xfs_inode_t * ip)59 xfs_ioend_wait(
60 	xfs_inode_t	*ip)
61 {
62 	wait_queue_head_t *wq = to_ioend_wq(ip);
63 
64 	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
65 }
66 
67 STATIC void
xfs_ioend_wake(xfs_inode_t * ip)68 xfs_ioend_wake(
69 	xfs_inode_t	*ip)
70 {
71 	if (atomic_dec_and_test(&ip->i_iocount))
72 		wake_up(to_ioend_wq(ip));
73 }
74 
75 void
xfs_count_page_state(struct page * page,int * delalloc,int * unwritten)76 xfs_count_page_state(
77 	struct page		*page,
78 	int			*delalloc,
79 	int			*unwritten)
80 {
81 	struct buffer_head	*bh, *head;
82 
83 	*delalloc = *unwritten = 0;
84 
85 	bh = head = page_buffers(page);
86 	do {
87 		if (buffer_unwritten(bh))
88 			(*unwritten) = 1;
89 		else if (buffer_delay(bh))
90 			(*delalloc) = 1;
91 	} while ((bh = bh->b_this_page) != head);
92 }
93 
94 STATIC struct block_device *
xfs_find_bdev_for_inode(struct inode * inode)95 xfs_find_bdev_for_inode(
96 	struct inode		*inode)
97 {
98 	struct xfs_inode	*ip = XFS_I(inode);
99 	struct xfs_mount	*mp = ip->i_mount;
100 
101 	if (XFS_IS_REALTIME_INODE(ip))
102 		return mp->m_rtdev_targp->bt_bdev;
103 	else
104 		return mp->m_ddev_targp->bt_bdev;
105 }
106 
107 /*
108  * We're now finished for good with this ioend structure.
109  * Update the page state via the associated buffer_heads,
110  * release holds on the inode and bio, and finally free
111  * up memory.  Do not use the ioend after this.
112  */
113 STATIC void
xfs_destroy_ioend(xfs_ioend_t * ioend)114 xfs_destroy_ioend(
115 	xfs_ioend_t		*ioend)
116 {
117 	struct buffer_head	*bh, *next;
118 	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
119 
120 	for (bh = ioend->io_buffer_head; bh; bh = next) {
121 		next = bh->b_private;
122 		bh->b_end_io(bh, !ioend->io_error);
123 	}
124 
125 	/*
126 	 * Volume managers supporting multiple paths can send back ENODEV
127 	 * when the final path disappears.  In this case continuing to fill
128 	 * the page cache with dirty data which cannot be written out is
129 	 * evil, so prevent that.
130 	 */
131 	if (unlikely(ioend->io_error == -ENODEV)) {
132 		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
133 				      __FILE__, __LINE__);
134 	}
135 
136 	xfs_ioend_wake(ip);
137 	mempool_free(ioend, xfs_ioend_pool);
138 }
139 
140 /*
141  * If the end of the current ioend is beyond the current EOF,
142  * return the new EOF value, otherwise zero.
143  */
144 STATIC xfs_fsize_t
xfs_ioend_new_eof(xfs_ioend_t * ioend)145 xfs_ioend_new_eof(
146 	xfs_ioend_t		*ioend)
147 {
148 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
149 	xfs_fsize_t		isize;
150 	xfs_fsize_t		bsize;
151 
152 	bsize = ioend->io_offset + ioend->io_size;
153 	isize = MAX(ip->i_size, ip->i_new_size);
154 	isize = MIN(isize, bsize);
155 	return isize > ip->i_d.di_size ? isize : 0;
156 }
157 
158 /*
159  * Update on-disk file size now that data has been written to disk.  The
160  * current in-memory file size is i_size.  If a write is beyond eof i_new_size
161  * will be the intended file size until i_size is updated.  If this write does
162  * not extend all the way to the valid file size then restrict this update to
163  * the end of the write.
164  *
165  * This function does not block as blocking on the inode lock in IO completion
166  * can lead to IO completion order dependency deadlocks.. If it can't get the
167  * inode ilock it will return EAGAIN. Callers must handle this.
168  */
169 STATIC int
xfs_setfilesize(xfs_ioend_t * ioend)170 xfs_setfilesize(
171 	xfs_ioend_t		*ioend)
172 {
173 	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
174 	xfs_fsize_t		isize;
175 
176 	if (unlikely(ioend->io_error))
177 		return 0;
178 
179 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
180 		return EAGAIN;
181 
182 	isize = xfs_ioend_new_eof(ioend);
183 	if (isize) {
184 		ip->i_d.di_size = isize;
185 		xfs_mark_inode_dirty(ip);
186 	}
187 
188 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
189 	return 0;
190 }
191 
192 /*
193  * Schedule IO completion handling on the final put of an ioend.
194  */
195 STATIC void
xfs_finish_ioend(struct xfs_ioend * ioend)196 xfs_finish_ioend(
197 	struct xfs_ioend	*ioend)
198 {
199 	if (atomic_dec_and_test(&ioend->io_remaining)) {
200 		if (ioend->io_type == IO_UNWRITTEN)
201 			queue_work(xfsconvertd_workqueue, &ioend->io_work);
202 		else
203 			queue_work(xfsdatad_workqueue, &ioend->io_work);
204 	}
205 }
206 
207 /*
208  * IO write completion.
209  */
210 STATIC void
xfs_end_io(struct work_struct * work)211 xfs_end_io(
212 	struct work_struct *work)
213 {
214 	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
215 	struct xfs_inode *ip = XFS_I(ioend->io_inode);
216 	int		error = 0;
217 
218 	/*
219 	 * For unwritten extents we need to issue transactions to convert a
220 	 * range to normal written extens after the data I/O has finished.
221 	 */
222 	if (ioend->io_type == IO_UNWRITTEN &&
223 	    likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
224 
225 		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226 						 ioend->io_size);
227 		if (error)
228 			ioend->io_error = error;
229 	}
230 
231 	/*
232 	 * We might have to update the on-disk file size after extending
233 	 * writes.
234 	 */
235 	error = xfs_setfilesize(ioend);
236 	ASSERT(!error || error == EAGAIN);
237 
238 	/*
239 	 * If we didn't complete processing of the ioend, requeue it to the
240 	 * tail of the workqueue for another attempt later. Otherwise destroy
241 	 * it.
242 	 */
243 	if (error == EAGAIN) {
244 		atomic_inc(&ioend->io_remaining);
245 		xfs_finish_ioend(ioend);
246 		/* ensure we don't spin on blocked ioends */
247 		delay(1);
248 	} else {
249 		if (ioend->io_iocb)
250 			aio_complete(ioend->io_iocb, ioend->io_result, 0);
251 		xfs_destroy_ioend(ioend);
252 	}
253 }
254 
255 /*
256  * Call IO completion handling in caller context on the final put of an ioend.
257  */
258 STATIC void
xfs_finish_ioend_sync(struct xfs_ioend * ioend)259 xfs_finish_ioend_sync(
260 	struct xfs_ioend	*ioend)
261 {
262 	if (atomic_dec_and_test(&ioend->io_remaining))
263 		xfs_end_io(&ioend->io_work);
264 }
265 
266 /*
267  * Allocate and initialise an IO completion structure.
268  * We need to track unwritten extent write completion here initially.
269  * We'll need to extend this for updating the ondisk inode size later
270  * (vs. incore size).
271  */
272 STATIC xfs_ioend_t *
xfs_alloc_ioend(struct inode * inode,unsigned int type)273 xfs_alloc_ioend(
274 	struct inode		*inode,
275 	unsigned int		type)
276 {
277 	xfs_ioend_t		*ioend;
278 
279 	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
280 
281 	/*
282 	 * Set the count to 1 initially, which will prevent an I/O
283 	 * completion callback from happening before we have started
284 	 * all the I/O from calling the completion routine too early.
285 	 */
286 	atomic_set(&ioend->io_remaining, 1);
287 	ioend->io_error = 0;
288 	ioend->io_list = NULL;
289 	ioend->io_type = type;
290 	ioend->io_inode = inode;
291 	ioend->io_buffer_head = NULL;
292 	ioend->io_buffer_tail = NULL;
293 	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
294 	ioend->io_offset = 0;
295 	ioend->io_size = 0;
296 	ioend->io_iocb = NULL;
297 	ioend->io_result = 0;
298 
299 	INIT_WORK(&ioend->io_work, xfs_end_io);
300 	return ioend;
301 }
302 
303 STATIC int
xfs_map_blocks(struct inode * inode,loff_t offset,struct xfs_bmbt_irec * imap,int type,int nonblocking)304 xfs_map_blocks(
305 	struct inode		*inode,
306 	loff_t			offset,
307 	struct xfs_bmbt_irec	*imap,
308 	int			type,
309 	int			nonblocking)
310 {
311 	struct xfs_inode	*ip = XFS_I(inode);
312 	struct xfs_mount	*mp = ip->i_mount;
313 	ssize_t			count = 1 << inode->i_blkbits;
314 	xfs_fileoff_t		offset_fsb, end_fsb;
315 	int			error = 0;
316 	int			bmapi_flags = XFS_BMAPI_ENTIRE;
317 	int			nimaps = 1;
318 
319 	if (XFS_FORCED_SHUTDOWN(mp))
320 		return -XFS_ERROR(EIO);
321 
322 	if (type == IO_UNWRITTEN)
323 		bmapi_flags |= XFS_BMAPI_IGSTATE;
324 
325 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
326 		if (nonblocking)
327 			return -XFS_ERROR(EAGAIN);
328 		xfs_ilock(ip, XFS_ILOCK_SHARED);
329 	}
330 
331 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
332 	       (ip->i_df.if_flags & XFS_IFEXTENTS));
333 	ASSERT(offset <= mp->m_maxioffset);
334 
335 	if (offset + count > mp->m_maxioffset)
336 		count = mp->m_maxioffset - offset;
337 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
338 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
339 	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
340 			  bmapi_flags,  NULL, 0, imap, &nimaps, NULL);
341 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
342 
343 	if (error)
344 		return -XFS_ERROR(error);
345 
346 	if (type == IO_DELALLOC &&
347 	    (!nimaps || isnullstartblock(imap->br_startblock))) {
348 		error = xfs_iomap_write_allocate(ip, offset, count, imap);
349 		if (!error)
350 			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
351 		return -XFS_ERROR(error);
352 	}
353 
354 #ifdef DEBUG
355 	if (type == IO_UNWRITTEN) {
356 		ASSERT(nimaps);
357 		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
358 		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
359 	}
360 #endif
361 	if (nimaps)
362 		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
363 	return 0;
364 }
365 
366 STATIC int
xfs_imap_valid(struct inode * inode,struct xfs_bmbt_irec * imap,xfs_off_t offset)367 xfs_imap_valid(
368 	struct inode		*inode,
369 	struct xfs_bmbt_irec	*imap,
370 	xfs_off_t		offset)
371 {
372 	offset >>= inode->i_blkbits;
373 
374 	return offset >= imap->br_startoff &&
375 		offset < imap->br_startoff + imap->br_blockcount;
376 }
377 
378 /*
379  * BIO completion handler for buffered IO.
380  */
381 STATIC void
xfs_end_bio(struct bio * bio,int error)382 xfs_end_bio(
383 	struct bio		*bio,
384 	int			error)
385 {
386 	xfs_ioend_t		*ioend = bio->bi_private;
387 
388 	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
389 	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
390 
391 	/* Toss bio and pass work off to an xfsdatad thread */
392 	bio->bi_private = NULL;
393 	bio->bi_end_io = NULL;
394 	bio_put(bio);
395 
396 	xfs_finish_ioend(ioend);
397 }
398 
399 STATIC void
xfs_submit_ioend_bio(struct writeback_control * wbc,xfs_ioend_t * ioend,struct bio * bio)400 xfs_submit_ioend_bio(
401 	struct writeback_control *wbc,
402 	xfs_ioend_t		*ioend,
403 	struct bio		*bio)
404 {
405 	atomic_inc(&ioend->io_remaining);
406 	bio->bi_private = ioend;
407 	bio->bi_end_io = xfs_end_bio;
408 
409 	/*
410 	 * If the I/O is beyond EOF we mark the inode dirty immediately
411 	 * but don't update the inode size until I/O completion.
412 	 */
413 	if (xfs_ioend_new_eof(ioend))
414 		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
415 
416 	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
417 }
418 
419 STATIC struct bio *
xfs_alloc_ioend_bio(struct buffer_head * bh)420 xfs_alloc_ioend_bio(
421 	struct buffer_head	*bh)
422 {
423 	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
424 	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
425 
426 	ASSERT(bio->bi_private == NULL);
427 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
428 	bio->bi_bdev = bh->b_bdev;
429 	return bio;
430 }
431 
432 STATIC void
xfs_start_buffer_writeback(struct buffer_head * bh)433 xfs_start_buffer_writeback(
434 	struct buffer_head	*bh)
435 {
436 	ASSERT(buffer_mapped(bh));
437 	ASSERT(buffer_locked(bh));
438 	ASSERT(!buffer_delay(bh));
439 	ASSERT(!buffer_unwritten(bh));
440 
441 	mark_buffer_async_write(bh);
442 	set_buffer_uptodate(bh);
443 	clear_buffer_dirty(bh);
444 }
445 
446 STATIC void
xfs_start_page_writeback(struct page * page,int clear_dirty,int buffers)447 xfs_start_page_writeback(
448 	struct page		*page,
449 	int			clear_dirty,
450 	int			buffers)
451 {
452 	ASSERT(PageLocked(page));
453 	ASSERT(!PageWriteback(page));
454 	if (clear_dirty)
455 		clear_page_dirty_for_io(page);
456 	set_page_writeback(page);
457 	unlock_page(page);
458 	/* If no buffers on the page are to be written, finish it here */
459 	if (!buffers)
460 		end_page_writeback(page);
461 }
462 
bio_add_buffer(struct bio * bio,struct buffer_head * bh)463 static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464 {
465 	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466 }
467 
468 /*
469  * Submit all of the bios for all of the ioends we have saved up, covering the
470  * initial writepage page and also any probed pages.
471  *
472  * Because we may have multiple ioends spanning a page, we need to start
473  * writeback on all the buffers before we submit them for I/O. If we mark the
474  * buffers as we got, then we can end up with a page that only has buffers
475  * marked async write and I/O complete on can occur before we mark the other
476  * buffers async write.
477  *
478  * The end result of this is that we trip a bug in end_page_writeback() because
479  * we call it twice for the one page as the code in end_buffer_async_write()
480  * assumes that all buffers on the page are started at the same time.
481  *
482  * The fix is two passes across the ioend list - one to start writeback on the
483  * buffer_heads, and then submit them for I/O on the second pass.
484  */
485 STATIC void
xfs_submit_ioend(struct writeback_control * wbc,xfs_ioend_t * ioend)486 xfs_submit_ioend(
487 	struct writeback_control *wbc,
488 	xfs_ioend_t		*ioend)
489 {
490 	xfs_ioend_t		*head = ioend;
491 	xfs_ioend_t		*next;
492 	struct buffer_head	*bh;
493 	struct bio		*bio;
494 	sector_t		lastblock = 0;
495 
496 	/* Pass 1 - start writeback */
497 	do {
498 		next = ioend->io_list;
499 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
500 			xfs_start_buffer_writeback(bh);
501 	} while ((ioend = next) != NULL);
502 
503 	/* Pass 2 - submit I/O */
504 	ioend = head;
505 	do {
506 		next = ioend->io_list;
507 		bio = NULL;
508 
509 		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
510 
511 			if (!bio) {
512  retry:
513 				bio = xfs_alloc_ioend_bio(bh);
514 			} else if (bh->b_blocknr != lastblock + 1) {
515 				xfs_submit_ioend_bio(wbc, ioend, bio);
516 				goto retry;
517 			}
518 
519 			if (bio_add_buffer(bio, bh) != bh->b_size) {
520 				xfs_submit_ioend_bio(wbc, ioend, bio);
521 				goto retry;
522 			}
523 
524 			lastblock = bh->b_blocknr;
525 		}
526 		if (bio)
527 			xfs_submit_ioend_bio(wbc, ioend, bio);
528 		xfs_finish_ioend(ioend);
529 	} while ((ioend = next) != NULL);
530 }
531 
532 /*
533  * Cancel submission of all buffer_heads so far in this endio.
534  * Toss the endio too.  Only ever called for the initial page
535  * in a writepage request, so only ever one page.
536  */
537 STATIC void
xfs_cancel_ioend(xfs_ioend_t * ioend)538 xfs_cancel_ioend(
539 	xfs_ioend_t		*ioend)
540 {
541 	xfs_ioend_t		*next;
542 	struct buffer_head	*bh, *next_bh;
543 
544 	do {
545 		next = ioend->io_list;
546 		bh = ioend->io_buffer_head;
547 		do {
548 			next_bh = bh->b_private;
549 			clear_buffer_async_write(bh);
550 			unlock_buffer(bh);
551 		} while ((bh = next_bh) != NULL);
552 
553 		xfs_ioend_wake(XFS_I(ioend->io_inode));
554 		mempool_free(ioend, xfs_ioend_pool);
555 	} while ((ioend = next) != NULL);
556 }
557 
558 /*
559  * Test to see if we've been building up a completion structure for
560  * earlier buffers -- if so, we try to append to this ioend if we
561  * can, otherwise we finish off any current ioend and start another.
562  * Return true if we've finished the given ioend.
563  */
564 STATIC void
xfs_add_to_ioend(struct inode * inode,struct buffer_head * bh,xfs_off_t offset,unsigned int type,xfs_ioend_t ** result,int need_ioend)565 xfs_add_to_ioend(
566 	struct inode		*inode,
567 	struct buffer_head	*bh,
568 	xfs_off_t		offset,
569 	unsigned int		type,
570 	xfs_ioend_t		**result,
571 	int			need_ioend)
572 {
573 	xfs_ioend_t		*ioend = *result;
574 
575 	if (!ioend || need_ioend || type != ioend->io_type) {
576 		xfs_ioend_t	*previous = *result;
577 
578 		ioend = xfs_alloc_ioend(inode, type);
579 		ioend->io_offset = offset;
580 		ioend->io_buffer_head = bh;
581 		ioend->io_buffer_tail = bh;
582 		if (previous)
583 			previous->io_list = ioend;
584 		*result = ioend;
585 	} else {
586 		ioend->io_buffer_tail->b_private = bh;
587 		ioend->io_buffer_tail = bh;
588 	}
589 
590 	bh->b_private = NULL;
591 	ioend->io_size += bh->b_size;
592 }
593 
594 STATIC void
xfs_map_buffer(struct inode * inode,struct buffer_head * bh,struct xfs_bmbt_irec * imap,xfs_off_t offset)595 xfs_map_buffer(
596 	struct inode		*inode,
597 	struct buffer_head	*bh,
598 	struct xfs_bmbt_irec	*imap,
599 	xfs_off_t		offset)
600 {
601 	sector_t		bn;
602 	struct xfs_mount	*m = XFS_I(inode)->i_mount;
603 	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
604 	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
605 
606 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
607 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
608 
609 	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
610 	      ((offset - iomap_offset) >> inode->i_blkbits);
611 
612 	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
613 
614 	bh->b_blocknr = bn;
615 	set_buffer_mapped(bh);
616 }
617 
618 STATIC void
xfs_map_at_offset(struct inode * inode,struct buffer_head * bh,struct xfs_bmbt_irec * imap,xfs_off_t offset)619 xfs_map_at_offset(
620 	struct inode		*inode,
621 	struct buffer_head	*bh,
622 	struct xfs_bmbt_irec	*imap,
623 	xfs_off_t		offset)
624 {
625 	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
626 	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
627 
628 	xfs_map_buffer(inode, bh, imap, offset);
629 	set_buffer_mapped(bh);
630 	clear_buffer_delay(bh);
631 	clear_buffer_unwritten(bh);
632 }
633 
634 /*
635  * Test if a given page is suitable for writing as part of an unwritten
636  * or delayed allocate extent.
637  */
638 STATIC int
xfs_is_delayed_page(struct page * page,unsigned int type)639 xfs_is_delayed_page(
640 	struct page		*page,
641 	unsigned int		type)
642 {
643 	if (PageWriteback(page))
644 		return 0;
645 
646 	if (page->mapping && page_has_buffers(page)) {
647 		struct buffer_head	*bh, *head;
648 		int			acceptable = 0;
649 
650 		bh = head = page_buffers(page);
651 		do {
652 			if (buffer_unwritten(bh))
653 				acceptable = (type == IO_UNWRITTEN);
654 			else if (buffer_delay(bh))
655 				acceptable = (type == IO_DELALLOC);
656 			else if (buffer_dirty(bh) && buffer_mapped(bh))
657 				acceptable = (type == IO_OVERWRITE);
658 			else
659 				break;
660 		} while ((bh = bh->b_this_page) != head);
661 
662 		if (acceptable)
663 			return 1;
664 	}
665 
666 	return 0;
667 }
668 
669 /*
670  * Allocate & map buffers for page given the extent map. Write it out.
671  * except for the original page of a writepage, this is called on
672  * delalloc/unwritten pages only, for the original page it is possible
673  * that the page has no mapping at all.
674  */
675 STATIC int
xfs_convert_page(struct inode * inode,struct page * page,loff_t tindex,struct xfs_bmbt_irec * imap,xfs_ioend_t ** ioendp,struct writeback_control * wbc)676 xfs_convert_page(
677 	struct inode		*inode,
678 	struct page		*page,
679 	loff_t			tindex,
680 	struct xfs_bmbt_irec	*imap,
681 	xfs_ioend_t		**ioendp,
682 	struct writeback_control *wbc)
683 {
684 	struct buffer_head	*bh, *head;
685 	xfs_off_t		end_offset;
686 	unsigned long		p_offset;
687 	unsigned int		type;
688 	int			len, page_dirty;
689 	int			count = 0, done = 0, uptodate = 1;
690  	xfs_off_t		offset = page_offset(page);
691 
692 	if (page->index != tindex)
693 		goto fail;
694 	if (!trylock_page(page))
695 		goto fail;
696 	if (PageWriteback(page))
697 		goto fail_unlock_page;
698 	if (page->mapping != inode->i_mapping)
699 		goto fail_unlock_page;
700 	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
701 		goto fail_unlock_page;
702 
703 	/*
704 	 * page_dirty is initially a count of buffers on the page before
705 	 * EOF and is decremented as we move each into a cleanable state.
706 	 *
707 	 * Derivation:
708 	 *
709 	 * End offset is the highest offset that this page should represent.
710 	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
711 	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
712 	 * hence give us the correct page_dirty count. On any other page,
713 	 * it will be zero and in that case we need page_dirty to be the
714 	 * count of buffers on the page.
715 	 */
716 	end_offset = min_t(unsigned long long,
717 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
718 			i_size_read(inode));
719 
720 	len = 1 << inode->i_blkbits;
721 	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
722 					PAGE_CACHE_SIZE);
723 	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
724 	page_dirty = p_offset / len;
725 
726 	bh = head = page_buffers(page);
727 	do {
728 		if (offset >= end_offset)
729 			break;
730 		if (!buffer_uptodate(bh))
731 			uptodate = 0;
732 		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
733 			done = 1;
734 			continue;
735 		}
736 
737 		if (buffer_unwritten(bh) || buffer_delay(bh) ||
738 		    buffer_mapped(bh)) {
739 			if (buffer_unwritten(bh))
740 				type = IO_UNWRITTEN;
741 			else if (buffer_delay(bh))
742 				type = IO_DELALLOC;
743 			else
744 				type = IO_OVERWRITE;
745 
746 			if (!xfs_imap_valid(inode, imap, offset)) {
747 				done = 1;
748 				continue;
749 			}
750 
751 			lock_buffer(bh);
752 			if (type != IO_OVERWRITE)
753 				xfs_map_at_offset(inode, bh, imap, offset);
754 			xfs_add_to_ioend(inode, bh, offset, type,
755 					 ioendp, done);
756 
757 			page_dirty--;
758 			count++;
759 		} else {
760 			done = 1;
761 		}
762 	} while (offset += len, (bh = bh->b_this_page) != head);
763 
764 	if (uptodate && bh == head)
765 		SetPageUptodate(page);
766 
767 	if (count) {
768 		if (--wbc->nr_to_write <= 0 &&
769 		    wbc->sync_mode == WB_SYNC_NONE)
770 			done = 1;
771 	}
772 	xfs_start_page_writeback(page, !page_dirty, count);
773 
774 	return done;
775  fail_unlock_page:
776 	unlock_page(page);
777  fail:
778 	return 1;
779 }
780 
781 /*
782  * Convert & write out a cluster of pages in the same extent as defined
783  * by mp and following the start page.
784  */
785 STATIC void
xfs_cluster_write(struct inode * inode,pgoff_t tindex,struct xfs_bmbt_irec * imap,xfs_ioend_t ** ioendp,struct writeback_control * wbc,pgoff_t tlast)786 xfs_cluster_write(
787 	struct inode		*inode,
788 	pgoff_t			tindex,
789 	struct xfs_bmbt_irec	*imap,
790 	xfs_ioend_t		**ioendp,
791 	struct writeback_control *wbc,
792 	pgoff_t			tlast)
793 {
794 	struct pagevec		pvec;
795 	int			done = 0, i;
796 
797 	pagevec_init(&pvec, 0);
798 	while (!done && tindex <= tlast) {
799 		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
800 
801 		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
802 			break;
803 
804 		for (i = 0; i < pagevec_count(&pvec); i++) {
805 			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
806 					imap, ioendp, wbc);
807 			if (done)
808 				break;
809 		}
810 
811 		pagevec_release(&pvec);
812 		cond_resched();
813 	}
814 }
815 
816 STATIC void
xfs_vm_invalidatepage(struct page * page,unsigned long offset)817 xfs_vm_invalidatepage(
818 	struct page		*page,
819 	unsigned long		offset)
820 {
821 	trace_xfs_invalidatepage(page->mapping->host, page, offset);
822 	block_invalidatepage(page, offset);
823 }
824 
825 /*
826  * If the page has delalloc buffers on it, we need to punch them out before we
827  * invalidate the page. If we don't, we leave a stale delalloc mapping on the
828  * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
829  * is done on that same region - the delalloc extent is returned when none is
830  * supposed to be there.
831  *
832  * We prevent this by truncating away the delalloc regions on the page before
833  * invalidating it. Because they are delalloc, we can do this without needing a
834  * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
835  * truncation without a transaction as there is no space left for block
836  * reservation (typically why we see a ENOSPC in writeback).
837  *
838  * This is not a performance critical path, so for now just do the punching a
839  * buffer head at a time.
840  */
841 STATIC void
xfs_aops_discard_page(struct page * page)842 xfs_aops_discard_page(
843 	struct page		*page)
844 {
845 	struct inode		*inode = page->mapping->host;
846 	struct xfs_inode	*ip = XFS_I(inode);
847 	struct buffer_head	*bh, *head;
848 	loff_t			offset = page_offset(page);
849 
850 	if (!xfs_is_delayed_page(page, IO_DELALLOC))
851 		goto out_invalidate;
852 
853 	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
854 		goto out_invalidate;
855 
856 	xfs_alert(ip->i_mount,
857 		"page discard on page %p, inode 0x%llx, offset %llu.",
858 			page, ip->i_ino, offset);
859 
860 	xfs_ilock(ip, XFS_ILOCK_EXCL);
861 	bh = head = page_buffers(page);
862 	do {
863 		int		error;
864 		xfs_fileoff_t	start_fsb;
865 
866 		if (!buffer_delay(bh))
867 			goto next_buffer;
868 
869 		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
870 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
871 		if (error) {
872 			/* something screwed, just bail */
873 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
874 				xfs_alert(ip->i_mount,
875 			"page discard unable to remove delalloc mapping.");
876 			}
877 			break;
878 		}
879 next_buffer:
880 		offset += 1 << inode->i_blkbits;
881 
882 	} while ((bh = bh->b_this_page) != head);
883 
884 	xfs_iunlock(ip, XFS_ILOCK_EXCL);
885 out_invalidate:
886 	xfs_vm_invalidatepage(page, 0);
887 	return;
888 }
889 
890 /*
891  * Write out a dirty page.
892  *
893  * For delalloc space on the page we need to allocate space and flush it.
894  * For unwritten space on the page we need to start the conversion to
895  * regular allocated space.
896  * For any other dirty buffer heads on the page we should flush them.
897  *
898  * If we detect that a transaction would be required to flush the page, we
899  * have to check the process flags first, if we are already in a transaction
900  * or disk I/O during allocations is off, we need to fail the writepage and
901  * redirty the page.
902  */
903 STATIC int
xfs_vm_writepage(struct page * page,struct writeback_control * wbc)904 xfs_vm_writepage(
905 	struct page		*page,
906 	struct writeback_control *wbc)
907 {
908 	struct inode		*inode = page->mapping->host;
909 	int			delalloc, unwritten;
910 	struct buffer_head	*bh, *head;
911 	struct xfs_bmbt_irec	imap;
912 	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
913 	loff_t			offset;
914 	unsigned int		type;
915 	__uint64_t              end_offset;
916 	pgoff_t                 end_index, last_index;
917 	ssize_t			len;
918 	int			err, imap_valid = 0, uptodate = 1;
919 	int			count = 0;
920 	int			nonblocking = 0;
921 
922 	trace_xfs_writepage(inode, page, 0);
923 
924 	ASSERT(page_has_buffers(page));
925 
926 	/*
927 	 * Refuse to write the page out if we are called from reclaim context.
928 	 *
929 	 * This avoids stack overflows when called from deeply used stacks in
930 	 * random callers for direct reclaim or memcg reclaim.  We explicitly
931 	 * allow reclaim from kswapd as the stack usage there is relatively low.
932 	 *
933 	 * This should really be done by the core VM, but until that happens
934 	 * filesystems like XFS, btrfs and ext4 have to take care of this
935 	 * by themselves.
936 	 */
937 	if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
938 		goto redirty;
939 
940 	/*
941 	 * We need a transaction if there are delalloc or unwritten buffers
942 	 * on the page.
943 	 *
944 	 * If we need a transaction and the process flags say we are already
945 	 * in a transaction, or no IO is allowed then mark the page dirty
946 	 * again and leave the page as is.
947 	 */
948 	xfs_count_page_state(page, &delalloc, &unwritten);
949 	if ((current->flags & PF_FSTRANS) && (delalloc || unwritten))
950 		goto redirty;
951 
952 	/* Is this page beyond the end of the file? */
953 	offset = i_size_read(inode);
954 	end_index = offset >> PAGE_CACHE_SHIFT;
955 	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
956 	if (page->index >= end_index) {
957 		if ((page->index >= end_index + 1) ||
958 		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
959 			unlock_page(page);
960 			return 0;
961 		}
962 	}
963 
964 	end_offset = min_t(unsigned long long,
965 			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
966 			offset);
967 	len = 1 << inode->i_blkbits;
968 
969 	bh = head = page_buffers(page);
970 	offset = page_offset(page);
971 	type = IO_OVERWRITE;
972 
973 	if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
974 		nonblocking = 1;
975 
976 	do {
977 		int new_ioend = 0;
978 
979 		if (offset >= end_offset)
980 			break;
981 		if (!buffer_uptodate(bh))
982 			uptodate = 0;
983 
984 		/*
985 		 * set_page_dirty dirties all buffers in a page, independent
986 		 * of their state.  The dirty state however is entirely
987 		 * meaningless for holes (!mapped && uptodate), so skip
988 		 * buffers covering holes here.
989 		 */
990 		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
991 			imap_valid = 0;
992 			continue;
993 		}
994 
995 		if (buffer_unwritten(bh)) {
996 			if (type != IO_UNWRITTEN) {
997 				type = IO_UNWRITTEN;
998 				imap_valid = 0;
999 			}
1000 		} else if (buffer_delay(bh)) {
1001 			if (type != IO_DELALLOC) {
1002 				type = IO_DELALLOC;
1003 				imap_valid = 0;
1004 			}
1005 		} else if (buffer_uptodate(bh)) {
1006 			if (type != IO_OVERWRITE) {
1007 				type = IO_OVERWRITE;
1008 				imap_valid = 0;
1009 			}
1010 		} else {
1011 			if (PageUptodate(page)) {
1012 				ASSERT(buffer_mapped(bh));
1013 				imap_valid = 0;
1014 			}
1015 			continue;
1016 		}
1017 
1018 		if (imap_valid)
1019 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1020 		if (!imap_valid) {
1021 			/*
1022 			 * If we didn't have a valid mapping then we need to
1023 			 * put the new mapping into a separate ioend structure.
1024 			 * This ensures non-contiguous extents always have
1025 			 * separate ioends, which is particularly important
1026 			 * for unwritten extent conversion at I/O completion
1027 			 * time.
1028 			 */
1029 			new_ioend = 1;
1030 			err = xfs_map_blocks(inode, offset, &imap, type,
1031 					     nonblocking);
1032 			if (err)
1033 				goto error;
1034 			imap_valid = xfs_imap_valid(inode, &imap, offset);
1035 		}
1036 		if (imap_valid) {
1037 			lock_buffer(bh);
1038 			if (type != IO_OVERWRITE)
1039 				xfs_map_at_offset(inode, bh, &imap, offset);
1040 			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1041 					 new_ioend);
1042 			count++;
1043 		}
1044 
1045 		if (!iohead)
1046 			iohead = ioend;
1047 
1048 	} while (offset += len, ((bh = bh->b_this_page) != head));
1049 
1050 	if (uptodate && bh == head)
1051 		SetPageUptodate(page);
1052 
1053 	xfs_start_page_writeback(page, 1, count);
1054 
1055 	if (ioend && imap_valid) {
1056 		xfs_off_t		end_index;
1057 
1058 		end_index = imap.br_startoff + imap.br_blockcount;
1059 
1060 		/* to bytes */
1061 		end_index <<= inode->i_blkbits;
1062 
1063 		/* to pages */
1064 		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1065 
1066 		/* check against file size */
1067 		if (end_index > last_index)
1068 			end_index = last_index;
1069 
1070 		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1071 				  wbc, end_index);
1072 	}
1073 
1074 	if (iohead)
1075 		xfs_submit_ioend(wbc, iohead);
1076 
1077 	return 0;
1078 
1079 error:
1080 	if (iohead)
1081 		xfs_cancel_ioend(iohead);
1082 
1083 	if (err == -EAGAIN)
1084 		goto redirty;
1085 
1086 	xfs_aops_discard_page(page);
1087 	ClearPageUptodate(page);
1088 	unlock_page(page);
1089 	return err;
1090 
1091 redirty:
1092 	redirty_page_for_writepage(wbc, page);
1093 	unlock_page(page);
1094 	return 0;
1095 }
1096 
1097 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)1098 xfs_vm_writepages(
1099 	struct address_space	*mapping,
1100 	struct writeback_control *wbc)
1101 {
1102 	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1103 	return generic_writepages(mapping, wbc);
1104 }
1105 
1106 /*
1107  * Called to move a page into cleanable state - and from there
1108  * to be released. The page should already be clean. We always
1109  * have buffer heads in this call.
1110  *
1111  * Returns 1 if the page is ok to release, 0 otherwise.
1112  */
1113 STATIC int
xfs_vm_releasepage(struct page * page,gfp_t gfp_mask)1114 xfs_vm_releasepage(
1115 	struct page		*page,
1116 	gfp_t			gfp_mask)
1117 {
1118 	int			delalloc, unwritten;
1119 
1120 	trace_xfs_releasepage(page->mapping->host, page, 0);
1121 
1122 	xfs_count_page_state(page, &delalloc, &unwritten);
1123 
1124 	if (WARN_ON(delalloc))
1125 		return 0;
1126 	if (WARN_ON(unwritten))
1127 		return 0;
1128 
1129 	return try_to_free_buffers(page);
1130 }
1131 
1132 STATIC int
__xfs_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create,int direct)1133 __xfs_get_blocks(
1134 	struct inode		*inode,
1135 	sector_t		iblock,
1136 	struct buffer_head	*bh_result,
1137 	int			create,
1138 	int			direct)
1139 {
1140 	struct xfs_inode	*ip = XFS_I(inode);
1141 	struct xfs_mount	*mp = ip->i_mount;
1142 	xfs_fileoff_t		offset_fsb, end_fsb;
1143 	int			error = 0;
1144 	int			lockmode = 0;
1145 	struct xfs_bmbt_irec	imap;
1146 	int			nimaps = 1;
1147 	xfs_off_t		offset;
1148 	ssize_t			size;
1149 	int			new = 0;
1150 
1151 	if (XFS_FORCED_SHUTDOWN(mp))
1152 		return -XFS_ERROR(EIO);
1153 
1154 	offset = (xfs_off_t)iblock << inode->i_blkbits;
1155 	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1156 	size = bh_result->b_size;
1157 
1158 	if (!create && direct && offset >= i_size_read(inode))
1159 		return 0;
1160 
1161 	if (create) {
1162 		lockmode = XFS_ILOCK_EXCL;
1163 		xfs_ilock(ip, lockmode);
1164 	} else {
1165 		lockmode = xfs_ilock_map_shared(ip);
1166 	}
1167 
1168 	ASSERT(offset <= mp->m_maxioffset);
1169 	if (offset + size > mp->m_maxioffset)
1170 		size = mp->m_maxioffset - offset;
1171 	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1172 	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1173 
1174 	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1175 			  XFS_BMAPI_ENTIRE,  NULL, 0, &imap, &nimaps, NULL);
1176 	if (error)
1177 		goto out_unlock;
1178 
1179 	if (create &&
1180 	    (!nimaps ||
1181 	     (imap.br_startblock == HOLESTARTBLOCK ||
1182 	      imap.br_startblock == DELAYSTARTBLOCK))) {
1183 		if (direct) {
1184 			error = xfs_iomap_write_direct(ip, offset, size,
1185 						       &imap, nimaps);
1186 		} else {
1187 			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1188 		}
1189 		if (error)
1190 			goto out_unlock;
1191 
1192 		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1193 	} else if (nimaps) {
1194 		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1195 	} else {
1196 		trace_xfs_get_blocks_notfound(ip, offset, size);
1197 		goto out_unlock;
1198 	}
1199 	xfs_iunlock(ip, lockmode);
1200 
1201 	if (imap.br_startblock != HOLESTARTBLOCK &&
1202 	    imap.br_startblock != DELAYSTARTBLOCK) {
1203 		/*
1204 		 * For unwritten extents do not report a disk address on
1205 		 * the read case (treat as if we're reading into a hole).
1206 		 */
1207 		if (create || !ISUNWRITTEN(&imap))
1208 			xfs_map_buffer(inode, bh_result, &imap, offset);
1209 		if (create && ISUNWRITTEN(&imap)) {
1210 			if (direct)
1211 				bh_result->b_private = inode;
1212 			set_buffer_unwritten(bh_result);
1213 		}
1214 	}
1215 
1216 	/*
1217 	 * If this is a realtime file, data may be on a different device.
1218 	 * to that pointed to from the buffer_head b_bdev currently.
1219 	 */
1220 	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1221 
1222 	/*
1223 	 * If we previously allocated a block out beyond eof and we are now
1224 	 * coming back to use it then we will need to flag it as new even if it
1225 	 * has a disk address.
1226 	 *
1227 	 * With sub-block writes into unwritten extents we also need to mark
1228 	 * the buffer as new so that the unwritten parts of the buffer gets
1229 	 * correctly zeroed.
1230 	 */
1231 	if (create &&
1232 	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1233 	     (offset >= i_size_read(inode)) ||
1234 	     (new || ISUNWRITTEN(&imap))))
1235 		set_buffer_new(bh_result);
1236 
1237 	if (imap.br_startblock == DELAYSTARTBLOCK) {
1238 		BUG_ON(direct);
1239 		if (create) {
1240 			set_buffer_uptodate(bh_result);
1241 			set_buffer_mapped(bh_result);
1242 			set_buffer_delay(bh_result);
1243 		}
1244 	}
1245 
1246 	/*
1247 	 * If this is O_DIRECT or the mpage code calling tell them how large
1248 	 * the mapping is, so that we can avoid repeated get_blocks calls.
1249 	 */
1250 	if (direct || size > (1 << inode->i_blkbits)) {
1251 		xfs_off_t		mapping_size;
1252 
1253 		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1254 		mapping_size <<= inode->i_blkbits;
1255 
1256 		ASSERT(mapping_size > 0);
1257 		if (mapping_size > size)
1258 			mapping_size = size;
1259 		if (mapping_size > LONG_MAX)
1260 			mapping_size = LONG_MAX;
1261 
1262 		bh_result->b_size = mapping_size;
1263 	}
1264 
1265 	return 0;
1266 
1267 out_unlock:
1268 	xfs_iunlock(ip, lockmode);
1269 	return -error;
1270 }
1271 
1272 int
xfs_get_blocks(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1273 xfs_get_blocks(
1274 	struct inode		*inode,
1275 	sector_t		iblock,
1276 	struct buffer_head	*bh_result,
1277 	int			create)
1278 {
1279 	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1280 }
1281 
1282 STATIC int
xfs_get_blocks_direct(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)1283 xfs_get_blocks_direct(
1284 	struct inode		*inode,
1285 	sector_t		iblock,
1286 	struct buffer_head	*bh_result,
1287 	int			create)
1288 {
1289 	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1290 }
1291 
1292 /*
1293  * Complete a direct I/O write request.
1294  *
1295  * If the private argument is non-NULL __xfs_get_blocks signals us that we
1296  * need to issue a transaction to convert the range from unwritten to written
1297  * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1298  * to do this and we are done.  But in case this was a successful AIO
1299  * request this handler is called from interrupt context, from which we
1300  * can't start transactions.  In that case offload the I/O completion to
1301  * the workqueues we also use for buffered I/O completion.
1302  */
1303 STATIC void
xfs_end_io_direct_write(struct kiocb * iocb,loff_t offset,ssize_t size,void * private,int ret,bool is_async)1304 xfs_end_io_direct_write(
1305 	struct kiocb		*iocb,
1306 	loff_t			offset,
1307 	ssize_t			size,
1308 	void			*private,
1309 	int			ret,
1310 	bool			is_async)
1311 {
1312 	struct xfs_ioend	*ioend = iocb->private;
1313 
1314 	/*
1315 	 * blockdev_direct_IO can return an error even after the I/O
1316 	 * completion handler was called.  Thus we need to protect
1317 	 * against double-freeing.
1318 	 */
1319 	iocb->private = NULL;
1320 
1321 	ioend->io_offset = offset;
1322 	ioend->io_size = size;
1323 	if (private && size > 0)
1324 		ioend->io_type = IO_UNWRITTEN;
1325 
1326 	if (is_async) {
1327 		/*
1328 		 * If we are converting an unwritten extent we need to delay
1329 		 * the AIO completion until after the unwrittent extent
1330 		 * conversion has completed, otherwise do it ASAP.
1331 		 */
1332 		if (ioend->io_type == IO_UNWRITTEN) {
1333 			ioend->io_iocb = iocb;
1334 			ioend->io_result = ret;
1335 		} else {
1336 			aio_complete(iocb, ret, 0);
1337 		}
1338 		xfs_finish_ioend(ioend);
1339 	} else {
1340 		xfs_finish_ioend_sync(ioend);
1341 	}
1342 }
1343 
1344 STATIC ssize_t
xfs_vm_direct_IO(int rw,struct kiocb * iocb,const struct iovec * iov,loff_t offset,unsigned long nr_segs)1345 xfs_vm_direct_IO(
1346 	int			rw,
1347 	struct kiocb		*iocb,
1348 	const struct iovec	*iov,
1349 	loff_t			offset,
1350 	unsigned long		nr_segs)
1351 {
1352 	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1353 	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1354 	ssize_t			ret;
1355 
1356 	if (rw & WRITE) {
1357 		iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1358 
1359 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1360 					    offset, nr_segs,
1361 					    xfs_get_blocks_direct,
1362 					    xfs_end_io_direct_write, NULL, 0);
1363 		if (ret != -EIOCBQUEUED && iocb->private)
1364 			xfs_destroy_ioend(iocb->private);
1365 	} else {
1366 		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1367 					    offset, nr_segs,
1368 					    xfs_get_blocks_direct,
1369 					    NULL, NULL, 0);
1370 	}
1371 
1372 	return ret;
1373 }
1374 
1375 STATIC void
xfs_vm_write_failed(struct address_space * mapping,loff_t to)1376 xfs_vm_write_failed(
1377 	struct address_space	*mapping,
1378 	loff_t			to)
1379 {
1380 	struct inode		*inode = mapping->host;
1381 
1382 	if (to > inode->i_size) {
1383 		/*
1384 		 * punch out the delalloc blocks we have already allocated. We
1385 		 * don't call xfs_setattr() to do this as we may be in the
1386 		 * middle of a multi-iovec write and so the vfs inode->i_size
1387 		 * will not match the xfs ip->i_size and so it will zero too
1388 		 * much. Hence we jus truncate the page cache to zero what is
1389 		 * necessary and punch the delalloc blocks directly.
1390 		 */
1391 		struct xfs_inode	*ip = XFS_I(inode);
1392 		xfs_fileoff_t		start_fsb;
1393 		xfs_fileoff_t		end_fsb;
1394 		int			error;
1395 
1396 		truncate_pagecache(inode, to, inode->i_size);
1397 
1398 		/*
1399 		 * Check if there are any blocks that are outside of i_size
1400 		 * that need to be trimmed back.
1401 		 */
1402 		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1403 		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1404 		if (end_fsb <= start_fsb)
1405 			return;
1406 
1407 		xfs_ilock(ip, XFS_ILOCK_EXCL);
1408 		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1409 							end_fsb - start_fsb);
1410 		if (error) {
1411 			/* something screwed, just bail */
1412 			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1413 				xfs_alert(ip->i_mount,
1414 			"xfs_vm_write_failed: unable to clean up ino %lld",
1415 						ip->i_ino);
1416 			}
1417 		}
1418 		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1419 	}
1420 }
1421 
1422 STATIC int
xfs_vm_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)1423 xfs_vm_write_begin(
1424 	struct file		*file,
1425 	struct address_space	*mapping,
1426 	loff_t			pos,
1427 	unsigned		len,
1428 	unsigned		flags,
1429 	struct page		**pagep,
1430 	void			**fsdata)
1431 {
1432 	int			ret;
1433 
1434 	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1435 				pagep, xfs_get_blocks);
1436 	if (unlikely(ret))
1437 		xfs_vm_write_failed(mapping, pos + len);
1438 	return ret;
1439 }
1440 
1441 STATIC int
xfs_vm_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)1442 xfs_vm_write_end(
1443 	struct file		*file,
1444 	struct address_space	*mapping,
1445 	loff_t			pos,
1446 	unsigned		len,
1447 	unsigned		copied,
1448 	struct page		*page,
1449 	void			*fsdata)
1450 {
1451 	int			ret;
1452 
1453 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1454 	if (unlikely(ret < len))
1455 		xfs_vm_write_failed(mapping, pos + len);
1456 	return ret;
1457 }
1458 
1459 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)1460 xfs_vm_bmap(
1461 	struct address_space	*mapping,
1462 	sector_t		block)
1463 {
1464 	struct inode		*inode = (struct inode *)mapping->host;
1465 	struct xfs_inode	*ip = XFS_I(inode);
1466 
1467 	trace_xfs_vm_bmap(XFS_I(inode));
1468 	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1469 	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1470 	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1471 	return generic_block_bmap(mapping, block, xfs_get_blocks);
1472 }
1473 
1474 STATIC int
xfs_vm_readpage(struct file * unused,struct page * page)1475 xfs_vm_readpage(
1476 	struct file		*unused,
1477 	struct page		*page)
1478 {
1479 	return mpage_readpage(page, xfs_get_blocks);
1480 }
1481 
1482 STATIC int
xfs_vm_readpages(struct file * unused,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1483 xfs_vm_readpages(
1484 	struct file		*unused,
1485 	struct address_space	*mapping,
1486 	struct list_head	*pages,
1487 	unsigned		nr_pages)
1488 {
1489 	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1490 }
1491 
1492 const struct address_space_operations xfs_address_space_operations = {
1493 	.readpage		= xfs_vm_readpage,
1494 	.readpages		= xfs_vm_readpages,
1495 	.writepage		= xfs_vm_writepage,
1496 	.writepages		= xfs_vm_writepages,
1497 	.releasepage		= xfs_vm_releasepage,
1498 	.invalidatepage		= xfs_vm_invalidatepage,
1499 	.write_begin		= xfs_vm_write_begin,
1500 	.write_end		= xfs_vm_write_end,
1501 	.bmap			= xfs_vm_bmap,
1502 	.direct_IO		= xfs_vm_direct_IO,
1503 	.migratepage		= buffer_migrate_page,
1504 	.is_partially_uptodate  = block_is_partially_uptodate,
1505 	.error_remove_page	= generic_error_remove_page,
1506 };
1507