1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_trace.h"
17 #include "xfs_trans_priv.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_log.h"
20 #include "xfs_log_priv.h"
21 #include "xfs_error.h"
22
23 #include <linux/iversion.h>
24
25 struct kmem_cache *xfs_ili_cache; /* inode log item */
26
INODE_ITEM(struct xfs_log_item * lip)27 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
28 {
29 return container_of(lip, struct xfs_inode_log_item, ili_item);
30 }
31
32 /*
33 * The logged size of an inode fork is always the current size of the inode
34 * fork. This means that when an inode fork is relogged, the size of the logged
35 * region is determined by the current state, not the combination of the
36 * previously logged state + the current state. This is different relogging
37 * behaviour to most other log items which will retain the size of the
38 * previously logged changes when smaller regions are relogged.
39 *
40 * Hence operations that remove data from the inode fork (e.g. shortform
41 * dir/attr remove, extent form extent removal, etc), the size of the relogged
42 * inode gets -smaller- rather than stays the same size as the previously logged
43 * size and this can result in the committing transaction reducing the amount of
44 * space being consumed by the CIL.
45 */
46 STATIC void
xfs_inode_item_data_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)47 xfs_inode_item_data_fork_size(
48 struct xfs_inode_log_item *iip,
49 int *nvecs,
50 int *nbytes)
51 {
52 struct xfs_inode *ip = iip->ili_inode;
53
54 switch (ip->i_df.if_format) {
55 case XFS_DINODE_FMT_EXTENTS:
56 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
57 ip->i_df.if_nextents > 0 &&
58 ip->i_df.if_bytes > 0) {
59 /* worst case, doesn't subtract delalloc extents */
60 *nbytes += xfs_inode_data_fork_size(ip);
61 *nvecs += 1;
62 }
63 break;
64 case XFS_DINODE_FMT_BTREE:
65 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
66 ip->i_df.if_broot_bytes > 0) {
67 *nbytes += ip->i_df.if_broot_bytes;
68 *nvecs += 1;
69 }
70 break;
71 case XFS_DINODE_FMT_LOCAL:
72 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
73 ip->i_df.if_bytes > 0) {
74 *nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
75 *nvecs += 1;
76 }
77 break;
78
79 case XFS_DINODE_FMT_DEV:
80 break;
81 default:
82 ASSERT(0);
83 break;
84 }
85 }
86
87 STATIC void
xfs_inode_item_attr_fork_size(struct xfs_inode_log_item * iip,int * nvecs,int * nbytes)88 xfs_inode_item_attr_fork_size(
89 struct xfs_inode_log_item *iip,
90 int *nvecs,
91 int *nbytes)
92 {
93 struct xfs_inode *ip = iip->ili_inode;
94
95 switch (ip->i_af.if_format) {
96 case XFS_DINODE_FMT_EXTENTS:
97 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
98 ip->i_af.if_nextents > 0 &&
99 ip->i_af.if_bytes > 0) {
100 /* worst case, doesn't subtract unused space */
101 *nbytes += xfs_inode_attr_fork_size(ip);
102 *nvecs += 1;
103 }
104 break;
105 case XFS_DINODE_FMT_BTREE:
106 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
107 ip->i_af.if_broot_bytes > 0) {
108 *nbytes += ip->i_af.if_broot_bytes;
109 *nvecs += 1;
110 }
111 break;
112 case XFS_DINODE_FMT_LOCAL:
113 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
114 ip->i_af.if_bytes > 0) {
115 *nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
116 *nvecs += 1;
117 }
118 break;
119 default:
120 ASSERT(0);
121 break;
122 }
123 }
124
125 /*
126 * This returns the number of iovecs needed to log the given inode item.
127 *
128 * We need one iovec for the inode log format structure, one for the
129 * inode core, and possibly one for the inode data/extents/b-tree root
130 * and one for the inode attribute data/extents/b-tree root.
131 */
132 STATIC void
xfs_inode_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)133 xfs_inode_item_size(
134 struct xfs_log_item *lip,
135 int *nvecs,
136 int *nbytes)
137 {
138 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
139 struct xfs_inode *ip = iip->ili_inode;
140
141 *nvecs += 2;
142 *nbytes += sizeof(struct xfs_inode_log_format) +
143 xfs_log_dinode_size(ip->i_mount);
144
145 xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
146 if (xfs_inode_has_attr_fork(ip))
147 xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
148 }
149
150 STATIC void
xfs_inode_item_format_data_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)151 xfs_inode_item_format_data_fork(
152 struct xfs_inode_log_item *iip,
153 struct xfs_inode_log_format *ilf,
154 struct xfs_log_vec *lv,
155 struct xfs_log_iovec **vecp)
156 {
157 struct xfs_inode *ip = iip->ili_inode;
158 size_t data_bytes;
159
160 switch (ip->i_df.if_format) {
161 case XFS_DINODE_FMT_EXTENTS:
162 iip->ili_fields &=
163 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
164
165 if ((iip->ili_fields & XFS_ILOG_DEXT) &&
166 ip->i_df.if_nextents > 0 &&
167 ip->i_df.if_bytes > 0) {
168 struct xfs_bmbt_rec *p;
169
170 ASSERT(xfs_iext_count(&ip->i_df) > 0);
171
172 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
173 data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
174 xlog_finish_iovec(lv, *vecp, data_bytes);
175
176 ASSERT(data_bytes <= ip->i_df.if_bytes);
177
178 ilf->ilf_dsize = data_bytes;
179 ilf->ilf_size++;
180 } else {
181 iip->ili_fields &= ~XFS_ILOG_DEXT;
182 }
183 break;
184 case XFS_DINODE_FMT_BTREE:
185 iip->ili_fields &=
186 ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
187
188 if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
189 ip->i_df.if_broot_bytes > 0) {
190 ASSERT(ip->i_df.if_broot != NULL);
191 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
192 ip->i_df.if_broot,
193 ip->i_df.if_broot_bytes);
194 ilf->ilf_dsize = ip->i_df.if_broot_bytes;
195 ilf->ilf_size++;
196 } else {
197 ASSERT(!(iip->ili_fields &
198 XFS_ILOG_DBROOT));
199 iip->ili_fields &= ~XFS_ILOG_DBROOT;
200 }
201 break;
202 case XFS_DINODE_FMT_LOCAL:
203 iip->ili_fields &=
204 ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
205 if ((iip->ili_fields & XFS_ILOG_DDATA) &&
206 ip->i_df.if_bytes > 0) {
207 ASSERT(ip->i_df.if_u1.if_data != NULL);
208 ASSERT(ip->i_disk_size > 0);
209 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
210 ip->i_df.if_u1.if_data,
211 ip->i_df.if_bytes);
212 ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
213 ilf->ilf_size++;
214 } else {
215 iip->ili_fields &= ~XFS_ILOG_DDATA;
216 }
217 break;
218 case XFS_DINODE_FMT_DEV:
219 iip->ili_fields &=
220 ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
221 if (iip->ili_fields & XFS_ILOG_DEV)
222 ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
223 break;
224 default:
225 ASSERT(0);
226 break;
227 }
228 }
229
230 STATIC void
xfs_inode_item_format_attr_fork(struct xfs_inode_log_item * iip,struct xfs_inode_log_format * ilf,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)231 xfs_inode_item_format_attr_fork(
232 struct xfs_inode_log_item *iip,
233 struct xfs_inode_log_format *ilf,
234 struct xfs_log_vec *lv,
235 struct xfs_log_iovec **vecp)
236 {
237 struct xfs_inode *ip = iip->ili_inode;
238 size_t data_bytes;
239
240 switch (ip->i_af.if_format) {
241 case XFS_DINODE_FMT_EXTENTS:
242 iip->ili_fields &=
243 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
244
245 if ((iip->ili_fields & XFS_ILOG_AEXT) &&
246 ip->i_af.if_nextents > 0 &&
247 ip->i_af.if_bytes > 0) {
248 struct xfs_bmbt_rec *p;
249
250 ASSERT(xfs_iext_count(&ip->i_af) ==
251 ip->i_af.if_nextents);
252
253 p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
254 data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
255 xlog_finish_iovec(lv, *vecp, data_bytes);
256
257 ilf->ilf_asize = data_bytes;
258 ilf->ilf_size++;
259 } else {
260 iip->ili_fields &= ~XFS_ILOG_AEXT;
261 }
262 break;
263 case XFS_DINODE_FMT_BTREE:
264 iip->ili_fields &=
265 ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
266
267 if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
268 ip->i_af.if_broot_bytes > 0) {
269 ASSERT(ip->i_af.if_broot != NULL);
270
271 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
272 ip->i_af.if_broot,
273 ip->i_af.if_broot_bytes);
274 ilf->ilf_asize = ip->i_af.if_broot_bytes;
275 ilf->ilf_size++;
276 } else {
277 iip->ili_fields &= ~XFS_ILOG_ABROOT;
278 }
279 break;
280 case XFS_DINODE_FMT_LOCAL:
281 iip->ili_fields &=
282 ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
283
284 if ((iip->ili_fields & XFS_ILOG_ADATA) &&
285 ip->i_af.if_bytes > 0) {
286 ASSERT(ip->i_af.if_u1.if_data != NULL);
287 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
288 ip->i_af.if_u1.if_data,
289 ip->i_af.if_bytes);
290 ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
291 ilf->ilf_size++;
292 } else {
293 iip->ili_fields &= ~XFS_ILOG_ADATA;
294 }
295 break;
296 default:
297 ASSERT(0);
298 break;
299 }
300 }
301
302 /*
303 * Convert an incore timestamp to a log timestamp. Note that the log format
304 * specifies host endian format!
305 */
306 static inline xfs_log_timestamp_t
xfs_inode_to_log_dinode_ts(struct xfs_inode * ip,const struct timespec64 tv)307 xfs_inode_to_log_dinode_ts(
308 struct xfs_inode *ip,
309 const struct timespec64 tv)
310 {
311 struct xfs_log_legacy_timestamp *lits;
312 xfs_log_timestamp_t its;
313
314 if (xfs_inode_has_bigtime(ip))
315 return xfs_inode_encode_bigtime(tv);
316
317 lits = (struct xfs_log_legacy_timestamp *)&its;
318 lits->t_sec = tv.tv_sec;
319 lits->t_nsec = tv.tv_nsec;
320
321 return its;
322 }
323
324 /*
325 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
326 * but not in the in-memory one. But we are guaranteed to have an inode buffer
327 * in memory when logging an inode, so we can just copy it from the on-disk
328 * inode to the in-log inode here so that recovery of file system with these
329 * fields set to non-zero values doesn't lose them. For all other cases we zero
330 * the fields.
331 */
332 static void
xfs_copy_dm_fields_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to)333 xfs_copy_dm_fields_to_log_dinode(
334 struct xfs_inode *ip,
335 struct xfs_log_dinode *to)
336 {
337 struct xfs_dinode *dip;
338
339 dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
340 ip->i_imap.im_boffset);
341
342 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
343 to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
344 to->di_dmstate = be16_to_cpu(dip->di_dmstate);
345 } else {
346 to->di_dmevmask = 0;
347 to->di_dmstate = 0;
348 }
349 }
350
351 static inline void
xfs_inode_to_log_dinode_iext_counters(struct xfs_inode * ip,struct xfs_log_dinode * to)352 xfs_inode_to_log_dinode_iext_counters(
353 struct xfs_inode *ip,
354 struct xfs_log_dinode *to)
355 {
356 if (xfs_inode_has_large_extent_counts(ip)) {
357 to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
358 to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
359 to->di_nrext64_pad = 0;
360 } else {
361 to->di_nextents = xfs_ifork_nextents(&ip->i_df);
362 to->di_anextents = xfs_ifork_nextents(&ip->i_af);
363 }
364 }
365
366 static void
xfs_inode_to_log_dinode(struct xfs_inode * ip,struct xfs_log_dinode * to,xfs_lsn_t lsn)367 xfs_inode_to_log_dinode(
368 struct xfs_inode *ip,
369 struct xfs_log_dinode *to,
370 xfs_lsn_t lsn)
371 {
372 struct inode *inode = VFS_I(ip);
373
374 to->di_magic = XFS_DINODE_MAGIC;
375 to->di_format = xfs_ifork_format(&ip->i_df);
376 to->di_uid = i_uid_read(inode);
377 to->di_gid = i_gid_read(inode);
378 to->di_projid_lo = ip->i_projid & 0xffff;
379 to->di_projid_hi = ip->i_projid >> 16;
380
381 memset(to->di_pad3, 0, sizeof(to->di_pad3));
382 to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
383 to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
384 to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
385 to->di_nlink = inode->i_nlink;
386 to->di_gen = inode->i_generation;
387 to->di_mode = inode->i_mode;
388
389 to->di_size = ip->i_disk_size;
390 to->di_nblocks = ip->i_nblocks;
391 to->di_extsize = ip->i_extsize;
392 to->di_forkoff = ip->i_forkoff;
393 to->di_aformat = xfs_ifork_format(&ip->i_af);
394 to->di_flags = ip->i_diflags;
395
396 xfs_copy_dm_fields_to_log_dinode(ip, to);
397
398 /* log a dummy value to ensure log structure is fully initialised */
399 to->di_next_unlinked = NULLAGINO;
400
401 if (xfs_has_v3inodes(ip->i_mount)) {
402 to->di_version = 3;
403 to->di_changecount = inode_peek_iversion(inode);
404 to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
405 to->di_flags2 = ip->i_diflags2;
406 to->di_cowextsize = ip->i_cowextsize;
407 to->di_ino = ip->i_ino;
408 to->di_lsn = lsn;
409 memset(to->di_pad2, 0, sizeof(to->di_pad2));
410 uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
411 to->di_v3_pad = 0;
412 } else {
413 to->di_version = 2;
414 to->di_flushiter = ip->i_flushiter;
415 memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
416 }
417
418 xfs_inode_to_log_dinode_iext_counters(ip, to);
419 }
420
421 /*
422 * Format the inode core. Current timestamp data is only in the VFS inode
423 * fields, so we need to grab them from there. Hence rather than just copying
424 * the XFS inode core structure, format the fields directly into the iovec.
425 */
426 static void
xfs_inode_item_format_core(struct xfs_inode * ip,struct xfs_log_vec * lv,struct xfs_log_iovec ** vecp)427 xfs_inode_item_format_core(
428 struct xfs_inode *ip,
429 struct xfs_log_vec *lv,
430 struct xfs_log_iovec **vecp)
431 {
432 struct xfs_log_dinode *dic;
433
434 dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
435 xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
436 xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
437 }
438
439 /*
440 * This is called to fill in the vector of log iovecs for the given inode
441 * log item. It fills the first item with an inode log format structure,
442 * the second with the on-disk inode structure, and a possible third and/or
443 * fourth with the inode data/extents/b-tree root and inode attributes
444 * data/extents/b-tree root.
445 *
446 * Note: Always use the 64 bit inode log format structure so we don't
447 * leave an uninitialised hole in the format item on 64 bit systems. Log
448 * recovery on 32 bit systems handles this just fine, so there's no reason
449 * for not using an initialising the properly padded structure all the time.
450 */
451 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)452 xfs_inode_item_format(
453 struct xfs_log_item *lip,
454 struct xfs_log_vec *lv)
455 {
456 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
457 struct xfs_inode *ip = iip->ili_inode;
458 struct xfs_log_iovec *vecp = NULL;
459 struct xfs_inode_log_format *ilf;
460
461 ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
462 ilf->ilf_type = XFS_LI_INODE;
463 ilf->ilf_ino = ip->i_ino;
464 ilf->ilf_blkno = ip->i_imap.im_blkno;
465 ilf->ilf_len = ip->i_imap.im_len;
466 ilf->ilf_boffset = ip->i_imap.im_boffset;
467 ilf->ilf_fields = XFS_ILOG_CORE;
468 ilf->ilf_size = 2; /* format + core */
469
470 /*
471 * make sure we don't leak uninitialised data into the log in the case
472 * when we don't log every field in the inode.
473 */
474 ilf->ilf_dsize = 0;
475 ilf->ilf_asize = 0;
476 ilf->ilf_pad = 0;
477 memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
478
479 xlog_finish_iovec(lv, vecp, sizeof(*ilf));
480
481 xfs_inode_item_format_core(ip, lv, &vecp);
482 xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
483 if (xfs_inode_has_attr_fork(ip)) {
484 xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
485 } else {
486 iip->ili_fields &=
487 ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
488 }
489
490 /* update the format with the exact fields we actually logged */
491 ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
492 }
493
494 /*
495 * This is called to pin the inode associated with the inode log
496 * item in memory so it cannot be written out.
497 */
498 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)499 xfs_inode_item_pin(
500 struct xfs_log_item *lip)
501 {
502 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
503
504 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
505 ASSERT(lip->li_buf);
506
507 trace_xfs_inode_pin(ip, _RET_IP_);
508 atomic_inc(&ip->i_pincount);
509 }
510
511
512 /*
513 * This is called to unpin the inode associated with the inode log
514 * item which was previously pinned with a call to xfs_inode_item_pin().
515 *
516 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
517 *
518 * Note that unpin can race with inode cluster buffer freeing marking the buffer
519 * stale. In that case, flush completions are run from the buffer unpin call,
520 * which may happen before the inode is unpinned. If we lose the race, there
521 * will be no buffer attached to the log item, but the inode will be marked
522 * XFS_ISTALE.
523 */
524 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)525 xfs_inode_item_unpin(
526 struct xfs_log_item *lip,
527 int remove)
528 {
529 struct xfs_inode *ip = INODE_ITEM(lip)->ili_inode;
530
531 trace_xfs_inode_unpin(ip, _RET_IP_);
532 ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
533 ASSERT(atomic_read(&ip->i_pincount) > 0);
534 if (atomic_dec_and_test(&ip->i_pincount))
535 wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
536 }
537
538 STATIC uint
xfs_inode_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)539 xfs_inode_item_push(
540 struct xfs_log_item *lip,
541 struct list_head *buffer_list)
542 __releases(&lip->li_ailp->ail_lock)
543 __acquires(&lip->li_ailp->ail_lock)
544 {
545 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
546 struct xfs_inode *ip = iip->ili_inode;
547 struct xfs_buf *bp = lip->li_buf;
548 uint rval = XFS_ITEM_SUCCESS;
549 int error;
550
551 if (!bp || (ip->i_flags & XFS_ISTALE)) {
552 /*
553 * Inode item/buffer is being aborted due to cluster
554 * buffer deletion. Trigger a log force to have that operation
555 * completed and items removed from the AIL before the next push
556 * attempt.
557 */
558 return XFS_ITEM_PINNED;
559 }
560
561 if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
562 return XFS_ITEM_PINNED;
563
564 if (xfs_iflags_test(ip, XFS_IFLUSHING))
565 return XFS_ITEM_FLUSHING;
566
567 if (!xfs_buf_trylock(bp))
568 return XFS_ITEM_LOCKED;
569
570 spin_unlock(&lip->li_ailp->ail_lock);
571
572 /*
573 * We need to hold a reference for flushing the cluster buffer as it may
574 * fail the buffer without IO submission. In which case, we better get a
575 * reference for that completion because otherwise we don't get a
576 * reference for IO until we queue the buffer for delwri submission.
577 */
578 xfs_buf_hold(bp);
579 error = xfs_iflush_cluster(bp);
580 if (!error) {
581 if (!xfs_buf_delwri_queue(bp, buffer_list))
582 rval = XFS_ITEM_FLUSHING;
583 xfs_buf_relse(bp);
584 } else {
585 /*
586 * Release the buffer if we were unable to flush anything. On
587 * any other error, the buffer has already been released.
588 */
589 if (error == -EAGAIN)
590 xfs_buf_relse(bp);
591 rval = XFS_ITEM_LOCKED;
592 }
593
594 spin_lock(&lip->li_ailp->ail_lock);
595 return rval;
596 }
597
598 /*
599 * Unlock the inode associated with the inode log item.
600 */
601 STATIC void
xfs_inode_item_release(struct xfs_log_item * lip)602 xfs_inode_item_release(
603 struct xfs_log_item *lip)
604 {
605 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
606 struct xfs_inode *ip = iip->ili_inode;
607 unsigned short lock_flags;
608
609 ASSERT(ip->i_itemp != NULL);
610 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
611
612 lock_flags = iip->ili_lock_flags;
613 iip->ili_lock_flags = 0;
614 if (lock_flags)
615 xfs_iunlock(ip, lock_flags);
616 }
617
618 /*
619 * This is called to find out where the oldest active copy of the inode log
620 * item in the on disk log resides now that the last log write of it completed
621 * at the given lsn. Since we always re-log all dirty data in an inode, the
622 * latest copy in the on disk log is the only one that matters. Therefore,
623 * simply return the given lsn.
624 *
625 * If the inode has been marked stale because the cluster is being freed, we
626 * don't want to (re-)insert this inode into the AIL. There is a race condition
627 * where the cluster buffer may be unpinned before the inode is inserted into
628 * the AIL during transaction committed processing. If the buffer is unpinned
629 * before the inode item has been committed and inserted, then it is possible
630 * for the buffer to be written and IO completes before the inode is inserted
631 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
632 * AIL which will never get removed. It will, however, get reclaimed which
633 * triggers an assert in xfs_inode_free() complaining about freein an inode
634 * still in the AIL.
635 *
636 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
637 * transaction committed code knows that it does not need to do any further
638 * processing on the item.
639 */
640 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)641 xfs_inode_item_committed(
642 struct xfs_log_item *lip,
643 xfs_lsn_t lsn)
644 {
645 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
646 struct xfs_inode *ip = iip->ili_inode;
647
648 if (xfs_iflags_test(ip, XFS_ISTALE)) {
649 xfs_inode_item_unpin(lip, 0);
650 return -1;
651 }
652 return lsn;
653 }
654
655 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_csn_t seq)656 xfs_inode_item_committing(
657 struct xfs_log_item *lip,
658 xfs_csn_t seq)
659 {
660 INODE_ITEM(lip)->ili_commit_seq = seq;
661 return xfs_inode_item_release(lip);
662 }
663
664 static const struct xfs_item_ops xfs_inode_item_ops = {
665 .iop_size = xfs_inode_item_size,
666 .iop_format = xfs_inode_item_format,
667 .iop_pin = xfs_inode_item_pin,
668 .iop_unpin = xfs_inode_item_unpin,
669 .iop_release = xfs_inode_item_release,
670 .iop_committed = xfs_inode_item_committed,
671 .iop_push = xfs_inode_item_push,
672 .iop_committing = xfs_inode_item_committing,
673 };
674
675
676 /*
677 * Initialize the inode log item for a newly allocated (in-core) inode.
678 */
679 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)680 xfs_inode_item_init(
681 struct xfs_inode *ip,
682 struct xfs_mount *mp)
683 {
684 struct xfs_inode_log_item *iip;
685
686 ASSERT(ip->i_itemp == NULL);
687 iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
688 GFP_KERNEL | __GFP_NOFAIL);
689
690 iip->ili_inode = ip;
691 spin_lock_init(&iip->ili_lock);
692 xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
693 &xfs_inode_item_ops);
694 }
695
696 /*
697 * Free the inode log item and any memory hanging off of it.
698 */
699 void
xfs_inode_item_destroy(struct xfs_inode * ip)700 xfs_inode_item_destroy(
701 struct xfs_inode *ip)
702 {
703 struct xfs_inode_log_item *iip = ip->i_itemp;
704
705 ASSERT(iip->ili_item.li_buf == NULL);
706
707 ip->i_itemp = NULL;
708 kmem_free(iip->ili_item.li_lv_shadow);
709 kmem_cache_free(xfs_ili_cache, iip);
710 }
711
712
713 /*
714 * We only want to pull the item from the AIL if it is actually there
715 * and its location in the log has not changed since we started the
716 * flush. Thus, we only bother if the inode's lsn has not changed.
717 */
718 static void
xfs_iflush_ail_updates(struct xfs_ail * ailp,struct list_head * list)719 xfs_iflush_ail_updates(
720 struct xfs_ail *ailp,
721 struct list_head *list)
722 {
723 struct xfs_log_item *lip;
724 xfs_lsn_t tail_lsn = 0;
725
726 /* this is an opencoded batch version of xfs_trans_ail_delete */
727 spin_lock(&ailp->ail_lock);
728 list_for_each_entry(lip, list, li_bio_list) {
729 xfs_lsn_t lsn;
730
731 clear_bit(XFS_LI_FAILED, &lip->li_flags);
732 if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
733 continue;
734
735 /*
736 * dgc: Not sure how this happens, but it happens very
737 * occassionaly via generic/388. xfs_iflush_abort() also
738 * silently handles this same "under writeback but not in AIL at
739 * shutdown" condition via xfs_trans_ail_delete().
740 */
741 if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
742 ASSERT(xlog_is_shutdown(lip->li_log));
743 continue;
744 }
745
746 lsn = xfs_ail_delete_one(ailp, lip);
747 if (!tail_lsn && lsn)
748 tail_lsn = lsn;
749 }
750 xfs_ail_update_finish(ailp, tail_lsn);
751 }
752
753 /*
754 * Walk the list of inodes that have completed their IOs. If they are clean
755 * remove them from the list and dissociate them from the buffer. Buffers that
756 * are still dirty remain linked to the buffer and on the list. Caller must
757 * handle them appropriately.
758 */
759 static void
xfs_iflush_finish(struct xfs_buf * bp,struct list_head * list)760 xfs_iflush_finish(
761 struct xfs_buf *bp,
762 struct list_head *list)
763 {
764 struct xfs_log_item *lip, *n;
765
766 list_for_each_entry_safe(lip, n, list, li_bio_list) {
767 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
768 bool drop_buffer = false;
769
770 spin_lock(&iip->ili_lock);
771
772 /*
773 * Remove the reference to the cluster buffer if the inode is
774 * clean in memory and drop the buffer reference once we've
775 * dropped the locks we hold.
776 */
777 ASSERT(iip->ili_item.li_buf == bp);
778 if (!iip->ili_fields) {
779 iip->ili_item.li_buf = NULL;
780 list_del_init(&lip->li_bio_list);
781 drop_buffer = true;
782 }
783 iip->ili_last_fields = 0;
784 iip->ili_flush_lsn = 0;
785 spin_unlock(&iip->ili_lock);
786 xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
787 if (drop_buffer)
788 xfs_buf_rele(bp);
789 }
790 }
791
792 /*
793 * Inode buffer IO completion routine. It is responsible for removing inodes
794 * attached to the buffer from the AIL if they have not been re-logged and
795 * completing the inode flush.
796 */
797 void
xfs_buf_inode_iodone(struct xfs_buf * bp)798 xfs_buf_inode_iodone(
799 struct xfs_buf *bp)
800 {
801 struct xfs_log_item *lip, *n;
802 LIST_HEAD(flushed_inodes);
803 LIST_HEAD(ail_updates);
804
805 /*
806 * Pull the attached inodes from the buffer one at a time and take the
807 * appropriate action on them.
808 */
809 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
810 struct xfs_inode_log_item *iip = INODE_ITEM(lip);
811
812 if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
813 xfs_iflush_abort(iip->ili_inode);
814 continue;
815 }
816 if (!iip->ili_last_fields)
817 continue;
818
819 /* Do an unlocked check for needing the AIL lock. */
820 if (iip->ili_flush_lsn == lip->li_lsn ||
821 test_bit(XFS_LI_FAILED, &lip->li_flags))
822 list_move_tail(&lip->li_bio_list, &ail_updates);
823 else
824 list_move_tail(&lip->li_bio_list, &flushed_inodes);
825 }
826
827 if (!list_empty(&ail_updates)) {
828 xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
829 list_splice_tail(&ail_updates, &flushed_inodes);
830 }
831
832 xfs_iflush_finish(bp, &flushed_inodes);
833 if (!list_empty(&flushed_inodes))
834 list_splice_tail(&flushed_inodes, &bp->b_li_list);
835 }
836
837 void
xfs_buf_inode_io_fail(struct xfs_buf * bp)838 xfs_buf_inode_io_fail(
839 struct xfs_buf *bp)
840 {
841 struct xfs_log_item *lip;
842
843 list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
844 set_bit(XFS_LI_FAILED, &lip->li_flags);
845 }
846
847 /*
848 * Clear the inode logging fields so no more flushes are attempted. If we are
849 * on a buffer list, it is now safe to remove it because the buffer is
850 * guaranteed to be locked. The caller will drop the reference to the buffer
851 * the log item held.
852 */
853 static void
xfs_iflush_abort_clean(struct xfs_inode_log_item * iip)854 xfs_iflush_abort_clean(
855 struct xfs_inode_log_item *iip)
856 {
857 iip->ili_last_fields = 0;
858 iip->ili_fields = 0;
859 iip->ili_fsync_fields = 0;
860 iip->ili_flush_lsn = 0;
861 iip->ili_item.li_buf = NULL;
862 list_del_init(&iip->ili_item.li_bio_list);
863 }
864
865 /*
866 * Abort flushing the inode from a context holding the cluster buffer locked.
867 *
868 * This is the normal runtime method of aborting writeback of an inode that is
869 * attached to a cluster buffer. It occurs when the inode and the backing
870 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
871 * flushing or buffer IO completion encounters a log shutdown situation.
872 *
873 * If we need to abort inode writeback and we don't already hold the buffer
874 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
875 * necessary in a shutdown situation.
876 */
877 void
xfs_iflush_abort(struct xfs_inode * ip)878 xfs_iflush_abort(
879 struct xfs_inode *ip)
880 {
881 struct xfs_inode_log_item *iip = ip->i_itemp;
882 struct xfs_buf *bp;
883
884 if (!iip) {
885 /* clean inode, nothing to do */
886 xfs_iflags_clear(ip, XFS_IFLUSHING);
887 return;
888 }
889
890 /*
891 * Remove the inode item from the AIL before we clear its internal
892 * state. Whilst the inode is in the AIL, it should have a valid buffer
893 * pointer for push operations to access - it is only safe to remove the
894 * inode from the buffer once it has been removed from the AIL.
895 *
896 * We also clear the failed bit before removing the item from the AIL
897 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
898 * references the inode item owns and needs to hold until we've fully
899 * aborted the inode log item and detached it from the buffer.
900 */
901 clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
902 xfs_trans_ail_delete(&iip->ili_item, 0);
903
904 /*
905 * Grab the inode buffer so can we release the reference the inode log
906 * item holds on it.
907 */
908 spin_lock(&iip->ili_lock);
909 bp = iip->ili_item.li_buf;
910 xfs_iflush_abort_clean(iip);
911 spin_unlock(&iip->ili_lock);
912
913 xfs_iflags_clear(ip, XFS_IFLUSHING);
914 if (bp)
915 xfs_buf_rele(bp);
916 }
917
918 /*
919 * Abort an inode flush in the case of a shutdown filesystem. This can be called
920 * from anywhere with just an inode reference and does not require holding the
921 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
922 * it will grab and lock it safely, then abort the inode flush.
923 */
924 void
xfs_iflush_shutdown_abort(struct xfs_inode * ip)925 xfs_iflush_shutdown_abort(
926 struct xfs_inode *ip)
927 {
928 struct xfs_inode_log_item *iip = ip->i_itemp;
929 struct xfs_buf *bp;
930
931 if (!iip) {
932 /* clean inode, nothing to do */
933 xfs_iflags_clear(ip, XFS_IFLUSHING);
934 return;
935 }
936
937 spin_lock(&iip->ili_lock);
938 bp = iip->ili_item.li_buf;
939 if (!bp) {
940 spin_unlock(&iip->ili_lock);
941 xfs_iflush_abort(ip);
942 return;
943 }
944
945 /*
946 * We have to take a reference to the buffer so that it doesn't get
947 * freed when we drop the ili_lock and then wait to lock the buffer.
948 * We'll clean up the extra reference after we pick up the ili_lock
949 * again.
950 */
951 xfs_buf_hold(bp);
952 spin_unlock(&iip->ili_lock);
953 xfs_buf_lock(bp);
954
955 spin_lock(&iip->ili_lock);
956 if (!iip->ili_item.li_buf) {
957 /*
958 * Raced with another removal, hold the only reference
959 * to bp now. Inode should not be in the AIL now, so just clean
960 * up and return;
961 */
962 ASSERT(list_empty(&iip->ili_item.li_bio_list));
963 ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
964 xfs_iflush_abort_clean(iip);
965 spin_unlock(&iip->ili_lock);
966 xfs_iflags_clear(ip, XFS_IFLUSHING);
967 xfs_buf_relse(bp);
968 return;
969 }
970
971 /*
972 * Got two references to bp. The first will get dropped by
973 * xfs_iflush_abort() when the item is removed from the buffer list, but
974 * we can't drop our reference until _abort() returns because we have to
975 * unlock the buffer as well. Hence we abort and then unlock and release
976 * our reference to the buffer.
977 */
978 ASSERT(iip->ili_item.li_buf == bp);
979 spin_unlock(&iip->ili_lock);
980 xfs_iflush_abort(ip);
981 xfs_buf_relse(bp);
982 }
983
984
985 /*
986 * convert an xfs_inode_log_format struct from the old 32 bit version
987 * (which can have different field alignments) to the native 64 bit version
988 */
989 int
xfs_inode_item_format_convert(struct xfs_log_iovec * buf,struct xfs_inode_log_format * in_f)990 xfs_inode_item_format_convert(
991 struct xfs_log_iovec *buf,
992 struct xfs_inode_log_format *in_f)
993 {
994 struct xfs_inode_log_format_32 *in_f32 = buf->i_addr;
995
996 if (buf->i_len != sizeof(*in_f32)) {
997 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
998 return -EFSCORRUPTED;
999 }
1000
1001 in_f->ilf_type = in_f32->ilf_type;
1002 in_f->ilf_size = in_f32->ilf_size;
1003 in_f->ilf_fields = in_f32->ilf_fields;
1004 in_f->ilf_asize = in_f32->ilf_asize;
1005 in_f->ilf_dsize = in_f32->ilf_dsize;
1006 in_f->ilf_ino = in_f32->ilf_ino;
1007 memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1008 in_f->ilf_blkno = in_f32->ilf_blkno;
1009 in_f->ilf_len = in_f32->ilf_len;
1010 in_f->ilf_boffset = in_f32->ilf_boffset;
1011 return 0;
1012 }
1013