1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_btree.h"
15 #include "xfs_btree_staging.h"
16 #include "xfs_ialloc.h"
17 #include "xfs_ialloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_trans.h"
22 #include "xfs_rmap.h"
23 #include "xfs_ag.h"
24
25 static struct kmem_cache *xfs_inobt_cur_cache;
26
27 STATIC int
xfs_inobt_get_minrecs(struct xfs_btree_cur * cur,int level)28 xfs_inobt_get_minrecs(
29 struct xfs_btree_cur *cur,
30 int level)
31 {
32 return M_IGEO(cur->bc_mp)->inobt_mnr[level != 0];
33 }
34
35 STATIC struct xfs_btree_cur *
xfs_inobt_dup_cursor(struct xfs_btree_cur * cur)36 xfs_inobt_dup_cursor(
37 struct xfs_btree_cur *cur)
38 {
39 return xfs_inobt_init_cursor(cur->bc_ag.pag, cur->bc_tp,
40 cur->bc_ag.agbp, cur->bc_btnum);
41 }
42
43 STATIC void
xfs_inobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)44 xfs_inobt_set_root(
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *nptr,
47 int inc) /* level change */
48 {
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agi *agi = agbp->b_addr;
51
52 agi->agi_root = nptr->s;
53 be32_add_cpu(&agi->agi_level, inc);
54 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL);
55 }
56
57 STATIC void
xfs_finobt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * nptr,int inc)58 xfs_finobt_set_root(
59 struct xfs_btree_cur *cur,
60 const union xfs_btree_ptr *nptr,
61 int inc) /* level change */
62 {
63 struct xfs_buf *agbp = cur->bc_ag.agbp;
64 struct xfs_agi *agi = agbp->b_addr;
65
66 agi->agi_free_root = nptr->s;
67 be32_add_cpu(&agi->agi_free_level, inc);
68 xfs_ialloc_log_agi(cur->bc_tp, agbp,
69 XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
70 }
71
72 /* Update the inode btree block counter for this btree. */
73 static inline void
xfs_inobt_mod_blockcount(struct xfs_btree_cur * cur,int howmuch)74 xfs_inobt_mod_blockcount(
75 struct xfs_btree_cur *cur,
76 int howmuch)
77 {
78 struct xfs_buf *agbp = cur->bc_ag.agbp;
79 struct xfs_agi *agi = agbp->b_addr;
80
81 if (!xfs_has_inobtcounts(cur->bc_mp))
82 return;
83
84 if (cur->bc_btnum == XFS_BTNUM_FINO)
85 be32_add_cpu(&agi->agi_fblocks, howmuch);
86 else if (cur->bc_btnum == XFS_BTNUM_INO)
87 be32_add_cpu(&agi->agi_iblocks, howmuch);
88 xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
89 }
90
91 STATIC int
__xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat,enum xfs_ag_resv_type resv)92 __xfs_inobt_alloc_block(
93 struct xfs_btree_cur *cur,
94 const union xfs_btree_ptr *start,
95 union xfs_btree_ptr *new,
96 int *stat,
97 enum xfs_ag_resv_type resv)
98 {
99 xfs_alloc_arg_t args; /* block allocation args */
100 int error; /* error return value */
101 xfs_agblock_t sbno = be32_to_cpu(start->s);
102
103 memset(&args, 0, sizeof(args));
104 args.tp = cur->bc_tp;
105 args.mp = cur->bc_mp;
106 args.pag = cur->bc_ag.pag;
107 args.oinfo = XFS_RMAP_OINFO_INOBT;
108 args.minlen = 1;
109 args.maxlen = 1;
110 args.prod = 1;
111 args.resv = resv;
112
113 error = xfs_alloc_vextent_near_bno(&args,
114 XFS_AGB_TO_FSB(args.mp, args.pag->pag_agno, sbno));
115 if (error)
116 return error;
117
118 if (args.fsbno == NULLFSBLOCK) {
119 *stat = 0;
120 return 0;
121 }
122 ASSERT(args.len == 1);
123
124 new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
125 *stat = 1;
126 xfs_inobt_mod_blockcount(cur, 1);
127 return 0;
128 }
129
130 STATIC int
xfs_inobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)131 xfs_inobt_alloc_block(
132 struct xfs_btree_cur *cur,
133 const union xfs_btree_ptr *start,
134 union xfs_btree_ptr *new,
135 int *stat)
136 {
137 return __xfs_inobt_alloc_block(cur, start, new, stat, XFS_AG_RESV_NONE);
138 }
139
140 STATIC int
xfs_finobt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)141 xfs_finobt_alloc_block(
142 struct xfs_btree_cur *cur,
143 const union xfs_btree_ptr *start,
144 union xfs_btree_ptr *new,
145 int *stat)
146 {
147 if (cur->bc_mp->m_finobt_nores)
148 return xfs_inobt_alloc_block(cur, start, new, stat);
149 return __xfs_inobt_alloc_block(cur, start, new, stat,
150 XFS_AG_RESV_METADATA);
151 }
152
153 STATIC int
__xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,enum xfs_ag_resv_type resv)154 __xfs_inobt_free_block(
155 struct xfs_btree_cur *cur,
156 struct xfs_buf *bp,
157 enum xfs_ag_resv_type resv)
158 {
159 xfs_fsblock_t fsbno;
160
161 xfs_inobt_mod_blockcount(cur, -1);
162 fsbno = XFS_DADDR_TO_FSB(cur->bc_mp, xfs_buf_daddr(bp));
163 return xfs_free_extent_later(cur->bc_tp, fsbno, 1,
164 &XFS_RMAP_OINFO_INOBT, resv);
165 }
166
167 STATIC int
xfs_inobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)168 xfs_inobt_free_block(
169 struct xfs_btree_cur *cur,
170 struct xfs_buf *bp)
171 {
172 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_NONE);
173 }
174
175 STATIC int
xfs_finobt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)176 xfs_finobt_free_block(
177 struct xfs_btree_cur *cur,
178 struct xfs_buf *bp)
179 {
180 if (cur->bc_mp->m_finobt_nores)
181 return xfs_inobt_free_block(cur, bp);
182 return __xfs_inobt_free_block(cur, bp, XFS_AG_RESV_METADATA);
183 }
184
185 STATIC int
xfs_inobt_get_maxrecs(struct xfs_btree_cur * cur,int level)186 xfs_inobt_get_maxrecs(
187 struct xfs_btree_cur *cur,
188 int level)
189 {
190 return M_IGEO(cur->bc_mp)->inobt_mxr[level != 0];
191 }
192
193 STATIC void
xfs_inobt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)194 xfs_inobt_init_key_from_rec(
195 union xfs_btree_key *key,
196 const union xfs_btree_rec *rec)
197 {
198 key->inobt.ir_startino = rec->inobt.ir_startino;
199 }
200
201 STATIC void
xfs_inobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)202 xfs_inobt_init_high_key_from_rec(
203 union xfs_btree_key *key,
204 const union xfs_btree_rec *rec)
205 {
206 __u32 x;
207
208 x = be32_to_cpu(rec->inobt.ir_startino);
209 x += XFS_INODES_PER_CHUNK - 1;
210 key->inobt.ir_startino = cpu_to_be32(x);
211 }
212
213 STATIC void
xfs_inobt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)214 xfs_inobt_init_rec_from_cur(
215 struct xfs_btree_cur *cur,
216 union xfs_btree_rec *rec)
217 {
218 rec->inobt.ir_startino = cpu_to_be32(cur->bc_rec.i.ir_startino);
219 if (xfs_has_sparseinodes(cur->bc_mp)) {
220 rec->inobt.ir_u.sp.ir_holemask =
221 cpu_to_be16(cur->bc_rec.i.ir_holemask);
222 rec->inobt.ir_u.sp.ir_count = cur->bc_rec.i.ir_count;
223 rec->inobt.ir_u.sp.ir_freecount = cur->bc_rec.i.ir_freecount;
224 } else {
225 /* ir_holemask/ir_count not supported on-disk */
226 rec->inobt.ir_u.f.ir_freecount =
227 cpu_to_be32(cur->bc_rec.i.ir_freecount);
228 }
229 rec->inobt.ir_free = cpu_to_be64(cur->bc_rec.i.ir_free);
230 }
231
232 /*
233 * initial value of ptr for lookup
234 */
235 STATIC void
xfs_inobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)236 xfs_inobt_init_ptr_from_cur(
237 struct xfs_btree_cur *cur,
238 union xfs_btree_ptr *ptr)
239 {
240 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
241
242 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
243
244 ptr->s = agi->agi_root;
245 }
246
247 STATIC void
xfs_finobt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)248 xfs_finobt_init_ptr_from_cur(
249 struct xfs_btree_cur *cur,
250 union xfs_btree_ptr *ptr)
251 {
252 struct xfs_agi *agi = cur->bc_ag.agbp->b_addr;
253
254 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agi->agi_seqno));
255 ptr->s = agi->agi_free_root;
256 }
257
258 STATIC int64_t
xfs_inobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)259 xfs_inobt_key_diff(
260 struct xfs_btree_cur *cur,
261 const union xfs_btree_key *key)
262 {
263 return (int64_t)be32_to_cpu(key->inobt.ir_startino) -
264 cur->bc_rec.i.ir_startino;
265 }
266
267 STATIC int64_t
xfs_inobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)268 xfs_inobt_diff_two_keys(
269 struct xfs_btree_cur *cur,
270 const union xfs_btree_key *k1,
271 const union xfs_btree_key *k2,
272 const union xfs_btree_key *mask)
273 {
274 ASSERT(!mask || mask->inobt.ir_startino);
275
276 return (int64_t)be32_to_cpu(k1->inobt.ir_startino) -
277 be32_to_cpu(k2->inobt.ir_startino);
278 }
279
280 static xfs_failaddr_t
xfs_inobt_verify(struct xfs_buf * bp)281 xfs_inobt_verify(
282 struct xfs_buf *bp)
283 {
284 struct xfs_mount *mp = bp->b_mount;
285 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
286 xfs_failaddr_t fa;
287 unsigned int level;
288
289 if (!xfs_verify_magic(bp, block->bb_magic))
290 return __this_address;
291
292 /*
293 * During growfs operations, we can't verify the exact owner as the
294 * perag is not fully initialised and hence not attached to the buffer.
295 *
296 * Similarly, during log recovery we will have a perag structure
297 * attached, but the agi information will not yet have been initialised
298 * from the on disk AGI. We don't currently use any of this information,
299 * but beware of the landmine (i.e. need to check
300 * xfs_perag_initialised_agi(pag)) if we ever do.
301 */
302 if (xfs_has_crc(mp)) {
303 fa = xfs_btree_sblock_v5hdr_verify(bp);
304 if (fa)
305 return fa;
306 }
307
308 /* level verification */
309 level = be16_to_cpu(block->bb_level);
310 if (level >= M_IGEO(mp)->inobt_maxlevels)
311 return __this_address;
312
313 return xfs_btree_sblock_verify(bp,
314 M_IGEO(mp)->inobt_mxr[level != 0]);
315 }
316
317 static void
xfs_inobt_read_verify(struct xfs_buf * bp)318 xfs_inobt_read_verify(
319 struct xfs_buf *bp)
320 {
321 xfs_failaddr_t fa;
322
323 if (!xfs_btree_sblock_verify_crc(bp))
324 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
325 else {
326 fa = xfs_inobt_verify(bp);
327 if (fa)
328 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
329 }
330
331 if (bp->b_error)
332 trace_xfs_btree_corrupt(bp, _RET_IP_);
333 }
334
335 static void
xfs_inobt_write_verify(struct xfs_buf * bp)336 xfs_inobt_write_verify(
337 struct xfs_buf *bp)
338 {
339 xfs_failaddr_t fa;
340
341 fa = xfs_inobt_verify(bp);
342 if (fa) {
343 trace_xfs_btree_corrupt(bp, _RET_IP_);
344 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
345 return;
346 }
347 xfs_btree_sblock_calc_crc(bp);
348
349 }
350
351 const struct xfs_buf_ops xfs_inobt_buf_ops = {
352 .name = "xfs_inobt",
353 .magic = { cpu_to_be32(XFS_IBT_MAGIC), cpu_to_be32(XFS_IBT_CRC_MAGIC) },
354 .verify_read = xfs_inobt_read_verify,
355 .verify_write = xfs_inobt_write_verify,
356 .verify_struct = xfs_inobt_verify,
357 };
358
359 const struct xfs_buf_ops xfs_finobt_buf_ops = {
360 .name = "xfs_finobt",
361 .magic = { cpu_to_be32(XFS_FIBT_MAGIC),
362 cpu_to_be32(XFS_FIBT_CRC_MAGIC) },
363 .verify_read = xfs_inobt_read_verify,
364 .verify_write = xfs_inobt_write_verify,
365 .verify_struct = xfs_inobt_verify,
366 };
367
368 STATIC int
xfs_inobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)369 xfs_inobt_keys_inorder(
370 struct xfs_btree_cur *cur,
371 const union xfs_btree_key *k1,
372 const union xfs_btree_key *k2)
373 {
374 return be32_to_cpu(k1->inobt.ir_startino) <
375 be32_to_cpu(k2->inobt.ir_startino);
376 }
377
378 STATIC int
xfs_inobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)379 xfs_inobt_recs_inorder(
380 struct xfs_btree_cur *cur,
381 const union xfs_btree_rec *r1,
382 const union xfs_btree_rec *r2)
383 {
384 return be32_to_cpu(r1->inobt.ir_startino) + XFS_INODES_PER_CHUNK <=
385 be32_to_cpu(r2->inobt.ir_startino);
386 }
387
388 STATIC enum xbtree_key_contig
xfs_inobt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)389 xfs_inobt_keys_contiguous(
390 struct xfs_btree_cur *cur,
391 const union xfs_btree_key *key1,
392 const union xfs_btree_key *key2,
393 const union xfs_btree_key *mask)
394 {
395 ASSERT(!mask || mask->inobt.ir_startino);
396
397 return xbtree_key_contig(be32_to_cpu(key1->inobt.ir_startino),
398 be32_to_cpu(key2->inobt.ir_startino));
399 }
400
401 static const struct xfs_btree_ops xfs_inobt_ops = {
402 .rec_len = sizeof(xfs_inobt_rec_t),
403 .key_len = sizeof(xfs_inobt_key_t),
404
405 .dup_cursor = xfs_inobt_dup_cursor,
406 .set_root = xfs_inobt_set_root,
407 .alloc_block = xfs_inobt_alloc_block,
408 .free_block = xfs_inobt_free_block,
409 .get_minrecs = xfs_inobt_get_minrecs,
410 .get_maxrecs = xfs_inobt_get_maxrecs,
411 .init_key_from_rec = xfs_inobt_init_key_from_rec,
412 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
413 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
414 .init_ptr_from_cur = xfs_inobt_init_ptr_from_cur,
415 .key_diff = xfs_inobt_key_diff,
416 .buf_ops = &xfs_inobt_buf_ops,
417 .diff_two_keys = xfs_inobt_diff_two_keys,
418 .keys_inorder = xfs_inobt_keys_inorder,
419 .recs_inorder = xfs_inobt_recs_inorder,
420 .keys_contiguous = xfs_inobt_keys_contiguous,
421 };
422
423 static const struct xfs_btree_ops xfs_finobt_ops = {
424 .rec_len = sizeof(xfs_inobt_rec_t),
425 .key_len = sizeof(xfs_inobt_key_t),
426
427 .dup_cursor = xfs_inobt_dup_cursor,
428 .set_root = xfs_finobt_set_root,
429 .alloc_block = xfs_finobt_alloc_block,
430 .free_block = xfs_finobt_free_block,
431 .get_minrecs = xfs_inobt_get_minrecs,
432 .get_maxrecs = xfs_inobt_get_maxrecs,
433 .init_key_from_rec = xfs_inobt_init_key_from_rec,
434 .init_high_key_from_rec = xfs_inobt_init_high_key_from_rec,
435 .init_rec_from_cur = xfs_inobt_init_rec_from_cur,
436 .init_ptr_from_cur = xfs_finobt_init_ptr_from_cur,
437 .key_diff = xfs_inobt_key_diff,
438 .buf_ops = &xfs_finobt_buf_ops,
439 .diff_two_keys = xfs_inobt_diff_two_keys,
440 .keys_inorder = xfs_inobt_keys_inorder,
441 .recs_inorder = xfs_inobt_recs_inorder,
442 .keys_contiguous = xfs_inobt_keys_contiguous,
443 };
444
445 /*
446 * Initialize a new inode btree cursor.
447 */
448 static struct xfs_btree_cur *
xfs_inobt_init_common(struct xfs_perag * pag,struct xfs_trans * tp,xfs_btnum_t btnum)449 xfs_inobt_init_common(
450 struct xfs_perag *pag,
451 struct xfs_trans *tp, /* transaction pointer */
452 xfs_btnum_t btnum) /* ialloc or free ino btree */
453 {
454 struct xfs_mount *mp = pag->pag_mount;
455 struct xfs_btree_cur *cur;
456
457 cur = xfs_btree_alloc_cursor(mp, tp, btnum,
458 M_IGEO(mp)->inobt_maxlevels, xfs_inobt_cur_cache);
459 if (btnum == XFS_BTNUM_INO) {
460 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_ibt_2);
461 cur->bc_ops = &xfs_inobt_ops;
462 } else {
463 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_fibt_2);
464 cur->bc_ops = &xfs_finobt_ops;
465 }
466
467 if (xfs_has_crc(mp))
468 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
469
470 cur->bc_ag.pag = xfs_perag_hold(pag);
471 return cur;
472 }
473
474 /* Create an inode btree cursor. */
475 struct xfs_btree_cur *
xfs_inobt_init_cursor(struct xfs_perag * pag,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_btnum_t btnum)476 xfs_inobt_init_cursor(
477 struct xfs_perag *pag,
478 struct xfs_trans *tp,
479 struct xfs_buf *agbp,
480 xfs_btnum_t btnum)
481 {
482 struct xfs_btree_cur *cur;
483 struct xfs_agi *agi = agbp->b_addr;
484
485 cur = xfs_inobt_init_common(pag, tp, btnum);
486 if (btnum == XFS_BTNUM_INO)
487 cur->bc_nlevels = be32_to_cpu(agi->agi_level);
488 else
489 cur->bc_nlevels = be32_to_cpu(agi->agi_free_level);
490 cur->bc_ag.agbp = agbp;
491 return cur;
492 }
493
494 /* Create an inode btree cursor with a fake root for staging. */
495 struct xfs_btree_cur *
xfs_inobt_stage_cursor(struct xfs_perag * pag,struct xbtree_afakeroot * afake,xfs_btnum_t btnum)496 xfs_inobt_stage_cursor(
497 struct xfs_perag *pag,
498 struct xbtree_afakeroot *afake,
499 xfs_btnum_t btnum)
500 {
501 struct xfs_btree_cur *cur;
502
503 cur = xfs_inobt_init_common(pag, NULL, btnum);
504 xfs_btree_stage_afakeroot(cur, afake);
505 return cur;
506 }
507
508 /*
509 * Install a new inobt btree root. Caller is responsible for invalidating
510 * and freeing the old btree blocks.
511 */
512 void
xfs_inobt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)513 xfs_inobt_commit_staged_btree(
514 struct xfs_btree_cur *cur,
515 struct xfs_trans *tp,
516 struct xfs_buf *agbp)
517 {
518 struct xfs_agi *agi = agbp->b_addr;
519 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
520 int fields;
521
522 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
523
524 if (cur->bc_btnum == XFS_BTNUM_INO) {
525 fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
526 agi->agi_root = cpu_to_be32(afake->af_root);
527 agi->agi_level = cpu_to_be32(afake->af_levels);
528 if (xfs_has_inobtcounts(cur->bc_mp)) {
529 agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
530 fields |= XFS_AGI_IBLOCKS;
531 }
532 xfs_ialloc_log_agi(tp, agbp, fields);
533 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
534 } else {
535 fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
536 agi->agi_free_root = cpu_to_be32(afake->af_root);
537 agi->agi_free_level = cpu_to_be32(afake->af_levels);
538 if (xfs_has_inobtcounts(cur->bc_mp)) {
539 agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
540 fields |= XFS_AGI_IBLOCKS;
541 }
542 xfs_ialloc_log_agi(tp, agbp, fields);
543 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
544 }
545 }
546
547 /* Calculate number of records in an inode btree block. */
548 static inline unsigned int
xfs_inobt_block_maxrecs(unsigned int blocklen,bool leaf)549 xfs_inobt_block_maxrecs(
550 unsigned int blocklen,
551 bool leaf)
552 {
553 if (leaf)
554 return blocklen / sizeof(xfs_inobt_rec_t);
555 return blocklen / (sizeof(xfs_inobt_key_t) + sizeof(xfs_inobt_ptr_t));
556 }
557
558 /*
559 * Calculate number of records in an inobt btree block.
560 */
561 int
xfs_inobt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)562 xfs_inobt_maxrecs(
563 struct xfs_mount *mp,
564 int blocklen,
565 int leaf)
566 {
567 blocklen -= XFS_INOBT_BLOCK_LEN(mp);
568 return xfs_inobt_block_maxrecs(blocklen, leaf);
569 }
570
571 /*
572 * Maximum number of inode btree records per AG. Pretend that we can fill an
573 * entire AG completely full of inodes except for the AG headers.
574 */
575 #define XFS_MAX_INODE_RECORDS \
576 ((XFS_MAX_AG_BYTES - (4 * BBSIZE)) / XFS_DINODE_MIN_SIZE) / \
577 XFS_INODES_PER_CHUNK
578
579 /* Compute the max possible height for the inode btree. */
580 static inline unsigned int
xfs_inobt_maxlevels_ondisk(void)581 xfs_inobt_maxlevels_ondisk(void)
582 {
583 unsigned int minrecs[2];
584 unsigned int blocklen;
585
586 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
587 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
588
589 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
590 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
591
592 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
593 }
594
595 /* Compute the max possible height for the free inode btree. */
596 static inline unsigned int
xfs_finobt_maxlevels_ondisk(void)597 xfs_finobt_maxlevels_ondisk(void)
598 {
599 unsigned int minrecs[2];
600 unsigned int blocklen;
601
602 blocklen = XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN;
603
604 minrecs[0] = xfs_inobt_block_maxrecs(blocklen, true) / 2;
605 minrecs[1] = xfs_inobt_block_maxrecs(blocklen, false) / 2;
606
607 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_INODE_RECORDS);
608 }
609
610 /* Compute the max possible height for either inode btree. */
611 unsigned int
xfs_iallocbt_maxlevels_ondisk(void)612 xfs_iallocbt_maxlevels_ondisk(void)
613 {
614 return max(xfs_inobt_maxlevels_ondisk(),
615 xfs_finobt_maxlevels_ondisk());
616 }
617
618 /*
619 * Convert the inode record holemask to an inode allocation bitmap. The inode
620 * allocation bitmap is inode granularity and specifies whether an inode is
621 * physically allocated on disk (not whether the inode is considered allocated
622 * or free by the fs).
623 *
624 * A bit value of 1 means the inode is allocated, a value of 0 means it is free.
625 */
626 uint64_t
xfs_inobt_irec_to_allocmask(const struct xfs_inobt_rec_incore * rec)627 xfs_inobt_irec_to_allocmask(
628 const struct xfs_inobt_rec_incore *rec)
629 {
630 uint64_t bitmap = 0;
631 uint64_t inodespbit;
632 int nextbit;
633 uint allocbitmap;
634
635 /*
636 * The holemask has 16-bits for a 64 inode record. Therefore each
637 * holemask bit represents multiple inodes. Create a mask of bits to set
638 * in the allocmask for each holemask bit.
639 */
640 inodespbit = (1 << XFS_INODES_PER_HOLEMASK_BIT) - 1;
641
642 /*
643 * Allocated inodes are represented by 0 bits in holemask. Invert the 0
644 * bits to 1 and convert to a uint so we can use xfs_next_bit(). Mask
645 * anything beyond the 16 holemask bits since this casts to a larger
646 * type.
647 */
648 allocbitmap = ~rec->ir_holemask & ((1 << XFS_INOBT_HOLEMASK_BITS) - 1);
649
650 /*
651 * allocbitmap is the inverted holemask so every set bit represents
652 * allocated inodes. To expand from 16-bit holemask granularity to
653 * 64-bit (e.g., bit-per-inode), set inodespbit bits in the target
654 * bitmap for every holemask bit.
655 */
656 nextbit = xfs_next_bit(&allocbitmap, 1, 0);
657 while (nextbit != -1) {
658 ASSERT(nextbit < (sizeof(rec->ir_holemask) * NBBY));
659
660 bitmap |= (inodespbit <<
661 (nextbit * XFS_INODES_PER_HOLEMASK_BIT));
662
663 nextbit = xfs_next_bit(&allocbitmap, 1, nextbit + 1);
664 }
665
666 return bitmap;
667 }
668
669 #if defined(DEBUG) || defined(XFS_WARN)
670 /*
671 * Verify that an in-core inode record has a valid inode count.
672 */
673 int
xfs_inobt_rec_check_count(struct xfs_mount * mp,struct xfs_inobt_rec_incore * rec)674 xfs_inobt_rec_check_count(
675 struct xfs_mount *mp,
676 struct xfs_inobt_rec_incore *rec)
677 {
678 int inocount = 0;
679 int nextbit = 0;
680 uint64_t allocbmap;
681 int wordsz;
682
683 wordsz = sizeof(allocbmap) / sizeof(unsigned int);
684 allocbmap = xfs_inobt_irec_to_allocmask(rec);
685
686 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz, nextbit);
687 while (nextbit != -1) {
688 inocount++;
689 nextbit = xfs_next_bit((uint *) &allocbmap, wordsz,
690 nextbit + 1);
691 }
692
693 if (inocount != rec->ir_count)
694 return -EFSCORRUPTED;
695
696 return 0;
697 }
698 #endif /* DEBUG */
699
700 static xfs_extlen_t
xfs_inobt_max_size(struct xfs_perag * pag)701 xfs_inobt_max_size(
702 struct xfs_perag *pag)
703 {
704 struct xfs_mount *mp = pag->pag_mount;
705 xfs_agblock_t agblocks = pag->block_count;
706
707 /* Bail out if we're uninitialized, which can happen in mkfs. */
708 if (M_IGEO(mp)->inobt_mxr[0] == 0)
709 return 0;
710
711 /*
712 * The log is permanently allocated, so the space it occupies will
713 * never be available for the kinds of things that would require btree
714 * expansion. We therefore can pretend the space isn't there.
715 */
716 if (xfs_ag_contains_log(mp, pag->pag_agno))
717 agblocks -= mp->m_sb.sb_logblocks;
718
719 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr,
720 (uint64_t)agblocks * mp->m_sb.sb_inopblock /
721 XFS_INODES_PER_CHUNK);
722 }
723
724 /* Read AGI and create inobt cursor. */
725 int
xfs_inobt_cur(struct xfs_perag * pag,struct xfs_trans * tp,xfs_btnum_t which,struct xfs_btree_cur ** curpp,struct xfs_buf ** agi_bpp)726 xfs_inobt_cur(
727 struct xfs_perag *pag,
728 struct xfs_trans *tp,
729 xfs_btnum_t which,
730 struct xfs_btree_cur **curpp,
731 struct xfs_buf **agi_bpp)
732 {
733 struct xfs_btree_cur *cur;
734 int error;
735
736 ASSERT(*agi_bpp == NULL);
737 ASSERT(*curpp == NULL);
738
739 error = xfs_ialloc_read_agi(pag, tp, agi_bpp);
740 if (error)
741 return error;
742
743 cur = xfs_inobt_init_cursor(pag, tp, *agi_bpp, which);
744 *curpp = cur;
745 return 0;
746 }
747
748 static int
xfs_inobt_count_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_btnum_t btnum,xfs_extlen_t * tree_blocks)749 xfs_inobt_count_blocks(
750 struct xfs_perag *pag,
751 struct xfs_trans *tp,
752 xfs_btnum_t btnum,
753 xfs_extlen_t *tree_blocks)
754 {
755 struct xfs_buf *agbp = NULL;
756 struct xfs_btree_cur *cur = NULL;
757 int error;
758
759 error = xfs_inobt_cur(pag, tp, btnum, &cur, &agbp);
760 if (error)
761 return error;
762
763 error = xfs_btree_count_blocks(cur, tree_blocks);
764 xfs_btree_del_cursor(cur, error);
765 xfs_trans_brelse(tp, agbp);
766
767 return error;
768 }
769
770 /* Read finobt block count from AGI header. */
771 static int
xfs_finobt_read_blocks(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * tree_blocks)772 xfs_finobt_read_blocks(
773 struct xfs_perag *pag,
774 struct xfs_trans *tp,
775 xfs_extlen_t *tree_blocks)
776 {
777 struct xfs_buf *agbp;
778 struct xfs_agi *agi;
779 int error;
780
781 error = xfs_ialloc_read_agi(pag, tp, &agbp);
782 if (error)
783 return error;
784
785 agi = agbp->b_addr;
786 *tree_blocks = be32_to_cpu(agi->agi_fblocks);
787 xfs_trans_brelse(tp, agbp);
788 return 0;
789 }
790
791 /*
792 * Figure out how many blocks to reserve and how many are used by this btree.
793 */
794 int
xfs_finobt_calc_reserves(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t * ask,xfs_extlen_t * used)795 xfs_finobt_calc_reserves(
796 struct xfs_perag *pag,
797 struct xfs_trans *tp,
798 xfs_extlen_t *ask,
799 xfs_extlen_t *used)
800 {
801 xfs_extlen_t tree_len = 0;
802 int error;
803
804 if (!xfs_has_finobt(pag->pag_mount))
805 return 0;
806
807 if (xfs_has_inobtcounts(pag->pag_mount))
808 error = xfs_finobt_read_blocks(pag, tp, &tree_len);
809 else
810 error = xfs_inobt_count_blocks(pag, tp, XFS_BTNUM_FINO,
811 &tree_len);
812 if (error)
813 return error;
814
815 *ask += xfs_inobt_max_size(pag);
816 *used += tree_len;
817 return 0;
818 }
819
820 /* Calculate the inobt btree size for some records. */
821 xfs_extlen_t
xfs_iallocbt_calc_size(struct xfs_mount * mp,unsigned long long len)822 xfs_iallocbt_calc_size(
823 struct xfs_mount *mp,
824 unsigned long long len)
825 {
826 return xfs_btree_calc_size(M_IGEO(mp)->inobt_mnr, len);
827 }
828
829 int __init
xfs_inobt_init_cur_cache(void)830 xfs_inobt_init_cur_cache(void)
831 {
832 xfs_inobt_cur_cache = kmem_cache_create("xfs_inobt_cur",
833 xfs_btree_cur_sizeof(xfs_inobt_maxlevels_ondisk()),
834 0, 0, NULL);
835
836 if (!xfs_inobt_cur_cache)
837 return -ENOMEM;
838 return 0;
839 }
840
841 void
xfs_inobt_destroy_cur_cache(void)842 xfs_inobt_destroy_cur_cache(void)
843 {
844 kmem_cache_destroy(xfs_inobt_cur_cache);
845 xfs_inobt_cur_cache = NULL;
846 }
847