1 /*
2 * XFS filesystem operations.
3 *
4 * Copyright (c) 2000-2004 Silicon Graphics, Inc. All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
13 *
14 * Further, this software is distributed without any warranty that it is
15 * free of the rightful claim of any third person regarding infringement
16 * or the like. Any license provided herein, whether implied or
17 * otherwise, applies only to this software file. Patent licenses, if
18 * any, provided herein do not apply to combinations of this program with
19 * other software, or any other product whatsoever.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write the Free Software Foundation, Inc., 59
23 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
24 *
25 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
26 * Mountain View, CA 94043, or:
27 *
28 * http://www.sgi.com
29 *
30 * For further information regarding this notice, see:
31 *
32 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
33 */
34
35 #include "xfs.h"
36 #include "xfs_macros.h"
37 #include "xfs_types.h"
38 #include "xfs_inum.h"
39 #include "xfs_log.h"
40 #include "xfs_trans.h"
41 #include "xfs_sb.h"
42 #include "xfs_dir.h"
43 #include "xfs_dir2.h"
44 #include "xfs_dmapi.h"
45 #include "xfs_mount.h"
46 #include "xfs_bmap_btree.h"
47 #include "xfs_ialloc_btree.h"
48 #include "xfs_alloc_btree.h"
49 #include "xfs_btree.h"
50 #include "xfs_alloc.h"
51 #include "xfs_ialloc.h"
52 #include "xfs_attr_sf.h"
53 #include "xfs_dir_sf.h"
54 #include "xfs_dir2_sf.h"
55 #include "xfs_dinode.h"
56 #include "xfs_inode_item.h"
57 #include "xfs_inode.h"
58 #include "xfs_ag.h"
59 #include "xfs_error.h"
60 #include "xfs_bmap.h"
61 #include "xfs_da_btree.h"
62 #include "xfs_rw.h"
63 #include "xfs_refcache.h"
64 #include "xfs_buf_item.h"
65 #include "xfs_extfree_item.h"
66 #include "xfs_quota.h"
67 #include "xfs_dir2_trace.h"
68 #include "xfs_acl.h"
69 #include "xfs_attr.h"
70 #include "xfs_clnt.h"
71 #include "xfs_log_priv.h"
72
73 STATIC int xfs_sync(bhv_desc_t *, int, cred_t *);
74
75 int
xfs_init(void)76 xfs_init(void)
77 {
78 extern kmem_zone_t *xfs_bmap_free_item_zone;
79 extern kmem_zone_t *xfs_btree_cur_zone;
80 extern kmem_zone_t *xfs_trans_zone;
81 extern kmem_zone_t *xfs_buf_item_zone;
82 extern kmem_zone_t *xfs_dabuf_zone;
83 #ifdef XFS_DABUF_DEBUG
84 extern lock_t xfs_dabuf_global_lock;
85 spinlock_init(&xfs_dabuf_global_lock, "xfsda");
86 #endif
87
88 /*
89 * Initialize all of the zone allocators we use.
90 */
91 xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t),
92 "xfs_bmap_free_item");
93 xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
94 "xfs_btree_cur");
95 xfs_inode_zone = kmem_zone_init(sizeof(xfs_inode_t), "xfs_inode");
96 xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
97 xfs_da_state_zone =
98 kmem_zone_init(sizeof(xfs_da_state_t), "xfs_da_state");
99 xfs_dabuf_zone = kmem_zone_init(sizeof(xfs_dabuf_t), "xfs_dabuf");
100
101 /*
102 * The size of the zone allocated buf log item is the maximum
103 * size possible under XFS. This wastes a little bit of memory,
104 * but it is much faster.
105 */
106 xfs_buf_item_zone =
107 kmem_zone_init((sizeof(xfs_buf_log_item_t) +
108 (((XFS_MAX_BLOCKSIZE / XFS_BLI_CHUNK) /
109 NBWORD) * sizeof(int))),
110 "xfs_buf_item");
111 xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
112 ((XFS_EFD_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))),
113 "xfs_efd_item");
114 xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
115 ((XFS_EFI_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))),
116 "xfs_efi_item");
117 xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
118 xfs_ili_zone = kmem_zone_init(sizeof(xfs_inode_log_item_t), "xfs_ili");
119 xfs_chashlist_zone = kmem_zone_init(sizeof(xfs_chashlist_t),
120 "xfs_chashlist");
121 xfs_acl_zone_init(xfs_acl_zone, "xfs_acl");
122
123 /*
124 * Allocate global trace buffers.
125 */
126 #ifdef XFS_ALLOC_TRACE
127 xfs_alloc_trace_buf = ktrace_alloc(XFS_ALLOC_TRACE_SIZE, KM_SLEEP);
128 #endif
129 #ifdef XFS_BMAP_TRACE
130 xfs_bmap_trace_buf = ktrace_alloc(XFS_BMAP_TRACE_SIZE, KM_SLEEP);
131 #endif
132 #ifdef XFS_BMBT_TRACE
133 xfs_bmbt_trace_buf = ktrace_alloc(XFS_BMBT_TRACE_SIZE, KM_SLEEP);
134 #endif
135 #ifdef XFS_DIR_TRACE
136 xfs_dir_trace_buf = ktrace_alloc(XFS_DIR_TRACE_SIZE, KM_SLEEP);
137 #endif
138 #ifdef XFS_ATTR_TRACE
139 xfs_attr_trace_buf = ktrace_alloc(XFS_ATTR_TRACE_SIZE, KM_SLEEP);
140 #endif
141 #ifdef XFS_DIR2_TRACE
142 xfs_dir2_trace_buf = ktrace_alloc(XFS_DIR2_GTRACE_SIZE, KM_SLEEP);
143 #endif
144
145 xfs_dir_startup();
146
147 #if (defined(DEBUG) || defined(INDUCE_IO_ERROR))
148 xfs_error_test_init();
149 #endif /* DEBUG || INDUCE_IO_ERROR */
150
151 xfs_init_procfs();
152 xfs_sysctl_register();
153 return 0;
154 }
155
156 void
xfs_cleanup(void)157 xfs_cleanup(void)
158 {
159 extern kmem_zone_t *xfs_bmap_free_item_zone;
160 extern kmem_zone_t *xfs_btree_cur_zone;
161 extern kmem_zone_t *xfs_inode_zone;
162 extern kmem_zone_t *xfs_trans_zone;
163 extern kmem_zone_t *xfs_da_state_zone;
164 extern kmem_zone_t *xfs_dabuf_zone;
165 extern kmem_zone_t *xfs_efd_zone;
166 extern kmem_zone_t *xfs_efi_zone;
167 extern kmem_zone_t *xfs_buf_item_zone;
168 extern kmem_zone_t *xfs_chashlist_zone;
169
170 xfs_cleanup_procfs();
171 xfs_sysctl_unregister();
172 xfs_refcache_destroy();
173 xfs_acl_zone_destroy(xfs_acl_zone);
174
175 #ifdef XFS_DIR2_TRACE
176 ktrace_free(xfs_dir2_trace_buf);
177 #endif
178 #ifdef XFS_ATTR_TRACE
179 ktrace_free(xfs_attr_trace_buf);
180 #endif
181 #ifdef XFS_DIR_TRACE
182 ktrace_free(xfs_dir_trace_buf);
183 #endif
184 #ifdef XFS_BMBT_TRACE
185 ktrace_free(xfs_bmbt_trace_buf);
186 #endif
187 #ifdef XFS_BMAP_TRACE
188 ktrace_free(xfs_bmap_trace_buf);
189 #endif
190 #ifdef XFS_ALLOC_TRACE
191 ktrace_free(xfs_alloc_trace_buf);
192 #endif
193
194 kmem_cache_destroy(xfs_bmap_free_item_zone);
195 kmem_cache_destroy(xfs_btree_cur_zone);
196 kmem_cache_destroy(xfs_inode_zone);
197 kmem_cache_destroy(xfs_trans_zone);
198 kmem_cache_destroy(xfs_da_state_zone);
199 kmem_cache_destroy(xfs_dabuf_zone);
200 kmem_cache_destroy(xfs_buf_item_zone);
201 kmem_cache_destroy(xfs_efd_zone);
202 kmem_cache_destroy(xfs_efi_zone);
203 kmem_cache_destroy(xfs_ifork_zone);
204 kmem_cache_destroy(xfs_ili_zone);
205 kmem_cache_destroy(xfs_chashlist_zone);
206 }
207
208 /*
209 * xfs_start_flags
210 *
211 * This function fills in xfs_mount_t fields based on mount args.
212 * Note: the superblock has _not_ yet been read in.
213 */
214 STATIC int
xfs_start_flags(struct vfs * vfs,struct xfs_mount_args * ap,struct xfs_mount * mp)215 xfs_start_flags(
216 struct vfs *vfs,
217 struct xfs_mount_args *ap,
218 struct xfs_mount *mp)
219 {
220 /* Values are in BBs */
221 if ((ap->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
222 /*
223 * At this point the superblock has not been read
224 * in, therefore we do not know the block size.
225 * Before the mount call ends we will convert
226 * these to FSBs.
227 */
228 mp->m_dalign = ap->sunit;
229 mp->m_swidth = ap->swidth;
230 }
231
232 if (ap->logbufs != -1 &&
233 #if defined(DEBUG) || defined(XLOG_NOLOG)
234 ap->logbufs != 0 &&
235 #endif
236 (ap->logbufs < XLOG_MIN_ICLOGS ||
237 ap->logbufs > XLOG_MAX_ICLOGS)) {
238 cmn_err(CE_WARN,
239 "XFS: invalid logbufs value: %d [not %d-%d]",
240 ap->logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
241 return XFS_ERROR(EINVAL);
242 }
243 mp->m_logbufs = ap->logbufs;
244 if (ap->logbufsize != -1 &&
245 ap->logbufsize != 16 * 1024 &&
246 ap->logbufsize != 32 * 1024 &&
247 ap->logbufsize != 64 * 1024 &&
248 ap->logbufsize != 128 * 1024 &&
249 ap->logbufsize != 256 * 1024) {
250 cmn_err(CE_WARN,
251 "XFS: invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
252 ap->logbufsize);
253 return XFS_ERROR(EINVAL);
254 }
255 mp->m_logbsize = ap->logbufsize;
256 mp->m_fsname_len = strlen(ap->fsname) + 1;
257 mp->m_fsname = kmem_alloc(mp->m_fsname_len, KM_SLEEP);
258 strcpy(mp->m_fsname, ap->fsname);
259
260 /*
261 * Pull in the 'wsync' and 'ino64' mount options before we do the real
262 * work of mounting and recovery. The arg pointer will
263 * be NULL when we are being called from the root mount code.
264 */
265 if (ap->flags & XFSMNT_WSYNC)
266 mp->m_flags |= XFS_MOUNT_WSYNC;
267 #if XFS_BIG_INUMS
268 if (ap->flags & XFSMNT_INO64) {
269 mp->m_flags |= XFS_MOUNT_INO64;
270 mp->m_inoadd = XFS_INO64_OFFSET;
271 }
272 #endif
273 if (ap->flags & XFSMNT_NOATIME)
274 mp->m_flags |= XFS_MOUNT_NOATIME;
275
276 if (ap->flags & XFSMNT_RETERR)
277 mp->m_flags |= XFS_MOUNT_RETERR;
278
279 if (ap->flags & XFSMNT_NOALIGN)
280 mp->m_flags |= XFS_MOUNT_NOALIGN;
281
282 if (ap->flags & XFSMNT_SWALLOC)
283 mp->m_flags |= XFS_MOUNT_SWALLOC;
284
285 if (ap->flags & XFSMNT_OSYNCISOSYNC)
286 mp->m_flags |= XFS_MOUNT_OSYNCISOSYNC;
287
288 if (ap->flags & XFSMNT_32BITINODES)
289 mp->m_flags |= (XFS_MOUNT_32BITINODES | XFS_MOUNT_32BITINOOPT);
290
291 if (ap->flags & XFSMNT_IOSIZE) {
292 if (ap->iosizelog > XFS_MAX_IO_LOG ||
293 ap->iosizelog < XFS_MIN_IO_LOG) {
294 cmn_err(CE_WARN,
295 "XFS: invalid log iosize: %d [not %d-%d]",
296 ap->iosizelog, XFS_MIN_IO_LOG,
297 XFS_MAX_IO_LOG);
298 return XFS_ERROR(EINVAL);
299 }
300
301 mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
302 mp->m_readio_log = mp->m_writeio_log = ap->iosizelog;
303 }
304 if (ap->flags & XFSMNT_IDELETE)
305 mp->m_flags |= XFS_MOUNT_IDELETE;
306
307 /*
308 * no recovery flag requires a read-only mount
309 */
310 if (ap->flags & XFSMNT_NORECOVERY) {
311 if (!(vfs->vfs_flag & VFS_RDONLY)) {
312 cmn_err(CE_WARN,
313 "XFS: tried to mount a FS read-write without recovery!");
314 return XFS_ERROR(EINVAL);
315 }
316 mp->m_flags |= XFS_MOUNT_NORECOVERY;
317 }
318
319 if (ap->flags & XFSMNT_NOUUID)
320 mp->m_flags |= XFS_MOUNT_NOUUID;
321 if (ap->flags & XFSMNT_NOLOGFLUSH)
322 mp->m_flags |= XFS_MOUNT_NOLOGFLUSH;
323
324 return 0;
325 }
326
327 /*
328 * This function fills in xfs_mount_t fields based on mount args.
329 * Note: the superblock _has_ now been read in.
330 */
331 STATIC int
xfs_finish_flags(struct vfs * vfs,struct xfs_mount_args * ap,struct xfs_mount * mp)332 xfs_finish_flags(
333 struct vfs *vfs,
334 struct xfs_mount_args *ap,
335 struct xfs_mount *mp)
336 {
337 int ronly = (vfs->vfs_flag & VFS_RDONLY);
338
339 /* Fail a mount where the logbuf is smaller then the log stripe */
340 if (XFS_SB_VERSION_HASLOGV2(&mp->m_sb)) {
341 if ((ap->logbufsize == -1) &&
342 (mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE)) {
343 mp->m_logbsize = mp->m_sb.sb_logsunit;
344 } else if (ap->logbufsize < mp->m_sb.sb_logsunit) {
345 cmn_err(CE_WARN,
346 "XFS: logbuf size must be greater than or equal to log stripe size");
347 return XFS_ERROR(EINVAL);
348 }
349 } else {
350 /* Fail a mount if the logbuf is larger than 32K */
351 if (ap->logbufsize > XLOG_BIG_RECORD_BSIZE) {
352 cmn_err(CE_WARN,
353 "XFS: logbuf size for version 1 logs must be 16K or 32K");
354 return XFS_ERROR(EINVAL);
355 }
356 }
357
358 /*
359 * prohibit r/w mounts of read-only filesystems
360 */
361 if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
362 cmn_err(CE_WARN,
363 "XFS: cannot mount a read-only filesystem as read-write");
364 return XFS_ERROR(EROFS);
365 }
366
367 /*
368 * disallow mount attempts with (IRIX) project quota enabled
369 */
370 if (XFS_SB_VERSION_HASQUOTA(&mp->m_sb) &&
371 (mp->m_sb.sb_qflags & XFS_PQUOTA_ACCT)) {
372 cmn_err(CE_WARN,
373 "XFS: cannot mount a filesystem with IRIX project quota enabled");
374 return XFS_ERROR(ENOSYS);
375 }
376
377 /*
378 * check for shared mount.
379 */
380 if (ap->flags & XFSMNT_SHARED) {
381 if (!XFS_SB_VERSION_HASSHARED(&mp->m_sb))
382 return XFS_ERROR(EINVAL);
383
384 /*
385 * For IRIX 6.5, shared mounts must have the shared
386 * version bit set, have the persistent readonly
387 * field set, must be version 0 and can only be mounted
388 * read-only.
389 */
390 if (!ronly || !(mp->m_sb.sb_flags & XFS_SBF_READONLY) ||
391 (mp->m_sb.sb_shared_vn != 0))
392 return XFS_ERROR(EINVAL);
393
394 mp->m_flags |= XFS_MOUNT_SHARED;
395
396 /*
397 * Shared XFS V0 can't deal with DMI. Return EINVAL.
398 */
399 if (mp->m_sb.sb_shared_vn == 0 && (ap->flags & XFSMNT_DMAPI))
400 return XFS_ERROR(EINVAL);
401 }
402
403 return 0;
404 }
405
406 /*
407 * xfs_mount
408 *
409 * The file system configurations are:
410 * (1) device (partition) with data and internal log
411 * (2) logical volume with data and log subvolumes.
412 * (3) logical volume with data, log, and realtime subvolumes.
413 *
414 * We only have to handle opening the log and realtime volumes here if
415 * they are present. The data subvolume has already been opened by
416 * get_sb_bdev() and is stored in vfsp->vfs_super->s_bdev.
417 */
418 STATIC int
xfs_mount(struct bhv_desc * bhvp,struct xfs_mount_args * args,cred_t * credp)419 xfs_mount(
420 struct bhv_desc *bhvp,
421 struct xfs_mount_args *args,
422 cred_t *credp)
423 {
424 struct vfs *vfsp = bhvtovfs(bhvp);
425 struct bhv_desc *p;
426 struct xfs_mount *mp = XFS_BHVTOM(bhvp);
427 struct block_device *ddev, *logdev, *rtdev;
428 int flags = 0, error;
429
430 ddev = vfsp->vfs_super->s_bdev;
431 logdev = rtdev = NULL;
432
433 /*
434 * Setup xfs_mount function vectors from available behaviors
435 */
436 p = vfs_bhv_lookup(vfsp, VFS_POSITION_DM);
437 mp->m_dm_ops = p ? *(xfs_dmops_t *) vfs_bhv_custom(p) : xfs_dmcore_stub;
438 p = vfs_bhv_lookup(vfsp, VFS_POSITION_QM);
439 mp->m_qm_ops = p ? *(xfs_qmops_t *) vfs_bhv_custom(p) : xfs_qmcore_stub;
440 p = vfs_bhv_lookup(vfsp, VFS_POSITION_IO);
441 mp->m_io_ops = p ? *(xfs_ioops_t *) vfs_bhv_custom(p) : xfs_iocore_xfs;
442
443 /*
444 * Open real time and log devices - order is important.
445 */
446 if (args->logname[0]) {
447 error = xfs_blkdev_get(mp, args->logname, &logdev);
448 if (error)
449 return error;
450 }
451 if (args->rtname[0]) {
452 error = xfs_blkdev_get(mp, args->rtname, &rtdev);
453 if (error) {
454 xfs_blkdev_put(logdev);
455 return error;
456 }
457
458 if (rtdev == ddev || rtdev == logdev) {
459 cmn_err(CE_WARN,
460 "XFS: Cannot mount filesystem with identical rtdev and ddev/logdev.");
461 xfs_blkdev_put(logdev);
462 xfs_blkdev_put(rtdev);
463 return EINVAL;
464 }
465 }
466
467 /*
468 * Setup xfs_mount buffer target pointers
469 */
470 error = ENOMEM;
471 mp->m_ddev_targp = xfs_alloc_buftarg(ddev);
472 if (!mp->m_ddev_targp) {
473 xfs_blkdev_put(logdev);
474 xfs_blkdev_put(rtdev);
475 return error;
476 }
477 if (rtdev) {
478 mp->m_rtdev_targp = xfs_alloc_buftarg(rtdev);
479 if (!mp->m_rtdev_targp)
480 goto error0;
481 }
482 mp->m_logdev_targp = (logdev && logdev != ddev) ?
483 xfs_alloc_buftarg(logdev) : mp->m_ddev_targp;
484 if (!mp->m_logdev_targp)
485 goto error0;
486
487 /*
488 * Setup flags based on mount(2) options and then the superblock
489 */
490 error = xfs_start_flags(vfsp, args, mp);
491 if (error)
492 goto error1;
493 error = xfs_readsb(mp);
494 if (error)
495 goto error1;
496 error = xfs_finish_flags(vfsp, args, mp);
497 if (error)
498 goto error2;
499
500 /*
501 * Setup xfs_mount buffer target pointers based on superblock
502 */
503 error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_blocksize,
504 mp->m_sb.sb_sectsize);
505 if (!error && logdev && logdev != ddev) {
506 unsigned int log_sector_size = BBSIZE;
507
508 if (XFS_SB_VERSION_HASSECTOR(&mp->m_sb))
509 log_sector_size = mp->m_sb.sb_logsectsize;
510 error = xfs_setsize_buftarg(mp->m_logdev_targp,
511 mp->m_sb.sb_blocksize,
512 log_sector_size);
513 }
514 if (!error && rtdev)
515 error = xfs_setsize_buftarg(mp->m_rtdev_targp,
516 mp->m_sb.sb_blocksize,
517 mp->m_sb.sb_sectsize);
518 if (error)
519 goto error2;
520
521 error = XFS_IOINIT(vfsp, args, flags);
522 if (!error)
523 return 0;
524 error2:
525 if (mp->m_sb_bp)
526 xfs_freesb(mp);
527 error1:
528 xfs_binval(mp->m_ddev_targp);
529 if (logdev && logdev != ddev)
530 xfs_binval(mp->m_logdev_targp);
531 if (rtdev)
532 xfs_binval(mp->m_rtdev_targp);
533 error0:
534 xfs_unmountfs_close(mp, credp);
535 return error;
536 }
537
538 STATIC int
xfs_unmount(bhv_desc_t * bdp,int flags,cred_t * credp)539 xfs_unmount(
540 bhv_desc_t *bdp,
541 int flags,
542 cred_t *credp)
543 {
544 struct vfs *vfsp = bhvtovfs(bdp);
545 xfs_mount_t *mp = XFS_BHVTOM(bdp);
546 xfs_inode_t *rip;
547 vnode_t *rvp;
548 int unmount_event_wanted = 0;
549 int unmount_event_flags = 0;
550 int xfs_unmountfs_needed = 0;
551 int error;
552
553 rip = mp->m_rootip;
554 rvp = XFS_ITOV(rip);
555
556 if (vfsp->vfs_flag & VFS_DMI) {
557 error = XFS_SEND_PREUNMOUNT(mp, vfsp,
558 rvp, DM_RIGHT_NULL, rvp, DM_RIGHT_NULL,
559 NULL, NULL, 0, 0,
560 (mp->m_dmevmask & (1<<DM_EVENT_PREUNMOUNT))?
561 0:DM_FLAGS_UNWANTED);
562 if (error)
563 return XFS_ERROR(error);
564 unmount_event_wanted = 1;
565 unmount_event_flags = (mp->m_dmevmask & (1<<DM_EVENT_UNMOUNT))?
566 0 : DM_FLAGS_UNWANTED;
567 }
568
569 /*
570 * First blow any referenced inode from this file system
571 * out of the reference cache, and delete the timer.
572 */
573 xfs_refcache_purge_mp(mp);
574
575 XFS_bflush(mp->m_ddev_targp);
576 error = xfs_unmount_flush(mp, 0);
577 if (error)
578 goto out;
579
580 ASSERT(vn_count(rvp) == 1);
581
582 /*
583 * Drop the reference count
584 */
585 VN_RELE(rvp);
586
587 /*
588 * If we're forcing a shutdown, typically because of a media error,
589 * we want to make sure we invalidate dirty pages that belong to
590 * referenced vnodes as well.
591 */
592 if (XFS_FORCED_SHUTDOWN(mp)) {
593 error = xfs_sync(&mp->m_bhv,
594 (SYNC_WAIT | SYNC_CLOSE), credp);
595 ASSERT(error != EFSCORRUPTED);
596 }
597 xfs_unmountfs_needed = 1;
598
599 out:
600 /* Send DMAPI event, if required.
601 * Then do xfs_unmountfs() if needed.
602 * Then return error (or zero).
603 */
604 if (unmount_event_wanted) {
605 /* Note: mp structure must still exist for
606 * XFS_SEND_UNMOUNT() call.
607 */
608 XFS_SEND_UNMOUNT(mp, vfsp, error == 0 ? rvp : NULL,
609 DM_RIGHT_NULL, 0, error, unmount_event_flags);
610 }
611 if (xfs_unmountfs_needed) {
612 /*
613 * Call common unmount function to flush to disk
614 * and free the super block buffer & mount structures.
615 */
616 xfs_unmountfs(mp, credp);
617 }
618
619 return XFS_ERROR(error);
620 }
621
622 #define REMOUNT_READONLY_FLAGS (SYNC_REMOUNT|SYNC_ATTR|SYNC_WAIT)
623
624 STATIC int
xfs_mntupdate(bhv_desc_t * bdp,int * flags,struct xfs_mount_args * args)625 xfs_mntupdate(
626 bhv_desc_t *bdp,
627 int *flags,
628 struct xfs_mount_args *args)
629 {
630 struct vfs *vfsp = bhvtovfs(bdp);
631 xfs_mount_t *mp = XFS_BHVTOM(bdp);
632 int pincount, error;
633 int count = 0;
634
635 if (args->flags & XFSMNT_NOATIME)
636 mp->m_flags |= XFS_MOUNT_NOATIME;
637 else
638 mp->m_flags &= ~XFS_MOUNT_NOATIME;
639
640 if (!(vfsp->vfs_flag & VFS_RDONLY)) {
641 VFS_SYNC(vfsp, SYNC_FSDATA|SYNC_BDFLUSH|SYNC_ATTR, NULL, error);
642 }
643
644 if (*flags & MS_RDONLY) {
645 xfs_refcache_purge_mp(mp);
646 xfs_flush_buftarg(mp->m_ddev_targp, 0);
647 xfs_finish_reclaim_all(mp, 0);
648
649 /* This loop must run at least twice.
650 * The first instance of the loop will flush
651 * most meta data but that will generate more
652 * meta data (typically directory updates).
653 * Which then must be flushed and logged before
654 * we can write the unmount record.
655 */
656 do {
657 VFS_SYNC(vfsp, REMOUNT_READONLY_FLAGS, NULL, error);
658 pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
659 if (!pincount) {
660 delay(50);
661 count++;
662 }
663 } while (count < 2);
664
665 /* Ok now write out an unmount record */
666 xfs_log_unmount_write(mp);
667 xfs_unmountfs_writesb(mp);
668 vfsp->vfs_flag |= VFS_RDONLY;
669 } else {
670 vfsp->vfs_flag &= ~VFS_RDONLY;
671 }
672
673 return 0;
674 }
675
676 /*
677 * xfs_unmount_flush implements a set of flush operation on special
678 * inodes, which are needed as a separate set of operations so that
679 * they can be called as part of relocation process.
680 */
681 int
xfs_unmount_flush(xfs_mount_t * mp,int relocation)682 xfs_unmount_flush(
683 xfs_mount_t *mp, /* Mount structure we are getting
684 rid of. */
685 int relocation) /* Called from vfs relocation. */
686 {
687 xfs_inode_t *rip = mp->m_rootip;
688 xfs_inode_t *rbmip;
689 xfs_inode_t *rsumip = NULL;
690 vnode_t *rvp = XFS_ITOV(rip);
691 int error;
692
693 xfs_ilock(rip, XFS_ILOCK_EXCL);
694 xfs_iflock(rip);
695
696 /*
697 * Flush out the real time inodes.
698 */
699 if ((rbmip = mp->m_rbmip) != NULL) {
700 xfs_ilock(rbmip, XFS_ILOCK_EXCL);
701 xfs_iflock(rbmip);
702 error = xfs_iflush(rbmip, XFS_IFLUSH_SYNC);
703 xfs_iunlock(rbmip, XFS_ILOCK_EXCL);
704
705 if (error == EFSCORRUPTED)
706 goto fscorrupt_out;
707
708 ASSERT(vn_count(XFS_ITOV(rbmip)) == 1);
709
710 rsumip = mp->m_rsumip;
711 xfs_ilock(rsumip, XFS_ILOCK_EXCL);
712 xfs_iflock(rsumip);
713 error = xfs_iflush(rsumip, XFS_IFLUSH_SYNC);
714 xfs_iunlock(rsumip, XFS_ILOCK_EXCL);
715
716 if (error == EFSCORRUPTED)
717 goto fscorrupt_out;
718
719 ASSERT(vn_count(XFS_ITOV(rsumip)) == 1);
720 }
721
722 /*
723 * Synchronously flush root inode to disk
724 */
725 error = xfs_iflush(rip, XFS_IFLUSH_SYNC);
726 if (error == EFSCORRUPTED)
727 goto fscorrupt_out2;
728
729 if (vn_count(rvp) != 1 && !relocation) {
730 xfs_iunlock(rip, XFS_ILOCK_EXCL);
731 return XFS_ERROR(EBUSY);
732 }
733
734 /*
735 * Release dquot that rootinode, rbmino and rsumino might be holding,
736 * flush and purge the quota inodes.
737 */
738 error = XFS_QM_UNMOUNT(mp);
739 if (error == EFSCORRUPTED)
740 goto fscorrupt_out2;
741
742 if (rbmip) {
743 VN_RELE(XFS_ITOV(rbmip));
744 VN_RELE(XFS_ITOV(rsumip));
745 }
746
747 xfs_iunlock(rip, XFS_ILOCK_EXCL);
748 return 0;
749
750 fscorrupt_out:
751 xfs_ifunlock(rip);
752
753 fscorrupt_out2:
754 xfs_iunlock(rip, XFS_ILOCK_EXCL);
755
756 return XFS_ERROR(EFSCORRUPTED);
757 }
758
759 /*
760 * xfs_root extracts the root vnode from a vfs.
761 *
762 * vfsp -- the vfs struct for the desired file system
763 * vpp -- address of the caller's vnode pointer which should be
764 * set to the desired fs root vnode
765 */
766 STATIC int
xfs_root(bhv_desc_t * bdp,vnode_t ** vpp)767 xfs_root(
768 bhv_desc_t *bdp,
769 vnode_t **vpp)
770 {
771 vnode_t *vp;
772
773 vp = XFS_ITOV((XFS_BHVTOM(bdp))->m_rootip);
774 VN_HOLD(vp);
775 *vpp = vp;
776 return 0;
777 }
778
779 /*
780 * xfs_statvfs
781 *
782 * Fill in the statvfs structure for the given file system. We use
783 * the superblock lock in the mount structure to ensure a consistent
784 * snapshot of the counters returned.
785 */
786 STATIC int
xfs_statvfs(bhv_desc_t * bdp,xfs_statfs_t * statp,vnode_t * vp)787 xfs_statvfs(
788 bhv_desc_t *bdp,
789 xfs_statfs_t *statp,
790 vnode_t *vp)
791 {
792 __uint64_t fakeinos;
793 xfs_extlen_t lsize;
794 xfs_mount_t *mp;
795 xfs_sb_t *sbp;
796 unsigned long s;
797
798 mp = XFS_BHVTOM(bdp);
799 sbp = &(mp->m_sb);
800
801 statp->f_type = XFS_SB_MAGIC;
802
803 s = XFS_SB_LOCK(mp);
804 statp->f_bsize = sbp->sb_blocksize;
805 lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
806 statp->f_blocks = sbp->sb_dblocks - lsize;
807 statp->f_bfree = statp->f_bavail = sbp->sb_fdblocks;
808 fakeinos = statp->f_bfree << sbp->sb_inopblog;
809 #if XFS_BIG_INUMS
810 fakeinos += mp->m_inoadd;
811 #endif
812 statp->f_files =
813 MIN(sbp->sb_icount + fakeinos, (__uint64_t)XFS_MAXINUMBER);
814 if (mp->m_maxicount)
815 #if XFS_BIG_INUMS
816 if (!mp->m_inoadd)
817 #endif
818 statp->f_files = min_t(typeof(statp->f_files),
819 statp->f_files,
820 mp->m_maxicount);
821 statp->f_ffree = statp->f_files - (sbp->sb_icount - sbp->sb_ifree);
822 XFS_SB_UNLOCK(mp, s);
823
824 statp->f_fsid.val[0] = mp->m_dev;
825 statp->f_fsid.val[1] = 0;
826 statp->f_namelen = MAXNAMELEN - 1;
827
828 return 0;
829 }
830
831
832 /*
833 * xfs_sync flushes any pending I/O to file system vfsp.
834 *
835 * This routine is called by vfs_sync() to make sure that things make it
836 * out to disk eventually, on sync() system calls to flush out everything,
837 * and when the file system is unmounted. For the vfs_sync() case, all
838 * we really need to do is sync out the log to make all of our meta-data
839 * updates permanent (except for timestamps). For calls from pflushd(),
840 * dirty pages are kept moving by calling pdflush() on the inodes
841 * containing them. We also flush the inodes that we can lock without
842 * sleeping and the superblock if we can lock it without sleeping from
843 * vfs_sync() so that items at the tail of the log are always moving out.
844 *
845 * Flags:
846 * SYNC_BDFLUSH - We're being called from vfs_sync() so we don't want
847 * to sleep if we can help it. All we really need
848 * to do is ensure that the log is synced at least
849 * periodically. We also push the inodes and
850 * superblock if we can lock them without sleeping
851 * and they are not pinned.
852 * SYNC_ATTR - We need to flush the inodes. If SYNC_BDFLUSH is not
853 * set, then we really want to lock each inode and flush
854 * it.
855 * SYNC_WAIT - All the flushes that take place in this call should
856 * be synchronous.
857 * SYNC_DELWRI - This tells us to push dirty pages associated with
858 * inodes. SYNC_WAIT and SYNC_BDFLUSH are used to
859 * determine if they should be flushed sync, async, or
860 * delwri.
861 * SYNC_CLOSE - This flag is passed when the system is being
862 * unmounted. We should sync and invalidate everthing.
863 * SYNC_FSDATA - This indicates that the caller would like to make
864 * sure the superblock is safe on disk. We can ensure
865 * this by simply makeing sure the log gets flushed
866 * if SYNC_BDFLUSH is set, and by actually writing it
867 * out otherwise.
868 *
869 */
870 /*ARGSUSED*/
871 STATIC int
xfs_sync(bhv_desc_t * bdp,int flags,cred_t * credp)872 xfs_sync(
873 bhv_desc_t *bdp,
874 int flags,
875 cred_t *credp)
876 {
877 xfs_mount_t *mp;
878
879 mp = XFS_BHVTOM(bdp);
880 return (xfs_syncsub(mp, flags, 0, NULL));
881 }
882
883 /*
884 * xfs sync routine for internal use
885 *
886 * This routine supports all of the flags defined for the generic VFS_SYNC
887 * interface as explained above under xfs_sync. In the interests of not
888 * changing interfaces within the 6.5 family, additional internallly-
889 * required functions are specified within a separate xflags parameter,
890 * only available by calling this routine.
891 *
892 */
893 STATIC int
xfs_sync_inodes(xfs_mount_t * mp,int flags,int xflags,int * bypassed)894 xfs_sync_inodes(
895 xfs_mount_t *mp,
896 int flags,
897 int xflags,
898 int *bypassed)
899 {
900 xfs_inode_t *ip = NULL;
901 xfs_inode_t *ip_next;
902 xfs_buf_t *bp;
903 vnode_t *vp = NULL;
904 vmap_t vmap;
905 int error;
906 int last_error;
907 uint64_t fflag;
908 uint lock_flags;
909 uint base_lock_flags;
910 boolean_t mount_locked;
911 boolean_t vnode_refed;
912 int preempt;
913 xfs_dinode_t *dip;
914 xfs_iptr_t *ipointer;
915 #ifdef DEBUG
916 boolean_t ipointer_in = B_FALSE;
917
918 #define IPOINTER_SET ipointer_in = B_TRUE
919 #define IPOINTER_CLR ipointer_in = B_FALSE
920 #else
921 #define IPOINTER_SET
922 #define IPOINTER_CLR
923 #endif
924
925
926 /* Insert a marker record into the inode list after inode ip. The list
927 * must be locked when this is called. After the call the list will no
928 * longer be locked.
929 */
930 #define IPOINTER_INSERT(ip, mp) { \
931 ASSERT(ipointer_in == B_FALSE); \
932 ipointer->ip_mnext = ip->i_mnext; \
933 ipointer->ip_mprev = ip; \
934 ip->i_mnext = (xfs_inode_t *)ipointer; \
935 ipointer->ip_mnext->i_mprev = (xfs_inode_t *)ipointer; \
936 preempt = 0; \
937 XFS_MOUNT_IUNLOCK(mp); \
938 mount_locked = B_FALSE; \
939 IPOINTER_SET; \
940 }
941
942 /* Remove the marker from the inode list. If the marker was the only item
943 * in the list then there are no remaining inodes and we should zero out
944 * the whole list. If we are the current head of the list then move the head
945 * past us.
946 */
947 #define IPOINTER_REMOVE(ip, mp) { \
948 ASSERT(ipointer_in == B_TRUE); \
949 if (ipointer->ip_mnext != (xfs_inode_t *)ipointer) { \
950 ip = ipointer->ip_mnext; \
951 ip->i_mprev = ipointer->ip_mprev; \
952 ipointer->ip_mprev->i_mnext = ip; \
953 if (mp->m_inodes == (xfs_inode_t *)ipointer) { \
954 mp->m_inodes = ip; \
955 } \
956 } else { \
957 ASSERT(mp->m_inodes == (xfs_inode_t *)ipointer); \
958 mp->m_inodes = NULL; \
959 ip = NULL; \
960 } \
961 IPOINTER_CLR; \
962 }
963
964 #define XFS_PREEMPT_MASK 0x7f
965
966 if (bypassed)
967 *bypassed = 0;
968 if (XFS_MTOVFS(mp)->vfs_flag & VFS_RDONLY)
969 return 0;
970 error = 0;
971 last_error = 0;
972 preempt = 0;
973
974 /* Allocate a reference marker */
975 ipointer = (xfs_iptr_t *)kmem_zalloc(sizeof(xfs_iptr_t), KM_SLEEP);
976
977 fflag = XFS_B_ASYNC; /* default is don't wait */
978 if (flags & SYNC_BDFLUSH)
979 fflag = XFS_B_DELWRI;
980 if (flags & SYNC_WAIT)
981 fflag = 0; /* synchronous overrides all */
982
983 base_lock_flags = XFS_ILOCK_SHARED;
984 if (flags & (SYNC_DELWRI | SYNC_CLOSE)) {
985 /*
986 * We need the I/O lock if we're going to call any of
987 * the flush/inval routines.
988 */
989 base_lock_flags |= XFS_IOLOCK_SHARED;
990 }
991
992 XFS_MOUNT_ILOCK(mp);
993
994 ip = mp->m_inodes;
995
996 mount_locked = B_TRUE;
997 vnode_refed = B_FALSE;
998
999 IPOINTER_CLR;
1000
1001 do {
1002 ASSERT(ipointer_in == B_FALSE);
1003 ASSERT(vnode_refed == B_FALSE);
1004
1005 lock_flags = base_lock_flags;
1006
1007 /*
1008 * There were no inodes in the list, just break out
1009 * of the loop.
1010 */
1011 if (ip == NULL) {
1012 break;
1013 }
1014
1015 /*
1016 * We found another sync thread marker - skip it
1017 */
1018 if (ip->i_mount == NULL) {
1019 ip = ip->i_mnext;
1020 continue;
1021 }
1022
1023 vp = XFS_ITOV_NULL(ip);
1024
1025 /*
1026 * If the vnode is gone then this is being torn down,
1027 * call reclaim if it is flushed, else let regular flush
1028 * code deal with it later in the loop.
1029 */
1030
1031 if (vp == NULL) {
1032 /* Skip ones already in reclaim */
1033 if (ip->i_flags & XFS_IRECLAIM) {
1034 ip = ip->i_mnext;
1035 continue;
1036 }
1037 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL) == 0) {
1038 ip = ip->i_mnext;
1039 } else if ((xfs_ipincount(ip) == 0) &&
1040 xfs_iflock_nowait(ip)) {
1041 IPOINTER_INSERT(ip, mp);
1042
1043 xfs_finish_reclaim(ip, 1,
1044 XFS_IFLUSH_DELWRI_ELSE_ASYNC);
1045
1046 XFS_MOUNT_ILOCK(mp);
1047 mount_locked = B_TRUE;
1048 IPOINTER_REMOVE(ip, mp);
1049 } else {
1050 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1051 ip = ip->i_mnext;
1052 }
1053 continue;
1054 }
1055
1056 if (VN_BAD(vp)) {
1057 ip = ip->i_mnext;
1058 continue;
1059 }
1060
1061 if (XFS_FORCED_SHUTDOWN(mp) && !(flags & SYNC_CLOSE)) {
1062 XFS_MOUNT_IUNLOCK(mp);
1063 kmem_free(ipointer, sizeof(xfs_iptr_t));
1064 return 0;
1065 }
1066
1067 /*
1068 * If this is just vfs_sync() or pflushd() calling
1069 * then we can skip inodes for which it looks like
1070 * there is nothing to do. Since we don't have the
1071 * inode locked this is racey, but these are periodic
1072 * calls so it doesn't matter. For the others we want
1073 * to know for sure, so we at least try to lock them.
1074 */
1075 if (flags & SYNC_BDFLUSH) {
1076 if (((ip->i_itemp == NULL) ||
1077 !(ip->i_itemp->ili_format.ilf_fields &
1078 XFS_ILOG_ALL)) &&
1079 (ip->i_update_core == 0)) {
1080 ip = ip->i_mnext;
1081 continue;
1082 }
1083 }
1084
1085 /*
1086 * Try to lock without sleeping. We're out of order with
1087 * the inode list lock here, so if we fail we need to drop
1088 * the mount lock and try again. If we're called from
1089 * bdflush() here, then don't bother.
1090 *
1091 * The inode lock here actually coordinates with the
1092 * almost spurious inode lock in xfs_ireclaim() to prevent
1093 * the vnode we handle here without a reference from
1094 * being freed while we reference it. If we lock the inode
1095 * while it's on the mount list here, then the spurious inode
1096 * lock in xfs_ireclaim() after the inode is pulled from
1097 * the mount list will sleep until we release it here.
1098 * This keeps the vnode from being freed while we reference
1099 * it. It is also cheaper and simpler than actually doing
1100 * a vn_get() for every inode we touch here.
1101 */
1102 if (xfs_ilock_nowait(ip, lock_flags) == 0) {
1103
1104 if ((flags & SYNC_BDFLUSH) || (vp == NULL)) {
1105 ip = ip->i_mnext;
1106 continue;
1107 }
1108
1109 /*
1110 * We need to unlock the inode list lock in order
1111 * to lock the inode. Insert a marker record into
1112 * the inode list to remember our position, dropping
1113 * the lock is now done inside the IPOINTER_INSERT
1114 * macro.
1115 *
1116 * We also use the inode list lock to protect us
1117 * in taking a snapshot of the vnode version number
1118 * for use in calling vn_get().
1119 */
1120 VMAP(vp, vmap);
1121 IPOINTER_INSERT(ip, mp);
1122
1123 vp = vn_get(vp, &vmap);
1124 if (vp == NULL) {
1125 /*
1126 * The vnode was reclaimed once we let go
1127 * of the inode list lock. Skip to the
1128 * next list entry. Remove the marker.
1129 */
1130
1131 XFS_MOUNT_ILOCK(mp);
1132
1133 mount_locked = B_TRUE;
1134 vnode_refed = B_FALSE;
1135
1136 IPOINTER_REMOVE(ip, mp);
1137
1138 continue;
1139 }
1140
1141 xfs_ilock(ip, lock_flags);
1142
1143 ASSERT(vp == XFS_ITOV(ip));
1144 ASSERT(ip->i_mount == mp);
1145
1146 vnode_refed = B_TRUE;
1147 }
1148
1149 /* From here on in the loop we may have a marker record
1150 * in the inode list.
1151 */
1152
1153 if ((flags & SYNC_CLOSE) && (vp != NULL)) {
1154 /*
1155 * This is the shutdown case. We just need to
1156 * flush and invalidate all the pages associated
1157 * with the inode. Drop the inode lock since
1158 * we can't hold it across calls to the buffer
1159 * cache.
1160 *
1161 * We don't set the VREMAPPING bit in the vnode
1162 * here, because we don't hold the vnode lock
1163 * exclusively. It doesn't really matter, though,
1164 * because we only come here when we're shutting
1165 * down anyway.
1166 */
1167 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1168
1169 if (XFS_FORCED_SHUTDOWN(mp)) {
1170 VOP_TOSS_PAGES(vp, 0, -1, FI_REMAPF);
1171 } else {
1172 VOP_FLUSHINVAL_PAGES(vp, 0, -1, FI_REMAPF);
1173 }
1174
1175 xfs_ilock(ip, XFS_ILOCK_SHARED);
1176
1177 } else if ((flags & SYNC_DELWRI) && (vp != NULL)) {
1178 if (VN_DIRTY(vp)) {
1179 /* We need to have dropped the lock here,
1180 * so insert a marker if we have not already
1181 * done so.
1182 */
1183 if (mount_locked) {
1184 IPOINTER_INSERT(ip, mp);
1185 }
1186
1187 /*
1188 * Drop the inode lock since we can't hold it
1189 * across calls to the buffer cache.
1190 */
1191 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1192 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1,
1193 fflag, FI_NONE, error);
1194 xfs_ilock(ip, XFS_ILOCK_SHARED);
1195 }
1196
1197 }
1198
1199 if (flags & SYNC_BDFLUSH) {
1200 if ((flags & SYNC_ATTR) &&
1201 ((ip->i_update_core) ||
1202 ((ip->i_itemp != NULL) &&
1203 (ip->i_itemp->ili_format.ilf_fields != 0)))) {
1204
1205 /* Insert marker and drop lock if not already
1206 * done.
1207 */
1208 if (mount_locked) {
1209 IPOINTER_INSERT(ip, mp);
1210 }
1211
1212 /*
1213 * We don't want the periodic flushing of the
1214 * inodes by vfs_sync() to interfere with
1215 * I/O to the file, especially read I/O
1216 * where it is only the access time stamp
1217 * that is being flushed out. To prevent
1218 * long periods where we have both inode
1219 * locks held shared here while reading the
1220 * inode's buffer in from disk, we drop the
1221 * inode lock while reading in the inode
1222 * buffer. We have to release the buffer
1223 * and reacquire the inode lock so that they
1224 * are acquired in the proper order (inode
1225 * locks first). The buffer will go at the
1226 * end of the lru chain, though, so we can
1227 * expect it to still be there when we go
1228 * for it again in xfs_iflush().
1229 */
1230 if ((xfs_ipincount(ip) == 0) &&
1231 xfs_iflock_nowait(ip)) {
1232
1233 xfs_ifunlock(ip);
1234 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1235
1236 error = xfs_itobp(mp, NULL, ip,
1237 &dip, &bp, 0);
1238 if (!error) {
1239 xfs_buf_relse(bp);
1240 } else {
1241 /* Bailing out, remove the
1242 * marker and free it.
1243 */
1244 XFS_MOUNT_ILOCK(mp);
1245
1246 IPOINTER_REMOVE(ip, mp);
1247
1248 XFS_MOUNT_IUNLOCK(mp);
1249
1250 ASSERT(!(lock_flags &
1251 XFS_IOLOCK_SHARED));
1252
1253 kmem_free(ipointer,
1254 sizeof(xfs_iptr_t));
1255 return (0);
1256 }
1257
1258 /*
1259 * Since we dropped the inode lock,
1260 * the inode may have been reclaimed.
1261 * Therefore, we reacquire the mount
1262 * lock and check to see if we were the
1263 * inode reclaimed. If this happened
1264 * then the ipointer marker will no
1265 * longer point back at us. In this
1266 * case, move ip along to the inode
1267 * after the marker, remove the marker
1268 * and continue.
1269 */
1270 XFS_MOUNT_ILOCK(mp);
1271 mount_locked = B_TRUE;
1272
1273 if (ip != ipointer->ip_mprev) {
1274 IPOINTER_REMOVE(ip, mp);
1275
1276 ASSERT(!vnode_refed);
1277 ASSERT(!(lock_flags &
1278 XFS_IOLOCK_SHARED));
1279 continue;
1280 }
1281
1282 ASSERT(ip->i_mount == mp);
1283
1284 if (xfs_ilock_nowait(ip,
1285 XFS_ILOCK_SHARED) == 0) {
1286 ASSERT(ip->i_mount == mp);
1287 /*
1288 * We failed to reacquire
1289 * the inode lock without
1290 * sleeping, so just skip
1291 * the inode for now. We
1292 * clear the ILOCK bit from
1293 * the lock_flags so that we
1294 * won't try to drop a lock
1295 * we don't hold below.
1296 */
1297 lock_flags &= ~XFS_ILOCK_SHARED;
1298 IPOINTER_REMOVE(ip_next, mp);
1299 } else if ((xfs_ipincount(ip) == 0) &&
1300 xfs_iflock_nowait(ip)) {
1301 ASSERT(ip->i_mount == mp);
1302 /*
1303 * Since this is vfs_sync()
1304 * calling we only flush the
1305 * inode out if we can lock
1306 * it without sleeping and
1307 * it is not pinned. Drop
1308 * the mount lock here so
1309 * that we don't hold it for
1310 * too long. We already have
1311 * a marker in the list here.
1312 */
1313 XFS_MOUNT_IUNLOCK(mp);
1314 mount_locked = B_FALSE;
1315 error = xfs_iflush(ip,
1316 XFS_IFLUSH_DELWRI);
1317 } else {
1318 ASSERT(ip->i_mount == mp);
1319 IPOINTER_REMOVE(ip_next, mp);
1320 }
1321 }
1322
1323 }
1324
1325 } else {
1326 if ((flags & SYNC_ATTR) &&
1327 ((ip->i_update_core) ||
1328 ((ip->i_itemp != NULL) &&
1329 (ip->i_itemp->ili_format.ilf_fields != 0)))) {
1330 if (mount_locked) {
1331 IPOINTER_INSERT(ip, mp);
1332 }
1333
1334 if (flags & SYNC_WAIT) {
1335 xfs_iflock(ip);
1336 error = xfs_iflush(ip,
1337 XFS_IFLUSH_SYNC);
1338 } else {
1339 /*
1340 * If we can't acquire the flush
1341 * lock, then the inode is already
1342 * being flushed so don't bother
1343 * waiting. If we can lock it then
1344 * do a delwri flush so we can
1345 * combine multiple inode flushes
1346 * in each disk write.
1347 */
1348 if (xfs_iflock_nowait(ip)) {
1349 error = xfs_iflush(ip,
1350 XFS_IFLUSH_DELWRI);
1351 }
1352 else if (bypassed)
1353 (*bypassed)++;
1354 }
1355 }
1356 }
1357
1358 if (lock_flags != 0) {
1359 xfs_iunlock(ip, lock_flags);
1360 }
1361
1362 if (vnode_refed) {
1363 /*
1364 * If we had to take a reference on the vnode
1365 * above, then wait until after we've unlocked
1366 * the inode to release the reference. This is
1367 * because we can be already holding the inode
1368 * lock when VN_RELE() calls xfs_inactive().
1369 *
1370 * Make sure to drop the mount lock before calling
1371 * VN_RELE() so that we don't trip over ourselves if
1372 * we have to go for the mount lock again in the
1373 * inactive code.
1374 */
1375 if (mount_locked) {
1376 IPOINTER_INSERT(ip, mp);
1377 }
1378
1379 VN_RELE(vp);
1380
1381 vnode_refed = B_FALSE;
1382 }
1383
1384 if (error) {
1385 last_error = error;
1386 }
1387
1388 /*
1389 * bail out if the filesystem is corrupted.
1390 */
1391 if (error == EFSCORRUPTED) {
1392 if (!mount_locked) {
1393 XFS_MOUNT_ILOCK(mp);
1394 IPOINTER_REMOVE(ip, mp);
1395 }
1396 XFS_MOUNT_IUNLOCK(mp);
1397 ASSERT(ipointer_in == B_FALSE);
1398 kmem_free(ipointer, sizeof(xfs_iptr_t));
1399 return XFS_ERROR(error);
1400 }
1401
1402 /* Let other threads have a chance at the mount lock
1403 * if we have looped many times without dropping the
1404 * lock.
1405 */
1406 if ((++preempt & XFS_PREEMPT_MASK) == 0) {
1407 if (mount_locked) {
1408 IPOINTER_INSERT(ip, mp);
1409 }
1410 }
1411
1412 if (mount_locked == B_FALSE) {
1413 XFS_MOUNT_ILOCK(mp);
1414 mount_locked = B_TRUE;
1415 IPOINTER_REMOVE(ip, mp);
1416 continue;
1417 }
1418
1419 ASSERT(ipointer_in == B_FALSE);
1420 ip = ip->i_mnext;
1421
1422 } while (ip != mp->m_inodes);
1423
1424 XFS_MOUNT_IUNLOCK(mp);
1425
1426 ASSERT(ipointer_in == B_FALSE);
1427
1428 kmem_free(ipointer, sizeof(xfs_iptr_t));
1429 return XFS_ERROR(last_error);
1430 }
1431
1432 /*
1433 * xfs sync routine for internal use
1434 *
1435 * This routine supports all of the flags defined for the generic VFS_SYNC
1436 * interface as explained above under xfs_sync. In the interests of not
1437 * changing interfaces within the 6.5 family, additional internallly-
1438 * required functions are specified within a separate xflags parameter,
1439 * only available by calling this routine.
1440 *
1441 */
1442 int
xfs_syncsub(xfs_mount_t * mp,int flags,int xflags,int * bypassed)1443 xfs_syncsub(
1444 xfs_mount_t *mp,
1445 int flags,
1446 int xflags,
1447 int *bypassed)
1448 {
1449 int error = 0;
1450 int last_error = 0;
1451 uint log_flags = XFS_LOG_FORCE;
1452 xfs_buf_t *bp;
1453 xfs_buf_log_item_t *bip;
1454
1455 /*
1456 * Sync out the log. This ensures that the log is periodically
1457 * flushed even if there is not enough activity to fill it up.
1458 */
1459 if (flags & SYNC_WAIT)
1460 log_flags |= XFS_LOG_SYNC;
1461
1462 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1463
1464 if (flags & (SYNC_ATTR|SYNC_DELWRI)) {
1465 if (flags & SYNC_BDFLUSH)
1466 xfs_finish_reclaim_all(mp, 1);
1467 else
1468 error = xfs_sync_inodes(mp, flags, xflags, bypassed);
1469 }
1470
1471 /*
1472 * Flushing out dirty data above probably generated more
1473 * log activity, so if this isn't vfs_sync() then flush
1474 * the log again.
1475 */
1476 if (flags & SYNC_DELWRI) {
1477 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1478 }
1479
1480 if (flags & SYNC_FSDATA) {
1481 /*
1482 * If this is vfs_sync() then only sync the superblock
1483 * if we can lock it without sleeping and it is not pinned.
1484 */
1485 if (flags & SYNC_BDFLUSH) {
1486 bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
1487 if (bp != NULL) {
1488 bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*);
1489 if ((bip != NULL) &&
1490 xfs_buf_item_dirty(bip)) {
1491 if (!(XFS_BUF_ISPINNED(bp))) {
1492 XFS_BUF_ASYNC(bp);
1493 error = xfs_bwrite(mp, bp);
1494 } else {
1495 xfs_buf_relse(bp);
1496 }
1497 } else {
1498 xfs_buf_relse(bp);
1499 }
1500 }
1501 } else {
1502 bp = xfs_getsb(mp, 0);
1503 /*
1504 * If the buffer is pinned then push on the log so
1505 * we won't get stuck waiting in the write for
1506 * someone, maybe ourselves, to flush the log.
1507 * Even though we just pushed the log above, we
1508 * did not have the superblock buffer locked at
1509 * that point so it can become pinned in between
1510 * there and here.
1511 */
1512 if (XFS_BUF_ISPINNED(bp))
1513 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
1514 if (flags & SYNC_WAIT)
1515 XFS_BUF_UNASYNC(bp);
1516 else
1517 XFS_BUF_ASYNC(bp);
1518 error = xfs_bwrite(mp, bp);
1519 }
1520 if (error) {
1521 last_error = error;
1522 }
1523 }
1524
1525 /*
1526 * If this is the periodic sync, then kick some entries out of
1527 * the reference cache. This ensures that idle entries are
1528 * eventually kicked out of the cache.
1529 */
1530 if (flags & SYNC_REFCACHE) {
1531 if (flags & SYNC_WAIT)
1532 xfs_refcache_purge_mp(mp);
1533 else
1534 xfs_refcache_purge_some(mp);
1535 }
1536
1537 /*
1538 * Now check to see if the log needs a "dummy" transaction.
1539 */
1540
1541 if (!(flags & SYNC_REMOUNT) && xfs_log_need_covered(mp)) {
1542 xfs_trans_t *tp;
1543 xfs_inode_t *ip;
1544
1545 /*
1546 * Put a dummy transaction in the log to tell
1547 * recovery that all others are OK.
1548 */
1549 tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
1550 if ((error = xfs_trans_reserve(tp, 0,
1551 XFS_ICHANGE_LOG_RES(mp),
1552 0, 0, 0))) {
1553 xfs_trans_cancel(tp, 0);
1554 return error;
1555 }
1556
1557 ip = mp->m_rootip;
1558 xfs_ilock(ip, XFS_ILOCK_EXCL);
1559
1560 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1561 xfs_trans_ihold(tp, ip);
1562 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1563 error = xfs_trans_commit(tp, 0, NULL);
1564 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1565 xfs_log_force(mp, (xfs_lsn_t)0, log_flags);
1566 }
1567
1568 /*
1569 * When shutting down, we need to insure that the AIL is pushed
1570 * to disk or the filesystem can appear corrupt from the PROM.
1571 */
1572 if ((flags & (SYNC_CLOSE|SYNC_WAIT)) == (SYNC_CLOSE|SYNC_WAIT)) {
1573 XFS_bflush(mp->m_ddev_targp);
1574 if (mp->m_rtdev_targp) {
1575 XFS_bflush(mp->m_rtdev_targp);
1576 }
1577 }
1578
1579 return XFS_ERROR(last_error);
1580 }
1581
1582 /*
1583 * xfs_vget - called by DMAPI and NFSD to get vnode from file handle
1584 */
1585 STATIC int
xfs_vget(bhv_desc_t * bdp,vnode_t ** vpp,fid_t * fidp)1586 xfs_vget(
1587 bhv_desc_t *bdp,
1588 vnode_t **vpp,
1589 fid_t *fidp)
1590 {
1591 xfs_mount_t *mp = XFS_BHVTOM(bdp);
1592 xfs_fid_t *xfid = (struct xfs_fid *)fidp;
1593 xfs_inode_t *ip;
1594 int error;
1595 xfs_ino_t ino;
1596 unsigned int igen;
1597
1598 /*
1599 * Invalid. Since handles can be created in user space and passed in
1600 * via gethandle(), this is not cause for a panic.
1601 */
1602 if (xfid->xfs_fid_len != sizeof(*xfid) - sizeof(xfid->xfs_fid_len))
1603 return XFS_ERROR(EINVAL);
1604
1605 ino = xfid->xfs_fid_ino;
1606 igen = xfid->xfs_fid_gen;
1607
1608 /*
1609 * NFS can sometimes send requests for ino 0. Fail them gracefully.
1610 */
1611 if (ino == 0)
1612 return XFS_ERROR(ESTALE);
1613
1614 error = xfs_iget(mp, NULL, ino, 0, XFS_ILOCK_SHARED, &ip, 0);
1615 if (error) {
1616 *vpp = NULL;
1617 return error;
1618 }
1619
1620 if (ip == NULL) {
1621 *vpp = NULL;
1622 return XFS_ERROR(EIO);
1623 }
1624
1625 if (ip->i_d.di_mode == 0 || ip->i_d.di_gen != igen) {
1626 xfs_iput_new(ip, XFS_ILOCK_SHARED);
1627 *vpp = NULL;
1628 return XFS_ERROR(ENOENT);
1629 }
1630
1631 *vpp = XFS_ITOV(ip);
1632 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1633 return 0;
1634 }
1635
1636
1637 #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */
1638 #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */
1639 #define MNTOPT_LOGDEV "logdev" /* log device */
1640 #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */
1641 #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */
1642 #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */
1643 #define MNTOPT_INO64 "ino64" /* force inodes into 64-bit range */
1644 #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */
1645 #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */
1646 #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */
1647 #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */
1648 #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */
1649 #define MNTOPT_MTPT "mtpt" /* filesystem mount point */
1650 #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */
1651 #define MNTOPT_NOLOGFLUSH "nologflush" /* don't hard flush on log writes */
1652 #define MNTOPT_OSYNCISOSYNC "osyncisosync" /* o_sync is REALLY o_sync */
1653 #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */
1654 #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */
1655 #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */
1656
1657
1658 int
xfs_parseargs(struct bhv_desc * bhv,char * options,struct xfs_mount_args * args,int update)1659 xfs_parseargs(
1660 struct bhv_desc *bhv,
1661 char *options,
1662 struct xfs_mount_args *args,
1663 int update)
1664 {
1665 struct vfs *vfsp = bhvtovfs(bhv);
1666 char *this_char, *value, *eov;
1667 int dsunit, dswidth, vol_dsunit, vol_dswidth;
1668 int iosize;
1669
1670 #if 0 /* XXX: off by default, until some remaining issues ironed out */
1671 args->flags |= XFSMNT_IDELETE; /* default to on */
1672 #endif
1673
1674 if (!options)
1675 return 0;
1676
1677 iosize = dsunit = dswidth = vol_dsunit = vol_dswidth = 0;
1678
1679 while ((this_char = strsep(&options, ",")) != NULL) {
1680 if (!*this_char)
1681 continue;
1682 if ((value = strchr(this_char, '=')) != NULL)
1683 *value++ = 0;
1684
1685 if (!strcmp(this_char, MNTOPT_LOGBUFS)) {
1686 if (!value || !*value) {
1687 printk("XFS: %s option requires an argument\n",
1688 MNTOPT_LOGBUFS);
1689 return EINVAL;
1690 }
1691 args->logbufs = simple_strtoul(value, &eov, 10);
1692 } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) {
1693 int last, in_kilobytes = 0;
1694
1695 if (!value || !*value) {
1696 printk("XFS: %s option requires an argument\n",
1697 MNTOPT_LOGBSIZE);
1698 return EINVAL;
1699 }
1700 last = strlen(value) - 1;
1701 if (value[last] == 'K' || value[last] == 'k') {
1702 in_kilobytes = 1;
1703 value[last] = '\0';
1704 }
1705 args->logbufsize = simple_strtoul(value, &eov, 10);
1706 if (in_kilobytes)
1707 args->logbufsize <<= 10;
1708 } else if (!strcmp(this_char, MNTOPT_LOGDEV)) {
1709 if (!value || !*value) {
1710 printk("XFS: %s option requires an argument\n",
1711 MNTOPT_LOGDEV);
1712 return EINVAL;
1713 }
1714 strncpy(args->logname, value, MAXNAMELEN);
1715 } else if (!strcmp(this_char, MNTOPT_MTPT)) {
1716 if (!value || !*value) {
1717 printk("XFS: %s option requires an argument\n",
1718 MNTOPT_MTPT);
1719 return EINVAL;
1720 }
1721 strncpy(args->mtpt, value, MAXNAMELEN);
1722 } else if (!strcmp(this_char, MNTOPT_RTDEV)) {
1723 if (!value || !*value) {
1724 printk("XFS: %s option requires an argument\n",
1725 MNTOPT_RTDEV);
1726 return EINVAL;
1727 }
1728 strncpy(args->rtname, value, MAXNAMELEN);
1729 } else if (!strcmp(this_char, MNTOPT_BIOSIZE)) {
1730 if (!value || !*value) {
1731 printk("XFS: %s option requires an argument\n",
1732 MNTOPT_BIOSIZE);
1733 return EINVAL;
1734 }
1735 iosize = simple_strtoul(value, &eov, 10);
1736 args->flags |= XFSMNT_IOSIZE;
1737 args->iosizelog = (uint8_t) iosize;
1738 } else if (!strcmp(this_char, MNTOPT_WSYNC)) {
1739 args->flags |= XFSMNT_WSYNC;
1740 } else if (!strcmp(this_char, MNTOPT_OSYNCISOSYNC)) {
1741 args->flags |= XFSMNT_OSYNCISOSYNC;
1742 } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) {
1743 args->flags |= XFSMNT_NORECOVERY;
1744 } else if (!strcmp(this_char, MNTOPT_INO64)) {
1745 args->flags |= XFSMNT_INO64;
1746 #if !XFS_BIG_INUMS
1747 printk("XFS: %s option not allowed on this system\n",
1748 MNTOPT_INO64);
1749 return EINVAL;
1750 #endif
1751 } else if (!strcmp(this_char, MNTOPT_NOALIGN)) {
1752 args->flags |= XFSMNT_NOALIGN;
1753 } else if (!strcmp(this_char, MNTOPT_SWALLOC)) {
1754 args->flags |= XFSMNT_SWALLOC;
1755 } else if (!strcmp(this_char, MNTOPT_SUNIT)) {
1756 if (!value || !*value) {
1757 printk("XFS: %s option requires an argument\n",
1758 MNTOPT_SUNIT);
1759 return EINVAL;
1760 }
1761 dsunit = simple_strtoul(value, &eov, 10);
1762 } else if (!strcmp(this_char, MNTOPT_SWIDTH)) {
1763 if (!value || !*value) {
1764 printk("XFS: %s option requires an argument\n",
1765 MNTOPT_SWIDTH);
1766 return EINVAL;
1767 }
1768 dswidth = simple_strtoul(value, &eov, 10);
1769 } else if (!strcmp(this_char, MNTOPT_64BITINODE)) {
1770 args->flags &= ~XFSMNT_32BITINODES;
1771 #if !XFS_BIG_INUMS
1772 printk("XFS: %s option not allowed on this system\n",
1773 MNTOPT_64BITINODE);
1774 return EINVAL;
1775 #endif
1776 } else if (!strcmp(this_char, MNTOPT_NOUUID)) {
1777 args->flags |= XFSMNT_NOUUID;
1778 } else if (!strcmp(this_char, MNTOPT_NOLOGFLUSH)) {
1779 args->flags |= XFSMNT_NOLOGFLUSH;
1780 } else if (!strcmp(this_char, MNTOPT_IKEEP)) {
1781 args->flags &= ~XFSMNT_IDELETE;
1782 } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) {
1783 args->flags |= XFSMNT_IDELETE;
1784 } else if (!strcmp(this_char, "osyncisdsync")) {
1785 /* no-op, this is now the default */
1786 printk("XFS: osyncisdsync is now the default, option is deprecated.\n");
1787 } else if (!strcmp(this_char, "irixsgid")) {
1788 printk("XFS: irixsgid is now a sysctl(2) variable, option is deprecated.\n");
1789 } else {
1790 printk("XFS: unknown mount option [%s].\n", this_char);
1791 return EINVAL;
1792 }
1793 }
1794
1795 if (args->flags & XFSMNT_NORECOVERY) {
1796 if ((vfsp->vfs_flag & VFS_RDONLY) == 0) {
1797 printk("XFS: no-recovery mounts must be read-only.\n");
1798 return EINVAL;
1799 }
1800 }
1801
1802 if ((args->flags & XFSMNT_NOALIGN) && (dsunit || dswidth)) {
1803 printk(
1804 "XFS: sunit and swidth options incompatible with the noalign option\n");
1805 return EINVAL;
1806 }
1807
1808 if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
1809 printk("XFS: sunit and swidth must be specified together\n");
1810 return EINVAL;
1811 }
1812
1813 if (dsunit && (dswidth % dsunit != 0)) {
1814 printk(
1815 "XFS: stripe width (%d) must be a multiple of the stripe unit (%d)\n",
1816 dswidth, dsunit);
1817 return EINVAL;
1818 }
1819
1820 if ((args->flags & XFSMNT_NOALIGN) != XFSMNT_NOALIGN) {
1821 if (dsunit) {
1822 args->sunit = dsunit;
1823 args->flags |= XFSMNT_RETERR;
1824 } else {
1825 args->sunit = vol_dsunit;
1826 }
1827 dswidth ? (args->swidth = dswidth) :
1828 (args->swidth = vol_dswidth);
1829 } else {
1830 args->sunit = args->swidth = 0;
1831 }
1832
1833 return 0;
1834 }
1835
1836 int
xfs_showargs(struct bhv_desc * bhv,struct seq_file * m)1837 xfs_showargs(
1838 struct bhv_desc *bhv,
1839 struct seq_file *m)
1840 {
1841 static struct proc_xfs_info {
1842 int flag;
1843 char *str;
1844 } xfs_info[] = {
1845 /* the few simple ones we can get from the mount struct */
1846 { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC },
1847 { XFS_MOUNT_INO64, "," MNTOPT_INO64 },
1848 { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN },
1849 { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC },
1850 { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID },
1851 { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY },
1852 { XFS_MOUNT_OSYNCISOSYNC, "," MNTOPT_OSYNCISOSYNC },
1853 { XFS_MOUNT_NOLOGFLUSH, "," MNTOPT_NOLOGFLUSH },
1854 { XFS_MOUNT_IDELETE, "," MNTOPT_NOIKEEP },
1855 { 0, NULL }
1856 };
1857 struct proc_xfs_info *xfs_infop;
1858 struct xfs_mount *mp = XFS_BHVTOM(bhv);
1859
1860 for (xfs_infop = xfs_info; xfs_infop->flag; xfs_infop++) {
1861 if (mp->m_flags & xfs_infop->flag)
1862 seq_puts(m, xfs_infop->str);
1863 }
1864
1865 if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
1866 seq_printf(m, "," MNTOPT_BIOSIZE "=%d", mp->m_writeio_log);
1867
1868 if (mp->m_logbufs > 0)
1869 seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs);
1870
1871 if (mp->m_logbsize > 0)
1872 seq_printf(m, "," MNTOPT_LOGBSIZE "=%d", mp->m_logbsize);
1873
1874 if (mp->m_ddev_targp != mp->m_logdev_targp)
1875 seq_printf(m, "," MNTOPT_LOGDEV "=%s",
1876 XFS_BUFTARG_NAME(mp->m_logdev_targp));
1877
1878 if (mp->m_rtdev_targp && mp->m_ddev_targp != mp->m_rtdev_targp)
1879 seq_printf(m, "," MNTOPT_RTDEV "=%s",
1880 XFS_BUFTARG_NAME(mp->m_rtdev_targp));
1881
1882 if (mp->m_dalign > 0)
1883 seq_printf(m, "," MNTOPT_SUNIT "=%d",
1884 (int)XFS_FSB_TO_BB(mp, mp->m_dalign));
1885
1886 if (mp->m_swidth > 0)
1887 seq_printf(m, "," MNTOPT_SWIDTH "=%d",
1888 (int)XFS_FSB_TO_BB(mp, mp->m_swidth));
1889
1890 if (!(mp->m_flags & XFS_MOUNT_32BITINOOPT))
1891 seq_printf(m, "," MNTOPT_64BITINODE);
1892
1893 return 0;
1894 }
1895
1896 STATIC void
xfs_freeze(bhv_desc_t * bdp)1897 xfs_freeze(
1898 bhv_desc_t *bdp)
1899 {
1900 xfs_mount_t *mp = XFS_BHVTOM(bdp);
1901
1902 while (atomic_read(&mp->m_active_trans) > 0)
1903 delay(100);
1904
1905 /* Push the superblock and write an unmount record */
1906 xfs_log_unmount_write(mp);
1907 xfs_unmountfs_writesb(mp);
1908 }
1909
1910
1911 vfsops_t xfs_vfsops = {
1912 BHV_IDENTITY_INIT(VFS_BHV_XFS,VFS_POSITION_XFS),
1913 .vfs_parseargs = xfs_parseargs,
1914 .vfs_showargs = xfs_showargs,
1915 .vfs_mount = xfs_mount,
1916 .vfs_unmount = xfs_unmount,
1917 .vfs_mntupdate = xfs_mntupdate,
1918 .vfs_root = xfs_root,
1919 .vfs_statvfs = xfs_statvfs,
1920 .vfs_sync = xfs_sync,
1921 .vfs_vget = xfs_vget,
1922 .vfs_dmapiops = (vfs_dmapiops_t)fs_nosys,
1923 .vfs_quotactl = (vfs_quotactl_t)fs_nosys,
1924 .vfs_get_inode = xfs_get_inode,
1925 .vfs_init_vnode = xfs_initialize_vnode,
1926 .vfs_force_shutdown = xfs_do_force_shutdown,
1927 .vfs_freeze = xfs_freeze,
1928 };
1929