1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 
36 
37 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
38 
INODE_ITEM(struct xfs_log_item * lip)39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40 {
41 	return container_of(lip, struct xfs_inode_log_item, ili_item);
42 }
43 
44 
45 /*
46  * This returns the number of iovecs needed to log the given inode item.
47  *
48  * We need one iovec for the inode log format structure, one for the
49  * inode core, and possibly one for the inode data/extents/b-tree root
50  * and one for the inode attribute data/extents/b-tree root.
51  */
52 STATIC uint
xfs_inode_item_size(struct xfs_log_item * lip)53 xfs_inode_item_size(
54 	struct xfs_log_item	*lip)
55 {
56 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 	struct xfs_inode	*ip = iip->ili_inode;
58 	uint			nvecs = 2;
59 
60 	switch (ip->i_d.di_format) {
61 	case XFS_DINODE_FMT_EXTENTS:
62 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
63 		    ip->i_d.di_nextents > 0 &&
64 		    ip->i_df.if_bytes > 0)
65 			nvecs++;
66 		break;
67 
68 	case XFS_DINODE_FMT_BTREE:
69 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
70 		    ip->i_df.if_broot_bytes > 0)
71 			nvecs++;
72 		break;
73 
74 	case XFS_DINODE_FMT_LOCAL:
75 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
76 		    ip->i_df.if_bytes > 0)
77 			nvecs++;
78 		break;
79 
80 	case XFS_DINODE_FMT_DEV:
81 	case XFS_DINODE_FMT_UUID:
82 		break;
83 
84 	default:
85 		ASSERT(0);
86 		break;
87 	}
88 
89 	if (!XFS_IFORK_Q(ip))
90 		return nvecs;
91 
92 
93 	/*
94 	 * Log any necessary attribute data.
95 	 */
96 	switch (ip->i_d.di_aformat) {
97 	case XFS_DINODE_FMT_EXTENTS:
98 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
99 		    ip->i_d.di_anextents > 0 &&
100 		    ip->i_afp->if_bytes > 0)
101 			nvecs++;
102 		break;
103 
104 	case XFS_DINODE_FMT_BTREE:
105 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
106 		    ip->i_afp->if_broot_bytes > 0)
107 			nvecs++;
108 		break;
109 
110 	case XFS_DINODE_FMT_LOCAL:
111 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
112 		    ip->i_afp->if_bytes > 0)
113 			nvecs++;
114 		break;
115 
116 	default:
117 		ASSERT(0);
118 		break;
119 	}
120 
121 	return nvecs;
122 }
123 
124 /*
125  * xfs_inode_item_format_extents - convert in-core extents to on-disk form
126  *
127  * For either the data or attr fork in extent format, we need to endian convert
128  * the in-core extent as we place them into the on-disk inode. In this case, we
129  * need to do this conversion before we write the extents into the log. Because
130  * we don't have the disk inode to write into here, we allocate a buffer and
131  * format the extents into it via xfs_iextents_copy(). We free the buffer in
132  * the unlock routine after the copy for the log has been made.
133  *
134  * In the case of the data fork, the in-core and on-disk fork sizes can be
135  * different due to delayed allocation extents. We only log on-disk extents
136  * here, so always use the physical fork size to determine the size of the
137  * buffer we need to allocate.
138  */
139 STATIC void
xfs_inode_item_format_extents(struct xfs_inode * ip,struct xfs_log_iovec * vecp,int whichfork,int type)140 xfs_inode_item_format_extents(
141 	struct xfs_inode	*ip,
142 	struct xfs_log_iovec	*vecp,
143 	int			whichfork,
144 	int			type)
145 {
146 	xfs_bmbt_rec_t		*ext_buffer;
147 
148 	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
149 	if (whichfork == XFS_DATA_FORK)
150 		ip->i_itemp->ili_extents_buf = ext_buffer;
151 	else
152 		ip->i_itemp->ili_aextents_buf = ext_buffer;
153 
154 	vecp->i_addr = ext_buffer;
155 	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
156 	vecp->i_type = type;
157 }
158 
159 /*
160  * This is called to fill in the vector of log iovecs for the
161  * given inode log item.  It fills the first item with an inode
162  * log format structure, the second with the on-disk inode structure,
163  * and a possible third and/or fourth with the inode data/extents/b-tree
164  * root and inode attributes data/extents/b-tree root.
165  */
166 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_iovec * vecp)167 xfs_inode_item_format(
168 	struct xfs_log_item	*lip,
169 	struct xfs_log_iovec	*vecp)
170 {
171 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
172 	struct xfs_inode	*ip = iip->ili_inode;
173 	uint			nvecs;
174 	size_t			data_bytes;
175 	xfs_mount_t		*mp;
176 
177 	vecp->i_addr = &iip->ili_format;
178 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
179 	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
180 	vecp++;
181 	nvecs	     = 1;
182 
183 	vecp->i_addr = &ip->i_d;
184 	vecp->i_len  = sizeof(struct xfs_icdinode);
185 	vecp->i_type = XLOG_REG_TYPE_ICORE;
186 	vecp++;
187 	nvecs++;
188 
189 	/*
190 	 * If this is really an old format inode, then we need to
191 	 * log it as such.  This means that we have to copy the link
192 	 * count from the new field to the old.  We don't have to worry
193 	 * about the new fields, because nothing trusts them as long as
194 	 * the old inode version number is there.  If the superblock already
195 	 * has a new version number, then we don't bother converting back.
196 	 */
197 	mp = ip->i_mount;
198 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
199 	if (ip->i_d.di_version == 1) {
200 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
201 			/*
202 			 * Convert it back.
203 			 */
204 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
205 			ip->i_d.di_onlink = ip->i_d.di_nlink;
206 		} else {
207 			/*
208 			 * The superblock version has already been bumped,
209 			 * so just make the conversion to the new inode
210 			 * format permanent.
211 			 */
212 			ip->i_d.di_version = 2;
213 			ip->i_d.di_onlink = 0;
214 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
215 		}
216 	}
217 
218 	switch (ip->i_d.di_format) {
219 	case XFS_DINODE_FMT_EXTENTS:
220 		iip->ili_fields &=
221 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
222 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
223 
224 		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
225 		    ip->i_d.di_nextents > 0 &&
226 		    ip->i_df.if_bytes > 0) {
227 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
228 			ASSERT(ip->i_df.if_bytes / sizeof(xfs_bmbt_rec_t) > 0);
229 			ASSERT(iip->ili_extents_buf == NULL);
230 
231 #ifdef XFS_NATIVE_HOST
232                        if (ip->i_d.di_nextents == ip->i_df.if_bytes /
233                                                (uint)sizeof(xfs_bmbt_rec_t)) {
234 				/*
235 				 * There are no delayed allocation
236 				 * extents, so just point to the
237 				 * real extents array.
238 				 */
239 				vecp->i_addr = ip->i_df.if_u1.if_extents;
240 				vecp->i_len = ip->i_df.if_bytes;
241 				vecp->i_type = XLOG_REG_TYPE_IEXT;
242 			} else
243 #endif
244 			{
245 				xfs_inode_item_format_extents(ip, vecp,
246 					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
247 			}
248 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
249 			iip->ili_format.ilf_dsize = vecp->i_len;
250 			vecp++;
251 			nvecs++;
252 		} else {
253 			iip->ili_fields &= ~XFS_ILOG_DEXT;
254 		}
255 		break;
256 
257 	case XFS_DINODE_FMT_BTREE:
258 		iip->ili_fields &=
259 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
260 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
261 
262 		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
263 		    ip->i_df.if_broot_bytes > 0) {
264 			ASSERT(ip->i_df.if_broot != NULL);
265 			vecp->i_addr = ip->i_df.if_broot;
266 			vecp->i_len = ip->i_df.if_broot_bytes;
267 			vecp->i_type = XLOG_REG_TYPE_IBROOT;
268 			vecp++;
269 			nvecs++;
270 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
271 		} else {
272 			ASSERT(!(iip->ili_fields &
273 				 XFS_ILOG_DBROOT));
274 #ifdef XFS_TRANS_DEBUG
275 			if (iip->ili_root_size > 0) {
276 				ASSERT(iip->ili_root_size ==
277 				       ip->i_df.if_broot_bytes);
278 				ASSERT(memcmp(iip->ili_orig_root,
279 					    ip->i_df.if_broot,
280 					    iip->ili_root_size) == 0);
281 			} else {
282 				ASSERT(ip->i_df.if_broot_bytes == 0);
283 			}
284 #endif
285 			iip->ili_fields &= ~XFS_ILOG_DBROOT;
286 		}
287 		break;
288 
289 	case XFS_DINODE_FMT_LOCAL:
290 		iip->ili_fields &=
291 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
292 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
293 		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
294 		    ip->i_df.if_bytes > 0) {
295 			ASSERT(ip->i_df.if_u1.if_data != NULL);
296 			ASSERT(ip->i_d.di_size > 0);
297 
298 			vecp->i_addr = ip->i_df.if_u1.if_data;
299 			/*
300 			 * Round i_bytes up to a word boundary.
301 			 * The underlying memory is guaranteed to
302 			 * to be there by xfs_idata_realloc().
303 			 */
304 			data_bytes = roundup(ip->i_df.if_bytes, 4);
305 			ASSERT((ip->i_df.if_real_bytes == 0) ||
306 			       (ip->i_df.if_real_bytes == data_bytes));
307 			vecp->i_len = (int)data_bytes;
308 			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
309 			vecp++;
310 			nvecs++;
311 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
312 		} else {
313 			iip->ili_fields &= ~XFS_ILOG_DDATA;
314 		}
315 		break;
316 
317 	case XFS_DINODE_FMT_DEV:
318 		iip->ili_fields &=
319 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
320 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
321 		if (iip->ili_fields & XFS_ILOG_DEV) {
322 			iip->ili_format.ilf_u.ilfu_rdev =
323 				ip->i_df.if_u2.if_rdev;
324 		}
325 		break;
326 
327 	case XFS_DINODE_FMT_UUID:
328 		iip->ili_fields &=
329 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
330 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
331 		if (iip->ili_fields & XFS_ILOG_UUID) {
332 			iip->ili_format.ilf_u.ilfu_uuid =
333 				ip->i_df.if_u2.if_uuid;
334 		}
335 		break;
336 
337 	default:
338 		ASSERT(0);
339 		break;
340 	}
341 
342 	/*
343 	 * If there are no attributes associated with the file, then we're done.
344 	 */
345 	if (!XFS_IFORK_Q(ip)) {
346 		iip->ili_fields &=
347 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
348 		goto out;
349 	}
350 
351 	switch (ip->i_d.di_aformat) {
352 	case XFS_DINODE_FMT_EXTENTS:
353 		iip->ili_fields &=
354 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
355 
356 		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
357 		    ip->i_d.di_anextents > 0 &&
358 		    ip->i_afp->if_bytes > 0) {
359 			ASSERT(ip->i_afp->if_bytes / sizeof(xfs_bmbt_rec_t) ==
360 				ip->i_d.di_anextents);
361 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
362 #ifdef XFS_NATIVE_HOST
363 			/*
364 			 * There are not delayed allocation extents
365 			 * for attributes, so just point at the array.
366 			 */
367 			vecp->i_addr = ip->i_afp->if_u1.if_extents;
368 			vecp->i_len = ip->i_afp->if_bytes;
369 			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
370 #else
371 			ASSERT(iip->ili_aextents_buf == NULL);
372 			xfs_inode_item_format_extents(ip, vecp,
373 					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
374 #endif
375 			iip->ili_format.ilf_asize = vecp->i_len;
376 			vecp++;
377 			nvecs++;
378 		} else {
379 			iip->ili_fields &= ~XFS_ILOG_AEXT;
380 		}
381 		break;
382 
383 	case XFS_DINODE_FMT_BTREE:
384 		iip->ili_fields &=
385 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
386 
387 		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
388 		    ip->i_afp->if_broot_bytes > 0) {
389 			ASSERT(ip->i_afp->if_broot != NULL);
390 
391 			vecp->i_addr = ip->i_afp->if_broot;
392 			vecp->i_len = ip->i_afp->if_broot_bytes;
393 			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
394 			vecp++;
395 			nvecs++;
396 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
397 		} else {
398 			iip->ili_fields &= ~XFS_ILOG_ABROOT;
399 		}
400 		break;
401 
402 	case XFS_DINODE_FMT_LOCAL:
403 		iip->ili_fields &=
404 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
405 
406 		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
407 		    ip->i_afp->if_bytes > 0) {
408 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
409 
410 			vecp->i_addr = ip->i_afp->if_u1.if_data;
411 			/*
412 			 * Round i_bytes up to a word boundary.
413 			 * The underlying memory is guaranteed to
414 			 * to be there by xfs_idata_realloc().
415 			 */
416 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
417 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
418 			       (ip->i_afp->if_real_bytes == data_bytes));
419 			vecp->i_len = (int)data_bytes;
420 			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
421 			vecp++;
422 			nvecs++;
423 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
424 		} else {
425 			iip->ili_fields &= ~XFS_ILOG_ADATA;
426 		}
427 		break;
428 
429 	default:
430 		ASSERT(0);
431 		break;
432 	}
433 
434 out:
435 	/*
436 	 * Now update the log format that goes out to disk from the in-core
437 	 * values.  We always write the inode core to make the arithmetic
438 	 * games in recovery easier, which isn't a big deal as just about any
439 	 * transaction would dirty it anyway.
440 	 */
441 	iip->ili_format.ilf_fields = XFS_ILOG_CORE |
442 		(iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
443 	iip->ili_format.ilf_size = nvecs;
444 }
445 
446 
447 /*
448  * This is called to pin the inode associated with the inode log
449  * item in memory so it cannot be written out.
450  */
451 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)452 xfs_inode_item_pin(
453 	struct xfs_log_item	*lip)
454 {
455 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
456 
457 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
458 
459 	trace_xfs_inode_pin(ip, _RET_IP_);
460 	atomic_inc(&ip->i_pincount);
461 }
462 
463 
464 /*
465  * This is called to unpin the inode associated with the inode log
466  * item which was previously pinned with a call to xfs_inode_item_pin().
467  *
468  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
469  */
470 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)471 xfs_inode_item_unpin(
472 	struct xfs_log_item	*lip,
473 	int			remove)
474 {
475 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
476 
477 	trace_xfs_inode_unpin(ip, _RET_IP_);
478 	ASSERT(atomic_read(&ip->i_pincount) > 0);
479 	if (atomic_dec_and_test(&ip->i_pincount))
480 		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
481 }
482 
483 /*
484  * This is called to attempt to lock the inode associated with this
485  * inode log item, in preparation for the push routine which does the actual
486  * iflush.  Don't sleep on the inode lock or the flush lock.
487  *
488  * If the flush lock is already held, indicating that the inode has
489  * been or is in the process of being flushed, then (ideally) we'd like to
490  * see if the inode's buffer is still incore, and if so give it a nudge.
491  * We delay doing so until the pushbuf routine, though, to avoid holding
492  * the AIL lock across a call to the blackhole which is the buffer cache.
493  * Also we don't want to sleep in any device strategy routines, which can happen
494  * if we do the subsequent bawrite in here.
495  */
496 STATIC uint
xfs_inode_item_trylock(struct xfs_log_item * lip)497 xfs_inode_item_trylock(
498 	struct xfs_log_item	*lip)
499 {
500 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
501 	struct xfs_inode	*ip = iip->ili_inode;
502 
503 	if (xfs_ipincount(ip) > 0)
504 		return XFS_ITEM_PINNED;
505 
506 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
507 		return XFS_ITEM_LOCKED;
508 
509 	if (!xfs_iflock_nowait(ip)) {
510 		/*
511 		 * inode has already been flushed to the backing buffer,
512 		 * leave it locked in shared mode, pushbuf routine will
513 		 * unlock it.
514 		 */
515 		return XFS_ITEM_PUSHBUF;
516 	}
517 
518 	/* Stale items should force out the iclog */
519 	if (ip->i_flags & XFS_ISTALE) {
520 		xfs_ifunlock(ip);
521 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
522 		return XFS_ITEM_PINNED;
523 	}
524 
525 #ifdef DEBUG
526 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
527 		ASSERT(iip->ili_fields != 0);
528 		ASSERT(iip->ili_logged == 0);
529 		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
530 	}
531 #endif
532 	return XFS_ITEM_SUCCESS;
533 }
534 
535 /*
536  * Unlock the inode associated with the inode log item.
537  * Clear the fields of the inode and inode log item that
538  * are specific to the current transaction.  If the
539  * hold flags is set, do not unlock the inode.
540  */
541 STATIC void
xfs_inode_item_unlock(struct xfs_log_item * lip)542 xfs_inode_item_unlock(
543 	struct xfs_log_item	*lip)
544 {
545 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
546 	struct xfs_inode	*ip = iip->ili_inode;
547 	unsigned short		lock_flags;
548 
549 	ASSERT(ip->i_itemp != NULL);
550 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
551 
552 	/*
553 	 * If the inode needed a separate buffer with which to log
554 	 * its extents, then free it now.
555 	 */
556 	if (iip->ili_extents_buf != NULL) {
557 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
558 		ASSERT(ip->i_d.di_nextents > 0);
559 		ASSERT(iip->ili_fields & XFS_ILOG_DEXT);
560 		ASSERT(ip->i_df.if_bytes > 0);
561 		kmem_free(iip->ili_extents_buf);
562 		iip->ili_extents_buf = NULL;
563 	}
564 	if (iip->ili_aextents_buf != NULL) {
565 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
566 		ASSERT(ip->i_d.di_anextents > 0);
567 		ASSERT(iip->ili_fields & XFS_ILOG_AEXT);
568 		ASSERT(ip->i_afp->if_bytes > 0);
569 		kmem_free(iip->ili_aextents_buf);
570 		iip->ili_aextents_buf = NULL;
571 	}
572 
573 	lock_flags = iip->ili_lock_flags;
574 	iip->ili_lock_flags = 0;
575 	if (lock_flags)
576 		xfs_iunlock(ip, lock_flags);
577 }
578 
579 /*
580  * This is called to find out where the oldest active copy of the inode log
581  * item in the on disk log resides now that the last log write of it completed
582  * at the given lsn.  Since we always re-log all dirty data in an inode, the
583  * latest copy in the on disk log is the only one that matters.  Therefore,
584  * simply return the given lsn.
585  *
586  * If the inode has been marked stale because the cluster is being freed, we
587  * don't want to (re-)insert this inode into the AIL. There is a race condition
588  * where the cluster buffer may be unpinned before the inode is inserted into
589  * the AIL during transaction committed processing. If the buffer is unpinned
590  * before the inode item has been committed and inserted, then it is possible
591  * for the buffer to be written and IO completes before the inode is inserted
592  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
593  * AIL which will never get removed. It will, however, get reclaimed which
594  * triggers an assert in xfs_inode_free() complaining about freein an inode
595  * still in the AIL.
596  *
597  * To avoid this, just unpin the inode directly and return a LSN of -1 so the
598  * transaction committed code knows that it does not need to do any further
599  * processing on the item.
600  */
601 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)602 xfs_inode_item_committed(
603 	struct xfs_log_item	*lip,
604 	xfs_lsn_t		lsn)
605 {
606 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
607 	struct xfs_inode	*ip = iip->ili_inode;
608 
609 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
610 		xfs_inode_item_unpin(lip, 0);
611 		return -1;
612 	}
613 	return lsn;
614 }
615 
616 /*
617  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
618  * failed to get the inode flush lock but did get the inode locked SHARED.
619  * Here we're trying to see if the inode buffer is incore, and if so whether it's
620  * marked delayed write. If that's the case, we'll promote it and that will
621  * allow the caller to write the buffer by triggering the xfsbufd to run.
622  */
623 STATIC bool
xfs_inode_item_pushbuf(struct xfs_log_item * lip)624 xfs_inode_item_pushbuf(
625 	struct xfs_log_item	*lip)
626 {
627 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
628 	struct xfs_inode	*ip = iip->ili_inode;
629 	struct xfs_buf		*bp;
630 	bool			ret = true;
631 
632 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
633 
634 	/*
635 	 * If a flush is not in progress anymore, chances are that the
636 	 * inode was taken off the AIL. So, just get out.
637 	 */
638 	if (!xfs_isiflocked(ip) ||
639 	    !(lip->li_flags & XFS_LI_IN_AIL)) {
640 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
641 		return true;
642 	}
643 
644 	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
645 			iip->ili_format.ilf_len, XBF_TRYLOCK);
646 
647 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
648 	if (!bp)
649 		return true;
650 	if (XFS_BUF_ISDELAYWRITE(bp))
651 		xfs_buf_delwri_promote(bp);
652 	if (xfs_buf_ispinned(bp))
653 		ret = false;
654 	xfs_buf_relse(bp);
655 	return ret;
656 }
657 
658 /*
659  * This is called to asynchronously write the inode associated with this
660  * inode log item out to disk. The inode will already have been locked by
661  * a successful call to xfs_inode_item_trylock().
662  */
663 STATIC void
xfs_inode_item_push(struct xfs_log_item * lip)664 xfs_inode_item_push(
665 	struct xfs_log_item	*lip)
666 {
667 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
668 	struct xfs_inode	*ip = iip->ili_inode;
669 
670 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
671 	ASSERT(xfs_isiflocked(ip));
672 
673 	/*
674 	 * Since we were able to lock the inode's flush lock and
675 	 * we found it on the AIL, the inode must be dirty.  This
676 	 * is because the inode is removed from the AIL while still
677 	 * holding the flush lock in xfs_iflush_done().  Thus, if
678 	 * we found it in the AIL and were able to obtain the flush
679 	 * lock without sleeping, then there must not have been
680 	 * anyone in the process of flushing the inode.
681 	 */
682 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || iip->ili_fields != 0);
683 
684 	/*
685 	 * Push the inode to it's backing buffer. This will not remove the
686 	 * inode from the AIL - a further push will be required to trigger a
687 	 * buffer push. However, this allows all the dirty inodes to be pushed
688 	 * to the buffer before it is pushed to disk. The buffer IO completion
689 	 * will pull the inode from the AIL, mark it clean and unlock the flush
690 	 * lock.
691 	 */
692 	(void) xfs_iflush(ip, SYNC_TRYLOCK);
693 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
694 }
695 
696 /*
697  * XXX rcc - this one really has to do something.  Probably needs
698  * to stamp in a new field in the incore inode.
699  */
700 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_lsn_t lsn)701 xfs_inode_item_committing(
702 	struct xfs_log_item	*lip,
703 	xfs_lsn_t		lsn)
704 {
705 	INODE_ITEM(lip)->ili_last_lsn = lsn;
706 }
707 
708 /*
709  * This is the ops vector shared by all buf log items.
710  */
711 static const struct xfs_item_ops xfs_inode_item_ops = {
712 	.iop_size	= xfs_inode_item_size,
713 	.iop_format	= xfs_inode_item_format,
714 	.iop_pin	= xfs_inode_item_pin,
715 	.iop_unpin	= xfs_inode_item_unpin,
716 	.iop_trylock	= xfs_inode_item_trylock,
717 	.iop_unlock	= xfs_inode_item_unlock,
718 	.iop_committed	= xfs_inode_item_committed,
719 	.iop_push	= xfs_inode_item_push,
720 	.iop_pushbuf	= xfs_inode_item_pushbuf,
721 	.iop_committing = xfs_inode_item_committing
722 };
723 
724 
725 /*
726  * Initialize the inode log item for a newly allocated (in-core) inode.
727  */
728 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)729 xfs_inode_item_init(
730 	struct xfs_inode	*ip,
731 	struct xfs_mount	*mp)
732 {
733 	struct xfs_inode_log_item *iip;
734 
735 	ASSERT(ip->i_itemp == NULL);
736 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
737 
738 	iip->ili_inode = ip;
739 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
740 						&xfs_inode_item_ops);
741 	iip->ili_format.ilf_type = XFS_LI_INODE;
742 	iip->ili_format.ilf_ino = ip->i_ino;
743 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
744 	iip->ili_format.ilf_len = ip->i_imap.im_len;
745 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
746 }
747 
748 /*
749  * Free the inode log item and any memory hanging off of it.
750  */
751 void
xfs_inode_item_destroy(xfs_inode_t * ip)752 xfs_inode_item_destroy(
753 	xfs_inode_t	*ip)
754 {
755 #ifdef XFS_TRANS_DEBUG
756 	if (ip->i_itemp->ili_root_size != 0) {
757 		kmem_free(ip->i_itemp->ili_orig_root);
758 	}
759 #endif
760 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
761 }
762 
763 
764 /*
765  * This is the inode flushing I/O completion routine.  It is called
766  * from interrupt level when the buffer containing the inode is
767  * flushed to disk.  It is responsible for removing the inode item
768  * from the AIL if it has not been re-logged, and unlocking the inode's
769  * flush lock.
770  *
771  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
772  * list for other inodes that will run this function. We remove them from the
773  * buffer list so we can process all the inode IO completions in one AIL lock
774  * traversal.
775  */
776 void
xfs_iflush_done(struct xfs_buf * bp,struct xfs_log_item * lip)777 xfs_iflush_done(
778 	struct xfs_buf		*bp,
779 	struct xfs_log_item	*lip)
780 {
781 	struct xfs_inode_log_item *iip;
782 	struct xfs_log_item	*blip;
783 	struct xfs_log_item	*next;
784 	struct xfs_log_item	*prev;
785 	struct xfs_ail		*ailp = lip->li_ailp;
786 	int			need_ail = 0;
787 
788 	/*
789 	 * Scan the buffer IO completions for other inodes being completed and
790 	 * attach them to the current inode log item.
791 	 */
792 	blip = bp->b_fspriv;
793 	prev = NULL;
794 	while (blip != NULL) {
795 		if (lip->li_cb != xfs_iflush_done) {
796 			prev = blip;
797 			blip = blip->li_bio_list;
798 			continue;
799 		}
800 
801 		/* remove from list */
802 		next = blip->li_bio_list;
803 		if (!prev) {
804 			bp->b_fspriv = next;
805 		} else {
806 			prev->li_bio_list = next;
807 		}
808 
809 		/* add to current list */
810 		blip->li_bio_list = lip->li_bio_list;
811 		lip->li_bio_list = blip;
812 
813 		/*
814 		 * while we have the item, do the unlocked check for needing
815 		 * the AIL lock.
816 		 */
817 		iip = INODE_ITEM(blip);
818 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
819 			need_ail++;
820 
821 		blip = next;
822 	}
823 
824 	/* make sure we capture the state of the initial inode. */
825 	iip = INODE_ITEM(lip);
826 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
827 		need_ail++;
828 
829 	/*
830 	 * We only want to pull the item from the AIL if it is
831 	 * actually there and its location in the log has not
832 	 * changed since we started the flush.  Thus, we only bother
833 	 * if the ili_logged flag is set and the inode's lsn has not
834 	 * changed.  First we check the lsn outside
835 	 * the lock since it's cheaper, and then we recheck while
836 	 * holding the lock before removing the inode from the AIL.
837 	 */
838 	if (need_ail) {
839 		struct xfs_log_item *log_items[need_ail];
840 		int i = 0;
841 		spin_lock(&ailp->xa_lock);
842 		for (blip = lip; blip; blip = blip->li_bio_list) {
843 			iip = INODE_ITEM(blip);
844 			if (iip->ili_logged &&
845 			    blip->li_lsn == iip->ili_flush_lsn) {
846 				log_items[i++] = blip;
847 			}
848 			ASSERT(i <= need_ail);
849 		}
850 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
851 		xfs_trans_ail_delete_bulk(ailp, log_items, i);
852 	}
853 
854 
855 	/*
856 	 * clean up and unlock the flush lock now we are done. We can clear the
857 	 * ili_last_fields bits now that we know that the data corresponding to
858 	 * them is safely on disk.
859 	 */
860 	for (blip = lip; blip; blip = next) {
861 		next = blip->li_bio_list;
862 		blip->li_bio_list = NULL;
863 
864 		iip = INODE_ITEM(blip);
865 		iip->ili_logged = 0;
866 		iip->ili_last_fields = 0;
867 		xfs_ifunlock(iip->ili_inode);
868 	}
869 }
870 
871 /*
872  * This is the inode flushing abort routine.  It is called
873  * from xfs_iflush when the filesystem is shutting down to clean
874  * up the inode state.
875  * It is responsible for removing the inode item
876  * from the AIL if it has not been re-logged, and unlocking the inode's
877  * flush lock.
878  */
879 void
xfs_iflush_abort(xfs_inode_t * ip)880 xfs_iflush_abort(
881 	xfs_inode_t		*ip)
882 {
883 	xfs_inode_log_item_t	*iip = ip->i_itemp;
884 
885 	if (iip) {
886 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
887 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
888 			spin_lock(&ailp->xa_lock);
889 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
890 				/* xfs_trans_ail_delete() drops the AIL lock. */
891 				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
892 			} else
893 				spin_unlock(&ailp->xa_lock);
894 		}
895 		iip->ili_logged = 0;
896 		/*
897 		 * Clear the ili_last_fields bits now that we know that the
898 		 * data corresponding to them is safely on disk.
899 		 */
900 		iip->ili_last_fields = 0;
901 		/*
902 		 * Clear the inode logging fields so no more flushes are
903 		 * attempted.
904 		 */
905 		iip->ili_fields = 0;
906 	}
907 	/*
908 	 * Release the inode's flush lock since we're done with it.
909 	 */
910 	xfs_ifunlock(ip);
911 }
912 
913 void
xfs_istale_done(struct xfs_buf * bp,struct xfs_log_item * lip)914 xfs_istale_done(
915 	struct xfs_buf		*bp,
916 	struct xfs_log_item	*lip)
917 {
918 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
919 }
920 
921 /*
922  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
923  * (which can have different field alignments) to the native version
924  */
925 int
xfs_inode_item_format_convert(xfs_log_iovec_t * buf,xfs_inode_log_format_t * in_f)926 xfs_inode_item_format_convert(
927 	xfs_log_iovec_t		*buf,
928 	xfs_inode_log_format_t	*in_f)
929 {
930 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
931 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
932 
933 		in_f->ilf_type = in_f32->ilf_type;
934 		in_f->ilf_size = in_f32->ilf_size;
935 		in_f->ilf_fields = in_f32->ilf_fields;
936 		in_f->ilf_asize = in_f32->ilf_asize;
937 		in_f->ilf_dsize = in_f32->ilf_dsize;
938 		in_f->ilf_ino = in_f32->ilf_ino;
939 		/* copy biggest field of ilf_u */
940 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
941 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
942 		       sizeof(uuid_t));
943 		in_f->ilf_blkno = in_f32->ilf_blkno;
944 		in_f->ilf_len = in_f32->ilf_len;
945 		in_f->ilf_boffset = in_f32->ilf_boffset;
946 		return 0;
947 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
948 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
949 
950 		in_f->ilf_type = in_f64->ilf_type;
951 		in_f->ilf_size = in_f64->ilf_size;
952 		in_f->ilf_fields = in_f64->ilf_fields;
953 		in_f->ilf_asize = in_f64->ilf_asize;
954 		in_f->ilf_dsize = in_f64->ilf_dsize;
955 		in_f->ilf_ino = in_f64->ilf_ino;
956 		/* copy biggest field of ilf_u */
957 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
958 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
959 		       sizeof(uuid_t));
960 		in_f->ilf_blkno = in_f64->ilf_blkno;
961 		in_f->ilf_len = in_f64->ilf_len;
962 		in_f->ilf_boffset = in_f64->ilf_boffset;
963 		return 0;
964 	}
965 	return EFSCORRUPTED;
966 }
967