1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_trans_priv.h"
29 #include "xfs_bmap_btree.h"
30 #include "xfs_dinode.h"
31 #include "xfs_inode.h"
32 #include "xfs_inode_item.h"
33 #include "xfs_error.h"
34 #include "xfs_trace.h"
35 
36 
37 kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */
38 
INODE_ITEM(struct xfs_log_item * lip)39 static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
40 {
41 	return container_of(lip, struct xfs_inode_log_item, ili_item);
42 }
43 
44 
45 /*
46  * This returns the number of iovecs needed to log the given inode item.
47  *
48  * We need one iovec for the inode log format structure, one for the
49  * inode core, and possibly one for the inode data/extents/b-tree root
50  * and one for the inode attribute data/extents/b-tree root.
51  */
52 STATIC uint
xfs_inode_item_size(struct xfs_log_item * lip)53 xfs_inode_item_size(
54 	struct xfs_log_item	*lip)
55 {
56 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
57 	struct xfs_inode	*ip = iip->ili_inode;
58 	uint			nvecs = 2;
59 
60 	/*
61 	 * Only log the data/extents/b-tree root if there is something
62 	 * left to log.
63 	 */
64 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
65 
66 	switch (ip->i_d.di_format) {
67 	case XFS_DINODE_FMT_EXTENTS:
68 		iip->ili_format.ilf_fields &=
69 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
70 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
71 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) &&
72 		    (ip->i_d.di_nextents > 0) &&
73 		    (ip->i_df.if_bytes > 0)) {
74 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
75 			nvecs++;
76 		} else {
77 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT;
78 		}
79 		break;
80 
81 	case XFS_DINODE_FMT_BTREE:
82 		ASSERT(ip->i_df.if_ext_max ==
83 		       XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t));
84 		iip->ili_format.ilf_fields &=
85 			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT |
86 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
87 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) &&
88 		    (ip->i_df.if_broot_bytes > 0)) {
89 			ASSERT(ip->i_df.if_broot != NULL);
90 			nvecs++;
91 		} else {
92 			ASSERT(!(iip->ili_format.ilf_fields &
93 				 XFS_ILOG_DBROOT));
94 #ifdef XFS_TRANS_DEBUG
95 			if (iip->ili_root_size > 0) {
96 				ASSERT(iip->ili_root_size ==
97 				       ip->i_df.if_broot_bytes);
98 				ASSERT(memcmp(iip->ili_orig_root,
99 					    ip->i_df.if_broot,
100 					    iip->ili_root_size) == 0);
101 			} else {
102 				ASSERT(ip->i_df.if_broot_bytes == 0);
103 			}
104 #endif
105 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT;
106 		}
107 		break;
108 
109 	case XFS_DINODE_FMT_LOCAL:
110 		iip->ili_format.ilf_fields &=
111 			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT |
112 			  XFS_ILOG_DEV | XFS_ILOG_UUID);
113 		if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) &&
114 		    (ip->i_df.if_bytes > 0)) {
115 			ASSERT(ip->i_df.if_u1.if_data != NULL);
116 			ASSERT(ip->i_d.di_size > 0);
117 			nvecs++;
118 		} else {
119 			iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA;
120 		}
121 		break;
122 
123 	case XFS_DINODE_FMT_DEV:
124 		iip->ili_format.ilf_fields &=
125 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
126 			  XFS_ILOG_DEXT | XFS_ILOG_UUID);
127 		break;
128 
129 	case XFS_DINODE_FMT_UUID:
130 		iip->ili_format.ilf_fields &=
131 			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
132 			  XFS_ILOG_DEXT | XFS_ILOG_DEV);
133 		break;
134 
135 	default:
136 		ASSERT(0);
137 		break;
138 	}
139 
140 	/*
141 	 * If there are no attributes associated with this file,
142 	 * then there cannot be anything more to log.
143 	 * Clear all attribute-related log flags.
144 	 */
145 	if (!XFS_IFORK_Q(ip)) {
146 		iip->ili_format.ilf_fields &=
147 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
148 		return nvecs;
149 	}
150 
151 	/*
152 	 * Log any necessary attribute data.
153 	 */
154 	switch (ip->i_d.di_aformat) {
155 	case XFS_DINODE_FMT_EXTENTS:
156 		iip->ili_format.ilf_fields &=
157 			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
158 		if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) &&
159 		    (ip->i_d.di_anextents > 0) &&
160 		    (ip->i_afp->if_bytes > 0)) {
161 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
162 			nvecs++;
163 		} else {
164 			iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT;
165 		}
166 		break;
167 
168 	case XFS_DINODE_FMT_BTREE:
169 		iip->ili_format.ilf_fields &=
170 			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
171 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) &&
172 		    (ip->i_afp->if_broot_bytes > 0)) {
173 			ASSERT(ip->i_afp->if_broot != NULL);
174 			nvecs++;
175 		} else {
176 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT;
177 		}
178 		break;
179 
180 	case XFS_DINODE_FMT_LOCAL:
181 		iip->ili_format.ilf_fields &=
182 			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
183 		if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) &&
184 		    (ip->i_afp->if_bytes > 0)) {
185 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
186 			nvecs++;
187 		} else {
188 			iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA;
189 		}
190 		break;
191 
192 	default:
193 		ASSERT(0);
194 		break;
195 	}
196 
197 	return nvecs;
198 }
199 
200 /*
201  * xfs_inode_item_format_extents - convert in-core extents to on-disk form
202  *
203  * For either the data or attr fork in extent format, we need to endian convert
204  * the in-core extent as we place them into the on-disk inode. In this case, we
205  * need to do this conversion before we write the extents into the log. Because
206  * we don't have the disk inode to write into here, we allocate a buffer and
207  * format the extents into it via xfs_iextents_copy(). We free the buffer in
208  * the unlock routine after the copy for the log has been made.
209  *
210  * In the case of the data fork, the in-core and on-disk fork sizes can be
211  * different due to delayed allocation extents. We only log on-disk extents
212  * here, so always use the physical fork size to determine the size of the
213  * buffer we need to allocate.
214  */
215 STATIC void
xfs_inode_item_format_extents(struct xfs_inode * ip,struct xfs_log_iovec * vecp,int whichfork,int type)216 xfs_inode_item_format_extents(
217 	struct xfs_inode	*ip,
218 	struct xfs_log_iovec	*vecp,
219 	int			whichfork,
220 	int			type)
221 {
222 	xfs_bmbt_rec_t		*ext_buffer;
223 
224 	ext_buffer = kmem_alloc(XFS_IFORK_SIZE(ip, whichfork), KM_SLEEP);
225 	if (whichfork == XFS_DATA_FORK)
226 		ip->i_itemp->ili_extents_buf = ext_buffer;
227 	else
228 		ip->i_itemp->ili_aextents_buf = ext_buffer;
229 
230 	vecp->i_addr = ext_buffer;
231 	vecp->i_len = xfs_iextents_copy(ip, ext_buffer, whichfork);
232 	vecp->i_type = type;
233 }
234 
235 /*
236  * This is called to fill in the vector of log iovecs for the
237  * given inode log item.  It fills the first item with an inode
238  * log format structure, the second with the on-disk inode structure,
239  * and a possible third and/or fourth with the inode data/extents/b-tree
240  * root and inode attributes data/extents/b-tree root.
241  */
242 STATIC void
xfs_inode_item_format(struct xfs_log_item * lip,struct xfs_log_iovec * vecp)243 xfs_inode_item_format(
244 	struct xfs_log_item	*lip,
245 	struct xfs_log_iovec	*vecp)
246 {
247 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
248 	struct xfs_inode	*ip = iip->ili_inode;
249 	uint			nvecs;
250 	size_t			data_bytes;
251 	xfs_mount_t		*mp;
252 
253 	vecp->i_addr = &iip->ili_format;
254 	vecp->i_len  = sizeof(xfs_inode_log_format_t);
255 	vecp->i_type = XLOG_REG_TYPE_IFORMAT;
256 	vecp++;
257 	nvecs	     = 1;
258 
259 	/*
260 	 * Clear i_update_core if the timestamps (or any other
261 	 * non-transactional modification) need flushing/logging
262 	 * and we're about to log them with the rest of the core.
263 	 *
264 	 * This is the same logic as xfs_iflush() but this code can't
265 	 * run at the same time as xfs_iflush because we're in commit
266 	 * processing here and so we have the inode lock held in
267 	 * exclusive mode.  Although it doesn't really matter
268 	 * for the timestamps if both routines were to grab the
269 	 * timestamps or not.  That would be ok.
270 	 *
271 	 * We clear i_update_core before copying out the data.
272 	 * This is for coordination with our timestamp updates
273 	 * that don't hold the inode lock. They will always
274 	 * update the timestamps BEFORE setting i_update_core,
275 	 * so if we clear i_update_core after they set it we
276 	 * are guaranteed to see their updates to the timestamps
277 	 * either here.  Likewise, if they set it after we clear it
278 	 * here, we'll see it either on the next commit of this
279 	 * inode or the next time the inode gets flushed via
280 	 * xfs_iflush().  This depends on strongly ordered memory
281 	 * semantics, but we have that.  We use the SYNCHRONIZE
282 	 * macro to make sure that the compiler does not reorder
283 	 * the i_update_core access below the data copy below.
284 	 */
285 	if (ip->i_update_core)  {
286 		ip->i_update_core = 0;
287 		SYNCHRONIZE();
288 	}
289 
290 	/*
291 	 * Make sure to get the latest timestamps from the Linux inode.
292 	 */
293 	xfs_synchronize_times(ip);
294 
295 	vecp->i_addr = &ip->i_d;
296 	vecp->i_len  = sizeof(struct xfs_icdinode);
297 	vecp->i_type = XLOG_REG_TYPE_ICORE;
298 	vecp++;
299 	nvecs++;
300 	iip->ili_format.ilf_fields |= XFS_ILOG_CORE;
301 
302 	/*
303 	 * If this is really an old format inode, then we need to
304 	 * log it as such.  This means that we have to copy the link
305 	 * count from the new field to the old.  We don't have to worry
306 	 * about the new fields, because nothing trusts them as long as
307 	 * the old inode version number is there.  If the superblock already
308 	 * has a new version number, then we don't bother converting back.
309 	 */
310 	mp = ip->i_mount;
311 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
312 	if (ip->i_d.di_version == 1) {
313 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
314 			/*
315 			 * Convert it back.
316 			 */
317 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
318 			ip->i_d.di_onlink = ip->i_d.di_nlink;
319 		} else {
320 			/*
321 			 * The superblock version has already been bumped,
322 			 * so just make the conversion to the new inode
323 			 * format permanent.
324 			 */
325 			ip->i_d.di_version = 2;
326 			ip->i_d.di_onlink = 0;
327 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
328 		}
329 	}
330 
331 	switch (ip->i_d.di_format) {
332 	case XFS_DINODE_FMT_EXTENTS:
333 		ASSERT(!(iip->ili_format.ilf_fields &
334 			 (XFS_ILOG_DDATA | XFS_ILOG_DBROOT |
335 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
336 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) {
337 			ASSERT(ip->i_df.if_bytes > 0);
338 			ASSERT(ip->i_df.if_u1.if_extents != NULL);
339 			ASSERT(ip->i_d.di_nextents > 0);
340 			ASSERT(iip->ili_extents_buf == NULL);
341 			ASSERT((ip->i_df.if_bytes /
342 				(uint)sizeof(xfs_bmbt_rec_t)) > 0);
343 #ifdef XFS_NATIVE_HOST
344                        if (ip->i_d.di_nextents == ip->i_df.if_bytes /
345                                                (uint)sizeof(xfs_bmbt_rec_t)) {
346 				/*
347 				 * There are no delayed allocation
348 				 * extents, so just point to the
349 				 * real extents array.
350 				 */
351 				vecp->i_addr = ip->i_df.if_u1.if_extents;
352 				vecp->i_len = ip->i_df.if_bytes;
353 				vecp->i_type = XLOG_REG_TYPE_IEXT;
354 			} else
355 #endif
356 			{
357 				xfs_inode_item_format_extents(ip, vecp,
358 					XFS_DATA_FORK, XLOG_REG_TYPE_IEXT);
359 			}
360 			ASSERT(vecp->i_len <= ip->i_df.if_bytes);
361 			iip->ili_format.ilf_dsize = vecp->i_len;
362 			vecp++;
363 			nvecs++;
364 		}
365 		break;
366 
367 	case XFS_DINODE_FMT_BTREE:
368 		ASSERT(!(iip->ili_format.ilf_fields &
369 			 (XFS_ILOG_DDATA | XFS_ILOG_DEXT |
370 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
371 		if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) {
372 			ASSERT(ip->i_df.if_broot_bytes > 0);
373 			ASSERT(ip->i_df.if_broot != NULL);
374 			vecp->i_addr = ip->i_df.if_broot;
375 			vecp->i_len = ip->i_df.if_broot_bytes;
376 			vecp->i_type = XLOG_REG_TYPE_IBROOT;
377 			vecp++;
378 			nvecs++;
379 			iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes;
380 		}
381 		break;
382 
383 	case XFS_DINODE_FMT_LOCAL:
384 		ASSERT(!(iip->ili_format.ilf_fields &
385 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
386 			  XFS_ILOG_DEV | XFS_ILOG_UUID)));
387 		if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) {
388 			ASSERT(ip->i_df.if_bytes > 0);
389 			ASSERT(ip->i_df.if_u1.if_data != NULL);
390 			ASSERT(ip->i_d.di_size > 0);
391 
392 			vecp->i_addr = ip->i_df.if_u1.if_data;
393 			/*
394 			 * Round i_bytes up to a word boundary.
395 			 * The underlying memory is guaranteed to
396 			 * to be there by xfs_idata_realloc().
397 			 */
398 			data_bytes = roundup(ip->i_df.if_bytes, 4);
399 			ASSERT((ip->i_df.if_real_bytes == 0) ||
400 			       (ip->i_df.if_real_bytes == data_bytes));
401 			vecp->i_len = (int)data_bytes;
402 			vecp->i_type = XLOG_REG_TYPE_ILOCAL;
403 			vecp++;
404 			nvecs++;
405 			iip->ili_format.ilf_dsize = (unsigned)data_bytes;
406 		}
407 		break;
408 
409 	case XFS_DINODE_FMT_DEV:
410 		ASSERT(!(iip->ili_format.ilf_fields &
411 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
412 			  XFS_ILOG_DDATA | XFS_ILOG_UUID)));
413 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
414 			iip->ili_format.ilf_u.ilfu_rdev =
415 				ip->i_df.if_u2.if_rdev;
416 		}
417 		break;
418 
419 	case XFS_DINODE_FMT_UUID:
420 		ASSERT(!(iip->ili_format.ilf_fields &
421 			 (XFS_ILOG_DBROOT | XFS_ILOG_DEXT |
422 			  XFS_ILOG_DDATA | XFS_ILOG_DEV)));
423 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
424 			iip->ili_format.ilf_u.ilfu_uuid =
425 				ip->i_df.if_u2.if_uuid;
426 		}
427 		break;
428 
429 	default:
430 		ASSERT(0);
431 		break;
432 	}
433 
434 	/*
435 	 * If there are no attributes associated with the file,
436 	 * then we're done.
437 	 * Assert that no attribute-related log flags are set.
438 	 */
439 	if (!XFS_IFORK_Q(ip)) {
440 		ASSERT(nvecs == lip->li_desc->lid_size);
441 		iip->ili_format.ilf_size = nvecs;
442 		ASSERT(!(iip->ili_format.ilf_fields &
443 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
444 		return;
445 	}
446 
447 	switch (ip->i_d.di_aformat) {
448 	case XFS_DINODE_FMT_EXTENTS:
449 		ASSERT(!(iip->ili_format.ilf_fields &
450 			 (XFS_ILOG_ADATA | XFS_ILOG_ABROOT)));
451 		if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) {
452 #ifdef DEBUG
453 			int nrecs = ip->i_afp->if_bytes /
454 				(uint)sizeof(xfs_bmbt_rec_t);
455 			ASSERT(nrecs > 0);
456 			ASSERT(nrecs == ip->i_d.di_anextents);
457 			ASSERT(ip->i_afp->if_bytes > 0);
458 			ASSERT(ip->i_afp->if_u1.if_extents != NULL);
459 			ASSERT(ip->i_d.di_anextents > 0);
460 #endif
461 #ifdef XFS_NATIVE_HOST
462 			/*
463 			 * There are not delayed allocation extents
464 			 * for attributes, so just point at the array.
465 			 */
466 			vecp->i_addr = ip->i_afp->if_u1.if_extents;
467 			vecp->i_len = ip->i_afp->if_bytes;
468 			vecp->i_type = XLOG_REG_TYPE_IATTR_EXT;
469 #else
470 			ASSERT(iip->ili_aextents_buf == NULL);
471 			xfs_inode_item_format_extents(ip, vecp,
472 					XFS_ATTR_FORK, XLOG_REG_TYPE_IATTR_EXT);
473 #endif
474 			iip->ili_format.ilf_asize = vecp->i_len;
475 			vecp++;
476 			nvecs++;
477 		}
478 		break;
479 
480 	case XFS_DINODE_FMT_BTREE:
481 		ASSERT(!(iip->ili_format.ilf_fields &
482 			 (XFS_ILOG_ADATA | XFS_ILOG_AEXT)));
483 		if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) {
484 			ASSERT(ip->i_afp->if_broot_bytes > 0);
485 			ASSERT(ip->i_afp->if_broot != NULL);
486 			vecp->i_addr = ip->i_afp->if_broot;
487 			vecp->i_len = ip->i_afp->if_broot_bytes;
488 			vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT;
489 			vecp++;
490 			nvecs++;
491 			iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes;
492 		}
493 		break;
494 
495 	case XFS_DINODE_FMT_LOCAL:
496 		ASSERT(!(iip->ili_format.ilf_fields &
497 			 (XFS_ILOG_ABROOT | XFS_ILOG_AEXT)));
498 		if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) {
499 			ASSERT(ip->i_afp->if_bytes > 0);
500 			ASSERT(ip->i_afp->if_u1.if_data != NULL);
501 
502 			vecp->i_addr = ip->i_afp->if_u1.if_data;
503 			/*
504 			 * Round i_bytes up to a word boundary.
505 			 * The underlying memory is guaranteed to
506 			 * to be there by xfs_idata_realloc().
507 			 */
508 			data_bytes = roundup(ip->i_afp->if_bytes, 4);
509 			ASSERT((ip->i_afp->if_real_bytes == 0) ||
510 			       (ip->i_afp->if_real_bytes == data_bytes));
511 			vecp->i_len = (int)data_bytes;
512 			vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL;
513 			vecp++;
514 			nvecs++;
515 			iip->ili_format.ilf_asize = (unsigned)data_bytes;
516 		}
517 		break;
518 
519 	default:
520 		ASSERT(0);
521 		break;
522 	}
523 
524 	ASSERT(nvecs == lip->li_desc->lid_size);
525 	iip->ili_format.ilf_size = nvecs;
526 }
527 
528 
529 /*
530  * This is called to pin the inode associated with the inode log
531  * item in memory so it cannot be written out.
532  */
533 STATIC void
xfs_inode_item_pin(struct xfs_log_item * lip)534 xfs_inode_item_pin(
535 	struct xfs_log_item	*lip)
536 {
537 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
538 
539 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
540 
541 	trace_xfs_inode_pin(ip, _RET_IP_);
542 	atomic_inc(&ip->i_pincount);
543 }
544 
545 
546 /*
547  * This is called to unpin the inode associated with the inode log
548  * item which was previously pinned with a call to xfs_inode_item_pin().
549  *
550  * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
551  */
552 STATIC void
xfs_inode_item_unpin(struct xfs_log_item * lip,int remove)553 xfs_inode_item_unpin(
554 	struct xfs_log_item	*lip,
555 	int			remove)
556 {
557 	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
558 
559 	trace_xfs_inode_unpin(ip, _RET_IP_);
560 	ASSERT(atomic_read(&ip->i_pincount) > 0);
561 	if (atomic_dec_and_test(&ip->i_pincount))
562 		wake_up(&ip->i_ipin_wait);
563 }
564 
565 /*
566  * This is called to attempt to lock the inode associated with this
567  * inode log item, in preparation for the push routine which does the actual
568  * iflush.  Don't sleep on the inode lock or the flush lock.
569  *
570  * If the flush lock is already held, indicating that the inode has
571  * been or is in the process of being flushed, then (ideally) we'd like to
572  * see if the inode's buffer is still incore, and if so give it a nudge.
573  * We delay doing so until the pushbuf routine, though, to avoid holding
574  * the AIL lock across a call to the blackhole which is the buffer cache.
575  * Also we don't want to sleep in any device strategy routines, which can happen
576  * if we do the subsequent bawrite in here.
577  */
578 STATIC uint
xfs_inode_item_trylock(struct xfs_log_item * lip)579 xfs_inode_item_trylock(
580 	struct xfs_log_item	*lip)
581 {
582 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
583 	struct xfs_inode	*ip = iip->ili_inode;
584 
585 	if (xfs_ipincount(ip) > 0)
586 		return XFS_ITEM_PINNED;
587 
588 	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED))
589 		return XFS_ITEM_LOCKED;
590 
591 	if (!xfs_iflock_nowait(ip)) {
592 		/*
593 		 * inode has already been flushed to the backing buffer,
594 		 * leave it locked in shared mode, pushbuf routine will
595 		 * unlock it.
596 		 */
597 		return XFS_ITEM_PUSHBUF;
598 	}
599 
600 	/* Stale items should force out the iclog */
601 	if (ip->i_flags & XFS_ISTALE) {
602 		xfs_ifunlock(ip);
603 		/*
604 		 * we hold the AIL lock - notify the unlock routine of this
605 		 * so it doesn't try to get the lock again.
606 		 */
607 		xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY);
608 		return XFS_ITEM_PINNED;
609 	}
610 
611 #ifdef DEBUG
612 	if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
613 		ASSERT(iip->ili_format.ilf_fields != 0);
614 		ASSERT(iip->ili_logged == 0);
615 		ASSERT(lip->li_flags & XFS_LI_IN_AIL);
616 	}
617 #endif
618 	return XFS_ITEM_SUCCESS;
619 }
620 
621 /*
622  * Unlock the inode associated with the inode log item.
623  * Clear the fields of the inode and inode log item that
624  * are specific to the current transaction.  If the
625  * hold flags is set, do not unlock the inode.
626  */
627 STATIC void
xfs_inode_item_unlock(struct xfs_log_item * lip)628 xfs_inode_item_unlock(
629 	struct xfs_log_item	*lip)
630 {
631 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
632 	struct xfs_inode	*ip = iip->ili_inode;
633 	unsigned short		lock_flags;
634 
635 	ASSERT(iip->ili_inode->i_itemp != NULL);
636 	ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL));
637 
638 	/*
639 	 * Clear the transaction pointer in the inode.
640 	 */
641 	ip->i_transp = NULL;
642 
643 	/*
644 	 * If the inode needed a separate buffer with which to log
645 	 * its extents, then free it now.
646 	 */
647 	if (iip->ili_extents_buf != NULL) {
648 		ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS);
649 		ASSERT(ip->i_d.di_nextents > 0);
650 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT);
651 		ASSERT(ip->i_df.if_bytes > 0);
652 		kmem_free(iip->ili_extents_buf);
653 		iip->ili_extents_buf = NULL;
654 	}
655 	if (iip->ili_aextents_buf != NULL) {
656 		ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS);
657 		ASSERT(ip->i_d.di_anextents > 0);
658 		ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT);
659 		ASSERT(ip->i_afp->if_bytes > 0);
660 		kmem_free(iip->ili_aextents_buf);
661 		iip->ili_aextents_buf = NULL;
662 	}
663 
664 	lock_flags = iip->ili_lock_flags;
665 	iip->ili_lock_flags = 0;
666 	if (lock_flags) {
667 		xfs_iunlock(iip->ili_inode, lock_flags);
668 		IRELE(iip->ili_inode);
669 	}
670 }
671 
672 /*
673  * This is called to find out where the oldest active copy of the inode log
674  * item in the on disk log resides now that the last log write of it completed
675  * at the given lsn.  Since we always re-log all dirty data in an inode, the
676  * latest copy in the on disk log is the only one that matters.  Therefore,
677  * simply return the given lsn.
678  *
679  * If the inode has been marked stale because the cluster is being freed, we
680  * don't want to (re-)insert this inode into the AIL. There is a race condition
681  * where the cluster buffer may be unpinned before the inode is inserted into
682  * the AIL during transaction committed processing. If the buffer is unpinned
683  * before the inode item has been committed and inserted, then it is possible
684  * for the buffer to be written and IO completions before the inode is inserted
685  * into the AIL. In that case, we'd be inserting a clean, stale inode into the
686  * AIL which will never get removed. It will, however, get reclaimed which
687  * triggers an assert in xfs_inode_free() complaining about freein an inode
688  * still in the AIL.
689  *
690  * To avoid this, return a lower LSN than the one passed in so that the
691  * transaction committed code will not move the inode forward in the AIL but
692  * will still unpin it properly.
693  */
694 STATIC xfs_lsn_t
xfs_inode_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)695 xfs_inode_item_committed(
696 	struct xfs_log_item	*lip,
697 	xfs_lsn_t		lsn)
698 {
699 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
700 	struct xfs_inode	*ip = iip->ili_inode;
701 
702 	if (xfs_iflags_test(ip, XFS_ISTALE))
703 		return lsn - 1;
704 	return lsn;
705 }
706 
707 /*
708  * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK
709  * failed to get the inode flush lock but did get the inode locked SHARED.
710  * Here we're trying to see if the inode buffer is incore, and if so whether it's
711  * marked delayed write. If that's the case, we'll promote it and that will
712  * allow the caller to write the buffer by triggering the xfsbufd to run.
713  */
714 STATIC void
xfs_inode_item_pushbuf(struct xfs_log_item * lip)715 xfs_inode_item_pushbuf(
716 	struct xfs_log_item	*lip)
717 {
718 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
719 	struct xfs_inode	*ip = iip->ili_inode;
720 	struct xfs_buf		*bp;
721 
722 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
723 
724 	/*
725 	 * If a flush is not in progress anymore, chances are that the
726 	 * inode was taken off the AIL. So, just get out.
727 	 */
728 	if (completion_done(&ip->i_flush) ||
729 	    !(lip->li_flags & XFS_LI_IN_AIL)) {
730 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
731 		return;
732 	}
733 
734 	bp = xfs_incore(ip->i_mount->m_ddev_targp, iip->ili_format.ilf_blkno,
735 			iip->ili_format.ilf_len, XBF_TRYLOCK);
736 
737 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
738 	if (!bp)
739 		return;
740 	if (XFS_BUF_ISDELAYWRITE(bp))
741 		xfs_buf_delwri_promote(bp);
742 	xfs_buf_relse(bp);
743 }
744 
745 /*
746  * This is called to asynchronously write the inode associated with this
747  * inode log item out to disk. The inode will already have been locked by
748  * a successful call to xfs_inode_item_trylock().
749  */
750 STATIC void
xfs_inode_item_push(struct xfs_log_item * lip)751 xfs_inode_item_push(
752 	struct xfs_log_item	*lip)
753 {
754 	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
755 	struct xfs_inode	*ip = iip->ili_inode;
756 
757 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED));
758 	ASSERT(!completion_done(&ip->i_flush));
759 
760 	/*
761 	 * Since we were able to lock the inode's flush lock and
762 	 * we found it on the AIL, the inode must be dirty.  This
763 	 * is because the inode is removed from the AIL while still
764 	 * holding the flush lock in xfs_iflush_done().  Thus, if
765 	 * we found it in the AIL and were able to obtain the flush
766 	 * lock without sleeping, then there must not have been
767 	 * anyone in the process of flushing the inode.
768 	 */
769 	ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) ||
770 	       iip->ili_format.ilf_fields != 0);
771 
772 	/*
773 	 * Push the inode to it's backing buffer. This will not remove the
774 	 * inode from the AIL - a further push will be required to trigger a
775 	 * buffer push. However, this allows all the dirty inodes to be pushed
776 	 * to the buffer before it is pushed to disk. The buffer IO completion
777 	 * will pull the inode from the AIL, mark it clean and unlock the flush
778 	 * lock.
779 	 */
780 	(void) xfs_iflush(ip, SYNC_TRYLOCK);
781 	xfs_iunlock(ip, XFS_ILOCK_SHARED);
782 }
783 
784 /*
785  * XXX rcc - this one really has to do something.  Probably needs
786  * to stamp in a new field in the incore inode.
787  */
788 STATIC void
xfs_inode_item_committing(struct xfs_log_item * lip,xfs_lsn_t lsn)789 xfs_inode_item_committing(
790 	struct xfs_log_item	*lip,
791 	xfs_lsn_t		lsn)
792 {
793 	INODE_ITEM(lip)->ili_last_lsn = lsn;
794 }
795 
796 /*
797  * This is the ops vector shared by all buf log items.
798  */
799 static struct xfs_item_ops xfs_inode_item_ops = {
800 	.iop_size	= xfs_inode_item_size,
801 	.iop_format	= xfs_inode_item_format,
802 	.iop_pin	= xfs_inode_item_pin,
803 	.iop_unpin	= xfs_inode_item_unpin,
804 	.iop_trylock	= xfs_inode_item_trylock,
805 	.iop_unlock	= xfs_inode_item_unlock,
806 	.iop_committed	= xfs_inode_item_committed,
807 	.iop_push	= xfs_inode_item_push,
808 	.iop_pushbuf	= xfs_inode_item_pushbuf,
809 	.iop_committing = xfs_inode_item_committing
810 };
811 
812 
813 /*
814  * Initialize the inode log item for a newly allocated (in-core) inode.
815  */
816 void
xfs_inode_item_init(struct xfs_inode * ip,struct xfs_mount * mp)817 xfs_inode_item_init(
818 	struct xfs_inode	*ip,
819 	struct xfs_mount	*mp)
820 {
821 	struct xfs_inode_log_item *iip;
822 
823 	ASSERT(ip->i_itemp == NULL);
824 	iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP);
825 
826 	iip->ili_inode = ip;
827 	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
828 						&xfs_inode_item_ops);
829 	iip->ili_format.ilf_type = XFS_LI_INODE;
830 	iip->ili_format.ilf_ino = ip->i_ino;
831 	iip->ili_format.ilf_blkno = ip->i_imap.im_blkno;
832 	iip->ili_format.ilf_len = ip->i_imap.im_len;
833 	iip->ili_format.ilf_boffset = ip->i_imap.im_boffset;
834 }
835 
836 /*
837  * Free the inode log item and any memory hanging off of it.
838  */
839 void
xfs_inode_item_destroy(xfs_inode_t * ip)840 xfs_inode_item_destroy(
841 	xfs_inode_t	*ip)
842 {
843 #ifdef XFS_TRANS_DEBUG
844 	if (ip->i_itemp->ili_root_size != 0) {
845 		kmem_free(ip->i_itemp->ili_orig_root);
846 	}
847 #endif
848 	kmem_zone_free(xfs_ili_zone, ip->i_itemp);
849 }
850 
851 
852 /*
853  * This is the inode flushing I/O completion routine.  It is called
854  * from interrupt level when the buffer containing the inode is
855  * flushed to disk.  It is responsible for removing the inode item
856  * from the AIL if it has not been re-logged, and unlocking the inode's
857  * flush lock.
858  *
859  * To reduce AIL lock traffic as much as possible, we scan the buffer log item
860  * list for other inodes that will run this function. We remove them from the
861  * buffer list so we can process all the inode IO completions in one AIL lock
862  * traversal.
863  */
864 void
xfs_iflush_done(struct xfs_buf * bp,struct xfs_log_item * lip)865 xfs_iflush_done(
866 	struct xfs_buf		*bp,
867 	struct xfs_log_item	*lip)
868 {
869 	struct xfs_inode_log_item *iip;
870 	struct xfs_log_item	*blip;
871 	struct xfs_log_item	*next;
872 	struct xfs_log_item	*prev;
873 	struct xfs_ail		*ailp = lip->li_ailp;
874 	int			need_ail = 0;
875 
876 	/*
877 	 * Scan the buffer IO completions for other inodes being completed and
878 	 * attach them to the current inode log item.
879 	 */
880 	blip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
881 	prev = NULL;
882 	while (blip != NULL) {
883 		if (lip->li_cb != xfs_iflush_done) {
884 			prev = blip;
885 			blip = blip->li_bio_list;
886 			continue;
887 		}
888 
889 		/* remove from list */
890 		next = blip->li_bio_list;
891 		if (!prev) {
892 			XFS_BUF_SET_FSPRIVATE(bp, next);
893 		} else {
894 			prev->li_bio_list = next;
895 		}
896 
897 		/* add to current list */
898 		blip->li_bio_list = lip->li_bio_list;
899 		lip->li_bio_list = blip;
900 
901 		/*
902 		 * while we have the item, do the unlocked check for needing
903 		 * the AIL lock.
904 		 */
905 		iip = INODE_ITEM(blip);
906 		if (iip->ili_logged && blip->li_lsn == iip->ili_flush_lsn)
907 			need_ail++;
908 
909 		blip = next;
910 	}
911 
912 	/* make sure we capture the state of the initial inode. */
913 	iip = INODE_ITEM(lip);
914 	if (iip->ili_logged && lip->li_lsn == iip->ili_flush_lsn)
915 		need_ail++;
916 
917 	/*
918 	 * We only want to pull the item from the AIL if it is
919 	 * actually there and its location in the log has not
920 	 * changed since we started the flush.  Thus, we only bother
921 	 * if the ili_logged flag is set and the inode's lsn has not
922 	 * changed.  First we check the lsn outside
923 	 * the lock since it's cheaper, and then we recheck while
924 	 * holding the lock before removing the inode from the AIL.
925 	 */
926 	if (need_ail) {
927 		struct xfs_log_item *log_items[need_ail];
928 		int i = 0;
929 		spin_lock(&ailp->xa_lock);
930 		for (blip = lip; blip; blip = blip->li_bio_list) {
931 			iip = INODE_ITEM(blip);
932 			if (iip->ili_logged &&
933 			    blip->li_lsn == iip->ili_flush_lsn) {
934 				log_items[i++] = blip;
935 			}
936 			ASSERT(i <= need_ail);
937 		}
938 		/* xfs_trans_ail_delete_bulk() drops the AIL lock. */
939 		xfs_trans_ail_delete_bulk(ailp, log_items, i);
940 	}
941 
942 
943 	/*
944 	 * clean up and unlock the flush lock now we are done. We can clear the
945 	 * ili_last_fields bits now that we know that the data corresponding to
946 	 * them is safely on disk.
947 	 */
948 	for (blip = lip; blip; blip = next) {
949 		next = blip->li_bio_list;
950 		blip->li_bio_list = NULL;
951 
952 		iip = INODE_ITEM(blip);
953 		iip->ili_logged = 0;
954 		iip->ili_last_fields = 0;
955 		xfs_ifunlock(iip->ili_inode);
956 	}
957 }
958 
959 /*
960  * This is the inode flushing abort routine.  It is called
961  * from xfs_iflush when the filesystem is shutting down to clean
962  * up the inode state.
963  * It is responsible for removing the inode item
964  * from the AIL if it has not been re-logged, and unlocking the inode's
965  * flush lock.
966  */
967 void
xfs_iflush_abort(xfs_inode_t * ip)968 xfs_iflush_abort(
969 	xfs_inode_t		*ip)
970 {
971 	xfs_inode_log_item_t	*iip = ip->i_itemp;
972 
973 	iip = ip->i_itemp;
974 	if (iip) {
975 		struct xfs_ail	*ailp = iip->ili_item.li_ailp;
976 		if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
977 			spin_lock(&ailp->xa_lock);
978 			if (iip->ili_item.li_flags & XFS_LI_IN_AIL) {
979 				/* xfs_trans_ail_delete() drops the AIL lock. */
980 				xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip);
981 			} else
982 				spin_unlock(&ailp->xa_lock);
983 		}
984 		iip->ili_logged = 0;
985 		/*
986 		 * Clear the ili_last_fields bits now that we know that the
987 		 * data corresponding to them is safely on disk.
988 		 */
989 		iip->ili_last_fields = 0;
990 		/*
991 		 * Clear the inode logging fields so no more flushes are
992 		 * attempted.
993 		 */
994 		iip->ili_format.ilf_fields = 0;
995 	}
996 	/*
997 	 * Release the inode's flush lock since we're done with it.
998 	 */
999 	xfs_ifunlock(ip);
1000 }
1001 
1002 void
xfs_istale_done(struct xfs_buf * bp,struct xfs_log_item * lip)1003 xfs_istale_done(
1004 	struct xfs_buf		*bp,
1005 	struct xfs_log_item	*lip)
1006 {
1007 	xfs_iflush_abort(INODE_ITEM(lip)->ili_inode);
1008 }
1009 
1010 /*
1011  * convert an xfs_inode_log_format struct from either 32 or 64 bit versions
1012  * (which can have different field alignments) to the native version
1013  */
1014 int
xfs_inode_item_format_convert(xfs_log_iovec_t * buf,xfs_inode_log_format_t * in_f)1015 xfs_inode_item_format_convert(
1016 	xfs_log_iovec_t		*buf,
1017 	xfs_inode_log_format_t	*in_f)
1018 {
1019 	if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) {
1020 		xfs_inode_log_format_32_t *in_f32 = buf->i_addr;
1021 
1022 		in_f->ilf_type = in_f32->ilf_type;
1023 		in_f->ilf_size = in_f32->ilf_size;
1024 		in_f->ilf_fields = in_f32->ilf_fields;
1025 		in_f->ilf_asize = in_f32->ilf_asize;
1026 		in_f->ilf_dsize = in_f32->ilf_dsize;
1027 		in_f->ilf_ino = in_f32->ilf_ino;
1028 		/* copy biggest field of ilf_u */
1029 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1030 		       in_f32->ilf_u.ilfu_uuid.__u_bits,
1031 		       sizeof(uuid_t));
1032 		in_f->ilf_blkno = in_f32->ilf_blkno;
1033 		in_f->ilf_len = in_f32->ilf_len;
1034 		in_f->ilf_boffset = in_f32->ilf_boffset;
1035 		return 0;
1036 	} else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){
1037 		xfs_inode_log_format_64_t *in_f64 = buf->i_addr;
1038 
1039 		in_f->ilf_type = in_f64->ilf_type;
1040 		in_f->ilf_size = in_f64->ilf_size;
1041 		in_f->ilf_fields = in_f64->ilf_fields;
1042 		in_f->ilf_asize = in_f64->ilf_asize;
1043 		in_f->ilf_dsize = in_f64->ilf_dsize;
1044 		in_f->ilf_ino = in_f64->ilf_ino;
1045 		/* copy biggest field of ilf_u */
1046 		memcpy(in_f->ilf_u.ilfu_uuid.__u_bits,
1047 		       in_f64->ilf_u.ilfu_uuid.__u_bits,
1048 		       sizeof(uuid_t));
1049 		in_f->ilf_blkno = in_f64->ilf_blkno;
1050 		in_f->ilf_len = in_f64->ilf_len;
1051 		in_f->ilf_boffset = in_f64->ilf_boffset;
1052 		return 0;
1053 	}
1054 	return EFSCORRUPTED;
1055 }
1056