1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_alloc.h"
41 #include "xfs_ialloc.h"
42 #include "xfs_bmap.h"
43 #include "xfs_error.h"
44 #include "xfs_utils.h"
45 #include "xfs_quota.h"
46 #include "xfs_filestream.h"
47 #include "xfs_vnodeops.h"
48 #include "xfs_trace.h"
49 
50 kmem_zone_t *xfs_ifork_zone;
51 kmem_zone_t *xfs_inode_zone;
52 
53 /*
54  * Used in xfs_itruncate_extents().  This is the maximum number of extents
55  * freed from a file in a single transaction.
56  */
57 #define	XFS_ITRUNC_MAX_EXTENTS	2
58 
59 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63 
64 #ifdef DEBUG
65 /*
66  * Make sure that the extents in the given memory buffer
67  * are valid.
68  */
69 STATIC void
xfs_validate_extents(xfs_ifork_t * ifp,int nrecs,xfs_exntfmt_t fmt)70 xfs_validate_extents(
71 	xfs_ifork_t		*ifp,
72 	int			nrecs,
73 	xfs_exntfmt_t		fmt)
74 {
75 	xfs_bmbt_irec_t		irec;
76 	xfs_bmbt_rec_host_t	rec;
77 	int			i;
78 
79 	for (i = 0; i < nrecs; i++) {
80 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
81 		rec.l0 = get_unaligned(&ep->l0);
82 		rec.l1 = get_unaligned(&ep->l1);
83 		xfs_bmbt_get_all(&rec, &irec);
84 		if (fmt == XFS_EXTFMT_NOSTATE)
85 			ASSERT(irec.br_state == XFS_EXT_NORM);
86 	}
87 }
88 #else /* DEBUG */
89 #define xfs_validate_extents(ifp, nrecs, fmt)
90 #endif /* DEBUG */
91 
92 /*
93  * Check that none of the inode's in the buffer have a next
94  * unlinked field of 0.
95  */
96 #if defined(DEBUG)
97 void
xfs_inobp_check(xfs_mount_t * mp,xfs_buf_t * bp)98 xfs_inobp_check(
99 	xfs_mount_t	*mp,
100 	xfs_buf_t	*bp)
101 {
102 	int		i;
103 	int		j;
104 	xfs_dinode_t	*dip;
105 
106 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
107 
108 	for (i = 0; i < j; i++) {
109 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
110 					i * mp->m_sb.sb_inodesize);
111 		if (!dip->di_next_unlinked)  {
112 			xfs_alert(mp,
113 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
114 				bp);
115 			ASSERT(dip->di_next_unlinked);
116 		}
117 	}
118 }
119 #endif
120 
121 /*
122  * Find the buffer associated with the given inode map
123  * We do basic validation checks on the buffer once it has been
124  * retrieved from disk.
125  */
126 STATIC int
xfs_imap_to_bp(xfs_mount_t * mp,xfs_trans_t * tp,struct xfs_imap * imap,xfs_buf_t ** bpp,uint buf_flags,uint iget_flags)127 xfs_imap_to_bp(
128 	xfs_mount_t	*mp,
129 	xfs_trans_t	*tp,
130 	struct xfs_imap	*imap,
131 	xfs_buf_t	**bpp,
132 	uint		buf_flags,
133 	uint		iget_flags)
134 {
135 	int		error;
136 	int		i;
137 	int		ni;
138 	xfs_buf_t	*bp;
139 
140 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
141 				   (int)imap->im_len, buf_flags, &bp);
142 	if (error) {
143 		if (error != EAGAIN) {
144 			xfs_warn(mp,
145 				"%s: xfs_trans_read_buf() returned error %d.",
146 				__func__, error);
147 		} else {
148 			ASSERT(buf_flags & XBF_TRYLOCK);
149 		}
150 		return error;
151 	}
152 
153 	/*
154 	 * Validate the magic number and version of every inode in the buffer
155 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
156 	 */
157 #ifdef DEBUG
158 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
159 #else	/* usual case */
160 	ni = 1;
161 #endif
162 
163 	for (i = 0; i < ni; i++) {
164 		int		di_ok;
165 		xfs_dinode_t	*dip;
166 
167 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
168 					(i << mp->m_sb.sb_inodelog));
169 		di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
170 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
171 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
172 						XFS_ERRTAG_ITOBP_INOTOBP,
173 						XFS_RANDOM_ITOBP_INOTOBP))) {
174 			if (iget_flags & XFS_IGET_UNTRUSTED) {
175 				xfs_trans_brelse(tp, bp);
176 				return XFS_ERROR(EINVAL);
177 			}
178 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
179 						XFS_ERRLEVEL_HIGH, mp, dip);
180 #ifdef DEBUG
181 			xfs_emerg(mp,
182 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
183 				(unsigned long long)imap->im_blkno, i,
184 				be16_to_cpu(dip->di_magic));
185 			ASSERT(0);
186 #endif
187 			xfs_trans_brelse(tp, bp);
188 			return XFS_ERROR(EFSCORRUPTED);
189 		}
190 	}
191 
192 	xfs_inobp_check(mp, bp);
193 	*bpp = bp;
194 	return 0;
195 }
196 
197 /*
198  * This routine is called to map an inode number within a file
199  * system to the buffer containing the on-disk version of the
200  * inode.  It returns a pointer to the buffer containing the
201  * on-disk inode in the bpp parameter, and in the dip parameter
202  * it returns a pointer to the on-disk inode within that buffer.
203  *
204  * If a non-zero error is returned, then the contents of bpp and
205  * dipp are undefined.
206  *
207  * Use xfs_imap() to determine the size and location of the
208  * buffer to read from disk.
209  */
210 int
xfs_inotobp(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,xfs_dinode_t ** dipp,xfs_buf_t ** bpp,int * offset,uint imap_flags)211 xfs_inotobp(
212 	xfs_mount_t	*mp,
213 	xfs_trans_t	*tp,
214 	xfs_ino_t	ino,
215 	xfs_dinode_t	**dipp,
216 	xfs_buf_t	**bpp,
217 	int		*offset,
218 	uint		imap_flags)
219 {
220 	struct xfs_imap	imap;
221 	xfs_buf_t	*bp;
222 	int		error;
223 
224 	imap.im_blkno = 0;
225 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
226 	if (error)
227 		return error;
228 
229 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
230 	if (error)
231 		return error;
232 
233 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
234 	*bpp = bp;
235 	*offset = imap.im_boffset;
236 	return 0;
237 }
238 
239 
240 /*
241  * This routine is called to map an inode to the buffer containing
242  * the on-disk version of the inode.  It returns a pointer to the
243  * buffer containing the on-disk inode in the bpp parameter, and in
244  * the dip parameter it returns a pointer to the on-disk inode within
245  * that buffer.
246  *
247  * If a non-zero error is returned, then the contents of bpp and
248  * dipp are undefined.
249  *
250  * The inode is expected to already been mapped to its buffer and read
251  * in once, thus we can use the mapping information stored in the inode
252  * rather than calling xfs_imap().  This allows us to avoid the overhead
253  * of looking at the inode btree for small block file systems
254  * (see xfs_imap()).
255  */
256 int
xfs_itobp(xfs_mount_t * mp,xfs_trans_t * tp,xfs_inode_t * ip,xfs_dinode_t ** dipp,xfs_buf_t ** bpp,uint buf_flags)257 xfs_itobp(
258 	xfs_mount_t	*mp,
259 	xfs_trans_t	*tp,
260 	xfs_inode_t	*ip,
261 	xfs_dinode_t	**dipp,
262 	xfs_buf_t	**bpp,
263 	uint		buf_flags)
264 {
265 	xfs_buf_t	*bp;
266 	int		error;
267 
268 	ASSERT(ip->i_imap.im_blkno != 0);
269 
270 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
271 	if (error)
272 		return error;
273 
274 	if (!bp) {
275 		ASSERT(buf_flags & XBF_TRYLOCK);
276 		ASSERT(tp == NULL);
277 		*bpp = NULL;
278 		return EAGAIN;
279 	}
280 
281 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
282 	*bpp = bp;
283 	return 0;
284 }
285 
286 /*
287  * Move inode type and inode format specific information from the
288  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
289  * this means set if_rdev to the proper value.  For files, directories,
290  * and symlinks this means to bring in the in-line data or extent
291  * pointers.  For a file in B-tree format, only the root is immediately
292  * brought in-core.  The rest will be in-lined in if_extents when it
293  * is first referenced (see xfs_iread_extents()).
294  */
295 STATIC int
xfs_iformat(xfs_inode_t * ip,xfs_dinode_t * dip)296 xfs_iformat(
297 	xfs_inode_t		*ip,
298 	xfs_dinode_t		*dip)
299 {
300 	xfs_attr_shortform_t	*atp;
301 	int			size;
302 	int			error = 0;
303 	xfs_fsize_t             di_size;
304 
305 	if (unlikely(be32_to_cpu(dip->di_nextents) +
306 		     be16_to_cpu(dip->di_anextents) >
307 		     be64_to_cpu(dip->di_nblocks))) {
308 		xfs_warn(ip->i_mount,
309 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
310 			(unsigned long long)ip->i_ino,
311 			(int)(be32_to_cpu(dip->di_nextents) +
312 			      be16_to_cpu(dip->di_anextents)),
313 			(unsigned long long)
314 				be64_to_cpu(dip->di_nblocks));
315 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
316 				     ip->i_mount, dip);
317 		return XFS_ERROR(EFSCORRUPTED);
318 	}
319 
320 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
321 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
322 			(unsigned long long)ip->i_ino,
323 			dip->di_forkoff);
324 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
325 				     ip->i_mount, dip);
326 		return XFS_ERROR(EFSCORRUPTED);
327 	}
328 
329 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
330 		     !ip->i_mount->m_rtdev_targp)) {
331 		xfs_warn(ip->i_mount,
332 			"corrupt dinode %Lu, has realtime flag set.",
333 			ip->i_ino);
334 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
335 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
336 		return XFS_ERROR(EFSCORRUPTED);
337 	}
338 
339 	switch (ip->i_d.di_mode & S_IFMT) {
340 	case S_IFIFO:
341 	case S_IFCHR:
342 	case S_IFBLK:
343 	case S_IFSOCK:
344 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
345 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
346 					      ip->i_mount, dip);
347 			return XFS_ERROR(EFSCORRUPTED);
348 		}
349 		ip->i_d.di_size = 0;
350 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
351 		break;
352 
353 	case S_IFREG:
354 	case S_IFLNK:
355 	case S_IFDIR:
356 		switch (dip->di_format) {
357 		case XFS_DINODE_FMT_LOCAL:
358 			/*
359 			 * no local regular files yet
360 			 */
361 			if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
362 				xfs_warn(ip->i_mount,
363 			"corrupt inode %Lu (local format for regular file).",
364 					(unsigned long long) ip->i_ino);
365 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
366 						     XFS_ERRLEVEL_LOW,
367 						     ip->i_mount, dip);
368 				return XFS_ERROR(EFSCORRUPTED);
369 			}
370 
371 			di_size = be64_to_cpu(dip->di_size);
372 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
373 				xfs_warn(ip->i_mount,
374 			"corrupt inode %Lu (bad size %Ld for local inode).",
375 					(unsigned long long) ip->i_ino,
376 					(long long) di_size);
377 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
378 						     XFS_ERRLEVEL_LOW,
379 						     ip->i_mount, dip);
380 				return XFS_ERROR(EFSCORRUPTED);
381 			}
382 
383 			size = (int)di_size;
384 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
385 			break;
386 		case XFS_DINODE_FMT_EXTENTS:
387 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
388 			break;
389 		case XFS_DINODE_FMT_BTREE:
390 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
391 			break;
392 		default:
393 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
394 					 ip->i_mount);
395 			return XFS_ERROR(EFSCORRUPTED);
396 		}
397 		break;
398 
399 	default:
400 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
401 		return XFS_ERROR(EFSCORRUPTED);
402 	}
403 	if (error) {
404 		return error;
405 	}
406 	if (!XFS_DFORK_Q(dip))
407 		return 0;
408 
409 	ASSERT(ip->i_afp == NULL);
410 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
411 
412 	switch (dip->di_aformat) {
413 	case XFS_DINODE_FMT_LOCAL:
414 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
415 		size = be16_to_cpu(atp->hdr.totsize);
416 
417 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
418 			xfs_warn(ip->i_mount,
419 				"corrupt inode %Lu (bad attr fork size %Ld).",
420 				(unsigned long long) ip->i_ino,
421 				(long long) size);
422 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
423 					     XFS_ERRLEVEL_LOW,
424 					     ip->i_mount, dip);
425 			return XFS_ERROR(EFSCORRUPTED);
426 		}
427 
428 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
429 		break;
430 	case XFS_DINODE_FMT_EXTENTS:
431 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
432 		break;
433 	case XFS_DINODE_FMT_BTREE:
434 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
435 		break;
436 	default:
437 		error = XFS_ERROR(EFSCORRUPTED);
438 		break;
439 	}
440 	if (error) {
441 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
442 		ip->i_afp = NULL;
443 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
444 	}
445 	return error;
446 }
447 
448 /*
449  * The file is in-lined in the on-disk inode.
450  * If it fits into if_inline_data, then copy
451  * it there, otherwise allocate a buffer for it
452  * and copy the data there.  Either way, set
453  * if_data to point at the data.
454  * If we allocate a buffer for the data, make
455  * sure that its size is a multiple of 4 and
456  * record the real size in i_real_bytes.
457  */
458 STATIC int
xfs_iformat_local(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork,int size)459 xfs_iformat_local(
460 	xfs_inode_t	*ip,
461 	xfs_dinode_t	*dip,
462 	int		whichfork,
463 	int		size)
464 {
465 	xfs_ifork_t	*ifp;
466 	int		real_size;
467 
468 	/*
469 	 * If the size is unreasonable, then something
470 	 * is wrong and we just bail out rather than crash in
471 	 * kmem_alloc() or memcpy() below.
472 	 */
473 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
474 		xfs_warn(ip->i_mount,
475 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
476 			(unsigned long long) ip->i_ino, size,
477 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
478 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
479 				     ip->i_mount, dip);
480 		return XFS_ERROR(EFSCORRUPTED);
481 	}
482 	ifp = XFS_IFORK_PTR(ip, whichfork);
483 	real_size = 0;
484 	if (size == 0)
485 		ifp->if_u1.if_data = NULL;
486 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
487 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
488 	else {
489 		real_size = roundup(size, 4);
490 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
491 	}
492 	ifp->if_bytes = size;
493 	ifp->if_real_bytes = real_size;
494 	if (size)
495 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
496 	ifp->if_flags &= ~XFS_IFEXTENTS;
497 	ifp->if_flags |= XFS_IFINLINE;
498 	return 0;
499 }
500 
501 /*
502  * The file consists of a set of extents all
503  * of which fit into the on-disk inode.
504  * If there are few enough extents to fit into
505  * the if_inline_ext, then copy them there.
506  * Otherwise allocate a buffer for them and copy
507  * them into it.  Either way, set if_extents
508  * to point at the extents.
509  */
510 STATIC int
xfs_iformat_extents(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork)511 xfs_iformat_extents(
512 	xfs_inode_t	*ip,
513 	xfs_dinode_t	*dip,
514 	int		whichfork)
515 {
516 	xfs_bmbt_rec_t	*dp;
517 	xfs_ifork_t	*ifp;
518 	int		nex;
519 	int		size;
520 	int		i;
521 
522 	ifp = XFS_IFORK_PTR(ip, whichfork);
523 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
524 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
525 
526 	/*
527 	 * If the number of extents is unreasonable, then something
528 	 * is wrong and we just bail out rather than crash in
529 	 * kmem_alloc() or memcpy() below.
530 	 */
531 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
532 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
533 			(unsigned long long) ip->i_ino, nex);
534 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
535 				     ip->i_mount, dip);
536 		return XFS_ERROR(EFSCORRUPTED);
537 	}
538 
539 	ifp->if_real_bytes = 0;
540 	if (nex == 0)
541 		ifp->if_u1.if_extents = NULL;
542 	else if (nex <= XFS_INLINE_EXTS)
543 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
544 	else
545 		xfs_iext_add(ifp, 0, nex);
546 
547 	ifp->if_bytes = size;
548 	if (size) {
549 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
550 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
551 		for (i = 0; i < nex; i++, dp++) {
552 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
553 			ep->l0 = get_unaligned_be64(&dp->l0);
554 			ep->l1 = get_unaligned_be64(&dp->l1);
555 		}
556 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
557 		if (whichfork != XFS_DATA_FORK ||
558 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
559 				if (unlikely(xfs_check_nostate_extents(
560 				    ifp, 0, nex))) {
561 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
562 							 XFS_ERRLEVEL_LOW,
563 							 ip->i_mount);
564 					return XFS_ERROR(EFSCORRUPTED);
565 				}
566 	}
567 	ifp->if_flags |= XFS_IFEXTENTS;
568 	return 0;
569 }
570 
571 /*
572  * The file has too many extents to fit into
573  * the inode, so they are in B-tree format.
574  * Allocate a buffer for the root of the B-tree
575  * and copy the root into it.  The i_extents
576  * field will remain NULL until all of the
577  * extents are read in (when they are needed).
578  */
579 STATIC int
xfs_iformat_btree(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork)580 xfs_iformat_btree(
581 	xfs_inode_t		*ip,
582 	xfs_dinode_t		*dip,
583 	int			whichfork)
584 {
585 	xfs_bmdr_block_t	*dfp;
586 	xfs_ifork_t		*ifp;
587 	/* REFERENCED */
588 	int			nrecs;
589 	int			size;
590 
591 	ifp = XFS_IFORK_PTR(ip, whichfork);
592 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
593 	size = XFS_BMAP_BROOT_SPACE(dfp);
594 	nrecs = be16_to_cpu(dfp->bb_numrecs);
595 
596 	/*
597 	 * blow out if -- fork has less extents than can fit in
598 	 * fork (fork shouldn't be a btree format), root btree
599 	 * block has more records than can fit into the fork,
600 	 * or the number of extents is greater than the number of
601 	 * blocks.
602 	 */
603 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
604 			XFS_IFORK_MAXEXT(ip, whichfork) ||
605 		     XFS_BMDR_SPACE_CALC(nrecs) >
606 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
607 		     XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
608 		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
609 			(unsigned long long) ip->i_ino);
610 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
611 				 ip->i_mount, dip);
612 		return XFS_ERROR(EFSCORRUPTED);
613 	}
614 
615 	ifp->if_broot_bytes = size;
616 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
617 	ASSERT(ifp->if_broot != NULL);
618 	/*
619 	 * Copy and convert from the on-disk structure
620 	 * to the in-memory structure.
621 	 */
622 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
623 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
624 			 ifp->if_broot, size);
625 	ifp->if_flags &= ~XFS_IFEXTENTS;
626 	ifp->if_flags |= XFS_IFBROOT;
627 
628 	return 0;
629 }
630 
631 STATIC void
xfs_dinode_from_disk(xfs_icdinode_t * to,xfs_dinode_t * from)632 xfs_dinode_from_disk(
633 	xfs_icdinode_t		*to,
634 	xfs_dinode_t		*from)
635 {
636 	to->di_magic = be16_to_cpu(from->di_magic);
637 	to->di_mode = be16_to_cpu(from->di_mode);
638 	to->di_version = from ->di_version;
639 	to->di_format = from->di_format;
640 	to->di_onlink = be16_to_cpu(from->di_onlink);
641 	to->di_uid = be32_to_cpu(from->di_uid);
642 	to->di_gid = be32_to_cpu(from->di_gid);
643 	to->di_nlink = be32_to_cpu(from->di_nlink);
644 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
645 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
646 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
647 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
648 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
649 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
650 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
651 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
652 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
653 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
654 	to->di_size = be64_to_cpu(from->di_size);
655 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
656 	to->di_extsize = be32_to_cpu(from->di_extsize);
657 	to->di_nextents = be32_to_cpu(from->di_nextents);
658 	to->di_anextents = be16_to_cpu(from->di_anextents);
659 	to->di_forkoff = from->di_forkoff;
660 	to->di_aformat	= from->di_aformat;
661 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
662 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
663 	to->di_flags	= be16_to_cpu(from->di_flags);
664 	to->di_gen	= be32_to_cpu(from->di_gen);
665 }
666 
667 void
xfs_dinode_to_disk(xfs_dinode_t * to,xfs_icdinode_t * from)668 xfs_dinode_to_disk(
669 	xfs_dinode_t		*to,
670 	xfs_icdinode_t		*from)
671 {
672 	to->di_magic = cpu_to_be16(from->di_magic);
673 	to->di_mode = cpu_to_be16(from->di_mode);
674 	to->di_version = from ->di_version;
675 	to->di_format = from->di_format;
676 	to->di_onlink = cpu_to_be16(from->di_onlink);
677 	to->di_uid = cpu_to_be32(from->di_uid);
678 	to->di_gid = cpu_to_be32(from->di_gid);
679 	to->di_nlink = cpu_to_be32(from->di_nlink);
680 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
681 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
682 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
683 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
684 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
685 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
686 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
687 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
688 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
689 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
690 	to->di_size = cpu_to_be64(from->di_size);
691 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
692 	to->di_extsize = cpu_to_be32(from->di_extsize);
693 	to->di_nextents = cpu_to_be32(from->di_nextents);
694 	to->di_anextents = cpu_to_be16(from->di_anextents);
695 	to->di_forkoff = from->di_forkoff;
696 	to->di_aformat = from->di_aformat;
697 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
698 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
699 	to->di_flags = cpu_to_be16(from->di_flags);
700 	to->di_gen = cpu_to_be32(from->di_gen);
701 }
702 
703 STATIC uint
_xfs_dic2xflags(__uint16_t di_flags)704 _xfs_dic2xflags(
705 	__uint16_t		di_flags)
706 {
707 	uint			flags = 0;
708 
709 	if (di_flags & XFS_DIFLAG_ANY) {
710 		if (di_flags & XFS_DIFLAG_REALTIME)
711 			flags |= XFS_XFLAG_REALTIME;
712 		if (di_flags & XFS_DIFLAG_PREALLOC)
713 			flags |= XFS_XFLAG_PREALLOC;
714 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
715 			flags |= XFS_XFLAG_IMMUTABLE;
716 		if (di_flags & XFS_DIFLAG_APPEND)
717 			flags |= XFS_XFLAG_APPEND;
718 		if (di_flags & XFS_DIFLAG_SYNC)
719 			flags |= XFS_XFLAG_SYNC;
720 		if (di_flags & XFS_DIFLAG_NOATIME)
721 			flags |= XFS_XFLAG_NOATIME;
722 		if (di_flags & XFS_DIFLAG_NODUMP)
723 			flags |= XFS_XFLAG_NODUMP;
724 		if (di_flags & XFS_DIFLAG_RTINHERIT)
725 			flags |= XFS_XFLAG_RTINHERIT;
726 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
727 			flags |= XFS_XFLAG_PROJINHERIT;
728 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
729 			flags |= XFS_XFLAG_NOSYMLINKS;
730 		if (di_flags & XFS_DIFLAG_EXTSIZE)
731 			flags |= XFS_XFLAG_EXTSIZE;
732 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
733 			flags |= XFS_XFLAG_EXTSZINHERIT;
734 		if (di_flags & XFS_DIFLAG_NODEFRAG)
735 			flags |= XFS_XFLAG_NODEFRAG;
736 		if (di_flags & XFS_DIFLAG_FILESTREAM)
737 			flags |= XFS_XFLAG_FILESTREAM;
738 	}
739 
740 	return flags;
741 }
742 
743 uint
xfs_ip2xflags(xfs_inode_t * ip)744 xfs_ip2xflags(
745 	xfs_inode_t		*ip)
746 {
747 	xfs_icdinode_t		*dic = &ip->i_d;
748 
749 	return _xfs_dic2xflags(dic->di_flags) |
750 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
751 }
752 
753 uint
xfs_dic2xflags(xfs_dinode_t * dip)754 xfs_dic2xflags(
755 	xfs_dinode_t		*dip)
756 {
757 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
758 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
759 }
760 
761 /*
762  * Read the disk inode attributes into the in-core inode structure.
763  */
764 int
xfs_iread(xfs_mount_t * mp,xfs_trans_t * tp,xfs_inode_t * ip,uint iget_flags)765 xfs_iread(
766 	xfs_mount_t	*mp,
767 	xfs_trans_t	*tp,
768 	xfs_inode_t	*ip,
769 	uint		iget_flags)
770 {
771 	xfs_buf_t	*bp;
772 	xfs_dinode_t	*dip;
773 	int		error;
774 
775 	/*
776 	 * Fill in the location information in the in-core inode.
777 	 */
778 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
779 	if (error)
780 		return error;
781 
782 	/*
783 	 * Get pointers to the on-disk inode and the buffer containing it.
784 	 */
785 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
786 			       XBF_LOCK, iget_flags);
787 	if (error)
788 		return error;
789 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
790 
791 	/*
792 	 * If we got something that isn't an inode it means someone
793 	 * (nfs or dmi) has a stale handle.
794 	 */
795 	if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
796 #ifdef DEBUG
797 		xfs_alert(mp,
798 			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
799 			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
800 #endif /* DEBUG */
801 		error = XFS_ERROR(EINVAL);
802 		goto out_brelse;
803 	}
804 
805 	/*
806 	 * If the on-disk inode is already linked to a directory
807 	 * entry, copy all of the inode into the in-core inode.
808 	 * xfs_iformat() handles copying in the inode format
809 	 * specific information.
810 	 * Otherwise, just get the truly permanent information.
811 	 */
812 	if (dip->di_mode) {
813 		xfs_dinode_from_disk(&ip->i_d, dip);
814 		error = xfs_iformat(ip, dip);
815 		if (error)  {
816 #ifdef DEBUG
817 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
818 				__func__, error);
819 #endif /* DEBUG */
820 			goto out_brelse;
821 		}
822 	} else {
823 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
824 		ip->i_d.di_version = dip->di_version;
825 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
826 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
827 		/*
828 		 * Make sure to pull in the mode here as well in
829 		 * case the inode is released without being used.
830 		 * This ensures that xfs_inactive() will see that
831 		 * the inode is already free and not try to mess
832 		 * with the uninitialized part of it.
833 		 */
834 		ip->i_d.di_mode = 0;
835 	}
836 
837 	/*
838 	 * The inode format changed when we moved the link count and
839 	 * made it 32 bits long.  If this is an old format inode,
840 	 * convert it in memory to look like a new one.  If it gets
841 	 * flushed to disk we will convert back before flushing or
842 	 * logging it.  We zero out the new projid field and the old link
843 	 * count field.  We'll handle clearing the pad field (the remains
844 	 * of the old uuid field) when we actually convert the inode to
845 	 * the new format. We don't change the version number so that we
846 	 * can distinguish this from a real new format inode.
847 	 */
848 	if (ip->i_d.di_version == 1) {
849 		ip->i_d.di_nlink = ip->i_d.di_onlink;
850 		ip->i_d.di_onlink = 0;
851 		xfs_set_projid(ip, 0);
852 	}
853 
854 	ip->i_delayed_blks = 0;
855 
856 	/*
857 	 * Mark the buffer containing the inode as something to keep
858 	 * around for a while.  This helps to keep recently accessed
859 	 * meta-data in-core longer.
860 	 */
861 	xfs_buf_set_ref(bp, XFS_INO_REF);
862 
863 	/*
864 	 * Use xfs_trans_brelse() to release the buffer containing the
865 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
866 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
867 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
868 	 * will only release the buffer if it is not dirty within the
869 	 * transaction.  It will be OK to release the buffer in this case,
870 	 * because inodes on disk are never destroyed and we will be
871 	 * locking the new in-core inode before putting it in the hash
872 	 * table where other processes can find it.  Thus we don't have
873 	 * to worry about the inode being changed just because we released
874 	 * the buffer.
875 	 */
876  out_brelse:
877 	xfs_trans_brelse(tp, bp);
878 	return error;
879 }
880 
881 /*
882  * Read in extents from a btree-format inode.
883  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
884  */
885 int
xfs_iread_extents(xfs_trans_t * tp,xfs_inode_t * ip,int whichfork)886 xfs_iread_extents(
887 	xfs_trans_t	*tp,
888 	xfs_inode_t	*ip,
889 	int		whichfork)
890 {
891 	int		error;
892 	xfs_ifork_t	*ifp;
893 	xfs_extnum_t	nextents;
894 
895 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
896 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
897 				 ip->i_mount);
898 		return XFS_ERROR(EFSCORRUPTED);
899 	}
900 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
901 	ifp = XFS_IFORK_PTR(ip, whichfork);
902 
903 	/*
904 	 * We know that the size is valid (it's checked in iformat_btree)
905 	 */
906 	ifp->if_bytes = ifp->if_real_bytes = 0;
907 	ifp->if_flags |= XFS_IFEXTENTS;
908 	xfs_iext_add(ifp, 0, nextents);
909 	error = xfs_bmap_read_extents(tp, ip, whichfork);
910 	if (error) {
911 		xfs_iext_destroy(ifp);
912 		ifp->if_flags &= ~XFS_IFEXTENTS;
913 		return error;
914 	}
915 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
916 	return 0;
917 }
918 
919 /*
920  * Allocate an inode on disk and return a copy of its in-core version.
921  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
922  * appropriately within the inode.  The uid and gid for the inode are
923  * set according to the contents of the given cred structure.
924  *
925  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
926  * has a free inode available, call xfs_iget()
927  * to obtain the in-core version of the allocated inode.  Finally,
928  * fill in the inode and log its initial contents.  In this case,
929  * ialloc_context would be set to NULL and call_again set to false.
930  *
931  * If xfs_dialloc() does not have an available inode,
932  * it will replenish its supply by doing an allocation. Since we can
933  * only do one allocation within a transaction without deadlocks, we
934  * must commit the current transaction before returning the inode itself.
935  * In this case, therefore, we will set call_again to true and return.
936  * The caller should then commit the current transaction, start a new
937  * transaction, and call xfs_ialloc() again to actually get the inode.
938  *
939  * To ensure that some other process does not grab the inode that
940  * was allocated during the first call to xfs_ialloc(), this routine
941  * also returns the [locked] bp pointing to the head of the freelist
942  * as ialloc_context.  The caller should hold this buffer across
943  * the commit and pass it back into this routine on the second call.
944  *
945  * If we are allocating quota inodes, we do not have a parent inode
946  * to attach to or associate with (i.e. pip == NULL) because they
947  * are not linked into the directory structure - they are attached
948  * directly to the superblock - and so have no parent.
949  */
950 int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,umode_t mode,xfs_nlink_t nlink,xfs_dev_t rdev,prid_t prid,int okalloc,xfs_buf_t ** ialloc_context,boolean_t * call_again,xfs_inode_t ** ipp)951 xfs_ialloc(
952 	xfs_trans_t	*tp,
953 	xfs_inode_t	*pip,
954 	umode_t		mode,
955 	xfs_nlink_t	nlink,
956 	xfs_dev_t	rdev,
957 	prid_t		prid,
958 	int		okalloc,
959 	xfs_buf_t	**ialloc_context,
960 	boolean_t	*call_again,
961 	xfs_inode_t	**ipp)
962 {
963 	xfs_ino_t	ino;
964 	xfs_inode_t	*ip;
965 	uint		flags;
966 	int		error;
967 	timespec_t	tv;
968 	int		filestreams = 0;
969 
970 	/*
971 	 * Call the space management code to pick
972 	 * the on-disk inode to be allocated.
973 	 */
974 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
975 			    ialloc_context, call_again, &ino);
976 	if (error)
977 		return error;
978 	if (*call_again || ino == NULLFSINO) {
979 		*ipp = NULL;
980 		return 0;
981 	}
982 	ASSERT(*ialloc_context == NULL);
983 
984 	/*
985 	 * Get the in-core inode with the lock held exclusively.
986 	 * This is because we're setting fields here we need
987 	 * to prevent others from looking at until we're done.
988 	 */
989 	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
990 			 XFS_ILOCK_EXCL, &ip);
991 	if (error)
992 		return error;
993 	ASSERT(ip != NULL);
994 
995 	ip->i_d.di_mode = mode;
996 	ip->i_d.di_onlink = 0;
997 	ip->i_d.di_nlink = nlink;
998 	ASSERT(ip->i_d.di_nlink == nlink);
999 	ip->i_d.di_uid = current_fsuid();
1000 	ip->i_d.di_gid = current_fsgid();
1001 	xfs_set_projid(ip, prid);
1002 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1003 
1004 	/*
1005 	 * If the superblock version is up to where we support new format
1006 	 * inodes and this is currently an old format inode, then change
1007 	 * the inode version number now.  This way we only do the conversion
1008 	 * here rather than here and in the flush/logging code.
1009 	 */
1010 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1011 	    ip->i_d.di_version == 1) {
1012 		ip->i_d.di_version = 2;
1013 		/*
1014 		 * We've already zeroed the old link count, the projid field,
1015 		 * and the pad field.
1016 		 */
1017 	}
1018 
1019 	/*
1020 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1021 	 */
1022 	if ((prid != 0) && (ip->i_d.di_version == 1))
1023 		xfs_bump_ino_vers2(tp, ip);
1024 
1025 	if (pip && XFS_INHERIT_GID(pip)) {
1026 		ip->i_d.di_gid = pip->i_d.di_gid;
1027 		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1028 			ip->i_d.di_mode |= S_ISGID;
1029 		}
1030 	}
1031 
1032 	/*
1033 	 * If the group ID of the new file does not match the effective group
1034 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1035 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1036 	 */
1037 	if ((irix_sgid_inherit) &&
1038 	    (ip->i_d.di_mode & S_ISGID) &&
1039 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1040 		ip->i_d.di_mode &= ~S_ISGID;
1041 	}
1042 
1043 	ip->i_d.di_size = 0;
1044 	ip->i_d.di_nextents = 0;
1045 	ASSERT(ip->i_d.di_nblocks == 0);
1046 
1047 	nanotime(&tv);
1048 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1049 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1050 	ip->i_d.di_atime = ip->i_d.di_mtime;
1051 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1052 
1053 	/*
1054 	 * di_gen will have been taken care of in xfs_iread.
1055 	 */
1056 	ip->i_d.di_extsize = 0;
1057 	ip->i_d.di_dmevmask = 0;
1058 	ip->i_d.di_dmstate = 0;
1059 	ip->i_d.di_flags = 0;
1060 	flags = XFS_ILOG_CORE;
1061 	switch (mode & S_IFMT) {
1062 	case S_IFIFO:
1063 	case S_IFCHR:
1064 	case S_IFBLK:
1065 	case S_IFSOCK:
1066 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1067 		ip->i_df.if_u2.if_rdev = rdev;
1068 		ip->i_df.if_flags = 0;
1069 		flags |= XFS_ILOG_DEV;
1070 		break;
1071 	case S_IFREG:
1072 		/*
1073 		 * we can't set up filestreams until after the VFS inode
1074 		 * is set up properly.
1075 		 */
1076 		if (pip && xfs_inode_is_filestream(pip))
1077 			filestreams = 1;
1078 		/* fall through */
1079 	case S_IFDIR:
1080 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1081 			uint	di_flags = 0;
1082 
1083 			if (S_ISDIR(mode)) {
1084 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1085 					di_flags |= XFS_DIFLAG_RTINHERIT;
1086 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1087 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1088 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1089 				}
1090 			} else if (S_ISREG(mode)) {
1091 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1092 					di_flags |= XFS_DIFLAG_REALTIME;
1093 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1094 					di_flags |= XFS_DIFLAG_EXTSIZE;
1095 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1096 				}
1097 			}
1098 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1099 			    xfs_inherit_noatime)
1100 				di_flags |= XFS_DIFLAG_NOATIME;
1101 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1102 			    xfs_inherit_nodump)
1103 				di_flags |= XFS_DIFLAG_NODUMP;
1104 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1105 			    xfs_inherit_sync)
1106 				di_flags |= XFS_DIFLAG_SYNC;
1107 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1108 			    xfs_inherit_nosymlinks)
1109 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1110 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1111 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1112 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1113 			    xfs_inherit_nodefrag)
1114 				di_flags |= XFS_DIFLAG_NODEFRAG;
1115 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1116 				di_flags |= XFS_DIFLAG_FILESTREAM;
1117 			ip->i_d.di_flags |= di_flags;
1118 		}
1119 		/* FALLTHROUGH */
1120 	case S_IFLNK:
1121 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1122 		ip->i_df.if_flags = XFS_IFEXTENTS;
1123 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1124 		ip->i_df.if_u1.if_extents = NULL;
1125 		break;
1126 	default:
1127 		ASSERT(0);
1128 	}
1129 	/*
1130 	 * Attribute fork settings for new inode.
1131 	 */
1132 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1133 	ip->i_d.di_anextents = 0;
1134 
1135 	/*
1136 	 * Log the new values stuffed into the inode.
1137 	 */
1138 	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1139 	xfs_trans_log_inode(tp, ip, flags);
1140 
1141 	/* now that we have an i_mode we can setup inode ops and unlock */
1142 	xfs_setup_inode(ip);
1143 
1144 	/* now we have set up the vfs inode we can associate the filestream */
1145 	if (filestreams) {
1146 		error = xfs_filestream_associate(pip, ip);
1147 		if (error < 0)
1148 			return -error;
1149 		if (!error)
1150 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1151 	}
1152 
1153 	*ipp = ip;
1154 	return 0;
1155 }
1156 
1157 /*
1158  * Free up the underlying blocks past new_size.  The new size must be smaller
1159  * than the current size.  This routine can be used both for the attribute and
1160  * data fork, and does not modify the inode size, which is left to the caller.
1161  *
1162  * The transaction passed to this routine must have made a permanent log
1163  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1164  * given transaction and start new ones, so make sure everything involved in
1165  * the transaction is tidy before calling here.  Some transaction will be
1166  * returned to the caller to be committed.  The incoming transaction must
1167  * already include the inode, and both inode locks must be held exclusively.
1168  * The inode must also be "held" within the transaction.  On return the inode
1169  * will be "held" within the returned transaction.  This routine does NOT
1170  * require any disk space to be reserved for it within the transaction.
1171  *
1172  * If we get an error, we must return with the inode locked and linked into the
1173  * current transaction. This keeps things simple for the higher level code,
1174  * because it always knows that the inode is locked and held in the transaction
1175  * that returns to it whether errors occur or not.  We don't mark the inode
1176  * dirty on error so that transactions can be easily aborted if possible.
1177  */
1178 int
xfs_itruncate_extents(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size)1179 xfs_itruncate_extents(
1180 	struct xfs_trans	**tpp,
1181 	struct xfs_inode	*ip,
1182 	int			whichfork,
1183 	xfs_fsize_t		new_size)
1184 {
1185 	struct xfs_mount	*mp = ip->i_mount;
1186 	struct xfs_trans	*tp = *tpp;
1187 	struct xfs_trans	*ntp;
1188 	xfs_bmap_free_t		free_list;
1189 	xfs_fsblock_t		first_block;
1190 	xfs_fileoff_t		first_unmap_block;
1191 	xfs_fileoff_t		last_block;
1192 	xfs_filblks_t		unmap_len;
1193 	int			committed;
1194 	int			error = 0;
1195 	int			done = 0;
1196 
1197 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1198 	ASSERT(new_size <= XFS_ISIZE(ip));
1199 	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1200 	ASSERT(ip->i_itemp != NULL);
1201 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1202 	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1203 
1204 	trace_xfs_itruncate_extents_start(ip, new_size);
1205 
1206 	/*
1207 	 * Since it is possible for space to become allocated beyond
1208 	 * the end of the file (in a crash where the space is allocated
1209 	 * but the inode size is not yet updated), simply remove any
1210 	 * blocks which show up between the new EOF and the maximum
1211 	 * possible file size.  If the first block to be removed is
1212 	 * beyond the maximum file size (ie it is the same as last_block),
1213 	 * then there is nothing to do.
1214 	 */
1215 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1216 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1217 	if (first_unmap_block == last_block)
1218 		return 0;
1219 
1220 	ASSERT(first_unmap_block < last_block);
1221 	unmap_len = last_block - first_unmap_block + 1;
1222 	while (!done) {
1223 		xfs_bmap_init(&free_list, &first_block);
1224 		error = xfs_bunmapi(tp, ip,
1225 				    first_unmap_block, unmap_len,
1226 				    xfs_bmapi_aflag(whichfork),
1227 				    XFS_ITRUNC_MAX_EXTENTS,
1228 				    &first_block, &free_list,
1229 				    &done);
1230 		if (error)
1231 			goto out_bmap_cancel;
1232 
1233 		/*
1234 		 * Duplicate the transaction that has the permanent
1235 		 * reservation and commit the old transaction.
1236 		 */
1237 		error = xfs_bmap_finish(&tp, &free_list, &committed);
1238 		if (committed)
1239 			xfs_trans_ijoin(tp, ip, 0);
1240 		if (error)
1241 			goto out_bmap_cancel;
1242 
1243 		if (committed) {
1244 			/*
1245 			 * Mark the inode dirty so it will be logged and
1246 			 * moved forward in the log as part of every commit.
1247 			 */
1248 			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1249 		}
1250 
1251 		ntp = xfs_trans_dup(tp);
1252 		error = xfs_trans_commit(tp, 0);
1253 		tp = ntp;
1254 
1255 		xfs_trans_ijoin(tp, ip, 0);
1256 
1257 		if (error)
1258 			goto out;
1259 
1260 		/*
1261 		 * Transaction commit worked ok so we can drop the extra ticket
1262 		 * reference that we gained in xfs_trans_dup()
1263 		 */
1264 		xfs_log_ticket_put(tp->t_ticket);
1265 		error = xfs_trans_reserve(tp, 0,
1266 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1267 					XFS_TRANS_PERM_LOG_RES,
1268 					XFS_ITRUNCATE_LOG_COUNT);
1269 		if (error)
1270 			goto out;
1271 	}
1272 
1273 	/*
1274 	 * Always re-log the inode so that our permanent transaction can keep
1275 	 * on rolling it forward in the log.
1276 	 */
1277 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1278 
1279 	trace_xfs_itruncate_extents_end(ip, new_size);
1280 
1281 out:
1282 	*tpp = tp;
1283 	return error;
1284 out_bmap_cancel:
1285 	/*
1286 	 * If the bunmapi call encounters an error, return to the caller where
1287 	 * the transaction can be properly aborted.  We just need to make sure
1288 	 * we're not holding any resources that we were not when we came in.
1289 	 */
1290 	xfs_bmap_cancel(&free_list);
1291 	goto out;
1292 }
1293 
1294 /*
1295  * This is called when the inode's link count goes to 0.
1296  * We place the on-disk inode on a list in the AGI.  It
1297  * will be pulled from this list when the inode is freed.
1298  */
1299 int
xfs_iunlink(xfs_trans_t * tp,xfs_inode_t * ip)1300 xfs_iunlink(
1301 	xfs_trans_t	*tp,
1302 	xfs_inode_t	*ip)
1303 {
1304 	xfs_mount_t	*mp;
1305 	xfs_agi_t	*agi;
1306 	xfs_dinode_t	*dip;
1307 	xfs_buf_t	*agibp;
1308 	xfs_buf_t	*ibp;
1309 	xfs_agino_t	agino;
1310 	short		bucket_index;
1311 	int		offset;
1312 	int		error;
1313 
1314 	ASSERT(ip->i_d.di_nlink == 0);
1315 	ASSERT(ip->i_d.di_mode != 0);
1316 
1317 	mp = tp->t_mountp;
1318 
1319 	/*
1320 	 * Get the agi buffer first.  It ensures lock ordering
1321 	 * on the list.
1322 	 */
1323 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1324 	if (error)
1325 		return error;
1326 	agi = XFS_BUF_TO_AGI(agibp);
1327 
1328 	/*
1329 	 * Get the index into the agi hash table for the
1330 	 * list this inode will go on.
1331 	 */
1332 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1333 	ASSERT(agino != 0);
1334 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1335 	ASSERT(agi->agi_unlinked[bucket_index]);
1336 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1337 
1338 	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1339 		/*
1340 		 * There is already another inode in the bucket we need
1341 		 * to add ourselves to.  Add us at the front of the list.
1342 		 * Here we put the head pointer into our next pointer,
1343 		 * and then we fall through to point the head at us.
1344 		 */
1345 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1346 		if (error)
1347 			return error;
1348 
1349 		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1350 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1351 		offset = ip->i_imap.im_boffset +
1352 			offsetof(xfs_dinode_t, di_next_unlinked);
1353 		xfs_trans_inode_buf(tp, ibp);
1354 		xfs_trans_log_buf(tp, ibp, offset,
1355 				  (offset + sizeof(xfs_agino_t) - 1));
1356 		xfs_inobp_check(mp, ibp);
1357 	}
1358 
1359 	/*
1360 	 * Point the bucket head pointer at the inode being inserted.
1361 	 */
1362 	ASSERT(agino != 0);
1363 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1364 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1365 		(sizeof(xfs_agino_t) * bucket_index);
1366 	xfs_trans_log_buf(tp, agibp, offset,
1367 			  (offset + sizeof(xfs_agino_t) - 1));
1368 	return 0;
1369 }
1370 
1371 /*
1372  * Pull the on-disk inode from the AGI unlinked list.
1373  */
1374 STATIC int
xfs_iunlink_remove(xfs_trans_t * tp,xfs_inode_t * ip)1375 xfs_iunlink_remove(
1376 	xfs_trans_t	*tp,
1377 	xfs_inode_t	*ip)
1378 {
1379 	xfs_ino_t	next_ino;
1380 	xfs_mount_t	*mp;
1381 	xfs_agi_t	*agi;
1382 	xfs_dinode_t	*dip;
1383 	xfs_buf_t	*agibp;
1384 	xfs_buf_t	*ibp;
1385 	xfs_agnumber_t	agno;
1386 	xfs_agino_t	agino;
1387 	xfs_agino_t	next_agino;
1388 	xfs_buf_t	*last_ibp;
1389 	xfs_dinode_t	*last_dip = NULL;
1390 	short		bucket_index;
1391 	int		offset, last_offset = 0;
1392 	int		error;
1393 
1394 	mp = tp->t_mountp;
1395 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1396 
1397 	/*
1398 	 * Get the agi buffer first.  It ensures lock ordering
1399 	 * on the list.
1400 	 */
1401 	error = xfs_read_agi(mp, tp, agno, &agibp);
1402 	if (error)
1403 		return error;
1404 
1405 	agi = XFS_BUF_TO_AGI(agibp);
1406 
1407 	/*
1408 	 * Get the index into the agi hash table for the
1409 	 * list this inode will go on.
1410 	 */
1411 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1412 	ASSERT(agino != 0);
1413 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1414 	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1415 	ASSERT(agi->agi_unlinked[bucket_index]);
1416 
1417 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1418 		/*
1419 		 * We're at the head of the list.  Get the inode's
1420 		 * on-disk buffer to see if there is anyone after us
1421 		 * on the list.  Only modify our next pointer if it
1422 		 * is not already NULLAGINO.  This saves us the overhead
1423 		 * of dealing with the buffer when there is no need to
1424 		 * change it.
1425 		 */
1426 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1427 		if (error) {
1428 			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1429 				__func__, error);
1430 			return error;
1431 		}
1432 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1433 		ASSERT(next_agino != 0);
1434 		if (next_agino != NULLAGINO) {
1435 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1436 			offset = ip->i_imap.im_boffset +
1437 				offsetof(xfs_dinode_t, di_next_unlinked);
1438 			xfs_trans_inode_buf(tp, ibp);
1439 			xfs_trans_log_buf(tp, ibp, offset,
1440 					  (offset + sizeof(xfs_agino_t) - 1));
1441 			xfs_inobp_check(mp, ibp);
1442 		} else {
1443 			xfs_trans_brelse(tp, ibp);
1444 		}
1445 		/*
1446 		 * Point the bucket head pointer at the next inode.
1447 		 */
1448 		ASSERT(next_agino != 0);
1449 		ASSERT(next_agino != agino);
1450 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1451 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1452 			(sizeof(xfs_agino_t) * bucket_index);
1453 		xfs_trans_log_buf(tp, agibp, offset,
1454 				  (offset + sizeof(xfs_agino_t) - 1));
1455 	} else {
1456 		/*
1457 		 * We need to search the list for the inode being freed.
1458 		 */
1459 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1460 		last_ibp = NULL;
1461 		while (next_agino != agino) {
1462 			/*
1463 			 * If the last inode wasn't the one pointing to
1464 			 * us, then release its buffer since we're not
1465 			 * going to do anything with it.
1466 			 */
1467 			if (last_ibp != NULL) {
1468 				xfs_trans_brelse(tp, last_ibp);
1469 			}
1470 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1471 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1472 					    &last_ibp, &last_offset, 0);
1473 			if (error) {
1474 				xfs_warn(mp,
1475 					"%s: xfs_inotobp() returned error %d.",
1476 					__func__, error);
1477 				return error;
1478 			}
1479 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1480 			ASSERT(next_agino != NULLAGINO);
1481 			ASSERT(next_agino != 0);
1482 		}
1483 		/*
1484 		 * Now last_ibp points to the buffer previous to us on
1485 		 * the unlinked list.  Pull us from the list.
1486 		 */
1487 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1488 		if (error) {
1489 			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1490 				__func__, error);
1491 			return error;
1492 		}
1493 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1494 		ASSERT(next_agino != 0);
1495 		ASSERT(next_agino != agino);
1496 		if (next_agino != NULLAGINO) {
1497 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1498 			offset = ip->i_imap.im_boffset +
1499 				offsetof(xfs_dinode_t, di_next_unlinked);
1500 			xfs_trans_inode_buf(tp, ibp);
1501 			xfs_trans_log_buf(tp, ibp, offset,
1502 					  (offset + sizeof(xfs_agino_t) - 1));
1503 			xfs_inobp_check(mp, ibp);
1504 		} else {
1505 			xfs_trans_brelse(tp, ibp);
1506 		}
1507 		/*
1508 		 * Point the previous inode on the list to the next inode.
1509 		 */
1510 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1511 		ASSERT(next_agino != 0);
1512 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1513 		xfs_trans_inode_buf(tp, last_ibp);
1514 		xfs_trans_log_buf(tp, last_ibp, offset,
1515 				  (offset + sizeof(xfs_agino_t) - 1));
1516 		xfs_inobp_check(mp, last_ibp);
1517 	}
1518 	return 0;
1519 }
1520 
1521 /*
1522  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1523  * inodes that are in memory - they all must be marked stale and attached to
1524  * the cluster buffer.
1525  */
1526 STATIC int
xfs_ifree_cluster(xfs_inode_t * free_ip,xfs_trans_t * tp,xfs_ino_t inum)1527 xfs_ifree_cluster(
1528 	xfs_inode_t	*free_ip,
1529 	xfs_trans_t	*tp,
1530 	xfs_ino_t	inum)
1531 {
1532 	xfs_mount_t		*mp = free_ip->i_mount;
1533 	int			blks_per_cluster;
1534 	int			nbufs;
1535 	int			ninodes;
1536 	int			i, j;
1537 	xfs_daddr_t		blkno;
1538 	xfs_buf_t		*bp;
1539 	xfs_inode_t		*ip;
1540 	xfs_inode_log_item_t	*iip;
1541 	xfs_log_item_t		*lip;
1542 	struct xfs_perag	*pag;
1543 
1544 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1545 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1546 		blks_per_cluster = 1;
1547 		ninodes = mp->m_sb.sb_inopblock;
1548 		nbufs = XFS_IALLOC_BLOCKS(mp);
1549 	} else {
1550 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1551 					mp->m_sb.sb_blocksize;
1552 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1553 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1554 	}
1555 
1556 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1557 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1558 					 XFS_INO_TO_AGBNO(mp, inum));
1559 
1560 		/*
1561 		 * We obtain and lock the backing buffer first in the process
1562 		 * here, as we have to ensure that any dirty inode that we
1563 		 * can't get the flush lock on is attached to the buffer.
1564 		 * If we scan the in-memory inodes first, then buffer IO can
1565 		 * complete before we get a lock on it, and hence we may fail
1566 		 * to mark all the active inodes on the buffer stale.
1567 		 */
1568 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1569 					mp->m_bsize * blks_per_cluster,
1570 					XBF_LOCK);
1571 
1572 		if (!bp)
1573 			return ENOMEM;
1574 		/*
1575 		 * Walk the inodes already attached to the buffer and mark them
1576 		 * stale. These will all have the flush locks held, so an
1577 		 * in-memory inode walk can't lock them. By marking them all
1578 		 * stale first, we will not attempt to lock them in the loop
1579 		 * below as the XFS_ISTALE flag will be set.
1580 		 */
1581 		lip = bp->b_fspriv;
1582 		while (lip) {
1583 			if (lip->li_type == XFS_LI_INODE) {
1584 				iip = (xfs_inode_log_item_t *)lip;
1585 				ASSERT(iip->ili_logged == 1);
1586 				lip->li_cb = xfs_istale_done;
1587 				xfs_trans_ail_copy_lsn(mp->m_ail,
1588 							&iip->ili_flush_lsn,
1589 							&iip->ili_item.li_lsn);
1590 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1591 			}
1592 			lip = lip->li_bio_list;
1593 		}
1594 
1595 
1596 		/*
1597 		 * For each inode in memory attempt to add it to the inode
1598 		 * buffer and set it up for being staled on buffer IO
1599 		 * completion.  This is safe as we've locked out tail pushing
1600 		 * and flushing by locking the buffer.
1601 		 *
1602 		 * We have already marked every inode that was part of a
1603 		 * transaction stale above, which means there is no point in
1604 		 * even trying to lock them.
1605 		 */
1606 		for (i = 0; i < ninodes; i++) {
1607 retry:
1608 			rcu_read_lock();
1609 			ip = radix_tree_lookup(&pag->pag_ici_root,
1610 					XFS_INO_TO_AGINO(mp, (inum + i)));
1611 
1612 			/* Inode not in memory, nothing to do */
1613 			if (!ip) {
1614 				rcu_read_unlock();
1615 				continue;
1616 			}
1617 
1618 			/*
1619 			 * because this is an RCU protected lookup, we could
1620 			 * find a recently freed or even reallocated inode
1621 			 * during the lookup. We need to check under the
1622 			 * i_flags_lock for a valid inode here. Skip it if it
1623 			 * is not valid, the wrong inode or stale.
1624 			 */
1625 			spin_lock(&ip->i_flags_lock);
1626 			if (ip->i_ino != inum + i ||
1627 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
1628 				spin_unlock(&ip->i_flags_lock);
1629 				rcu_read_unlock();
1630 				continue;
1631 			}
1632 			spin_unlock(&ip->i_flags_lock);
1633 
1634 			/*
1635 			 * Don't try to lock/unlock the current inode, but we
1636 			 * _cannot_ skip the other inodes that we did not find
1637 			 * in the list attached to the buffer and are not
1638 			 * already marked stale. If we can't lock it, back off
1639 			 * and retry.
1640 			 */
1641 			if (ip != free_ip &&
1642 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1643 				rcu_read_unlock();
1644 				delay(1);
1645 				goto retry;
1646 			}
1647 			rcu_read_unlock();
1648 
1649 			xfs_iflock(ip);
1650 			xfs_iflags_set(ip, XFS_ISTALE);
1651 
1652 			/*
1653 			 * we don't need to attach clean inodes or those only
1654 			 * with unlogged changes (which we throw away, anyway).
1655 			 */
1656 			iip = ip->i_itemp;
1657 			if (!iip || xfs_inode_clean(ip)) {
1658 				ASSERT(ip != free_ip);
1659 				xfs_ifunlock(ip);
1660 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1661 				continue;
1662 			}
1663 
1664 			iip->ili_last_fields = iip->ili_fields;
1665 			iip->ili_fields = 0;
1666 			iip->ili_logged = 1;
1667 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1668 						&iip->ili_item.li_lsn);
1669 
1670 			xfs_buf_attach_iodone(bp, xfs_istale_done,
1671 						  &iip->ili_item);
1672 
1673 			if (ip != free_ip)
1674 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
1675 		}
1676 
1677 		xfs_trans_stale_inode_buf(tp, bp);
1678 		xfs_trans_binval(tp, bp);
1679 	}
1680 
1681 	xfs_perag_put(pag);
1682 	return 0;
1683 }
1684 
1685 /*
1686  * This is called to return an inode to the inode free list.
1687  * The inode should already be truncated to 0 length and have
1688  * no pages associated with it.  This routine also assumes that
1689  * the inode is already a part of the transaction.
1690  *
1691  * The on-disk copy of the inode will have been added to the list
1692  * of unlinked inodes in the AGI. We need to remove the inode from
1693  * that list atomically with respect to freeing it here.
1694  */
1695 int
xfs_ifree(xfs_trans_t * tp,xfs_inode_t * ip,xfs_bmap_free_t * flist)1696 xfs_ifree(
1697 	xfs_trans_t	*tp,
1698 	xfs_inode_t	*ip,
1699 	xfs_bmap_free_t	*flist)
1700 {
1701 	int			error;
1702 	int			delete;
1703 	xfs_ino_t		first_ino;
1704 	xfs_dinode_t    	*dip;
1705 	xfs_buf_t       	*ibp;
1706 
1707 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1708 	ASSERT(ip->i_d.di_nlink == 0);
1709 	ASSERT(ip->i_d.di_nextents == 0);
1710 	ASSERT(ip->i_d.di_anextents == 0);
1711 	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1712 	ASSERT(ip->i_d.di_nblocks == 0);
1713 
1714 	/*
1715 	 * Pull the on-disk inode from the AGI unlinked list.
1716 	 */
1717 	error = xfs_iunlink_remove(tp, ip);
1718 	if (error != 0) {
1719 		return error;
1720 	}
1721 
1722 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1723 	if (error != 0) {
1724 		return error;
1725 	}
1726 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
1727 	ip->i_d.di_flags = 0;
1728 	ip->i_d.di_dmevmask = 0;
1729 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
1730 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1731 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1732 	/*
1733 	 * Bump the generation count so no one will be confused
1734 	 * by reincarnations of this inode.
1735 	 */
1736 	ip->i_d.di_gen++;
1737 
1738 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1739 
1740 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
1741 	if (error)
1742 		return error;
1743 
1744         /*
1745 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1746 	* from picking up this inode when it is reclaimed (its incore state
1747 	* initialzed but not flushed to disk yet). The in-core di_mode is
1748 	* already cleared  and a corresponding transaction logged.
1749 	* The hack here just synchronizes the in-core to on-disk
1750 	* di_mode value in advance before the actual inode sync to disk.
1751 	* This is OK because the inode is already unlinked and would never
1752 	* change its di_mode again for this inode generation.
1753 	* This is a temporary hack that would require a proper fix
1754 	* in the future.
1755 	*/
1756 	dip->di_mode = 0;
1757 
1758 	if (delete) {
1759 		error = xfs_ifree_cluster(ip, tp, first_ino);
1760 	}
1761 
1762 	return error;
1763 }
1764 
1765 /*
1766  * Reallocate the space for if_broot based on the number of records
1767  * being added or deleted as indicated in rec_diff.  Move the records
1768  * and pointers in if_broot to fit the new size.  When shrinking this
1769  * will eliminate holes between the records and pointers created by
1770  * the caller.  When growing this will create holes to be filled in
1771  * by the caller.
1772  *
1773  * The caller must not request to add more records than would fit in
1774  * the on-disk inode root.  If the if_broot is currently NULL, then
1775  * if we adding records one will be allocated.  The caller must also
1776  * not request that the number of records go below zero, although
1777  * it can go to zero.
1778  *
1779  * ip -- the inode whose if_broot area is changing
1780  * ext_diff -- the change in the number of records, positive or negative,
1781  *	 requested for the if_broot array.
1782  */
1783 void
xfs_iroot_realloc(xfs_inode_t * ip,int rec_diff,int whichfork)1784 xfs_iroot_realloc(
1785 	xfs_inode_t		*ip,
1786 	int			rec_diff,
1787 	int			whichfork)
1788 {
1789 	struct xfs_mount	*mp = ip->i_mount;
1790 	int			cur_max;
1791 	xfs_ifork_t		*ifp;
1792 	struct xfs_btree_block	*new_broot;
1793 	int			new_max;
1794 	size_t			new_size;
1795 	char			*np;
1796 	char			*op;
1797 
1798 	/*
1799 	 * Handle the degenerate case quietly.
1800 	 */
1801 	if (rec_diff == 0) {
1802 		return;
1803 	}
1804 
1805 	ifp = XFS_IFORK_PTR(ip, whichfork);
1806 	if (rec_diff > 0) {
1807 		/*
1808 		 * If there wasn't any memory allocated before, just
1809 		 * allocate it now and get out.
1810 		 */
1811 		if (ifp->if_broot_bytes == 0) {
1812 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
1813 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1814 			ifp->if_broot_bytes = (int)new_size;
1815 			return;
1816 		}
1817 
1818 		/*
1819 		 * If there is already an existing if_broot, then we need
1820 		 * to realloc() it and shift the pointers to their new
1821 		 * location.  The records don't change location because
1822 		 * they are kept butted up against the btree block header.
1823 		 */
1824 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1825 		new_max = cur_max + rec_diff;
1826 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1827 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1828 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
1829 				KM_SLEEP | KM_NOFS);
1830 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1831 						     ifp->if_broot_bytes);
1832 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1833 						     (int)new_size);
1834 		ifp->if_broot_bytes = (int)new_size;
1835 		ASSERT(ifp->if_broot_bytes <=
1836 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1837 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
1838 		return;
1839 	}
1840 
1841 	/*
1842 	 * rec_diff is less than 0.  In this case, we are shrinking the
1843 	 * if_broot buffer.  It must already exist.  If we go to zero
1844 	 * records, just get rid of the root and clear the status bit.
1845 	 */
1846 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
1847 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1848 	new_max = cur_max + rec_diff;
1849 	ASSERT(new_max >= 0);
1850 	if (new_max > 0)
1851 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
1852 	else
1853 		new_size = 0;
1854 	if (new_size > 0) {
1855 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1856 		/*
1857 		 * First copy over the btree block header.
1858 		 */
1859 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1860 	} else {
1861 		new_broot = NULL;
1862 		ifp->if_flags &= ~XFS_IFBROOT;
1863 	}
1864 
1865 	/*
1866 	 * Only copy the records and pointers if there are any.
1867 	 */
1868 	if (new_max > 0) {
1869 		/*
1870 		 * First copy the records.
1871 		 */
1872 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
1873 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1874 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
1875 
1876 		/*
1877 		 * Then copy the pointers.
1878 		 */
1879 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1880 						     ifp->if_broot_bytes);
1881 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1882 						     (int)new_size);
1883 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
1884 	}
1885 	kmem_free(ifp->if_broot);
1886 	ifp->if_broot = new_broot;
1887 	ifp->if_broot_bytes = (int)new_size;
1888 	ASSERT(ifp->if_broot_bytes <=
1889 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
1890 	return;
1891 }
1892 
1893 
1894 /*
1895  * This is called when the amount of space needed for if_data
1896  * is increased or decreased.  The change in size is indicated by
1897  * the number of bytes that need to be added or deleted in the
1898  * byte_diff parameter.
1899  *
1900  * If the amount of space needed has decreased below the size of the
1901  * inline buffer, then switch to using the inline buffer.  Otherwise,
1902  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
1903  * to what is needed.
1904  *
1905  * ip -- the inode whose if_data area is changing
1906  * byte_diff -- the change in the number of bytes, positive or negative,
1907  *	 requested for the if_data array.
1908  */
1909 void
xfs_idata_realloc(xfs_inode_t * ip,int byte_diff,int whichfork)1910 xfs_idata_realloc(
1911 	xfs_inode_t	*ip,
1912 	int		byte_diff,
1913 	int		whichfork)
1914 {
1915 	xfs_ifork_t	*ifp;
1916 	int		new_size;
1917 	int		real_size;
1918 
1919 	if (byte_diff == 0) {
1920 		return;
1921 	}
1922 
1923 	ifp = XFS_IFORK_PTR(ip, whichfork);
1924 	new_size = (int)ifp->if_bytes + byte_diff;
1925 	ASSERT(new_size >= 0);
1926 
1927 	if (new_size == 0) {
1928 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1929 			kmem_free(ifp->if_u1.if_data);
1930 		}
1931 		ifp->if_u1.if_data = NULL;
1932 		real_size = 0;
1933 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
1934 		/*
1935 		 * If the valid extents/data can fit in if_inline_ext/data,
1936 		 * copy them from the malloc'd vector and free it.
1937 		 */
1938 		if (ifp->if_u1.if_data == NULL) {
1939 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1940 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1941 			ASSERT(ifp->if_real_bytes != 0);
1942 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
1943 			      new_size);
1944 			kmem_free(ifp->if_u1.if_data);
1945 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
1946 		}
1947 		real_size = 0;
1948 	} else {
1949 		/*
1950 		 * Stuck with malloc/realloc.
1951 		 * For inline data, the underlying buffer must be
1952 		 * a multiple of 4 bytes in size so that it can be
1953 		 * logged and stay on word boundaries.  We enforce
1954 		 * that here.
1955 		 */
1956 		real_size = roundup(new_size, 4);
1957 		if (ifp->if_u1.if_data == NULL) {
1958 			ASSERT(ifp->if_real_bytes == 0);
1959 			ifp->if_u1.if_data = kmem_alloc(real_size,
1960 							KM_SLEEP | KM_NOFS);
1961 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
1962 			/*
1963 			 * Only do the realloc if the underlying size
1964 			 * is really changing.
1965 			 */
1966 			if (ifp->if_real_bytes != real_size) {
1967 				ifp->if_u1.if_data =
1968 					kmem_realloc(ifp->if_u1.if_data,
1969 							real_size,
1970 							ifp->if_real_bytes,
1971 							KM_SLEEP | KM_NOFS);
1972 			}
1973 		} else {
1974 			ASSERT(ifp->if_real_bytes == 0);
1975 			ifp->if_u1.if_data = kmem_alloc(real_size,
1976 							KM_SLEEP | KM_NOFS);
1977 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
1978 				ifp->if_bytes);
1979 		}
1980 	}
1981 	ifp->if_real_bytes = real_size;
1982 	ifp->if_bytes = new_size;
1983 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
1984 }
1985 
1986 void
xfs_idestroy_fork(xfs_inode_t * ip,int whichfork)1987 xfs_idestroy_fork(
1988 	xfs_inode_t	*ip,
1989 	int		whichfork)
1990 {
1991 	xfs_ifork_t	*ifp;
1992 
1993 	ifp = XFS_IFORK_PTR(ip, whichfork);
1994 	if (ifp->if_broot != NULL) {
1995 		kmem_free(ifp->if_broot);
1996 		ifp->if_broot = NULL;
1997 	}
1998 
1999 	/*
2000 	 * If the format is local, then we can't have an extents
2001 	 * array so just look for an inline data array.  If we're
2002 	 * not local then we may or may not have an extents list,
2003 	 * so check and free it up if we do.
2004 	 */
2005 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2006 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2007 		    (ifp->if_u1.if_data != NULL)) {
2008 			ASSERT(ifp->if_real_bytes != 0);
2009 			kmem_free(ifp->if_u1.if_data);
2010 			ifp->if_u1.if_data = NULL;
2011 			ifp->if_real_bytes = 0;
2012 		}
2013 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2014 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2015 		    ((ifp->if_u1.if_extents != NULL) &&
2016 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2017 		ASSERT(ifp->if_real_bytes != 0);
2018 		xfs_iext_destroy(ifp);
2019 	}
2020 	ASSERT(ifp->if_u1.if_extents == NULL ||
2021 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2022 	ASSERT(ifp->if_real_bytes == 0);
2023 	if (whichfork == XFS_ATTR_FORK) {
2024 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2025 		ip->i_afp = NULL;
2026 	}
2027 }
2028 
2029 /*
2030  * This is called to unpin an inode.  The caller must have the inode locked
2031  * in at least shared mode so that the buffer cannot be subsequently pinned
2032  * once someone is waiting for it to be unpinned.
2033  */
2034 static void
xfs_iunpin(struct xfs_inode * ip)2035 xfs_iunpin(
2036 	struct xfs_inode	*ip)
2037 {
2038 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2039 
2040 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2041 
2042 	/* Give the log a push to start the unpinning I/O */
2043 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2044 
2045 }
2046 
2047 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2048 __xfs_iunpin_wait(
2049 	struct xfs_inode	*ip)
2050 {
2051 	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2052 	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2053 
2054 	xfs_iunpin(ip);
2055 
2056 	do {
2057 		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2058 		if (xfs_ipincount(ip))
2059 			io_schedule();
2060 	} while (xfs_ipincount(ip));
2061 	finish_wait(wq, &wait.wait);
2062 }
2063 
2064 void
xfs_iunpin_wait(struct xfs_inode * ip)2065 xfs_iunpin_wait(
2066 	struct xfs_inode	*ip)
2067 {
2068 	if (xfs_ipincount(ip))
2069 		__xfs_iunpin_wait(ip);
2070 }
2071 
2072 /*
2073  * xfs_iextents_copy()
2074  *
2075  * This is called to copy the REAL extents (as opposed to the delayed
2076  * allocation extents) from the inode into the given buffer.  It
2077  * returns the number of bytes copied into the buffer.
2078  *
2079  * If there are no delayed allocation extents, then we can just
2080  * memcpy() the extents into the buffer.  Otherwise, we need to
2081  * examine each extent in turn and skip those which are delayed.
2082  */
2083 int
xfs_iextents_copy(xfs_inode_t * ip,xfs_bmbt_rec_t * dp,int whichfork)2084 xfs_iextents_copy(
2085 	xfs_inode_t		*ip,
2086 	xfs_bmbt_rec_t		*dp,
2087 	int			whichfork)
2088 {
2089 	int			copied;
2090 	int			i;
2091 	xfs_ifork_t		*ifp;
2092 	int			nrecs;
2093 	xfs_fsblock_t		start_block;
2094 
2095 	ifp = XFS_IFORK_PTR(ip, whichfork);
2096 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2097 	ASSERT(ifp->if_bytes > 0);
2098 
2099 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2100 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2101 	ASSERT(nrecs > 0);
2102 
2103 	/*
2104 	 * There are some delayed allocation extents in the
2105 	 * inode, so copy the extents one at a time and skip
2106 	 * the delayed ones.  There must be at least one
2107 	 * non-delayed extent.
2108 	 */
2109 	copied = 0;
2110 	for (i = 0; i < nrecs; i++) {
2111 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2112 		start_block = xfs_bmbt_get_startblock(ep);
2113 		if (isnullstartblock(start_block)) {
2114 			/*
2115 			 * It's a delayed allocation extent, so skip it.
2116 			 */
2117 			continue;
2118 		}
2119 
2120 		/* Translate to on disk format */
2121 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2122 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2123 		dp++;
2124 		copied++;
2125 	}
2126 	ASSERT(copied != 0);
2127 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2128 
2129 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2130 }
2131 
2132 /*
2133  * Each of the following cases stores data into the same region
2134  * of the on-disk inode, so only one of them can be valid at
2135  * any given time. While it is possible to have conflicting formats
2136  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2137  * in EXTENTS format, this can only happen when the fork has
2138  * changed formats after being modified but before being flushed.
2139  * In these cases, the format always takes precedence, because the
2140  * format indicates the current state of the fork.
2141  */
2142 /*ARGSUSED*/
2143 STATIC void
xfs_iflush_fork(xfs_inode_t * ip,xfs_dinode_t * dip,xfs_inode_log_item_t * iip,int whichfork,xfs_buf_t * bp)2144 xfs_iflush_fork(
2145 	xfs_inode_t		*ip,
2146 	xfs_dinode_t		*dip,
2147 	xfs_inode_log_item_t	*iip,
2148 	int			whichfork,
2149 	xfs_buf_t		*bp)
2150 {
2151 	char			*cp;
2152 	xfs_ifork_t		*ifp;
2153 	xfs_mount_t		*mp;
2154 #ifdef XFS_TRANS_DEBUG
2155 	int			first;
2156 #endif
2157 	static const short	brootflag[2] =
2158 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2159 	static const short	dataflag[2] =
2160 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2161 	static const short	extflag[2] =
2162 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2163 
2164 	if (!iip)
2165 		return;
2166 	ifp = XFS_IFORK_PTR(ip, whichfork);
2167 	/*
2168 	 * This can happen if we gave up in iformat in an error path,
2169 	 * for the attribute fork.
2170 	 */
2171 	if (!ifp) {
2172 		ASSERT(whichfork == XFS_ATTR_FORK);
2173 		return;
2174 	}
2175 	cp = XFS_DFORK_PTR(dip, whichfork);
2176 	mp = ip->i_mount;
2177 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2178 	case XFS_DINODE_FMT_LOCAL:
2179 		if ((iip->ili_fields & dataflag[whichfork]) &&
2180 		    (ifp->if_bytes > 0)) {
2181 			ASSERT(ifp->if_u1.if_data != NULL);
2182 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2183 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2184 		}
2185 		break;
2186 
2187 	case XFS_DINODE_FMT_EXTENTS:
2188 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2189 		       !(iip->ili_fields & extflag[whichfork]));
2190 		if ((iip->ili_fields & extflag[whichfork]) &&
2191 		    (ifp->if_bytes > 0)) {
2192 			ASSERT(xfs_iext_get_ext(ifp, 0));
2193 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2194 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2195 				whichfork);
2196 		}
2197 		break;
2198 
2199 	case XFS_DINODE_FMT_BTREE:
2200 		if ((iip->ili_fields & brootflag[whichfork]) &&
2201 		    (ifp->if_broot_bytes > 0)) {
2202 			ASSERT(ifp->if_broot != NULL);
2203 			ASSERT(ifp->if_broot_bytes <=
2204 			       (XFS_IFORK_SIZE(ip, whichfork) +
2205 				XFS_BROOT_SIZE_ADJ));
2206 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2207 				(xfs_bmdr_block_t *)cp,
2208 				XFS_DFORK_SIZE(dip, mp, whichfork));
2209 		}
2210 		break;
2211 
2212 	case XFS_DINODE_FMT_DEV:
2213 		if (iip->ili_fields & XFS_ILOG_DEV) {
2214 			ASSERT(whichfork == XFS_DATA_FORK);
2215 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2216 		}
2217 		break;
2218 
2219 	case XFS_DINODE_FMT_UUID:
2220 		if (iip->ili_fields & XFS_ILOG_UUID) {
2221 			ASSERT(whichfork == XFS_DATA_FORK);
2222 			memcpy(XFS_DFORK_DPTR(dip),
2223 			       &ip->i_df.if_u2.if_uuid,
2224 			       sizeof(uuid_t));
2225 		}
2226 		break;
2227 
2228 	default:
2229 		ASSERT(0);
2230 		break;
2231 	}
2232 }
2233 
2234 STATIC int
xfs_iflush_cluster(xfs_inode_t * ip,xfs_buf_t * bp)2235 xfs_iflush_cluster(
2236 	xfs_inode_t	*ip,
2237 	xfs_buf_t	*bp)
2238 {
2239 	xfs_mount_t		*mp = ip->i_mount;
2240 	struct xfs_perag	*pag;
2241 	unsigned long		first_index, mask;
2242 	unsigned long		inodes_per_cluster;
2243 	int			ilist_size;
2244 	xfs_inode_t		**ilist;
2245 	xfs_inode_t		*iq;
2246 	int			nr_found;
2247 	int			clcount = 0;
2248 	int			bufwasdelwri;
2249 	int			i;
2250 
2251 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2252 
2253 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2254 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2255 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2256 	if (!ilist)
2257 		goto out_put;
2258 
2259 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2260 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2261 	rcu_read_lock();
2262 	/* really need a gang lookup range call here */
2263 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2264 					first_index, inodes_per_cluster);
2265 	if (nr_found == 0)
2266 		goto out_free;
2267 
2268 	for (i = 0; i < nr_found; i++) {
2269 		iq = ilist[i];
2270 		if (iq == ip)
2271 			continue;
2272 
2273 		/*
2274 		 * because this is an RCU protected lookup, we could find a
2275 		 * recently freed or even reallocated inode during the lookup.
2276 		 * We need to check under the i_flags_lock for a valid inode
2277 		 * here. Skip it if it is not valid or the wrong inode.
2278 		 */
2279 		spin_lock(&ip->i_flags_lock);
2280 		if (!ip->i_ino ||
2281 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2282 			spin_unlock(&ip->i_flags_lock);
2283 			continue;
2284 		}
2285 		spin_unlock(&ip->i_flags_lock);
2286 
2287 		/*
2288 		 * Do an un-protected check to see if the inode is dirty and
2289 		 * is a candidate for flushing.  These checks will be repeated
2290 		 * later after the appropriate locks are acquired.
2291 		 */
2292 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2293 			continue;
2294 
2295 		/*
2296 		 * Try to get locks.  If any are unavailable or it is pinned,
2297 		 * then this inode cannot be flushed and is skipped.
2298 		 */
2299 
2300 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2301 			continue;
2302 		if (!xfs_iflock_nowait(iq)) {
2303 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2304 			continue;
2305 		}
2306 		if (xfs_ipincount(iq)) {
2307 			xfs_ifunlock(iq);
2308 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2309 			continue;
2310 		}
2311 
2312 		/*
2313 		 * arriving here means that this inode can be flushed.  First
2314 		 * re-check that it's dirty before flushing.
2315 		 */
2316 		if (!xfs_inode_clean(iq)) {
2317 			int	error;
2318 			error = xfs_iflush_int(iq, bp);
2319 			if (error) {
2320 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2321 				goto cluster_corrupt_out;
2322 			}
2323 			clcount++;
2324 		} else {
2325 			xfs_ifunlock(iq);
2326 		}
2327 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2328 	}
2329 
2330 	if (clcount) {
2331 		XFS_STATS_INC(xs_icluster_flushcnt);
2332 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2333 	}
2334 
2335 out_free:
2336 	rcu_read_unlock();
2337 	kmem_free(ilist);
2338 out_put:
2339 	xfs_perag_put(pag);
2340 	return 0;
2341 
2342 
2343 cluster_corrupt_out:
2344 	/*
2345 	 * Corruption detected in the clustering loop.  Invalidate the
2346 	 * inode buffer and shut down the filesystem.
2347 	 */
2348 	rcu_read_unlock();
2349 	/*
2350 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2351 	 * brelse can handle it with no problems.  If not, shut down the
2352 	 * filesystem before releasing the buffer.
2353 	 */
2354 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2355 	if (bufwasdelwri)
2356 		xfs_buf_relse(bp);
2357 
2358 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2359 
2360 	if (!bufwasdelwri) {
2361 		/*
2362 		 * Just like incore_relse: if we have b_iodone functions,
2363 		 * mark the buffer as an error and call them.  Otherwise
2364 		 * mark it as stale and brelse.
2365 		 */
2366 		if (bp->b_iodone) {
2367 			XFS_BUF_UNDONE(bp);
2368 			xfs_buf_stale(bp);
2369 			xfs_buf_ioerror(bp, EIO);
2370 			xfs_buf_ioend(bp, 0);
2371 		} else {
2372 			xfs_buf_stale(bp);
2373 			xfs_buf_relse(bp);
2374 		}
2375 	}
2376 
2377 	/*
2378 	 * Unlocks the flush lock
2379 	 */
2380 	xfs_iflush_abort(iq);
2381 	kmem_free(ilist);
2382 	xfs_perag_put(pag);
2383 	return XFS_ERROR(EFSCORRUPTED);
2384 }
2385 
2386 /*
2387  * xfs_iflush() will write a modified inode's changes out to the
2388  * inode's on disk home.  The caller must have the inode lock held
2389  * in at least shared mode and the inode flush completion must be
2390  * active as well.  The inode lock will still be held upon return from
2391  * the call and the caller is free to unlock it.
2392  * The inode flush will be completed when the inode reaches the disk.
2393  * The flags indicate how the inode's buffer should be written out.
2394  */
2395 int
xfs_iflush(xfs_inode_t * ip,uint flags)2396 xfs_iflush(
2397 	xfs_inode_t		*ip,
2398 	uint			flags)
2399 {
2400 	xfs_inode_log_item_t	*iip;
2401 	xfs_buf_t		*bp;
2402 	xfs_dinode_t		*dip;
2403 	xfs_mount_t		*mp;
2404 	int			error;
2405 
2406 	XFS_STATS_INC(xs_iflush_count);
2407 
2408 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2409 	ASSERT(xfs_isiflocked(ip));
2410 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2411 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2412 
2413 	iip = ip->i_itemp;
2414 	mp = ip->i_mount;
2415 
2416 	/*
2417 	 * We can't flush the inode until it is unpinned, so wait for it if we
2418 	 * are allowed to block.  We know no one new can pin it, because we are
2419 	 * holding the inode lock shared and you need to hold it exclusively to
2420 	 * pin the inode.
2421 	 *
2422 	 * If we are not allowed to block, force the log out asynchronously so
2423 	 * that when we come back the inode will be unpinned. If other inodes
2424 	 * in the same cluster are dirty, they will probably write the inode
2425 	 * out for us if they occur after the log force completes.
2426 	 */
2427 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2428 		xfs_iunpin(ip);
2429 		xfs_ifunlock(ip);
2430 		return EAGAIN;
2431 	}
2432 	xfs_iunpin_wait(ip);
2433 
2434 	/*
2435 	 * For stale inodes we cannot rely on the backing buffer remaining
2436 	 * stale in cache for the remaining life of the stale inode and so
2437 	 * xfs_itobp() below may give us a buffer that no longer contains
2438 	 * inodes below. We have to check this after ensuring the inode is
2439 	 * unpinned so that it is safe to reclaim the stale inode after the
2440 	 * flush call.
2441 	 */
2442 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2443 		xfs_ifunlock(ip);
2444 		return 0;
2445 	}
2446 
2447 	/*
2448 	 * This may have been unpinned because the filesystem is shutting
2449 	 * down forcibly. If that's the case we must not write this inode
2450 	 * to disk, because the log record didn't make it to disk!
2451 	 */
2452 	if (XFS_FORCED_SHUTDOWN(mp)) {
2453 		if (iip)
2454 			iip->ili_fields = 0;
2455 		xfs_ifunlock(ip);
2456 		return XFS_ERROR(EIO);
2457 	}
2458 
2459 	/*
2460 	 * Get the buffer containing the on-disk inode.
2461 	 */
2462 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2463 				(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2464 	if (error || !bp) {
2465 		xfs_ifunlock(ip);
2466 		return error;
2467 	}
2468 
2469 	/*
2470 	 * First flush out the inode that xfs_iflush was called with.
2471 	 */
2472 	error = xfs_iflush_int(ip, bp);
2473 	if (error)
2474 		goto corrupt_out;
2475 
2476 	/*
2477 	 * If the buffer is pinned then push on the log now so we won't
2478 	 * get stuck waiting in the write for too long.
2479 	 */
2480 	if (xfs_buf_ispinned(bp))
2481 		xfs_log_force(mp, 0);
2482 
2483 	/*
2484 	 * inode clustering:
2485 	 * see if other inodes can be gathered into this write
2486 	 */
2487 	error = xfs_iflush_cluster(ip, bp);
2488 	if (error)
2489 		goto cluster_corrupt_out;
2490 
2491 	if (flags & SYNC_WAIT)
2492 		error = xfs_bwrite(bp);
2493 	else
2494 		xfs_buf_delwri_queue(bp);
2495 
2496 	xfs_buf_relse(bp);
2497 	return error;
2498 
2499 corrupt_out:
2500 	xfs_buf_relse(bp);
2501 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2502 cluster_corrupt_out:
2503 	/*
2504 	 * Unlocks the flush lock
2505 	 */
2506 	xfs_iflush_abort(ip);
2507 	return XFS_ERROR(EFSCORRUPTED);
2508 }
2509 
2510 
2511 STATIC int
xfs_iflush_int(xfs_inode_t * ip,xfs_buf_t * bp)2512 xfs_iflush_int(
2513 	xfs_inode_t		*ip,
2514 	xfs_buf_t		*bp)
2515 {
2516 	xfs_inode_log_item_t	*iip;
2517 	xfs_dinode_t		*dip;
2518 	xfs_mount_t		*mp;
2519 #ifdef XFS_TRANS_DEBUG
2520 	int			first;
2521 #endif
2522 
2523 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2524 	ASSERT(xfs_isiflocked(ip));
2525 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2526 	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
2527 
2528 	iip = ip->i_itemp;
2529 	mp = ip->i_mount;
2530 
2531 	/* set *dip = inode's place in the buffer */
2532 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2533 
2534 	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
2535 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2536 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2537 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2538 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2539 		goto corrupt_out;
2540 	}
2541 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2542 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2543 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2544 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2545 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2546 		goto corrupt_out;
2547 	}
2548 	if (S_ISREG(ip->i_d.di_mode)) {
2549 		if (XFS_TEST_ERROR(
2550 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2551 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2552 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2553 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2554 				"%s: Bad regular inode %Lu, ptr 0x%p",
2555 				__func__, ip->i_ino, ip);
2556 			goto corrupt_out;
2557 		}
2558 	} else if (S_ISDIR(ip->i_d.di_mode)) {
2559 		if (XFS_TEST_ERROR(
2560 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2561 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2562 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2563 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2564 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2565 				"%s: Bad directory inode %Lu, ptr 0x%p",
2566 				__func__, ip->i_ino, ip);
2567 			goto corrupt_out;
2568 		}
2569 	}
2570 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2571 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2572 				XFS_RANDOM_IFLUSH_5)) {
2573 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2574 			"%s: detected corrupt incore inode %Lu, "
2575 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2576 			__func__, ip->i_ino,
2577 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2578 			ip->i_d.di_nblocks, ip);
2579 		goto corrupt_out;
2580 	}
2581 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2582 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2583 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2584 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2585 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2586 		goto corrupt_out;
2587 	}
2588 	/*
2589 	 * bump the flush iteration count, used to detect flushes which
2590 	 * postdate a log record during recovery.
2591 	 */
2592 
2593 	ip->i_d.di_flushiter++;
2594 
2595 	/*
2596 	 * Copy the dirty parts of the inode into the on-disk
2597 	 * inode.  We always copy out the core of the inode,
2598 	 * because if the inode is dirty at all the core must
2599 	 * be.
2600 	 */
2601 	xfs_dinode_to_disk(dip, &ip->i_d);
2602 
2603 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2604 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2605 		ip->i_d.di_flushiter = 0;
2606 
2607 	/*
2608 	 * If this is really an old format inode and the superblock version
2609 	 * has not been updated to support only new format inodes, then
2610 	 * convert back to the old inode format.  If the superblock version
2611 	 * has been updated, then make the conversion permanent.
2612 	 */
2613 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2614 	if (ip->i_d.di_version == 1) {
2615 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2616 			/*
2617 			 * Convert it back.
2618 			 */
2619 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2620 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2621 		} else {
2622 			/*
2623 			 * The superblock version has already been bumped,
2624 			 * so just make the conversion to the new inode
2625 			 * format permanent.
2626 			 */
2627 			ip->i_d.di_version = 2;
2628 			dip->di_version = 2;
2629 			ip->i_d.di_onlink = 0;
2630 			dip->di_onlink = 0;
2631 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
2632 			memset(&(dip->di_pad[0]), 0,
2633 			      sizeof(dip->di_pad));
2634 			ASSERT(xfs_get_projid(ip) == 0);
2635 		}
2636 	}
2637 
2638 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2639 	if (XFS_IFORK_Q(ip))
2640 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
2641 	xfs_inobp_check(mp, bp);
2642 
2643 	/*
2644 	 * We've recorded everything logged in the inode, so we'd like to clear
2645 	 * the ili_fields bits so we don't log and flush things unnecessarily.
2646 	 * However, we can't stop logging all this information until the data
2647 	 * we've copied into the disk buffer is written to disk.  If we did we
2648 	 * might overwrite the copy of the inode in the log with all the data
2649 	 * after re-logging only part of it, and in the face of a crash we
2650 	 * wouldn't have all the data we need to recover.
2651 	 *
2652 	 * What we do is move the bits to the ili_last_fields field.  When
2653 	 * logging the inode, these bits are moved back to the ili_fields field.
2654 	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2655 	 * know that the information those bits represent is permanently on
2656 	 * disk.  As long as the flush completes before the inode is logged
2657 	 * again, then both ili_fields and ili_last_fields will be cleared.
2658 	 *
2659 	 * We can play with the ili_fields bits here, because the inode lock
2660 	 * must be held exclusively in order to set bits there and the flush
2661 	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
2662 	 * done routine can tell whether or not to look in the AIL.  Also, store
2663 	 * the current LSN of the inode so that we can tell whether the item has
2664 	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
2665 	 * need the AIL lock, because it is a 64 bit value that cannot be read
2666 	 * atomically.
2667 	 */
2668 	if (iip != NULL && iip->ili_fields != 0) {
2669 		iip->ili_last_fields = iip->ili_fields;
2670 		iip->ili_fields = 0;
2671 		iip->ili_logged = 1;
2672 
2673 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2674 					&iip->ili_item.li_lsn);
2675 
2676 		/*
2677 		 * Attach the function xfs_iflush_done to the inode's
2678 		 * buffer.  This will remove the inode from the AIL
2679 		 * and unlock the inode's flush lock when the inode is
2680 		 * completely written to disk.
2681 		 */
2682 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
2683 
2684 		ASSERT(bp->b_fspriv != NULL);
2685 		ASSERT(bp->b_iodone != NULL);
2686 	} else {
2687 		/*
2688 		 * We're flushing an inode which is not in the AIL and has
2689 		 * not been logged.  For this case we can immediately drop
2690 		 * the inode flush lock because we can avoid the whole
2691 		 * AIL state thing.  It's OK to drop the flush lock now,
2692 		 * because we've already locked the buffer and to do anything
2693 		 * you really need both.
2694 		 */
2695 		if (iip != NULL) {
2696 			ASSERT(iip->ili_logged == 0);
2697 			ASSERT(iip->ili_last_fields == 0);
2698 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2699 		}
2700 		xfs_ifunlock(ip);
2701 	}
2702 
2703 	return 0;
2704 
2705 corrupt_out:
2706 	return XFS_ERROR(EFSCORRUPTED);
2707 }
2708 
2709 void
xfs_promote_inode(struct xfs_inode * ip)2710 xfs_promote_inode(
2711 	struct xfs_inode	*ip)
2712 {
2713 	struct xfs_buf		*bp;
2714 
2715 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2716 
2717 	bp = xfs_incore(ip->i_mount->m_ddev_targp, ip->i_imap.im_blkno,
2718 			ip->i_imap.im_len, XBF_TRYLOCK);
2719 	if (!bp)
2720 		return;
2721 
2722 	if (XFS_BUF_ISDELAYWRITE(bp)) {
2723 		xfs_buf_delwri_promote(bp);
2724 		wake_up_process(ip->i_mount->m_ddev_targp->bt_task);
2725 	}
2726 
2727 	xfs_buf_relse(bp);
2728 }
2729 
2730 /*
2731  * Return a pointer to the extent record at file index idx.
2732  */
2733 xfs_bmbt_rec_host_t *
xfs_iext_get_ext(xfs_ifork_t * ifp,xfs_extnum_t idx)2734 xfs_iext_get_ext(
2735 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2736 	xfs_extnum_t	idx)		/* index of target extent */
2737 {
2738 	ASSERT(idx >= 0);
2739 	ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2740 
2741 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2742 		return ifp->if_u1.if_ext_irec->er_extbuf;
2743 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
2744 		xfs_ext_irec_t	*erp;		/* irec pointer */
2745 		int		erp_idx = 0;	/* irec index */
2746 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
2747 
2748 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2749 		return &erp->er_extbuf[page_idx];
2750 	} else if (ifp->if_bytes) {
2751 		return &ifp->if_u1.if_extents[idx];
2752 	} else {
2753 		return NULL;
2754 	}
2755 }
2756 
2757 /*
2758  * Insert new item(s) into the extent records for incore inode
2759  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
2760  */
2761 void
xfs_iext_insert(xfs_inode_t * ip,xfs_extnum_t idx,xfs_extnum_t count,xfs_bmbt_irec_t * new,int state)2762 xfs_iext_insert(
2763 	xfs_inode_t	*ip,		/* incore inode pointer */
2764 	xfs_extnum_t	idx,		/* starting index of new items */
2765 	xfs_extnum_t	count,		/* number of inserted items */
2766 	xfs_bmbt_irec_t	*new,		/* items to insert */
2767 	int		state)		/* type of extent conversion */
2768 {
2769 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
2770 	xfs_extnum_t	i;		/* extent record index */
2771 
2772 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2773 
2774 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2775 	xfs_iext_add(ifp, idx, count);
2776 	for (i = idx; i < idx + count; i++, new++)
2777 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
2778 }
2779 
2780 /*
2781  * This is called when the amount of space required for incore file
2782  * extents needs to be increased. The ext_diff parameter stores the
2783  * number of new extents being added and the idx parameter contains
2784  * the extent index where the new extents will be added. If the new
2785  * extents are being appended, then we just need to (re)allocate and
2786  * initialize the space. Otherwise, if the new extents are being
2787  * inserted into the middle of the existing entries, a bit more work
2788  * is required to make room for the new extents to be inserted. The
2789  * caller is responsible for filling in the new extent entries upon
2790  * return.
2791  */
2792 void
xfs_iext_add(xfs_ifork_t * ifp,xfs_extnum_t idx,int ext_diff)2793 xfs_iext_add(
2794 	xfs_ifork_t	*ifp,		/* inode fork pointer */
2795 	xfs_extnum_t	idx,		/* index to begin adding exts */
2796 	int		ext_diff)	/* number of extents to add */
2797 {
2798 	int		byte_diff;	/* new bytes being added */
2799 	int		new_size;	/* size of extents after adding */
2800 	xfs_extnum_t	nextents;	/* number of extents in file */
2801 
2802 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2803 	ASSERT((idx >= 0) && (idx <= nextents));
2804 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2805 	new_size = ifp->if_bytes + byte_diff;
2806 	/*
2807 	 * If the new number of extents (nextents + ext_diff)
2808 	 * fits inside the inode, then continue to use the inline
2809 	 * extent buffer.
2810 	 */
2811 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2812 		if (idx < nextents) {
2813 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2814 				&ifp->if_u2.if_inline_ext[idx],
2815 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2816 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
2817 		}
2818 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
2819 		ifp->if_real_bytes = 0;
2820 	}
2821 	/*
2822 	 * Otherwise use a linear (direct) extent list.
2823 	 * If the extents are currently inside the inode,
2824 	 * xfs_iext_realloc_direct will switch us from
2825 	 * inline to direct extent allocation mode.
2826 	 */
2827 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
2828 		xfs_iext_realloc_direct(ifp, new_size);
2829 		if (idx < nextents) {
2830 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
2831 				&ifp->if_u1.if_extents[idx],
2832 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
2833 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
2834 		}
2835 	}
2836 	/* Indirection array */
2837 	else {
2838 		xfs_ext_irec_t	*erp;
2839 		int		erp_idx = 0;
2840 		int		page_idx = idx;
2841 
2842 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
2843 		if (ifp->if_flags & XFS_IFEXTIREC) {
2844 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
2845 		} else {
2846 			xfs_iext_irec_init(ifp);
2847 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2848 			erp = ifp->if_u1.if_ext_irec;
2849 		}
2850 		/* Extents fit in target extent page */
2851 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
2852 			if (page_idx < erp->er_extcount) {
2853 				memmove(&erp->er_extbuf[page_idx + ext_diff],
2854 					&erp->er_extbuf[page_idx],
2855 					(erp->er_extcount - page_idx) *
2856 					sizeof(xfs_bmbt_rec_t));
2857 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
2858 			}
2859 			erp->er_extcount += ext_diff;
2860 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2861 		}
2862 		/* Insert a new extent page */
2863 		else if (erp) {
2864 			xfs_iext_add_indirect_multi(ifp,
2865 				erp_idx, page_idx, ext_diff);
2866 		}
2867 		/*
2868 		 * If extent(s) are being appended to the last page in
2869 		 * the indirection array and the new extent(s) don't fit
2870 		 * in the page, then erp is NULL and erp_idx is set to
2871 		 * the next index needed in the indirection array.
2872 		 */
2873 		else {
2874 			int	count = ext_diff;
2875 
2876 			while (count) {
2877 				erp = xfs_iext_irec_new(ifp, erp_idx);
2878 				erp->er_extcount = count;
2879 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
2880 				if (count) {
2881 					erp_idx++;
2882 				}
2883 			}
2884 		}
2885 	}
2886 	ifp->if_bytes = new_size;
2887 }
2888 
2889 /*
2890  * This is called when incore extents are being added to the indirection
2891  * array and the new extents do not fit in the target extent list. The
2892  * erp_idx parameter contains the irec index for the target extent list
2893  * in the indirection array, and the idx parameter contains the extent
2894  * index within the list. The number of extents being added is stored
2895  * in the count parameter.
2896  *
2897  *    |-------|   |-------|
2898  *    |       |   |       |    idx - number of extents before idx
2899  *    |  idx  |   | count |
2900  *    |       |   |       |    count - number of extents being inserted at idx
2901  *    |-------|   |-------|
2902  *    | count |   | nex2  |    nex2 - number of extents after idx + count
2903  *    |-------|   |-------|
2904  */
2905 void
xfs_iext_add_indirect_multi(xfs_ifork_t * ifp,int erp_idx,xfs_extnum_t idx,int count)2906 xfs_iext_add_indirect_multi(
2907 	xfs_ifork_t	*ifp,			/* inode fork pointer */
2908 	int		erp_idx,		/* target extent irec index */
2909 	xfs_extnum_t	idx,			/* index within target list */
2910 	int		count)			/* new extents being added */
2911 {
2912 	int		byte_diff;		/* new bytes being added */
2913 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
2914 	xfs_extnum_t	ext_diff;		/* number of extents to add */
2915 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
2916 	xfs_extnum_t	nex2;			/* extents after idx + count */
2917 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
2918 	int		nlists;			/* number of irec's (lists) */
2919 
2920 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
2921 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
2922 	nex2 = erp->er_extcount - idx;
2923 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
2924 
2925 	/*
2926 	 * Save second part of target extent list
2927 	 * (all extents past */
2928 	if (nex2) {
2929 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2930 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
2931 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
2932 		erp->er_extcount -= nex2;
2933 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
2934 		memset(&erp->er_extbuf[idx], 0, byte_diff);
2935 	}
2936 
2937 	/*
2938 	 * Add the new extents to the end of the target
2939 	 * list, then allocate new irec record(s) and
2940 	 * extent buffer(s) as needed to store the rest
2941 	 * of the new extents.
2942 	 */
2943 	ext_cnt = count;
2944 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
2945 	if (ext_diff) {
2946 		erp->er_extcount += ext_diff;
2947 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2948 		ext_cnt -= ext_diff;
2949 	}
2950 	while (ext_cnt) {
2951 		erp_idx++;
2952 		erp = xfs_iext_irec_new(ifp, erp_idx);
2953 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
2954 		erp->er_extcount = ext_diff;
2955 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
2956 		ext_cnt -= ext_diff;
2957 	}
2958 
2959 	/* Add nex2 extents back to indirection array */
2960 	if (nex2) {
2961 		xfs_extnum_t	ext_avail;
2962 		int		i;
2963 
2964 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
2965 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
2966 		i = 0;
2967 		/*
2968 		 * If nex2 extents fit in the current page, append
2969 		 * nex2_ep after the new extents.
2970 		 */
2971 		if (nex2 <= ext_avail) {
2972 			i = erp->er_extcount;
2973 		}
2974 		/*
2975 		 * Otherwise, check if space is available in the
2976 		 * next page.
2977 		 */
2978 		else if ((erp_idx < nlists - 1) &&
2979 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
2980 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
2981 			erp_idx++;
2982 			erp++;
2983 			/* Create a hole for nex2 extents */
2984 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
2985 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
2986 		}
2987 		/*
2988 		 * Final choice, create a new extent page for
2989 		 * nex2 extents.
2990 		 */
2991 		else {
2992 			erp_idx++;
2993 			erp = xfs_iext_irec_new(ifp, erp_idx);
2994 		}
2995 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
2996 		kmem_free(nex2_ep);
2997 		erp->er_extcount += nex2;
2998 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
2999 	}
3000 }
3001 
3002 /*
3003  * This is called when the amount of space required for incore file
3004  * extents needs to be decreased. The ext_diff parameter stores the
3005  * number of extents to be removed and the idx parameter contains
3006  * the extent index where the extents will be removed from.
3007  *
3008  * If the amount of space needed has decreased below the linear
3009  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3010  * extent array.  Otherwise, use kmem_realloc() to adjust the
3011  * size to what is needed.
3012  */
3013 void
xfs_iext_remove(xfs_inode_t * ip,xfs_extnum_t idx,int ext_diff,int state)3014 xfs_iext_remove(
3015 	xfs_inode_t	*ip,		/* incore inode pointer */
3016 	xfs_extnum_t	idx,		/* index to begin removing exts */
3017 	int		ext_diff,	/* number of extents to remove */
3018 	int		state)		/* type of extent conversion */
3019 {
3020 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3021 	xfs_extnum_t	nextents;	/* number of extents in file */
3022 	int		new_size;	/* size of extents after removal */
3023 
3024 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3025 
3026 	ASSERT(ext_diff > 0);
3027 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3028 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3029 
3030 	if (new_size == 0) {
3031 		xfs_iext_destroy(ifp);
3032 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3033 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3034 	} else if (ifp->if_real_bytes) {
3035 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3036 	} else {
3037 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3038 	}
3039 	ifp->if_bytes = new_size;
3040 }
3041 
3042 /*
3043  * This removes ext_diff extents from the inline buffer, beginning
3044  * at extent index idx.
3045  */
3046 void
xfs_iext_remove_inline(xfs_ifork_t * ifp,xfs_extnum_t idx,int ext_diff)3047 xfs_iext_remove_inline(
3048 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3049 	xfs_extnum_t	idx,		/* index to begin removing exts */
3050 	int		ext_diff)	/* number of extents to remove */
3051 {
3052 	int		nextents;	/* number of extents in file */
3053 
3054 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3055 	ASSERT(idx < XFS_INLINE_EXTS);
3056 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3057 	ASSERT(((nextents - ext_diff) > 0) &&
3058 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3059 
3060 	if (idx + ext_diff < nextents) {
3061 		memmove(&ifp->if_u2.if_inline_ext[idx],
3062 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3063 			(nextents - (idx + ext_diff)) *
3064 			 sizeof(xfs_bmbt_rec_t));
3065 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3066 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3067 	} else {
3068 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3069 			ext_diff * sizeof(xfs_bmbt_rec_t));
3070 	}
3071 }
3072 
3073 /*
3074  * This removes ext_diff extents from a linear (direct) extent list,
3075  * beginning at extent index idx. If the extents are being removed
3076  * from the end of the list (ie. truncate) then we just need to re-
3077  * allocate the list to remove the extra space. Otherwise, if the
3078  * extents are being removed from the middle of the existing extent
3079  * entries, then we first need to move the extent records beginning
3080  * at idx + ext_diff up in the list to overwrite the records being
3081  * removed, then remove the extra space via kmem_realloc.
3082  */
3083 void
xfs_iext_remove_direct(xfs_ifork_t * ifp,xfs_extnum_t idx,int ext_diff)3084 xfs_iext_remove_direct(
3085 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3086 	xfs_extnum_t	idx,		/* index to begin removing exts */
3087 	int		ext_diff)	/* number of extents to remove */
3088 {
3089 	xfs_extnum_t	nextents;	/* number of extents in file */
3090 	int		new_size;	/* size of extents after removal */
3091 
3092 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3093 	new_size = ifp->if_bytes -
3094 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3095 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3096 
3097 	if (new_size == 0) {
3098 		xfs_iext_destroy(ifp);
3099 		return;
3100 	}
3101 	/* Move extents up in the list (if needed) */
3102 	if (idx + ext_diff < nextents) {
3103 		memmove(&ifp->if_u1.if_extents[idx],
3104 			&ifp->if_u1.if_extents[idx + ext_diff],
3105 			(nextents - (idx + ext_diff)) *
3106 			 sizeof(xfs_bmbt_rec_t));
3107 	}
3108 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3109 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3110 	/*
3111 	 * Reallocate the direct extent list. If the extents
3112 	 * will fit inside the inode then xfs_iext_realloc_direct
3113 	 * will switch from direct to inline extent allocation
3114 	 * mode for us.
3115 	 */
3116 	xfs_iext_realloc_direct(ifp, new_size);
3117 	ifp->if_bytes = new_size;
3118 }
3119 
3120 /*
3121  * This is called when incore extents are being removed from the
3122  * indirection array and the extents being removed span multiple extent
3123  * buffers. The idx parameter contains the file extent index where we
3124  * want to begin removing extents, and the count parameter contains
3125  * how many extents need to be removed.
3126  *
3127  *    |-------|   |-------|
3128  *    | nex1  |   |       |    nex1 - number of extents before idx
3129  *    |-------|   | count |
3130  *    |       |   |       |    count - number of extents being removed at idx
3131  *    | count |   |-------|
3132  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3133  *    |-------|   |-------|
3134  */
3135 void
xfs_iext_remove_indirect(xfs_ifork_t * ifp,xfs_extnum_t idx,int count)3136 xfs_iext_remove_indirect(
3137 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3138 	xfs_extnum_t	idx,		/* index to begin removing extents */
3139 	int		count)		/* number of extents to remove */
3140 {
3141 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3142 	int		erp_idx = 0;	/* indirection array index */
3143 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3144 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3145 	xfs_extnum_t	nex1;		/* number of extents before idx */
3146 	xfs_extnum_t	nex2;		/* extents after idx + count */
3147 	int		page_idx = idx;	/* index in target extent list */
3148 
3149 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3150 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3151 	ASSERT(erp != NULL);
3152 	nex1 = page_idx;
3153 	ext_cnt = count;
3154 	while (ext_cnt) {
3155 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3156 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3157 		/*
3158 		 * Check for deletion of entire list;
3159 		 * xfs_iext_irec_remove() updates extent offsets.
3160 		 */
3161 		if (ext_diff == erp->er_extcount) {
3162 			xfs_iext_irec_remove(ifp, erp_idx);
3163 			ext_cnt -= ext_diff;
3164 			nex1 = 0;
3165 			if (ext_cnt) {
3166 				ASSERT(erp_idx < ifp->if_real_bytes /
3167 					XFS_IEXT_BUFSZ);
3168 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3169 				nex1 = 0;
3170 				continue;
3171 			} else {
3172 				break;
3173 			}
3174 		}
3175 		/* Move extents up (if needed) */
3176 		if (nex2) {
3177 			memmove(&erp->er_extbuf[nex1],
3178 				&erp->er_extbuf[nex1 + ext_diff],
3179 				nex2 * sizeof(xfs_bmbt_rec_t));
3180 		}
3181 		/* Zero out rest of page */
3182 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3183 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3184 		/* Update remaining counters */
3185 		erp->er_extcount -= ext_diff;
3186 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3187 		ext_cnt -= ext_diff;
3188 		nex1 = 0;
3189 		erp_idx++;
3190 		erp++;
3191 	}
3192 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3193 	xfs_iext_irec_compact(ifp);
3194 }
3195 
3196 /*
3197  * Create, destroy, or resize a linear (direct) block of extents.
3198  */
3199 void
xfs_iext_realloc_direct(xfs_ifork_t * ifp,int new_size)3200 xfs_iext_realloc_direct(
3201 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3202 	int		new_size)	/* new size of extents */
3203 {
3204 	int		rnew_size;	/* real new size of extents */
3205 
3206 	rnew_size = new_size;
3207 
3208 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3209 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3210 		 (new_size != ifp->if_real_bytes)));
3211 
3212 	/* Free extent records */
3213 	if (new_size == 0) {
3214 		xfs_iext_destroy(ifp);
3215 	}
3216 	/* Resize direct extent list and zero any new bytes */
3217 	else if (ifp->if_real_bytes) {
3218 		/* Check if extents will fit inside the inode */
3219 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3220 			xfs_iext_direct_to_inline(ifp, new_size /
3221 				(uint)sizeof(xfs_bmbt_rec_t));
3222 			ifp->if_bytes = new_size;
3223 			return;
3224 		}
3225 		if (!is_power_of_2(new_size)){
3226 			rnew_size = roundup_pow_of_two(new_size);
3227 		}
3228 		if (rnew_size != ifp->if_real_bytes) {
3229 			ifp->if_u1.if_extents =
3230 				kmem_realloc(ifp->if_u1.if_extents,
3231 						rnew_size,
3232 						ifp->if_real_bytes, KM_NOFS);
3233 		}
3234 		if (rnew_size > ifp->if_real_bytes) {
3235 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3236 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3237 				rnew_size - ifp->if_real_bytes);
3238 		}
3239 	}
3240 	/*
3241 	 * Switch from the inline extent buffer to a direct
3242 	 * extent list. Be sure to include the inline extent
3243 	 * bytes in new_size.
3244 	 */
3245 	else {
3246 		new_size += ifp->if_bytes;
3247 		if (!is_power_of_2(new_size)) {
3248 			rnew_size = roundup_pow_of_two(new_size);
3249 		}
3250 		xfs_iext_inline_to_direct(ifp, rnew_size);
3251 	}
3252 	ifp->if_real_bytes = rnew_size;
3253 	ifp->if_bytes = new_size;
3254 }
3255 
3256 /*
3257  * Switch from linear (direct) extent records to inline buffer.
3258  */
3259 void
xfs_iext_direct_to_inline(xfs_ifork_t * ifp,xfs_extnum_t nextents)3260 xfs_iext_direct_to_inline(
3261 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3262 	xfs_extnum_t	nextents)	/* number of extents in file */
3263 {
3264 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3265 	ASSERT(nextents <= XFS_INLINE_EXTS);
3266 	/*
3267 	 * The inline buffer was zeroed when we switched
3268 	 * from inline to direct extent allocation mode,
3269 	 * so we don't need to clear it here.
3270 	 */
3271 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3272 		nextents * sizeof(xfs_bmbt_rec_t));
3273 	kmem_free(ifp->if_u1.if_extents);
3274 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3275 	ifp->if_real_bytes = 0;
3276 }
3277 
3278 /*
3279  * Switch from inline buffer to linear (direct) extent records.
3280  * new_size should already be rounded up to the next power of 2
3281  * by the caller (when appropriate), so use new_size as it is.
3282  * However, since new_size may be rounded up, we can't update
3283  * if_bytes here. It is the caller's responsibility to update
3284  * if_bytes upon return.
3285  */
3286 void
xfs_iext_inline_to_direct(xfs_ifork_t * ifp,int new_size)3287 xfs_iext_inline_to_direct(
3288 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3289 	int		new_size)	/* number of extents in file */
3290 {
3291 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3292 	memset(ifp->if_u1.if_extents, 0, new_size);
3293 	if (ifp->if_bytes) {
3294 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3295 			ifp->if_bytes);
3296 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3297 			sizeof(xfs_bmbt_rec_t));
3298 	}
3299 	ifp->if_real_bytes = new_size;
3300 }
3301 
3302 /*
3303  * Resize an extent indirection array to new_size bytes.
3304  */
3305 STATIC void
xfs_iext_realloc_indirect(xfs_ifork_t * ifp,int new_size)3306 xfs_iext_realloc_indirect(
3307 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3308 	int		new_size)	/* new indirection array size */
3309 {
3310 	int		nlists;		/* number of irec's (ex lists) */
3311 	int		size;		/* current indirection array size */
3312 
3313 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3314 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3315 	size = nlists * sizeof(xfs_ext_irec_t);
3316 	ASSERT(ifp->if_real_bytes);
3317 	ASSERT((new_size >= 0) && (new_size != size));
3318 	if (new_size == 0) {
3319 		xfs_iext_destroy(ifp);
3320 	} else {
3321 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3322 			kmem_realloc(ifp->if_u1.if_ext_irec,
3323 				new_size, size, KM_NOFS);
3324 	}
3325 }
3326 
3327 /*
3328  * Switch from indirection array to linear (direct) extent allocations.
3329  */
3330 STATIC void
xfs_iext_indirect_to_direct(xfs_ifork_t * ifp)3331 xfs_iext_indirect_to_direct(
3332 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3333 {
3334 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3335 	xfs_extnum_t	nextents;	/* number of extents in file */
3336 	int		size;		/* size of file extents */
3337 
3338 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3339 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3340 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3341 	size = nextents * sizeof(xfs_bmbt_rec_t);
3342 
3343 	xfs_iext_irec_compact_pages(ifp);
3344 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3345 
3346 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3347 	kmem_free(ifp->if_u1.if_ext_irec);
3348 	ifp->if_flags &= ~XFS_IFEXTIREC;
3349 	ifp->if_u1.if_extents = ep;
3350 	ifp->if_bytes = size;
3351 	if (nextents < XFS_LINEAR_EXTS) {
3352 		xfs_iext_realloc_direct(ifp, size);
3353 	}
3354 }
3355 
3356 /*
3357  * Free incore file extents.
3358  */
3359 void
xfs_iext_destroy(xfs_ifork_t * ifp)3360 xfs_iext_destroy(
3361 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3362 {
3363 	if (ifp->if_flags & XFS_IFEXTIREC) {
3364 		int	erp_idx;
3365 		int	nlists;
3366 
3367 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3368 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3369 			xfs_iext_irec_remove(ifp, erp_idx);
3370 		}
3371 		ifp->if_flags &= ~XFS_IFEXTIREC;
3372 	} else if (ifp->if_real_bytes) {
3373 		kmem_free(ifp->if_u1.if_extents);
3374 	} else if (ifp->if_bytes) {
3375 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3376 			sizeof(xfs_bmbt_rec_t));
3377 	}
3378 	ifp->if_u1.if_extents = NULL;
3379 	ifp->if_real_bytes = 0;
3380 	ifp->if_bytes = 0;
3381 }
3382 
3383 /*
3384  * Return a pointer to the extent record for file system block bno.
3385  */
3386 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
xfs_iext_bno_to_ext(xfs_ifork_t * ifp,xfs_fileoff_t bno,xfs_extnum_t * idxp)3387 xfs_iext_bno_to_ext(
3388 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3389 	xfs_fileoff_t	bno,		/* block number to search for */
3390 	xfs_extnum_t	*idxp)		/* index of target extent */
3391 {
3392 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3393 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3394 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3395 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3396 	int		high;		/* upper boundary in search */
3397 	xfs_extnum_t	idx = 0;	/* index of target extent */
3398 	int		low;		/* lower boundary in search */
3399 	xfs_extnum_t	nextents;	/* number of file extents */
3400 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3401 
3402 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3403 	if (nextents == 0) {
3404 		*idxp = 0;
3405 		return NULL;
3406 	}
3407 	low = 0;
3408 	if (ifp->if_flags & XFS_IFEXTIREC) {
3409 		/* Find target extent list */
3410 		int	erp_idx = 0;
3411 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3412 		base = erp->er_extbuf;
3413 		high = erp->er_extcount - 1;
3414 	} else {
3415 		base = ifp->if_u1.if_extents;
3416 		high = nextents - 1;
3417 	}
3418 	/* Binary search extent records */
3419 	while (low <= high) {
3420 		idx = (low + high) >> 1;
3421 		ep = base + idx;
3422 		startoff = xfs_bmbt_get_startoff(ep);
3423 		blockcount = xfs_bmbt_get_blockcount(ep);
3424 		if (bno < startoff) {
3425 			high = idx - 1;
3426 		} else if (bno >= startoff + blockcount) {
3427 			low = idx + 1;
3428 		} else {
3429 			/* Convert back to file-based extent index */
3430 			if (ifp->if_flags & XFS_IFEXTIREC) {
3431 				idx += erp->er_extoff;
3432 			}
3433 			*idxp = idx;
3434 			return ep;
3435 		}
3436 	}
3437 	/* Convert back to file-based extent index */
3438 	if (ifp->if_flags & XFS_IFEXTIREC) {
3439 		idx += erp->er_extoff;
3440 	}
3441 	if (bno >= startoff + blockcount) {
3442 		if (++idx == nextents) {
3443 			ep = NULL;
3444 		} else {
3445 			ep = xfs_iext_get_ext(ifp, idx);
3446 		}
3447 	}
3448 	*idxp = idx;
3449 	return ep;
3450 }
3451 
3452 /*
3453  * Return a pointer to the indirection array entry containing the
3454  * extent record for filesystem block bno. Store the index of the
3455  * target irec in *erp_idxp.
3456  */
3457 xfs_ext_irec_t *			/* pointer to found extent record */
xfs_iext_bno_to_irec(xfs_ifork_t * ifp,xfs_fileoff_t bno,int * erp_idxp)3458 xfs_iext_bno_to_irec(
3459 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3460 	xfs_fileoff_t	bno,		/* block number to search for */
3461 	int		*erp_idxp)	/* irec index of target ext list */
3462 {
3463 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3464 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3465 	int		erp_idx;	/* indirection array index */
3466 	int		nlists;		/* number of extent irec's (lists) */
3467 	int		high;		/* binary search upper limit */
3468 	int		low;		/* binary search lower limit */
3469 
3470 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3471 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3472 	erp_idx = 0;
3473 	low = 0;
3474 	high = nlists - 1;
3475 	while (low <= high) {
3476 		erp_idx = (low + high) >> 1;
3477 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3478 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3479 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3480 			high = erp_idx - 1;
3481 		} else if (erp_next && bno >=
3482 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3483 			low = erp_idx + 1;
3484 		} else {
3485 			break;
3486 		}
3487 	}
3488 	*erp_idxp = erp_idx;
3489 	return erp;
3490 }
3491 
3492 /*
3493  * Return a pointer to the indirection array entry containing the
3494  * extent record at file extent index *idxp. Store the index of the
3495  * target irec in *erp_idxp and store the page index of the target
3496  * extent record in *idxp.
3497  */
3498 xfs_ext_irec_t *
xfs_iext_idx_to_irec(xfs_ifork_t * ifp,xfs_extnum_t * idxp,int * erp_idxp,int realloc)3499 xfs_iext_idx_to_irec(
3500 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3501 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3502 	int		*erp_idxp,	/* pointer to target irec */
3503 	int		realloc)	/* new bytes were just added */
3504 {
3505 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3506 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3507 	int		erp_idx;	/* indirection array index */
3508 	int		nlists;		/* number of irec's (ex lists) */
3509 	int		high;		/* binary search upper limit */
3510 	int		low;		/* binary search lower limit */
3511 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3512 
3513 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3514 	ASSERT(page_idx >= 0);
3515 	ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3516 	ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3517 
3518 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3519 	erp_idx = 0;
3520 	low = 0;
3521 	high = nlists - 1;
3522 
3523 	/* Binary search extent irec's */
3524 	while (low <= high) {
3525 		erp_idx = (low + high) >> 1;
3526 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3527 		prev = erp_idx > 0 ? erp - 1 : NULL;
3528 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3529 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3530 			high = erp_idx - 1;
3531 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3532 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3533 			    !realloc)) {
3534 			low = erp_idx + 1;
3535 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3536 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3537 			ASSERT(realloc);
3538 			page_idx = 0;
3539 			erp_idx++;
3540 			erp = erp_idx < nlists ? erp + 1 : NULL;
3541 			break;
3542 		} else {
3543 			page_idx -= erp->er_extoff;
3544 			break;
3545 		}
3546 	}
3547 	*idxp = page_idx;
3548 	*erp_idxp = erp_idx;
3549 	return(erp);
3550 }
3551 
3552 /*
3553  * Allocate and initialize an indirection array once the space needed
3554  * for incore extents increases above XFS_IEXT_BUFSZ.
3555  */
3556 void
xfs_iext_irec_init(xfs_ifork_t * ifp)3557 xfs_iext_irec_init(
3558 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3559 {
3560 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3561 	xfs_extnum_t	nextents;	/* number of extents in file */
3562 
3563 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3564 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3565 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3566 
3567 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3568 
3569 	if (nextents == 0) {
3570 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3571 	} else if (!ifp->if_real_bytes) {
3572 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3573 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3574 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3575 	}
3576 	erp->er_extbuf = ifp->if_u1.if_extents;
3577 	erp->er_extcount = nextents;
3578 	erp->er_extoff = 0;
3579 
3580 	ifp->if_flags |= XFS_IFEXTIREC;
3581 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3582 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3583 	ifp->if_u1.if_ext_irec = erp;
3584 
3585 	return;
3586 }
3587 
3588 /*
3589  * Allocate and initialize a new entry in the indirection array.
3590  */
3591 xfs_ext_irec_t *
xfs_iext_irec_new(xfs_ifork_t * ifp,int erp_idx)3592 xfs_iext_irec_new(
3593 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3594 	int		erp_idx)	/* index for new irec */
3595 {
3596 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3597 	int		i;		/* loop counter */
3598 	int		nlists;		/* number of irec's (ex lists) */
3599 
3600 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3601 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3602 
3603 	/* Resize indirection array */
3604 	xfs_iext_realloc_indirect(ifp, ++nlists *
3605 				  sizeof(xfs_ext_irec_t));
3606 	/*
3607 	 * Move records down in the array so the
3608 	 * new page can use erp_idx.
3609 	 */
3610 	erp = ifp->if_u1.if_ext_irec;
3611 	for (i = nlists - 1; i > erp_idx; i--) {
3612 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3613 	}
3614 	ASSERT(i == erp_idx);
3615 
3616 	/* Initialize new extent record */
3617 	erp = ifp->if_u1.if_ext_irec;
3618 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3619 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3620 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3621 	erp[erp_idx].er_extcount = 0;
3622 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3623 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3624 	return (&erp[erp_idx]);
3625 }
3626 
3627 /*
3628  * Remove a record from the indirection array.
3629  */
3630 void
xfs_iext_irec_remove(xfs_ifork_t * ifp,int erp_idx)3631 xfs_iext_irec_remove(
3632 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3633 	int		erp_idx)	/* irec index to remove */
3634 {
3635 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3636 	int		i;		/* loop counter */
3637 	int		nlists;		/* number of irec's (ex lists) */
3638 
3639 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3640 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3641 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3642 	if (erp->er_extbuf) {
3643 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3644 			-erp->er_extcount);
3645 		kmem_free(erp->er_extbuf);
3646 	}
3647 	/* Compact extent records */
3648 	erp = ifp->if_u1.if_ext_irec;
3649 	for (i = erp_idx; i < nlists - 1; i++) {
3650 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3651 	}
3652 	/*
3653 	 * Manually free the last extent record from the indirection
3654 	 * array.  A call to xfs_iext_realloc_indirect() with a size
3655 	 * of zero would result in a call to xfs_iext_destroy() which
3656 	 * would in turn call this function again, creating a nasty
3657 	 * infinite loop.
3658 	 */
3659 	if (--nlists) {
3660 		xfs_iext_realloc_indirect(ifp,
3661 			nlists * sizeof(xfs_ext_irec_t));
3662 	} else {
3663 		kmem_free(ifp->if_u1.if_ext_irec);
3664 	}
3665 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3666 }
3667 
3668 /*
3669  * This is called to clean up large amounts of unused memory allocated
3670  * by the indirection array.  Before compacting anything though, verify
3671  * that the indirection array is still needed and switch back to the
3672  * linear extent list (or even the inline buffer) if possible.  The
3673  * compaction policy is as follows:
3674  *
3675  *    Full Compaction: Extents fit into a single page (or inline buffer)
3676  * Partial Compaction: Extents occupy less than 50% of allocated space
3677  *      No Compaction: Extents occupy at least 50% of allocated space
3678  */
3679 void
xfs_iext_irec_compact(xfs_ifork_t * ifp)3680 xfs_iext_irec_compact(
3681 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3682 {
3683 	xfs_extnum_t	nextents;	/* number of extents in file */
3684 	int		nlists;		/* number of irec's (ex lists) */
3685 
3686 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3687 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3688 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3689 
3690 	if (nextents == 0) {
3691 		xfs_iext_destroy(ifp);
3692 	} else if (nextents <= XFS_INLINE_EXTS) {
3693 		xfs_iext_indirect_to_direct(ifp);
3694 		xfs_iext_direct_to_inline(ifp, nextents);
3695 	} else if (nextents <= XFS_LINEAR_EXTS) {
3696 		xfs_iext_indirect_to_direct(ifp);
3697 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3698 		xfs_iext_irec_compact_pages(ifp);
3699 	}
3700 }
3701 
3702 /*
3703  * Combine extents from neighboring extent pages.
3704  */
3705 void
xfs_iext_irec_compact_pages(xfs_ifork_t * ifp)3706 xfs_iext_irec_compact_pages(
3707 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3708 {
3709 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
3710 	int		erp_idx = 0;	/* indirection array index */
3711 	int		nlists;		/* number of irec's (ex lists) */
3712 
3713 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3714 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3715 	while (erp_idx < nlists - 1) {
3716 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3717 		erp_next = erp + 1;
3718 		if (erp_next->er_extcount <=
3719 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
3720 			memcpy(&erp->er_extbuf[erp->er_extcount],
3721 				erp_next->er_extbuf, erp_next->er_extcount *
3722 				sizeof(xfs_bmbt_rec_t));
3723 			erp->er_extcount += erp_next->er_extcount;
3724 			/*
3725 			 * Free page before removing extent record
3726 			 * so er_extoffs don't get modified in
3727 			 * xfs_iext_irec_remove.
3728 			 */
3729 			kmem_free(erp_next->er_extbuf);
3730 			erp_next->er_extbuf = NULL;
3731 			xfs_iext_irec_remove(ifp, erp_idx + 1);
3732 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3733 		} else {
3734 			erp_idx++;
3735 		}
3736 	}
3737 }
3738 
3739 /*
3740  * This is called to update the er_extoff field in the indirection
3741  * array when extents have been added or removed from one of the
3742  * extent lists. erp_idx contains the irec index to begin updating
3743  * at and ext_diff contains the number of extents that were added
3744  * or removed.
3745  */
3746 void
xfs_iext_irec_update_extoffs(xfs_ifork_t * ifp,int erp_idx,int ext_diff)3747 xfs_iext_irec_update_extoffs(
3748 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3749 	int		erp_idx,	/* irec index to update */
3750 	int		ext_diff)	/* number of new extents */
3751 {
3752 	int		i;		/* loop counter */
3753 	int		nlists;		/* number of irec's (ex lists */
3754 
3755 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3756 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3757 	for (i = erp_idx; i < nlists; i++) {
3758 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3759 	}
3760 }
3761