1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 #include <linux/mount.h>
33
34 static const struct vm_operations_struct xfs_file_vm_ops;
35
36 /*
37 * Decide if the given file range is aligned to the size of the fundamental
38 * allocation unit for the file.
39 */
40 static bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)41 xfs_is_falloc_aligned(
42 struct xfs_inode *ip,
43 loff_t pos,
44 long long int len)
45 {
46 struct xfs_mount *mp = ip->i_mount;
47 uint64_t mask;
48
49 if (XFS_IS_REALTIME_INODE(ip)) {
50 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
51 u64 rextbytes;
52 u32 mod;
53
54 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
55 div_u64_rem(pos, rextbytes, &mod);
56 if (mod)
57 return false;
58 div_u64_rem(len, rextbytes, &mod);
59 return mod == 0;
60 }
61 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
62 } else {
63 mask = mp->m_sb.sb_blocksize - 1;
64 }
65
66 return !((pos | len) & mask);
67 }
68
69 /*
70 * Fsync operations on directories are much simpler than on regular files,
71 * as there is no file data to flush, and thus also no need for explicit
72 * cache flush operations, and there are no non-transaction metadata updates
73 * on directories either.
74 */
75 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)76 xfs_dir_fsync(
77 struct file *file,
78 loff_t start,
79 loff_t end,
80 int datasync)
81 {
82 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
83
84 trace_xfs_dir_fsync(ip);
85 return xfs_log_force_inode(ip);
86 }
87
88 static xfs_csn_t
xfs_fsync_seq(struct xfs_inode * ip,bool datasync)89 xfs_fsync_seq(
90 struct xfs_inode *ip,
91 bool datasync)
92 {
93 if (!xfs_ipincount(ip))
94 return 0;
95 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
96 return 0;
97 return ip->i_itemp->ili_commit_seq;
98 }
99
100 /*
101 * All metadata updates are logged, which means that we just have to flush the
102 * log up to the latest LSN that touched the inode.
103 *
104 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
105 * the log force before we clear the ili_fsync_fields field. This ensures that
106 * we don't get a racing sync operation that does not wait for the metadata to
107 * hit the journal before returning. If we race with clearing ili_fsync_fields,
108 * then all that will happen is the log force will do nothing as the lsn will
109 * already be on disk. We can't race with setting ili_fsync_fields because that
110 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
111 * shared until after the ili_fsync_fields is cleared.
112 */
113 static int
xfs_fsync_flush_log(struct xfs_inode * ip,bool datasync,int * log_flushed)114 xfs_fsync_flush_log(
115 struct xfs_inode *ip,
116 bool datasync,
117 int *log_flushed)
118 {
119 int error = 0;
120 xfs_csn_t seq;
121
122 xfs_ilock(ip, XFS_ILOCK_SHARED);
123 seq = xfs_fsync_seq(ip, datasync);
124 if (seq) {
125 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
126 log_flushed);
127
128 spin_lock(&ip->i_itemp->ili_lock);
129 ip->i_itemp->ili_fsync_fields = 0;
130 spin_unlock(&ip->i_itemp->ili_lock);
131 }
132 xfs_iunlock(ip, XFS_ILOCK_SHARED);
133 return error;
134 }
135
136 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)137 xfs_file_fsync(
138 struct file *file,
139 loff_t start,
140 loff_t end,
141 int datasync)
142 {
143 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
144 struct xfs_mount *mp = ip->i_mount;
145 int error = 0;
146 int log_flushed = 0;
147
148 trace_xfs_file_fsync(ip);
149
150 error = file_write_and_wait_range(file, start, end);
151 if (error)
152 return error;
153
154 if (xfs_is_shutdown(mp))
155 return -EIO;
156
157 xfs_iflags_clear(ip, XFS_ITRUNCATED);
158
159 /*
160 * If we have an RT and/or log subvolume we need to make sure to flush
161 * the write cache the device used for file data first. This is to
162 * ensure newly written file data make it to disk before logging the new
163 * inode size in case of an extending write.
164 */
165 if (XFS_IS_REALTIME_INODE(ip))
166 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
167 else if (mp->m_logdev_targp != mp->m_ddev_targp)
168 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
169
170 /*
171 * Any inode that has dirty modifications in the log is pinned. The
172 * racy check here for a pinned inode while not catch modifications
173 * that happen concurrently to the fsync call, but fsync semantics
174 * only require to sync previously completed I/O.
175 */
176 if (xfs_ipincount(ip))
177 error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
178
179 /*
180 * If we only have a single device, and the log force about was
181 * a no-op we might have to flush the data device cache here.
182 * This can only happen for fdatasync/O_DSYNC if we were overwriting
183 * an already allocated file and thus do not have any metadata to
184 * commit.
185 */
186 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
187 mp->m_logdev_targp == mp->m_ddev_targp)
188 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
189
190 return error;
191 }
192
193 static int
xfs_ilock_iocb(struct kiocb * iocb,unsigned int lock_mode)194 xfs_ilock_iocb(
195 struct kiocb *iocb,
196 unsigned int lock_mode)
197 {
198 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
199
200 if (iocb->ki_flags & IOCB_NOWAIT) {
201 if (!xfs_ilock_nowait(ip, lock_mode))
202 return -EAGAIN;
203 } else {
204 xfs_ilock(ip, lock_mode);
205 }
206
207 return 0;
208 }
209
210 STATIC ssize_t
xfs_file_dio_read(struct kiocb * iocb,struct iov_iter * to)211 xfs_file_dio_read(
212 struct kiocb *iocb,
213 struct iov_iter *to)
214 {
215 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
216 ssize_t ret;
217
218 trace_xfs_file_direct_read(iocb, to);
219
220 if (!iov_iter_count(to))
221 return 0; /* skip atime */
222
223 file_accessed(iocb->ki_filp);
224
225 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
226 if (ret)
227 return ret;
228 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, NULL, 0);
229 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
230
231 return ret;
232 }
233
234 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)235 xfs_file_dax_read(
236 struct kiocb *iocb,
237 struct iov_iter *to)
238 {
239 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
240 ssize_t ret = 0;
241
242 trace_xfs_file_dax_read(iocb, to);
243
244 if (!iov_iter_count(to))
245 return 0; /* skip atime */
246
247 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
248 if (ret)
249 return ret;
250 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
251 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
252
253 file_accessed(iocb->ki_filp);
254 return ret;
255 }
256
257 STATIC ssize_t
xfs_file_buffered_read(struct kiocb * iocb,struct iov_iter * to)258 xfs_file_buffered_read(
259 struct kiocb *iocb,
260 struct iov_iter *to)
261 {
262 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
263 ssize_t ret;
264
265 trace_xfs_file_buffered_read(iocb, to);
266
267 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
268 if (ret)
269 return ret;
270 ret = generic_file_read_iter(iocb, to);
271 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
272
273 return ret;
274 }
275
276 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)277 xfs_file_read_iter(
278 struct kiocb *iocb,
279 struct iov_iter *to)
280 {
281 struct inode *inode = file_inode(iocb->ki_filp);
282 struct xfs_mount *mp = XFS_I(inode)->i_mount;
283 ssize_t ret = 0;
284
285 XFS_STATS_INC(mp, xs_read_calls);
286
287 if (xfs_is_shutdown(mp))
288 return -EIO;
289
290 if (IS_DAX(inode))
291 ret = xfs_file_dax_read(iocb, to);
292 else if (iocb->ki_flags & IOCB_DIRECT)
293 ret = xfs_file_dio_read(iocb, to);
294 else
295 ret = xfs_file_buffered_read(iocb, to);
296
297 if (ret > 0)
298 XFS_STATS_ADD(mp, xs_read_bytes, ret);
299 return ret;
300 }
301
302 /*
303 * Common pre-write limit and setup checks.
304 *
305 * Called with the iolocked held either shared and exclusive according to
306 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
307 * if called for a direct write beyond i_size.
308 */
309 STATIC ssize_t
xfs_file_write_checks(struct kiocb * iocb,struct iov_iter * from,unsigned int * iolock)310 xfs_file_write_checks(
311 struct kiocb *iocb,
312 struct iov_iter *from,
313 unsigned int *iolock)
314 {
315 struct file *file = iocb->ki_filp;
316 struct inode *inode = file->f_mapping->host;
317 struct xfs_inode *ip = XFS_I(inode);
318 ssize_t error = 0;
319 size_t count = iov_iter_count(from);
320 bool drained_dio = false;
321 loff_t isize;
322
323 restart:
324 error = generic_write_checks(iocb, from);
325 if (error <= 0)
326 return error;
327
328 if (iocb->ki_flags & IOCB_NOWAIT) {
329 error = break_layout(inode, false);
330 if (error == -EWOULDBLOCK)
331 error = -EAGAIN;
332 } else {
333 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
334 }
335
336 if (error)
337 return error;
338
339 /*
340 * For changing security info in file_remove_privs() we need i_rwsem
341 * exclusively.
342 */
343 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
344 xfs_iunlock(ip, *iolock);
345 *iolock = XFS_IOLOCK_EXCL;
346 error = xfs_ilock_iocb(iocb, *iolock);
347 if (error) {
348 *iolock = 0;
349 return error;
350 }
351 goto restart;
352 }
353
354 /*
355 * If the offset is beyond the size of the file, we need to zero any
356 * blocks that fall between the existing EOF and the start of this
357 * write. If zeroing is needed and we are currently holding the iolock
358 * shared, we need to update it to exclusive which implies having to
359 * redo all checks before.
360 *
361 * We need to serialise against EOF updates that occur in IO completions
362 * here. We want to make sure that nobody is changing the size while we
363 * do this check until we have placed an IO barrier (i.e. hold the
364 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
365 * spinlock effectively forms a memory barrier once we have the
366 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
367 * hence be able to correctly determine if we need to run zeroing.
368 *
369 * We can do an unlocked check here safely as IO completion can only
370 * extend EOF. Truncate is locked out at this point, so the EOF can
371 * not move backwards, only forwards. Hence we only need to take the
372 * slow path and spin locks when we are at or beyond the current EOF.
373 */
374 if (iocb->ki_pos <= i_size_read(inode))
375 goto out;
376
377 spin_lock(&ip->i_flags_lock);
378 isize = i_size_read(inode);
379 if (iocb->ki_pos > isize) {
380 spin_unlock(&ip->i_flags_lock);
381
382 if (iocb->ki_flags & IOCB_NOWAIT)
383 return -EAGAIN;
384
385 if (!drained_dio) {
386 if (*iolock == XFS_IOLOCK_SHARED) {
387 xfs_iunlock(ip, *iolock);
388 *iolock = XFS_IOLOCK_EXCL;
389 xfs_ilock(ip, *iolock);
390 iov_iter_reexpand(from, count);
391 }
392 /*
393 * We now have an IO submission barrier in place, but
394 * AIO can do EOF updates during IO completion and hence
395 * we now need to wait for all of them to drain. Non-AIO
396 * DIO will have drained before we are given the
397 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
398 * no-op.
399 */
400 inode_dio_wait(inode);
401 drained_dio = true;
402 goto restart;
403 }
404
405 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
406 error = xfs_zero_range(ip, isize, iocb->ki_pos - isize, NULL);
407 if (error)
408 return error;
409 } else
410 spin_unlock(&ip->i_flags_lock);
411
412 out:
413 return file_modified(file);
414 }
415
416 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)417 xfs_dio_write_end_io(
418 struct kiocb *iocb,
419 ssize_t size,
420 int error,
421 unsigned flags)
422 {
423 struct inode *inode = file_inode(iocb->ki_filp);
424 struct xfs_inode *ip = XFS_I(inode);
425 loff_t offset = iocb->ki_pos;
426 unsigned int nofs_flag;
427
428 trace_xfs_end_io_direct_write(ip, offset, size);
429
430 if (xfs_is_shutdown(ip->i_mount))
431 return -EIO;
432
433 if (error)
434 return error;
435 if (!size)
436 return 0;
437
438 /*
439 * Capture amount written on completion as we can't reliably account
440 * for it on submission.
441 */
442 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
443
444 /*
445 * We can allocate memory here while doing writeback on behalf of
446 * memory reclaim. To avoid memory allocation deadlocks set the
447 * task-wide nofs context for the following operations.
448 */
449 nofs_flag = memalloc_nofs_save();
450
451 if (flags & IOMAP_DIO_COW) {
452 error = xfs_reflink_end_cow(ip, offset, size);
453 if (error)
454 goto out;
455 }
456
457 /*
458 * Unwritten conversion updates the in-core isize after extent
459 * conversion but before updating the on-disk size. Updating isize any
460 * earlier allows a racing dio read to find unwritten extents before
461 * they are converted.
462 */
463 if (flags & IOMAP_DIO_UNWRITTEN) {
464 error = xfs_iomap_write_unwritten(ip, offset, size, true);
465 goto out;
466 }
467
468 /*
469 * We need to update the in-core inode size here so that we don't end up
470 * with the on-disk inode size being outside the in-core inode size. We
471 * have no other method of updating EOF for AIO, so always do it here
472 * if necessary.
473 *
474 * We need to lock the test/set EOF update as we can be racing with
475 * other IO completions here to update the EOF. Failing to serialise
476 * here can result in EOF moving backwards and Bad Things Happen when
477 * that occurs.
478 *
479 * As IO completion only ever extends EOF, we can do an unlocked check
480 * here to avoid taking the spinlock. If we land within the current EOF,
481 * then we do not need to do an extending update at all, and we don't
482 * need to take the lock to check this. If we race with an update moving
483 * EOF, then we'll either still be beyond EOF and need to take the lock,
484 * or we'll be within EOF and we don't need to take it at all.
485 */
486 if (offset + size <= i_size_read(inode))
487 goto out;
488
489 spin_lock(&ip->i_flags_lock);
490 if (offset + size > i_size_read(inode)) {
491 i_size_write(inode, offset + size);
492 spin_unlock(&ip->i_flags_lock);
493 error = xfs_setfilesize(ip, offset, size);
494 } else {
495 spin_unlock(&ip->i_flags_lock);
496 }
497
498 out:
499 memalloc_nofs_restore(nofs_flag);
500 return error;
501 }
502
503 static const struct iomap_dio_ops xfs_dio_write_ops = {
504 .end_io = xfs_dio_write_end_io,
505 };
506
507 /*
508 * Handle block aligned direct I/O writes
509 */
510 static noinline ssize_t
xfs_file_dio_write_aligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)511 xfs_file_dio_write_aligned(
512 struct xfs_inode *ip,
513 struct kiocb *iocb,
514 struct iov_iter *from)
515 {
516 unsigned int iolock = XFS_IOLOCK_SHARED;
517 ssize_t ret;
518
519 ret = xfs_ilock_iocb(iocb, iolock);
520 if (ret)
521 return ret;
522 ret = xfs_file_write_checks(iocb, from, &iolock);
523 if (ret)
524 goto out_unlock;
525
526 /*
527 * We don't need to hold the IOLOCK exclusively across the IO, so demote
528 * the iolock back to shared if we had to take the exclusive lock in
529 * xfs_file_write_checks() for other reasons.
530 */
531 if (iolock == XFS_IOLOCK_EXCL) {
532 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
533 iolock = XFS_IOLOCK_SHARED;
534 }
535 trace_xfs_file_direct_write(iocb, from);
536 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
537 &xfs_dio_write_ops, 0, NULL, 0);
538 out_unlock:
539 if (iolock)
540 xfs_iunlock(ip, iolock);
541 return ret;
542 }
543
544 /*
545 * Handle block unaligned direct I/O writes
546 *
547 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
548 * them to be done in parallel with reads and other direct I/O writes. However,
549 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
550 * to do sub-block zeroing and that requires serialisation against other direct
551 * I/O to the same block. In this case we need to serialise the submission of
552 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
553 * In the case where sub-block zeroing is not required, we can do concurrent
554 * sub-block dios to the same block successfully.
555 *
556 * Optimistically submit the I/O using the shared lock first, but use the
557 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
558 * if block allocation or partial block zeroing would be required. In that case
559 * we try again with the exclusive lock.
560 */
561 static noinline ssize_t
xfs_file_dio_write_unaligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)562 xfs_file_dio_write_unaligned(
563 struct xfs_inode *ip,
564 struct kiocb *iocb,
565 struct iov_iter *from)
566 {
567 size_t isize = i_size_read(VFS_I(ip));
568 size_t count = iov_iter_count(from);
569 unsigned int iolock = XFS_IOLOCK_SHARED;
570 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
571 ssize_t ret;
572
573 /*
574 * Extending writes need exclusivity because of the sub-block zeroing
575 * that the DIO code always does for partial tail blocks beyond EOF, so
576 * don't even bother trying the fast path in this case.
577 */
578 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
579 if (iocb->ki_flags & IOCB_NOWAIT)
580 return -EAGAIN;
581 retry_exclusive:
582 iolock = XFS_IOLOCK_EXCL;
583 flags = IOMAP_DIO_FORCE_WAIT;
584 }
585
586 ret = xfs_ilock_iocb(iocb, iolock);
587 if (ret)
588 return ret;
589
590 /*
591 * We can't properly handle unaligned direct I/O to reflink files yet,
592 * as we can't unshare a partial block.
593 */
594 if (xfs_is_cow_inode(ip)) {
595 trace_xfs_reflink_bounce_dio_write(iocb, from);
596 ret = -ENOTBLK;
597 goto out_unlock;
598 }
599
600 ret = xfs_file_write_checks(iocb, from, &iolock);
601 if (ret)
602 goto out_unlock;
603
604 /*
605 * If we are doing exclusive unaligned I/O, this must be the only I/O
606 * in-flight. Otherwise we risk data corruption due to unwritten extent
607 * conversions from the AIO end_io handler. Wait for all other I/O to
608 * drain first.
609 */
610 if (flags & IOMAP_DIO_FORCE_WAIT)
611 inode_dio_wait(VFS_I(ip));
612
613 trace_xfs_file_direct_write(iocb, from);
614 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
615 &xfs_dio_write_ops, flags, NULL, 0);
616
617 /*
618 * Retry unaligned I/O with exclusive blocking semantics if the DIO
619 * layer rejected it for mapping or locking reasons. If we are doing
620 * nonblocking user I/O, propagate the error.
621 */
622 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
623 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
624 xfs_iunlock(ip, iolock);
625 goto retry_exclusive;
626 }
627
628 out_unlock:
629 if (iolock)
630 xfs_iunlock(ip, iolock);
631 return ret;
632 }
633
634 static ssize_t
xfs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)635 xfs_file_dio_write(
636 struct kiocb *iocb,
637 struct iov_iter *from)
638 {
639 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
640 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
641 size_t count = iov_iter_count(from);
642
643 /* direct I/O must be aligned to device logical sector size */
644 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
645 return -EINVAL;
646 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
647 return xfs_file_dio_write_unaligned(ip, iocb, from);
648 return xfs_file_dio_write_aligned(ip, iocb, from);
649 }
650
651 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)652 xfs_file_dax_write(
653 struct kiocb *iocb,
654 struct iov_iter *from)
655 {
656 struct inode *inode = iocb->ki_filp->f_mapping->host;
657 struct xfs_inode *ip = XFS_I(inode);
658 unsigned int iolock = XFS_IOLOCK_EXCL;
659 ssize_t ret, error = 0;
660 loff_t pos;
661
662 ret = xfs_ilock_iocb(iocb, iolock);
663 if (ret)
664 return ret;
665 ret = xfs_file_write_checks(iocb, from, &iolock);
666 if (ret)
667 goto out;
668
669 pos = iocb->ki_pos;
670
671 trace_xfs_file_dax_write(iocb, from);
672 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
673 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
674 i_size_write(inode, iocb->ki_pos);
675 error = xfs_setfilesize(ip, pos, ret);
676 }
677 out:
678 if (iolock)
679 xfs_iunlock(ip, iolock);
680 if (error)
681 return error;
682
683 if (ret > 0) {
684 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
685
686 /* Handle various SYNC-type writes */
687 ret = generic_write_sync(iocb, ret);
688 }
689 return ret;
690 }
691
692 STATIC ssize_t
xfs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)693 xfs_file_buffered_write(
694 struct kiocb *iocb,
695 struct iov_iter *from)
696 {
697 struct inode *inode = iocb->ki_filp->f_mapping->host;
698 struct xfs_inode *ip = XFS_I(inode);
699 ssize_t ret;
700 bool cleared_space = false;
701 unsigned int iolock;
702
703 if (iocb->ki_flags & IOCB_NOWAIT)
704 return -EOPNOTSUPP;
705
706 write_retry:
707 iolock = XFS_IOLOCK_EXCL;
708 xfs_ilock(ip, iolock);
709
710 ret = xfs_file_write_checks(iocb, from, &iolock);
711 if (ret)
712 goto out;
713
714 /* We can write back this queue in page reclaim */
715 current->backing_dev_info = inode_to_bdi(inode);
716
717 trace_xfs_file_buffered_write(iocb, from);
718 ret = iomap_file_buffered_write(iocb, from,
719 &xfs_buffered_write_iomap_ops);
720 if (likely(ret >= 0))
721 iocb->ki_pos += ret;
722
723 /*
724 * If we hit a space limit, try to free up some lingering preallocated
725 * space before returning an error. In the case of ENOSPC, first try to
726 * write back all dirty inodes to free up some of the excess reserved
727 * metadata space. This reduces the chances that the eofblocks scan
728 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
729 * also behaves as a filter to prevent too many eofblocks scans from
730 * running at the same time. Use a synchronous scan to increase the
731 * effectiveness of the scan.
732 */
733 if (ret == -EDQUOT && !cleared_space) {
734 xfs_iunlock(ip, iolock);
735 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
736 cleared_space = true;
737 goto write_retry;
738 } else if (ret == -ENOSPC && !cleared_space) {
739 struct xfs_icwalk icw = {0};
740
741 cleared_space = true;
742 xfs_flush_inodes(ip->i_mount);
743
744 xfs_iunlock(ip, iolock);
745 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
746 xfs_blockgc_free_space(ip->i_mount, &icw);
747 goto write_retry;
748 }
749
750 current->backing_dev_info = NULL;
751 out:
752 if (iolock)
753 xfs_iunlock(ip, iolock);
754
755 if (ret > 0) {
756 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
757 /* Handle various SYNC-type writes */
758 ret = generic_write_sync(iocb, ret);
759 }
760 return ret;
761 }
762
763 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)764 xfs_file_write_iter(
765 struct kiocb *iocb,
766 struct iov_iter *from)
767 {
768 struct inode *inode = iocb->ki_filp->f_mapping->host;
769 struct xfs_inode *ip = XFS_I(inode);
770 ssize_t ret;
771 size_t ocount = iov_iter_count(from);
772
773 XFS_STATS_INC(ip->i_mount, xs_write_calls);
774
775 if (ocount == 0)
776 return 0;
777
778 if (xfs_is_shutdown(ip->i_mount))
779 return -EIO;
780
781 if (IS_DAX(inode))
782 return xfs_file_dax_write(iocb, from);
783
784 if (iocb->ki_flags & IOCB_DIRECT) {
785 /*
786 * Allow a directio write to fall back to a buffered
787 * write *only* in the case that we're doing a reflink
788 * CoW. In all other directio scenarios we do not
789 * allow an operation to fall back to buffered mode.
790 */
791 ret = xfs_file_dio_write(iocb, from);
792 if (ret != -ENOTBLK)
793 return ret;
794 }
795
796 return xfs_file_buffered_write(iocb, from);
797 }
798
799 static void
xfs_wait_dax_page(struct inode * inode)800 xfs_wait_dax_page(
801 struct inode *inode)
802 {
803 struct xfs_inode *ip = XFS_I(inode);
804
805 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
806 schedule();
807 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
808 }
809
810 static int
xfs_break_dax_layouts(struct inode * inode,bool * retry)811 xfs_break_dax_layouts(
812 struct inode *inode,
813 bool *retry)
814 {
815 struct page *page;
816
817 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
818
819 page = dax_layout_busy_page(inode->i_mapping);
820 if (!page)
821 return 0;
822
823 *retry = true;
824 return ___wait_var_event(&page->_refcount,
825 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
826 0, 0, xfs_wait_dax_page(inode));
827 }
828
829 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)830 xfs_break_layouts(
831 struct inode *inode,
832 uint *iolock,
833 enum layout_break_reason reason)
834 {
835 bool retry;
836 int error;
837
838 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
839
840 do {
841 retry = false;
842 switch (reason) {
843 case BREAK_UNMAP:
844 error = xfs_break_dax_layouts(inode, &retry);
845 if (error || retry)
846 break;
847 fallthrough;
848 case BREAK_WRITE:
849 error = xfs_break_leased_layouts(inode, iolock, &retry);
850 break;
851 default:
852 WARN_ON_ONCE(1);
853 error = -EINVAL;
854 }
855 } while (error == 0 && retry);
856
857 return error;
858 }
859
860 /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)861 static inline bool xfs_file_sync_writes(struct file *filp)
862 {
863 struct xfs_inode *ip = XFS_I(file_inode(filp));
864
865 if (xfs_has_wsync(ip->i_mount))
866 return true;
867 if (filp->f_flags & (__O_SYNC | O_DSYNC))
868 return true;
869 if (IS_SYNC(file_inode(filp)))
870 return true;
871
872 return false;
873 }
874
875 #define XFS_FALLOC_FL_SUPPORTED \
876 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
877 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
878 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
879
880 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)881 xfs_file_fallocate(
882 struct file *file,
883 int mode,
884 loff_t offset,
885 loff_t len)
886 {
887 struct inode *inode = file_inode(file);
888 struct xfs_inode *ip = XFS_I(inode);
889 long error;
890 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
891 loff_t new_size = 0;
892 bool do_file_insert = false;
893
894 if (!S_ISREG(inode->i_mode))
895 return -EINVAL;
896 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
897 return -EOPNOTSUPP;
898
899 xfs_ilock(ip, iolock);
900 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
901 if (error)
902 goto out_unlock;
903
904 /*
905 * Must wait for all AIO to complete before we continue as AIO can
906 * change the file size on completion without holding any locks we
907 * currently hold. We must do this first because AIO can update both
908 * the on disk and in memory inode sizes, and the operations that follow
909 * require the in-memory size to be fully up-to-date.
910 */
911 inode_dio_wait(inode);
912
913 /*
914 * Now AIO and DIO has drained we flush and (if necessary) invalidate
915 * the cached range over the first operation we are about to run.
916 *
917 * We care about zero and collapse here because they both run a hole
918 * punch over the range first. Because that can zero data, and the range
919 * of invalidation for the shift operations is much larger, we still do
920 * the required flush for collapse in xfs_prepare_shift().
921 *
922 * Insert has the same range requirements as collapse, and we extend the
923 * file first which can zero data. Hence insert has the same
924 * flush/invalidate requirements as collapse and so they are both
925 * handled at the right time by xfs_prepare_shift().
926 */
927 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
928 FALLOC_FL_COLLAPSE_RANGE)) {
929 error = xfs_flush_unmap_range(ip, offset, len);
930 if (error)
931 goto out_unlock;
932 }
933
934 error = file_modified(file);
935 if (error)
936 goto out_unlock;
937
938 if (mode & FALLOC_FL_PUNCH_HOLE) {
939 error = xfs_free_file_space(ip, offset, len);
940 if (error)
941 goto out_unlock;
942 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
943 if (!xfs_is_falloc_aligned(ip, offset, len)) {
944 error = -EINVAL;
945 goto out_unlock;
946 }
947
948 /*
949 * There is no need to overlap collapse range with EOF,
950 * in which case it is effectively a truncate operation
951 */
952 if (offset + len >= i_size_read(inode)) {
953 error = -EINVAL;
954 goto out_unlock;
955 }
956
957 new_size = i_size_read(inode) - len;
958
959 error = xfs_collapse_file_space(ip, offset, len);
960 if (error)
961 goto out_unlock;
962 } else if (mode & FALLOC_FL_INSERT_RANGE) {
963 loff_t isize = i_size_read(inode);
964
965 if (!xfs_is_falloc_aligned(ip, offset, len)) {
966 error = -EINVAL;
967 goto out_unlock;
968 }
969
970 /*
971 * New inode size must not exceed ->s_maxbytes, accounting for
972 * possible signed overflow.
973 */
974 if (inode->i_sb->s_maxbytes - isize < len) {
975 error = -EFBIG;
976 goto out_unlock;
977 }
978 new_size = isize + len;
979
980 /* Offset should be less than i_size */
981 if (offset >= isize) {
982 error = -EINVAL;
983 goto out_unlock;
984 }
985 do_file_insert = true;
986 } else {
987 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
988 offset + len > i_size_read(inode)) {
989 new_size = offset + len;
990 error = inode_newsize_ok(inode, new_size);
991 if (error)
992 goto out_unlock;
993 }
994
995 if (mode & FALLOC_FL_ZERO_RANGE) {
996 /*
997 * Punch a hole and prealloc the range. We use a hole
998 * punch rather than unwritten extent conversion for two
999 * reasons:
1000 *
1001 * 1.) Hole punch handles partial block zeroing for us.
1002 * 2.) If prealloc returns ENOSPC, the file range is
1003 * still zero-valued by virtue of the hole punch.
1004 */
1005 unsigned int blksize = i_blocksize(inode);
1006
1007 trace_xfs_zero_file_space(ip);
1008
1009 error = xfs_free_file_space(ip, offset, len);
1010 if (error)
1011 goto out_unlock;
1012
1013 len = round_up(offset + len, blksize) -
1014 round_down(offset, blksize);
1015 offset = round_down(offset, blksize);
1016 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1017 error = xfs_reflink_unshare(ip, offset, len);
1018 if (error)
1019 goto out_unlock;
1020 } else {
1021 /*
1022 * If always_cow mode we can't use preallocations and
1023 * thus should not create them.
1024 */
1025 if (xfs_is_always_cow_inode(ip)) {
1026 error = -EOPNOTSUPP;
1027 goto out_unlock;
1028 }
1029 }
1030
1031 if (!xfs_is_always_cow_inode(ip)) {
1032 error = xfs_alloc_file_space(ip, offset, len);
1033 if (error)
1034 goto out_unlock;
1035 }
1036 }
1037
1038 /* Change file size if needed */
1039 if (new_size) {
1040 struct iattr iattr;
1041
1042 iattr.ia_valid = ATTR_SIZE;
1043 iattr.ia_size = new_size;
1044 error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1045 file_dentry(file), &iattr);
1046 if (error)
1047 goto out_unlock;
1048 }
1049
1050 /*
1051 * Perform hole insertion now that the file size has been
1052 * updated so that if we crash during the operation we don't
1053 * leave shifted extents past EOF and hence losing access to
1054 * the data that is contained within them.
1055 */
1056 if (do_file_insert) {
1057 error = xfs_insert_file_space(ip, offset, len);
1058 if (error)
1059 goto out_unlock;
1060 }
1061
1062 if (xfs_file_sync_writes(file))
1063 error = xfs_log_force_inode(ip);
1064
1065 out_unlock:
1066 xfs_iunlock(ip, iolock);
1067 return error;
1068 }
1069
1070 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1071 xfs_file_fadvise(
1072 struct file *file,
1073 loff_t start,
1074 loff_t end,
1075 int advice)
1076 {
1077 struct xfs_inode *ip = XFS_I(file_inode(file));
1078 int ret;
1079 int lockflags = 0;
1080
1081 /*
1082 * Operations creating pages in page cache need protection from hole
1083 * punching and similar ops
1084 */
1085 if (advice == POSIX_FADV_WILLNEED) {
1086 lockflags = XFS_IOLOCK_SHARED;
1087 xfs_ilock(ip, lockflags);
1088 }
1089 ret = generic_fadvise(file, start, end, advice);
1090 if (lockflags)
1091 xfs_iunlock(ip, lockflags);
1092 return ret;
1093 }
1094
1095 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1096 xfs_file_remap_range(
1097 struct file *file_in,
1098 loff_t pos_in,
1099 struct file *file_out,
1100 loff_t pos_out,
1101 loff_t len,
1102 unsigned int remap_flags)
1103 {
1104 struct inode *inode_in = file_inode(file_in);
1105 struct xfs_inode *src = XFS_I(inode_in);
1106 struct inode *inode_out = file_inode(file_out);
1107 struct xfs_inode *dest = XFS_I(inode_out);
1108 struct xfs_mount *mp = src->i_mount;
1109 loff_t remapped = 0;
1110 xfs_extlen_t cowextsize;
1111 int ret;
1112
1113 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1114 return -EINVAL;
1115
1116 if (!xfs_has_reflink(mp))
1117 return -EOPNOTSUPP;
1118
1119 if (xfs_is_shutdown(mp))
1120 return -EIO;
1121
1122 /* Prepare and then clone file data. */
1123 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1124 &len, remap_flags);
1125 if (ret || len == 0)
1126 return ret;
1127
1128 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1129
1130 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1131 &remapped);
1132 if (ret)
1133 goto out_unlock;
1134
1135 /*
1136 * Carry the cowextsize hint from src to dest if we're sharing the
1137 * entire source file to the entire destination file, the source file
1138 * has a cowextsize hint, and the destination file does not.
1139 */
1140 cowextsize = 0;
1141 if (pos_in == 0 && len == i_size_read(inode_in) &&
1142 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1143 pos_out == 0 && len >= i_size_read(inode_out) &&
1144 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1145 cowextsize = src->i_cowextsize;
1146
1147 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1148 remap_flags);
1149 if (ret)
1150 goto out_unlock;
1151
1152 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1153 xfs_log_force_inode(dest);
1154 out_unlock:
1155 xfs_iunlock2_io_mmap(src, dest);
1156 if (ret)
1157 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1158 return remapped > 0 ? remapped : ret;
1159 }
1160
1161 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1162 xfs_file_open(
1163 struct inode *inode,
1164 struct file *file)
1165 {
1166 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1167 return -EIO;
1168 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1169 return generic_file_open(inode, file);
1170 }
1171
1172 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1173 xfs_dir_open(
1174 struct inode *inode,
1175 struct file *file)
1176 {
1177 struct xfs_inode *ip = XFS_I(inode);
1178 unsigned int mode;
1179 int error;
1180
1181 error = xfs_file_open(inode, file);
1182 if (error)
1183 return error;
1184
1185 /*
1186 * If there are any blocks, read-ahead block 0 as we're almost
1187 * certain to have the next operation be a read there.
1188 */
1189 mode = xfs_ilock_data_map_shared(ip);
1190 if (ip->i_df.if_nextents > 0)
1191 error = xfs_dir3_data_readahead(ip, 0, 0);
1192 xfs_iunlock(ip, mode);
1193 return error;
1194 }
1195
1196 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1197 xfs_file_release(
1198 struct inode *inode,
1199 struct file *filp)
1200 {
1201 return xfs_release(XFS_I(inode));
1202 }
1203
1204 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1205 xfs_file_readdir(
1206 struct file *file,
1207 struct dir_context *ctx)
1208 {
1209 struct inode *inode = file_inode(file);
1210 xfs_inode_t *ip = XFS_I(inode);
1211 size_t bufsize;
1212
1213 /*
1214 * The Linux API doesn't pass down the total size of the buffer
1215 * we read into down to the filesystem. With the filldir concept
1216 * it's not needed for correct information, but the XFS dir2 leaf
1217 * code wants an estimate of the buffer size to calculate it's
1218 * readahead window and size the buffers used for mapping to
1219 * physical blocks.
1220 *
1221 * Try to give it an estimate that's good enough, maybe at some
1222 * point we can change the ->readdir prototype to include the
1223 * buffer size. For now we use the current glibc buffer size.
1224 */
1225 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1226
1227 return xfs_readdir(NULL, ip, ctx, bufsize);
1228 }
1229
1230 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1231 xfs_file_llseek(
1232 struct file *file,
1233 loff_t offset,
1234 int whence)
1235 {
1236 struct inode *inode = file->f_mapping->host;
1237
1238 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1239 return -EIO;
1240
1241 switch (whence) {
1242 default:
1243 return generic_file_llseek(file, offset, whence);
1244 case SEEK_HOLE:
1245 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1246 break;
1247 case SEEK_DATA:
1248 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1249 break;
1250 }
1251
1252 if (offset < 0)
1253 return offset;
1254 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1255 }
1256
1257 /*
1258 * Locking for serialisation of IO during page faults. This results in a lock
1259 * ordering of:
1260 *
1261 * mmap_lock (MM)
1262 * sb_start_pagefault(vfs, freeze)
1263 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1264 * page_lock (MM)
1265 * i_lock (XFS - extent map serialisation)
1266 */
1267 static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1268 __xfs_filemap_fault(
1269 struct vm_fault *vmf,
1270 enum page_entry_size pe_size,
1271 bool write_fault)
1272 {
1273 struct inode *inode = file_inode(vmf->vma->vm_file);
1274 struct xfs_inode *ip = XFS_I(inode);
1275 vm_fault_t ret;
1276
1277 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1278
1279 if (write_fault) {
1280 sb_start_pagefault(inode->i_sb);
1281 file_update_time(vmf->vma->vm_file);
1282 }
1283
1284 if (IS_DAX(inode)) {
1285 pfn_t pfn;
1286
1287 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1288 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1289 (write_fault && !vmf->cow_page) ?
1290 &xfs_direct_write_iomap_ops :
1291 &xfs_read_iomap_ops);
1292 if (ret & VM_FAULT_NEEDDSYNC)
1293 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1294 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1295 } else {
1296 if (write_fault) {
1297 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1298 ret = iomap_page_mkwrite(vmf,
1299 &xfs_buffered_write_iomap_ops);
1300 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1301 } else {
1302 ret = filemap_fault(vmf);
1303 }
1304 }
1305
1306 if (write_fault)
1307 sb_end_pagefault(inode->i_sb);
1308 return ret;
1309 }
1310
1311 static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1312 xfs_is_write_fault(
1313 struct vm_fault *vmf)
1314 {
1315 return (vmf->flags & FAULT_FLAG_WRITE) &&
1316 (vmf->vma->vm_flags & VM_SHARED);
1317 }
1318
1319 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1320 xfs_filemap_fault(
1321 struct vm_fault *vmf)
1322 {
1323 /* DAX can shortcut the normal fault path on write faults! */
1324 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1325 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1326 xfs_is_write_fault(vmf));
1327 }
1328
1329 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1330 xfs_filemap_huge_fault(
1331 struct vm_fault *vmf,
1332 enum page_entry_size pe_size)
1333 {
1334 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1335 return VM_FAULT_FALLBACK;
1336
1337 /* DAX can shortcut the normal fault path on write faults! */
1338 return __xfs_filemap_fault(vmf, pe_size,
1339 xfs_is_write_fault(vmf));
1340 }
1341
1342 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1343 xfs_filemap_page_mkwrite(
1344 struct vm_fault *vmf)
1345 {
1346 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1347 }
1348
1349 /*
1350 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1351 * on write faults. In reality, it needs to serialise against truncate and
1352 * prepare memory for writing so handle is as standard write fault.
1353 */
1354 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1355 xfs_filemap_pfn_mkwrite(
1356 struct vm_fault *vmf)
1357 {
1358
1359 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1360 }
1361
1362 static vm_fault_t
xfs_filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1363 xfs_filemap_map_pages(
1364 struct vm_fault *vmf,
1365 pgoff_t start_pgoff,
1366 pgoff_t end_pgoff)
1367 {
1368 struct inode *inode = file_inode(vmf->vma->vm_file);
1369 vm_fault_t ret;
1370
1371 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1372 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1373 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1374 return ret;
1375 }
1376
1377 static const struct vm_operations_struct xfs_file_vm_ops = {
1378 .fault = xfs_filemap_fault,
1379 .huge_fault = xfs_filemap_huge_fault,
1380 .map_pages = xfs_filemap_map_pages,
1381 .page_mkwrite = xfs_filemap_page_mkwrite,
1382 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1383 };
1384
1385 STATIC int
xfs_file_mmap(struct file * file,struct vm_area_struct * vma)1386 xfs_file_mmap(
1387 struct file *file,
1388 struct vm_area_struct *vma)
1389 {
1390 struct inode *inode = file_inode(file);
1391 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1392
1393 /*
1394 * We don't support synchronous mappings for non-DAX files and
1395 * for DAX files if underneath dax_device is not synchronous.
1396 */
1397 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1398 return -EOPNOTSUPP;
1399
1400 file_accessed(file);
1401 vma->vm_ops = &xfs_file_vm_ops;
1402 if (IS_DAX(inode))
1403 vma->vm_flags |= VM_HUGEPAGE;
1404 return 0;
1405 }
1406
1407 const struct file_operations xfs_file_operations = {
1408 .llseek = xfs_file_llseek,
1409 .read_iter = xfs_file_read_iter,
1410 .write_iter = xfs_file_write_iter,
1411 .splice_read = generic_file_splice_read,
1412 .splice_write = iter_file_splice_write,
1413 .iopoll = iocb_bio_iopoll,
1414 .unlocked_ioctl = xfs_file_ioctl,
1415 #ifdef CONFIG_COMPAT
1416 .compat_ioctl = xfs_file_compat_ioctl,
1417 #endif
1418 .mmap = xfs_file_mmap,
1419 .mmap_supported_flags = MAP_SYNC,
1420 .open = xfs_file_open,
1421 .release = xfs_file_release,
1422 .fsync = xfs_file_fsync,
1423 .get_unmapped_area = thp_get_unmapped_area,
1424 .fallocate = xfs_file_fallocate,
1425 .fadvise = xfs_file_fadvise,
1426 .remap_file_range = xfs_file_remap_range,
1427 };
1428
1429 const struct file_operations xfs_dir_file_operations = {
1430 .open = xfs_dir_open,
1431 .read = generic_read_dir,
1432 .iterate_shared = xfs_file_readdir,
1433 .llseek = generic_file_llseek,
1434 .unlocked_ioctl = xfs_file_ioctl,
1435 #ifdef CONFIG_COMPAT
1436 .compat_ioctl = xfs_file_compat_ioctl,
1437 #endif
1438 .fsync = xfs_dir_fsync,
1439 };
1440