1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include <linux/log2.h>
19 
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
50 
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
53 
54 /*
55  * Used in xfs_itruncate().  This is the maximum number of extents
56  * freed from a file in a single transaction.
57  */
58 #define	XFS_ITRUNC_MAX_EXTENTS	2
59 
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
64 
65 #ifdef DEBUG
66 /*
67  * Make sure that the extents in the given memory buffer
68  * are valid.
69  */
70 STATIC void
xfs_validate_extents(xfs_ifork_t * ifp,int nrecs,xfs_exntfmt_t fmt)71 xfs_validate_extents(
72 	xfs_ifork_t		*ifp,
73 	int			nrecs,
74 	xfs_exntfmt_t		fmt)
75 {
76 	xfs_bmbt_irec_t		irec;
77 	xfs_bmbt_rec_host_t	rec;
78 	int			i;
79 
80 	for (i = 0; i < nrecs; i++) {
81 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 		rec.l0 = get_unaligned(&ep->l0);
83 		rec.l1 = get_unaligned(&ep->l1);
84 		xfs_bmbt_get_all(&rec, &irec);
85 		if (fmt == XFS_EXTFMT_NOSTATE)
86 			ASSERT(irec.br_state == XFS_EXT_NORM);
87 	}
88 }
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
92 
93 /*
94  * Check that none of the inode's in the buffer have a next
95  * unlinked field of 0.
96  */
97 #if defined(DEBUG)
98 void
xfs_inobp_check(xfs_mount_t * mp,xfs_buf_t * bp)99 xfs_inobp_check(
100 	xfs_mount_t	*mp,
101 	xfs_buf_t	*bp)
102 {
103 	int		i;
104 	int		j;
105 	xfs_dinode_t	*dip;
106 
107 	j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
108 
109 	for (i = 0; i < j; i++) {
110 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 					i * mp->m_sb.sb_inodesize);
112 		if (!dip->di_next_unlinked)  {
113 			xfs_alert(mp,
114 	"Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
115 				bp);
116 			ASSERT(dip->di_next_unlinked);
117 		}
118 	}
119 }
120 #endif
121 
122 /*
123  * Find the buffer associated with the given inode map
124  * We do basic validation checks on the buffer once it has been
125  * retrieved from disk.
126  */
127 STATIC int
xfs_imap_to_bp(xfs_mount_t * mp,xfs_trans_t * tp,struct xfs_imap * imap,xfs_buf_t ** bpp,uint buf_flags,uint iget_flags)128 xfs_imap_to_bp(
129 	xfs_mount_t	*mp,
130 	xfs_trans_t	*tp,
131 	struct xfs_imap	*imap,
132 	xfs_buf_t	**bpp,
133 	uint		buf_flags,
134 	uint		iget_flags)
135 {
136 	int		error;
137 	int		i;
138 	int		ni;
139 	xfs_buf_t	*bp;
140 
141 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 				   (int)imap->im_len, buf_flags, &bp);
143 	if (error) {
144 		if (error != EAGAIN) {
145 			xfs_warn(mp,
146 				"%s: xfs_trans_read_buf() returned error %d.",
147 				__func__, error);
148 		} else {
149 			ASSERT(buf_flags & XBF_TRYLOCK);
150 		}
151 		return error;
152 	}
153 
154 	/*
155 	 * Validate the magic number and version of every inode in the buffer
156 	 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
157 	 */
158 #ifdef DEBUG
159 	ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
160 #else	/* usual case */
161 	ni = 1;
162 #endif
163 
164 	for (i = 0; i < ni; i++) {
165 		int		di_ok;
166 		xfs_dinode_t	*dip;
167 
168 		dip = (xfs_dinode_t *)xfs_buf_offset(bp,
169 					(i << mp->m_sb.sb_inodelog));
170 		di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
171 			    XFS_DINODE_GOOD_VERSION(dip->di_version);
172 		if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
173 						XFS_ERRTAG_ITOBP_INOTOBP,
174 						XFS_RANDOM_ITOBP_INOTOBP))) {
175 			if (iget_flags & XFS_IGET_UNTRUSTED) {
176 				xfs_trans_brelse(tp, bp);
177 				return XFS_ERROR(EINVAL);
178 			}
179 			XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
180 						XFS_ERRLEVEL_HIGH, mp, dip);
181 #ifdef DEBUG
182 			xfs_emerg(mp,
183 				"bad inode magic/vsn daddr %lld #%d (magic=%x)",
184 				(unsigned long long)imap->im_blkno, i,
185 				be16_to_cpu(dip->di_magic));
186 			ASSERT(0);
187 #endif
188 			xfs_trans_brelse(tp, bp);
189 			return XFS_ERROR(EFSCORRUPTED);
190 		}
191 	}
192 
193 	xfs_inobp_check(mp, bp);
194 
195 	/*
196 	 * Mark the buffer as an inode buffer now that it looks good
197 	 */
198 	XFS_BUF_SET_VTYPE(bp, B_FS_INO);
199 
200 	*bpp = bp;
201 	return 0;
202 }
203 
204 /*
205  * This routine is called to map an inode number within a file
206  * system to the buffer containing the on-disk version of the
207  * inode.  It returns a pointer to the buffer containing the
208  * on-disk inode in the bpp parameter, and in the dip parameter
209  * it returns a pointer to the on-disk inode within that buffer.
210  *
211  * If a non-zero error is returned, then the contents of bpp and
212  * dipp are undefined.
213  *
214  * Use xfs_imap() to determine the size and location of the
215  * buffer to read from disk.
216  */
217 int
xfs_inotobp(xfs_mount_t * mp,xfs_trans_t * tp,xfs_ino_t ino,xfs_dinode_t ** dipp,xfs_buf_t ** bpp,int * offset,uint imap_flags)218 xfs_inotobp(
219 	xfs_mount_t	*mp,
220 	xfs_trans_t	*tp,
221 	xfs_ino_t	ino,
222 	xfs_dinode_t	**dipp,
223 	xfs_buf_t	**bpp,
224 	int		*offset,
225 	uint		imap_flags)
226 {
227 	struct xfs_imap	imap;
228 	xfs_buf_t	*bp;
229 	int		error;
230 
231 	imap.im_blkno = 0;
232 	error = xfs_imap(mp, tp, ino, &imap, imap_flags);
233 	if (error)
234 		return error;
235 
236 	error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
237 	if (error)
238 		return error;
239 
240 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
241 	*bpp = bp;
242 	*offset = imap.im_boffset;
243 	return 0;
244 }
245 
246 
247 /*
248  * This routine is called to map an inode to the buffer containing
249  * the on-disk version of the inode.  It returns a pointer to the
250  * buffer containing the on-disk inode in the bpp parameter, and in
251  * the dip parameter it returns a pointer to the on-disk inode within
252  * that buffer.
253  *
254  * If a non-zero error is returned, then the contents of bpp and
255  * dipp are undefined.
256  *
257  * The inode is expected to already been mapped to its buffer and read
258  * in once, thus we can use the mapping information stored in the inode
259  * rather than calling xfs_imap().  This allows us to avoid the overhead
260  * of looking at the inode btree for small block file systems
261  * (see xfs_imap()).
262  */
263 int
xfs_itobp(xfs_mount_t * mp,xfs_trans_t * tp,xfs_inode_t * ip,xfs_dinode_t ** dipp,xfs_buf_t ** bpp,uint buf_flags)264 xfs_itobp(
265 	xfs_mount_t	*mp,
266 	xfs_trans_t	*tp,
267 	xfs_inode_t	*ip,
268 	xfs_dinode_t	**dipp,
269 	xfs_buf_t	**bpp,
270 	uint		buf_flags)
271 {
272 	xfs_buf_t	*bp;
273 	int		error;
274 
275 	ASSERT(ip->i_imap.im_blkno != 0);
276 
277 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
278 	if (error)
279 		return error;
280 
281 	if (!bp) {
282 		ASSERT(buf_flags & XBF_TRYLOCK);
283 		ASSERT(tp == NULL);
284 		*bpp = NULL;
285 		return EAGAIN;
286 	}
287 
288 	*dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
289 	*bpp = bp;
290 	return 0;
291 }
292 
293 /*
294  * Move inode type and inode format specific information from the
295  * on-disk inode to the in-core inode.  For fifos, devs, and sockets
296  * this means set if_rdev to the proper value.  For files, directories,
297  * and symlinks this means to bring in the in-line data or extent
298  * pointers.  For a file in B-tree format, only the root is immediately
299  * brought in-core.  The rest will be in-lined in if_extents when it
300  * is first referenced (see xfs_iread_extents()).
301  */
302 STATIC int
xfs_iformat(xfs_inode_t * ip,xfs_dinode_t * dip)303 xfs_iformat(
304 	xfs_inode_t		*ip,
305 	xfs_dinode_t		*dip)
306 {
307 	xfs_attr_shortform_t	*atp;
308 	int			size;
309 	int			error;
310 	xfs_fsize_t             di_size;
311 	ip->i_df.if_ext_max =
312 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
313 	error = 0;
314 
315 	if (unlikely(be32_to_cpu(dip->di_nextents) +
316 		     be16_to_cpu(dip->di_anextents) >
317 		     be64_to_cpu(dip->di_nblocks))) {
318 		xfs_warn(ip->i_mount,
319 			"corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
320 			(unsigned long long)ip->i_ino,
321 			(int)(be32_to_cpu(dip->di_nextents) +
322 			      be16_to_cpu(dip->di_anextents)),
323 			(unsigned long long)
324 				be64_to_cpu(dip->di_nblocks));
325 		XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
326 				     ip->i_mount, dip);
327 		return XFS_ERROR(EFSCORRUPTED);
328 	}
329 
330 	if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
331 		xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
332 			(unsigned long long)ip->i_ino,
333 			dip->di_forkoff);
334 		XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
335 				     ip->i_mount, dip);
336 		return XFS_ERROR(EFSCORRUPTED);
337 	}
338 
339 	if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
340 		     !ip->i_mount->m_rtdev_targp)) {
341 		xfs_warn(ip->i_mount,
342 			"corrupt dinode %Lu, has realtime flag set.",
343 			ip->i_ino);
344 		XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
345 				     XFS_ERRLEVEL_LOW, ip->i_mount, dip);
346 		return XFS_ERROR(EFSCORRUPTED);
347 	}
348 
349 	switch (ip->i_d.di_mode & S_IFMT) {
350 	case S_IFIFO:
351 	case S_IFCHR:
352 	case S_IFBLK:
353 	case S_IFSOCK:
354 		if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
355 			XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
356 					      ip->i_mount, dip);
357 			return XFS_ERROR(EFSCORRUPTED);
358 		}
359 		ip->i_d.di_size = 0;
360 		ip->i_size = 0;
361 		ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
362 		break;
363 
364 	case S_IFREG:
365 	case S_IFLNK:
366 	case S_IFDIR:
367 		switch (dip->di_format) {
368 		case XFS_DINODE_FMT_LOCAL:
369 			/*
370 			 * no local regular files yet
371 			 */
372 			if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
373 				xfs_warn(ip->i_mount,
374 			"corrupt inode %Lu (local format for regular file).",
375 					(unsigned long long) ip->i_ino);
376 				XFS_CORRUPTION_ERROR("xfs_iformat(4)",
377 						     XFS_ERRLEVEL_LOW,
378 						     ip->i_mount, dip);
379 				return XFS_ERROR(EFSCORRUPTED);
380 			}
381 
382 			di_size = be64_to_cpu(dip->di_size);
383 			if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
384 				xfs_warn(ip->i_mount,
385 			"corrupt inode %Lu (bad size %Ld for local inode).",
386 					(unsigned long long) ip->i_ino,
387 					(long long) di_size);
388 				XFS_CORRUPTION_ERROR("xfs_iformat(5)",
389 						     XFS_ERRLEVEL_LOW,
390 						     ip->i_mount, dip);
391 				return XFS_ERROR(EFSCORRUPTED);
392 			}
393 
394 			size = (int)di_size;
395 			error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
396 			break;
397 		case XFS_DINODE_FMT_EXTENTS:
398 			error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
399 			break;
400 		case XFS_DINODE_FMT_BTREE:
401 			error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
402 			break;
403 		default:
404 			XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
405 					 ip->i_mount);
406 			return XFS_ERROR(EFSCORRUPTED);
407 		}
408 		break;
409 
410 	default:
411 		XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
412 		return XFS_ERROR(EFSCORRUPTED);
413 	}
414 	if (error) {
415 		return error;
416 	}
417 	if (!XFS_DFORK_Q(dip))
418 		return 0;
419 	ASSERT(ip->i_afp == NULL);
420 	ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
421 	ip->i_afp->if_ext_max =
422 		XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
423 	switch (dip->di_aformat) {
424 	case XFS_DINODE_FMT_LOCAL:
425 		atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
426 		size = be16_to_cpu(atp->hdr.totsize);
427 
428 		if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
429 			xfs_warn(ip->i_mount,
430 				"corrupt inode %Lu (bad attr fork size %Ld).",
431 				(unsigned long long) ip->i_ino,
432 				(long long) size);
433 			XFS_CORRUPTION_ERROR("xfs_iformat(8)",
434 					     XFS_ERRLEVEL_LOW,
435 					     ip->i_mount, dip);
436 			return XFS_ERROR(EFSCORRUPTED);
437 		}
438 
439 		error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
440 		break;
441 	case XFS_DINODE_FMT_EXTENTS:
442 		error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
443 		break;
444 	case XFS_DINODE_FMT_BTREE:
445 		error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
446 		break;
447 	default:
448 		error = XFS_ERROR(EFSCORRUPTED);
449 		break;
450 	}
451 	if (error) {
452 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
453 		ip->i_afp = NULL;
454 		xfs_idestroy_fork(ip, XFS_DATA_FORK);
455 	}
456 	return error;
457 }
458 
459 /*
460  * The file is in-lined in the on-disk inode.
461  * If it fits into if_inline_data, then copy
462  * it there, otherwise allocate a buffer for it
463  * and copy the data there.  Either way, set
464  * if_data to point at the data.
465  * If we allocate a buffer for the data, make
466  * sure that its size is a multiple of 4 and
467  * record the real size in i_real_bytes.
468  */
469 STATIC int
xfs_iformat_local(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork,int size)470 xfs_iformat_local(
471 	xfs_inode_t	*ip,
472 	xfs_dinode_t	*dip,
473 	int		whichfork,
474 	int		size)
475 {
476 	xfs_ifork_t	*ifp;
477 	int		real_size;
478 
479 	/*
480 	 * If the size is unreasonable, then something
481 	 * is wrong and we just bail out rather than crash in
482 	 * kmem_alloc() or memcpy() below.
483 	 */
484 	if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
485 		xfs_warn(ip->i_mount,
486 	"corrupt inode %Lu (bad size %d for local fork, size = %d).",
487 			(unsigned long long) ip->i_ino, size,
488 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
489 		XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
490 				     ip->i_mount, dip);
491 		return XFS_ERROR(EFSCORRUPTED);
492 	}
493 	ifp = XFS_IFORK_PTR(ip, whichfork);
494 	real_size = 0;
495 	if (size == 0)
496 		ifp->if_u1.if_data = NULL;
497 	else if (size <= sizeof(ifp->if_u2.if_inline_data))
498 		ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
499 	else {
500 		real_size = roundup(size, 4);
501 		ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
502 	}
503 	ifp->if_bytes = size;
504 	ifp->if_real_bytes = real_size;
505 	if (size)
506 		memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
507 	ifp->if_flags &= ~XFS_IFEXTENTS;
508 	ifp->if_flags |= XFS_IFINLINE;
509 	return 0;
510 }
511 
512 /*
513  * The file consists of a set of extents all
514  * of which fit into the on-disk inode.
515  * If there are few enough extents to fit into
516  * the if_inline_ext, then copy them there.
517  * Otherwise allocate a buffer for them and copy
518  * them into it.  Either way, set if_extents
519  * to point at the extents.
520  */
521 STATIC int
xfs_iformat_extents(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork)522 xfs_iformat_extents(
523 	xfs_inode_t	*ip,
524 	xfs_dinode_t	*dip,
525 	int		whichfork)
526 {
527 	xfs_bmbt_rec_t	*dp;
528 	xfs_ifork_t	*ifp;
529 	int		nex;
530 	int		size;
531 	int		i;
532 
533 	ifp = XFS_IFORK_PTR(ip, whichfork);
534 	nex = XFS_DFORK_NEXTENTS(dip, whichfork);
535 	size = nex * (uint)sizeof(xfs_bmbt_rec_t);
536 
537 	/*
538 	 * If the number of extents is unreasonable, then something
539 	 * is wrong and we just bail out rather than crash in
540 	 * kmem_alloc() or memcpy() below.
541 	 */
542 	if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
543 		xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
544 			(unsigned long long) ip->i_ino, nex);
545 		XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
546 				     ip->i_mount, dip);
547 		return XFS_ERROR(EFSCORRUPTED);
548 	}
549 
550 	ifp->if_real_bytes = 0;
551 	if (nex == 0)
552 		ifp->if_u1.if_extents = NULL;
553 	else if (nex <= XFS_INLINE_EXTS)
554 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
555 	else
556 		xfs_iext_add(ifp, 0, nex);
557 
558 	ifp->if_bytes = size;
559 	if (size) {
560 		dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
561 		xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
562 		for (i = 0; i < nex; i++, dp++) {
563 			xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
564 			ep->l0 = get_unaligned_be64(&dp->l0);
565 			ep->l1 = get_unaligned_be64(&dp->l1);
566 		}
567 		XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
568 		if (whichfork != XFS_DATA_FORK ||
569 			XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
570 				if (unlikely(xfs_check_nostate_extents(
571 				    ifp, 0, nex))) {
572 					XFS_ERROR_REPORT("xfs_iformat_extents(2)",
573 							 XFS_ERRLEVEL_LOW,
574 							 ip->i_mount);
575 					return XFS_ERROR(EFSCORRUPTED);
576 				}
577 	}
578 	ifp->if_flags |= XFS_IFEXTENTS;
579 	return 0;
580 }
581 
582 /*
583  * The file has too many extents to fit into
584  * the inode, so they are in B-tree format.
585  * Allocate a buffer for the root of the B-tree
586  * and copy the root into it.  The i_extents
587  * field will remain NULL until all of the
588  * extents are read in (when they are needed).
589  */
590 STATIC int
xfs_iformat_btree(xfs_inode_t * ip,xfs_dinode_t * dip,int whichfork)591 xfs_iformat_btree(
592 	xfs_inode_t		*ip,
593 	xfs_dinode_t		*dip,
594 	int			whichfork)
595 {
596 	xfs_bmdr_block_t	*dfp;
597 	xfs_ifork_t		*ifp;
598 	/* REFERENCED */
599 	int			nrecs;
600 	int			size;
601 
602 	ifp = XFS_IFORK_PTR(ip, whichfork);
603 	dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
604 	size = XFS_BMAP_BROOT_SPACE(dfp);
605 	nrecs = be16_to_cpu(dfp->bb_numrecs);
606 
607 	/*
608 	 * blow out if -- fork has less extents than can fit in
609 	 * fork (fork shouldn't be a btree format), root btree
610 	 * block has more records than can fit into the fork,
611 	 * or the number of extents is greater than the number of
612 	 * blocks.
613 	 */
614 	if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
615 	    || XFS_BMDR_SPACE_CALC(nrecs) >
616 			XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
617 	    || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
618 		xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
619 			(unsigned long long) ip->i_ino);
620 		XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
621 				 ip->i_mount, dip);
622 		return XFS_ERROR(EFSCORRUPTED);
623 	}
624 
625 	ifp->if_broot_bytes = size;
626 	ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
627 	ASSERT(ifp->if_broot != NULL);
628 	/*
629 	 * Copy and convert from the on-disk structure
630 	 * to the in-memory structure.
631 	 */
632 	xfs_bmdr_to_bmbt(ip->i_mount, dfp,
633 			 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
634 			 ifp->if_broot, size);
635 	ifp->if_flags &= ~XFS_IFEXTENTS;
636 	ifp->if_flags |= XFS_IFBROOT;
637 
638 	return 0;
639 }
640 
641 STATIC void
xfs_dinode_from_disk(xfs_icdinode_t * to,xfs_dinode_t * from)642 xfs_dinode_from_disk(
643 	xfs_icdinode_t		*to,
644 	xfs_dinode_t		*from)
645 {
646 	to->di_magic = be16_to_cpu(from->di_magic);
647 	to->di_mode = be16_to_cpu(from->di_mode);
648 	to->di_version = from ->di_version;
649 	to->di_format = from->di_format;
650 	to->di_onlink = be16_to_cpu(from->di_onlink);
651 	to->di_uid = be32_to_cpu(from->di_uid);
652 	to->di_gid = be32_to_cpu(from->di_gid);
653 	to->di_nlink = be32_to_cpu(from->di_nlink);
654 	to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
655 	to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
656 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
657 	to->di_flushiter = be16_to_cpu(from->di_flushiter);
658 	to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
659 	to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
660 	to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
661 	to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
662 	to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
663 	to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
664 	to->di_size = be64_to_cpu(from->di_size);
665 	to->di_nblocks = be64_to_cpu(from->di_nblocks);
666 	to->di_extsize = be32_to_cpu(from->di_extsize);
667 	to->di_nextents = be32_to_cpu(from->di_nextents);
668 	to->di_anextents = be16_to_cpu(from->di_anextents);
669 	to->di_forkoff = from->di_forkoff;
670 	to->di_aformat	= from->di_aformat;
671 	to->di_dmevmask	= be32_to_cpu(from->di_dmevmask);
672 	to->di_dmstate	= be16_to_cpu(from->di_dmstate);
673 	to->di_flags	= be16_to_cpu(from->di_flags);
674 	to->di_gen	= be32_to_cpu(from->di_gen);
675 }
676 
677 void
xfs_dinode_to_disk(xfs_dinode_t * to,xfs_icdinode_t * from)678 xfs_dinode_to_disk(
679 	xfs_dinode_t		*to,
680 	xfs_icdinode_t		*from)
681 {
682 	to->di_magic = cpu_to_be16(from->di_magic);
683 	to->di_mode = cpu_to_be16(from->di_mode);
684 	to->di_version = from ->di_version;
685 	to->di_format = from->di_format;
686 	to->di_onlink = cpu_to_be16(from->di_onlink);
687 	to->di_uid = cpu_to_be32(from->di_uid);
688 	to->di_gid = cpu_to_be32(from->di_gid);
689 	to->di_nlink = cpu_to_be32(from->di_nlink);
690 	to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
691 	to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
692 	memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
693 	to->di_flushiter = cpu_to_be16(from->di_flushiter);
694 	to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
695 	to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
696 	to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
697 	to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
698 	to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
699 	to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
700 	to->di_size = cpu_to_be64(from->di_size);
701 	to->di_nblocks = cpu_to_be64(from->di_nblocks);
702 	to->di_extsize = cpu_to_be32(from->di_extsize);
703 	to->di_nextents = cpu_to_be32(from->di_nextents);
704 	to->di_anextents = cpu_to_be16(from->di_anextents);
705 	to->di_forkoff = from->di_forkoff;
706 	to->di_aformat = from->di_aformat;
707 	to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
708 	to->di_dmstate = cpu_to_be16(from->di_dmstate);
709 	to->di_flags = cpu_to_be16(from->di_flags);
710 	to->di_gen = cpu_to_be32(from->di_gen);
711 }
712 
713 STATIC uint
_xfs_dic2xflags(__uint16_t di_flags)714 _xfs_dic2xflags(
715 	__uint16_t		di_flags)
716 {
717 	uint			flags = 0;
718 
719 	if (di_flags & XFS_DIFLAG_ANY) {
720 		if (di_flags & XFS_DIFLAG_REALTIME)
721 			flags |= XFS_XFLAG_REALTIME;
722 		if (di_flags & XFS_DIFLAG_PREALLOC)
723 			flags |= XFS_XFLAG_PREALLOC;
724 		if (di_flags & XFS_DIFLAG_IMMUTABLE)
725 			flags |= XFS_XFLAG_IMMUTABLE;
726 		if (di_flags & XFS_DIFLAG_APPEND)
727 			flags |= XFS_XFLAG_APPEND;
728 		if (di_flags & XFS_DIFLAG_SYNC)
729 			flags |= XFS_XFLAG_SYNC;
730 		if (di_flags & XFS_DIFLAG_NOATIME)
731 			flags |= XFS_XFLAG_NOATIME;
732 		if (di_flags & XFS_DIFLAG_NODUMP)
733 			flags |= XFS_XFLAG_NODUMP;
734 		if (di_flags & XFS_DIFLAG_RTINHERIT)
735 			flags |= XFS_XFLAG_RTINHERIT;
736 		if (di_flags & XFS_DIFLAG_PROJINHERIT)
737 			flags |= XFS_XFLAG_PROJINHERIT;
738 		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
739 			flags |= XFS_XFLAG_NOSYMLINKS;
740 		if (di_flags & XFS_DIFLAG_EXTSIZE)
741 			flags |= XFS_XFLAG_EXTSIZE;
742 		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
743 			flags |= XFS_XFLAG_EXTSZINHERIT;
744 		if (di_flags & XFS_DIFLAG_NODEFRAG)
745 			flags |= XFS_XFLAG_NODEFRAG;
746 		if (di_flags & XFS_DIFLAG_FILESTREAM)
747 			flags |= XFS_XFLAG_FILESTREAM;
748 	}
749 
750 	return flags;
751 }
752 
753 uint
xfs_ip2xflags(xfs_inode_t * ip)754 xfs_ip2xflags(
755 	xfs_inode_t		*ip)
756 {
757 	xfs_icdinode_t		*dic = &ip->i_d;
758 
759 	return _xfs_dic2xflags(dic->di_flags) |
760 				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
761 }
762 
763 uint
xfs_dic2xflags(xfs_dinode_t * dip)764 xfs_dic2xflags(
765 	xfs_dinode_t		*dip)
766 {
767 	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
768 				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
769 }
770 
771 /*
772  * Read the disk inode attributes into the in-core inode structure.
773  */
774 int
xfs_iread(xfs_mount_t * mp,xfs_trans_t * tp,xfs_inode_t * ip,uint iget_flags)775 xfs_iread(
776 	xfs_mount_t	*mp,
777 	xfs_trans_t	*tp,
778 	xfs_inode_t	*ip,
779 	uint		iget_flags)
780 {
781 	xfs_buf_t	*bp;
782 	xfs_dinode_t	*dip;
783 	int		error;
784 
785 	/*
786 	 * Fill in the location information in the in-core inode.
787 	 */
788 	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
789 	if (error)
790 		return error;
791 
792 	/*
793 	 * Get pointers to the on-disk inode and the buffer containing it.
794 	 */
795 	error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
796 			       XBF_LOCK, iget_flags);
797 	if (error)
798 		return error;
799 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
800 
801 	/*
802 	 * If we got something that isn't an inode it means someone
803 	 * (nfs or dmi) has a stale handle.
804 	 */
805 	if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
806 #ifdef DEBUG
807 		xfs_alert(mp,
808 			"%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
809 			__func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
810 #endif /* DEBUG */
811 		error = XFS_ERROR(EINVAL);
812 		goto out_brelse;
813 	}
814 
815 	/*
816 	 * If the on-disk inode is already linked to a directory
817 	 * entry, copy all of the inode into the in-core inode.
818 	 * xfs_iformat() handles copying in the inode format
819 	 * specific information.
820 	 * Otherwise, just get the truly permanent information.
821 	 */
822 	if (dip->di_mode) {
823 		xfs_dinode_from_disk(&ip->i_d, dip);
824 		error = xfs_iformat(ip, dip);
825 		if (error)  {
826 #ifdef DEBUG
827 			xfs_alert(mp, "%s: xfs_iformat() returned error %d",
828 				__func__, error);
829 #endif /* DEBUG */
830 			goto out_brelse;
831 		}
832 	} else {
833 		ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
834 		ip->i_d.di_version = dip->di_version;
835 		ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
836 		ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
837 		/*
838 		 * Make sure to pull in the mode here as well in
839 		 * case the inode is released without being used.
840 		 * This ensures that xfs_inactive() will see that
841 		 * the inode is already free and not try to mess
842 		 * with the uninitialized part of it.
843 		 */
844 		ip->i_d.di_mode = 0;
845 		/*
846 		 * Initialize the per-fork minima and maxima for a new
847 		 * inode here.  xfs_iformat will do it for old inodes.
848 		 */
849 		ip->i_df.if_ext_max =
850 			XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
851 	}
852 
853 	/*
854 	 * The inode format changed when we moved the link count and
855 	 * made it 32 bits long.  If this is an old format inode,
856 	 * convert it in memory to look like a new one.  If it gets
857 	 * flushed to disk we will convert back before flushing or
858 	 * logging it.  We zero out the new projid field and the old link
859 	 * count field.  We'll handle clearing the pad field (the remains
860 	 * of the old uuid field) when we actually convert the inode to
861 	 * the new format. We don't change the version number so that we
862 	 * can distinguish this from a real new format inode.
863 	 */
864 	if (ip->i_d.di_version == 1) {
865 		ip->i_d.di_nlink = ip->i_d.di_onlink;
866 		ip->i_d.di_onlink = 0;
867 		xfs_set_projid(ip, 0);
868 	}
869 
870 	ip->i_delayed_blks = 0;
871 	ip->i_size = ip->i_d.di_size;
872 
873 	/*
874 	 * Mark the buffer containing the inode as something to keep
875 	 * around for a while.  This helps to keep recently accessed
876 	 * meta-data in-core longer.
877 	 */
878 	xfs_buf_set_ref(bp, XFS_INO_REF);
879 
880 	/*
881 	 * Use xfs_trans_brelse() to release the buffer containing the
882 	 * on-disk inode, because it was acquired with xfs_trans_read_buf()
883 	 * in xfs_itobp() above.  If tp is NULL, this is just a normal
884 	 * brelse().  If we're within a transaction, then xfs_trans_brelse()
885 	 * will only release the buffer if it is not dirty within the
886 	 * transaction.  It will be OK to release the buffer in this case,
887 	 * because inodes on disk are never destroyed and we will be
888 	 * locking the new in-core inode before putting it in the hash
889 	 * table where other processes can find it.  Thus we don't have
890 	 * to worry about the inode being changed just because we released
891 	 * the buffer.
892 	 */
893  out_brelse:
894 	xfs_trans_brelse(tp, bp);
895 	return error;
896 }
897 
898 /*
899  * Read in extents from a btree-format inode.
900  * Allocate and fill in if_extents.  Real work is done in xfs_bmap.c.
901  */
902 int
xfs_iread_extents(xfs_trans_t * tp,xfs_inode_t * ip,int whichfork)903 xfs_iread_extents(
904 	xfs_trans_t	*tp,
905 	xfs_inode_t	*ip,
906 	int		whichfork)
907 {
908 	int		error;
909 	xfs_ifork_t	*ifp;
910 	xfs_extnum_t	nextents;
911 
912 	if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
913 		XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
914 				 ip->i_mount);
915 		return XFS_ERROR(EFSCORRUPTED);
916 	}
917 	nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
918 	ifp = XFS_IFORK_PTR(ip, whichfork);
919 
920 	/*
921 	 * We know that the size is valid (it's checked in iformat_btree)
922 	 */
923 	ifp->if_lastex = NULLEXTNUM;
924 	ifp->if_bytes = ifp->if_real_bytes = 0;
925 	ifp->if_flags |= XFS_IFEXTENTS;
926 	xfs_iext_add(ifp, 0, nextents);
927 	error = xfs_bmap_read_extents(tp, ip, whichfork);
928 	if (error) {
929 		xfs_iext_destroy(ifp);
930 		ifp->if_flags &= ~XFS_IFEXTENTS;
931 		return error;
932 	}
933 	xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
934 	return 0;
935 }
936 
937 /*
938  * Allocate an inode on disk and return a copy of its in-core version.
939  * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
940  * appropriately within the inode.  The uid and gid for the inode are
941  * set according to the contents of the given cred structure.
942  *
943  * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
944  * has a free inode available, call xfs_iget()
945  * to obtain the in-core version of the allocated inode.  Finally,
946  * fill in the inode and log its initial contents.  In this case,
947  * ialloc_context would be set to NULL and call_again set to false.
948  *
949  * If xfs_dialloc() does not have an available inode,
950  * it will replenish its supply by doing an allocation. Since we can
951  * only do one allocation within a transaction without deadlocks, we
952  * must commit the current transaction before returning the inode itself.
953  * In this case, therefore, we will set call_again to true and return.
954  * The caller should then commit the current transaction, start a new
955  * transaction, and call xfs_ialloc() again to actually get the inode.
956  *
957  * To ensure that some other process does not grab the inode that
958  * was allocated during the first call to xfs_ialloc(), this routine
959  * also returns the [locked] bp pointing to the head of the freelist
960  * as ialloc_context.  The caller should hold this buffer across
961  * the commit and pass it back into this routine on the second call.
962  *
963  * If we are allocating quota inodes, we do not have a parent inode
964  * to attach to or associate with (i.e. pip == NULL) because they
965  * are not linked into the directory structure - they are attached
966  * directly to the superblock - and so have no parent.
967  */
968 int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,mode_t mode,xfs_nlink_t nlink,xfs_dev_t rdev,prid_t prid,int okalloc,xfs_buf_t ** ialloc_context,boolean_t * call_again,xfs_inode_t ** ipp)969 xfs_ialloc(
970 	xfs_trans_t	*tp,
971 	xfs_inode_t	*pip,
972 	mode_t		mode,
973 	xfs_nlink_t	nlink,
974 	xfs_dev_t	rdev,
975 	prid_t		prid,
976 	int		okalloc,
977 	xfs_buf_t	**ialloc_context,
978 	boolean_t	*call_again,
979 	xfs_inode_t	**ipp)
980 {
981 	xfs_ino_t	ino;
982 	xfs_inode_t	*ip;
983 	uint		flags;
984 	int		error;
985 	timespec_t	tv;
986 	int		filestreams = 0;
987 
988 	/*
989 	 * Call the space management code to pick
990 	 * the on-disk inode to be allocated.
991 	 */
992 	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
993 			    ialloc_context, call_again, &ino);
994 	if (error)
995 		return error;
996 	if (*call_again || ino == NULLFSINO) {
997 		*ipp = NULL;
998 		return 0;
999 	}
1000 	ASSERT(*ialloc_context == NULL);
1001 
1002 	/*
1003 	 * Get the in-core inode with the lock held exclusively.
1004 	 * This is because we're setting fields here we need
1005 	 * to prevent others from looking at until we're done.
1006 	 */
1007 	error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1008 			 XFS_ILOCK_EXCL, &ip);
1009 	if (error)
1010 		return error;
1011 	ASSERT(ip != NULL);
1012 
1013 	ip->i_d.di_mode = (__uint16_t)mode;
1014 	ip->i_d.di_onlink = 0;
1015 	ip->i_d.di_nlink = nlink;
1016 	ASSERT(ip->i_d.di_nlink == nlink);
1017 	ip->i_d.di_uid = current_fsuid();
1018 	ip->i_d.di_gid = current_fsgid();
1019 	xfs_set_projid(ip, prid);
1020 	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1021 
1022 	/*
1023 	 * If the superblock version is up to where we support new format
1024 	 * inodes and this is currently an old format inode, then change
1025 	 * the inode version number now.  This way we only do the conversion
1026 	 * here rather than here and in the flush/logging code.
1027 	 */
1028 	if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1029 	    ip->i_d.di_version == 1) {
1030 		ip->i_d.di_version = 2;
1031 		/*
1032 		 * We've already zeroed the old link count, the projid field,
1033 		 * and the pad field.
1034 		 */
1035 	}
1036 
1037 	/*
1038 	 * Project ids won't be stored on disk if we are using a version 1 inode.
1039 	 */
1040 	if ((prid != 0) && (ip->i_d.di_version == 1))
1041 		xfs_bump_ino_vers2(tp, ip);
1042 
1043 	if (pip && XFS_INHERIT_GID(pip)) {
1044 		ip->i_d.di_gid = pip->i_d.di_gid;
1045 		if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1046 			ip->i_d.di_mode |= S_ISGID;
1047 		}
1048 	}
1049 
1050 	/*
1051 	 * If the group ID of the new file does not match the effective group
1052 	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1053 	 * (and only if the irix_sgid_inherit compatibility variable is set).
1054 	 */
1055 	if ((irix_sgid_inherit) &&
1056 	    (ip->i_d.di_mode & S_ISGID) &&
1057 	    (!in_group_p((gid_t)ip->i_d.di_gid))) {
1058 		ip->i_d.di_mode &= ~S_ISGID;
1059 	}
1060 
1061 	ip->i_d.di_size = 0;
1062 	ip->i_size = 0;
1063 	ip->i_d.di_nextents = 0;
1064 	ASSERT(ip->i_d.di_nblocks == 0);
1065 
1066 	nanotime(&tv);
1067 	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1068 	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1069 	ip->i_d.di_atime = ip->i_d.di_mtime;
1070 	ip->i_d.di_ctime = ip->i_d.di_mtime;
1071 
1072 	/*
1073 	 * di_gen will have been taken care of in xfs_iread.
1074 	 */
1075 	ip->i_d.di_extsize = 0;
1076 	ip->i_d.di_dmevmask = 0;
1077 	ip->i_d.di_dmstate = 0;
1078 	ip->i_d.di_flags = 0;
1079 	flags = XFS_ILOG_CORE;
1080 	switch (mode & S_IFMT) {
1081 	case S_IFIFO:
1082 	case S_IFCHR:
1083 	case S_IFBLK:
1084 	case S_IFSOCK:
1085 		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1086 		ip->i_df.if_u2.if_rdev = rdev;
1087 		ip->i_df.if_flags = 0;
1088 		flags |= XFS_ILOG_DEV;
1089 		break;
1090 	case S_IFREG:
1091 		/*
1092 		 * we can't set up filestreams until after the VFS inode
1093 		 * is set up properly.
1094 		 */
1095 		if (pip && xfs_inode_is_filestream(pip))
1096 			filestreams = 1;
1097 		/* fall through */
1098 	case S_IFDIR:
1099 		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1100 			uint	di_flags = 0;
1101 
1102 			if ((mode & S_IFMT) == S_IFDIR) {
1103 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1104 					di_flags |= XFS_DIFLAG_RTINHERIT;
1105 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1106 					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1107 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1108 				}
1109 			} else if ((mode & S_IFMT) == S_IFREG) {
1110 				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1111 					di_flags |= XFS_DIFLAG_REALTIME;
1112 				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1113 					di_flags |= XFS_DIFLAG_EXTSIZE;
1114 					ip->i_d.di_extsize = pip->i_d.di_extsize;
1115 				}
1116 			}
1117 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1118 			    xfs_inherit_noatime)
1119 				di_flags |= XFS_DIFLAG_NOATIME;
1120 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1121 			    xfs_inherit_nodump)
1122 				di_flags |= XFS_DIFLAG_NODUMP;
1123 			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1124 			    xfs_inherit_sync)
1125 				di_flags |= XFS_DIFLAG_SYNC;
1126 			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1127 			    xfs_inherit_nosymlinks)
1128 				di_flags |= XFS_DIFLAG_NOSYMLINKS;
1129 			if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1130 				di_flags |= XFS_DIFLAG_PROJINHERIT;
1131 			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1132 			    xfs_inherit_nodefrag)
1133 				di_flags |= XFS_DIFLAG_NODEFRAG;
1134 			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1135 				di_flags |= XFS_DIFLAG_FILESTREAM;
1136 			ip->i_d.di_flags |= di_flags;
1137 		}
1138 		/* FALLTHROUGH */
1139 	case S_IFLNK:
1140 		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1141 		ip->i_df.if_flags = XFS_IFEXTENTS;
1142 		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1143 		ip->i_df.if_u1.if_extents = NULL;
1144 		break;
1145 	default:
1146 		ASSERT(0);
1147 	}
1148 	/*
1149 	 * Attribute fork settings for new inode.
1150 	 */
1151 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1152 	ip->i_d.di_anextents = 0;
1153 
1154 	/*
1155 	 * Log the new values stuffed into the inode.
1156 	 */
1157 	xfs_trans_ijoin_ref(tp, ip, XFS_ILOCK_EXCL);
1158 	xfs_trans_log_inode(tp, ip, flags);
1159 
1160 	/* now that we have an i_mode we can setup inode ops and unlock */
1161 	xfs_setup_inode(ip);
1162 
1163 	/* now we have set up the vfs inode we can associate the filestream */
1164 	if (filestreams) {
1165 		error = xfs_filestream_associate(pip, ip);
1166 		if (error < 0)
1167 			return -error;
1168 		if (!error)
1169 			xfs_iflags_set(ip, XFS_IFILESTREAM);
1170 	}
1171 
1172 	*ipp = ip;
1173 	return 0;
1174 }
1175 
1176 /*
1177  * Check to make sure that there are no blocks allocated to the
1178  * file beyond the size of the file.  We don't check this for
1179  * files with fixed size extents or real time extents, but we
1180  * at least do it for regular files.
1181  */
1182 #ifdef DEBUG
1183 void
xfs_isize_check(xfs_mount_t * mp,xfs_inode_t * ip,xfs_fsize_t isize)1184 xfs_isize_check(
1185 	xfs_mount_t	*mp,
1186 	xfs_inode_t	*ip,
1187 	xfs_fsize_t	isize)
1188 {
1189 	xfs_fileoff_t	map_first;
1190 	int		nimaps;
1191 	xfs_bmbt_irec_t	imaps[2];
1192 
1193 	if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1194 		return;
1195 
1196 	if (XFS_IS_REALTIME_INODE(ip))
1197 		return;
1198 
1199 	if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1200 		return;
1201 
1202 	nimaps = 2;
1203 	map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1204 	/*
1205 	 * The filesystem could be shutting down, so bmapi may return
1206 	 * an error.
1207 	 */
1208 	if (xfs_bmapi(NULL, ip, map_first,
1209 			 (XFS_B_TO_FSB(mp,
1210 				       (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1211 			  map_first),
1212 			 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1213 			 NULL))
1214 	    return;
1215 	ASSERT(nimaps == 1);
1216 	ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1217 }
1218 #endif	/* DEBUG */
1219 
1220 /*
1221  * Calculate the last possible buffered byte in a file.  This must
1222  * include data that was buffered beyond the EOF by the write code.
1223  * This also needs to deal with overflowing the xfs_fsize_t type
1224  * which can happen for sizes near the limit.
1225  *
1226  * We also need to take into account any blocks beyond the EOF.  It
1227  * may be the case that they were buffered by a write which failed.
1228  * In that case the pages will still be in memory, but the inode size
1229  * will never have been updated.
1230  */
1231 STATIC xfs_fsize_t
xfs_file_last_byte(xfs_inode_t * ip)1232 xfs_file_last_byte(
1233 	xfs_inode_t	*ip)
1234 {
1235 	xfs_mount_t	*mp;
1236 	xfs_fsize_t	last_byte;
1237 	xfs_fileoff_t	last_block;
1238 	xfs_fileoff_t	size_last_block;
1239 	int		error;
1240 
1241 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1242 
1243 	mp = ip->i_mount;
1244 	/*
1245 	 * Only check for blocks beyond the EOF if the extents have
1246 	 * been read in.  This eliminates the need for the inode lock,
1247 	 * and it also saves us from looking when it really isn't
1248 	 * necessary.
1249 	 */
1250 	if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1251 		xfs_ilock(ip, XFS_ILOCK_SHARED);
1252 		error = xfs_bmap_last_offset(NULL, ip, &last_block,
1253 			XFS_DATA_FORK);
1254 		xfs_iunlock(ip, XFS_ILOCK_SHARED);
1255 		if (error) {
1256 			last_block = 0;
1257 		}
1258 	} else {
1259 		last_block = 0;
1260 	}
1261 	size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1262 	last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1263 
1264 	last_byte = XFS_FSB_TO_B(mp, last_block);
1265 	if (last_byte < 0) {
1266 		return XFS_MAXIOFFSET(mp);
1267 	}
1268 	last_byte += (1 << mp->m_writeio_log);
1269 	if (last_byte < 0) {
1270 		return XFS_MAXIOFFSET(mp);
1271 	}
1272 	return last_byte;
1273 }
1274 
1275 /*
1276  * Start the truncation of the file to new_size.  The new size
1277  * must be smaller than the current size.  This routine will
1278  * clear the buffer and page caches of file data in the removed
1279  * range, and xfs_itruncate_finish() will remove the underlying
1280  * disk blocks.
1281  *
1282  * The inode must have its I/O lock locked EXCLUSIVELY, and it
1283  * must NOT have the inode lock held at all.  This is because we're
1284  * calling into the buffer/page cache code and we can't hold the
1285  * inode lock when we do so.
1286  *
1287  * We need to wait for any direct I/Os in flight to complete before we
1288  * proceed with the truncate. This is needed to prevent the extents
1289  * being read or written by the direct I/Os from being removed while the
1290  * I/O is in flight as there is no other method of synchronising
1291  * direct I/O with the truncate operation.  Also, because we hold
1292  * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1293  * started until the truncate completes and drops the lock. Essentially,
1294  * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1295  * ordering between direct I/Os and the truncate operation.
1296  *
1297  * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1298  * or XFS_ITRUNC_MAYBE.  The XFS_ITRUNC_MAYBE value should be used
1299  * in the case that the caller is locking things out of order and
1300  * may not be able to call xfs_itruncate_finish() with the inode lock
1301  * held without dropping the I/O lock.  If the caller must drop the
1302  * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1303  * must be called again with all the same restrictions as the initial
1304  * call.
1305  */
1306 int
xfs_itruncate_start(xfs_inode_t * ip,uint flags,xfs_fsize_t new_size)1307 xfs_itruncate_start(
1308 	xfs_inode_t	*ip,
1309 	uint		flags,
1310 	xfs_fsize_t	new_size)
1311 {
1312 	xfs_fsize_t	last_byte;
1313 	xfs_off_t	toss_start;
1314 	xfs_mount_t	*mp;
1315 	int		error = 0;
1316 
1317 	ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1318 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1319 	ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1320 	       (flags == XFS_ITRUNC_MAYBE));
1321 
1322 	mp = ip->i_mount;
1323 
1324 	/* wait for the completion of any pending DIOs */
1325 	if (new_size == 0 || new_size < ip->i_size)
1326 		xfs_ioend_wait(ip);
1327 
1328 	/*
1329 	 * Call toss_pages or flushinval_pages to get rid of pages
1330 	 * overlapping the region being removed.  We have to use
1331 	 * the less efficient flushinval_pages in the case that the
1332 	 * caller may not be able to finish the truncate without
1333 	 * dropping the inode's I/O lock.  Make sure
1334 	 * to catch any pages brought in by buffers overlapping
1335 	 * the EOF by searching out beyond the isize by our
1336 	 * block size. We round new_size up to a block boundary
1337 	 * so that we don't toss things on the same block as
1338 	 * new_size but before it.
1339 	 *
1340 	 * Before calling toss_page or flushinval_pages, make sure to
1341 	 * call remapf() over the same region if the file is mapped.
1342 	 * This frees up mapped file references to the pages in the
1343 	 * given range and for the flushinval_pages case it ensures
1344 	 * that we get the latest mapped changes flushed out.
1345 	 */
1346 	toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1347 	toss_start = XFS_FSB_TO_B(mp, toss_start);
1348 	if (toss_start < 0) {
1349 		/*
1350 		 * The place to start tossing is beyond our maximum
1351 		 * file size, so there is no way that the data extended
1352 		 * out there.
1353 		 */
1354 		return 0;
1355 	}
1356 	last_byte = xfs_file_last_byte(ip);
1357 	trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1358 	if (last_byte > toss_start) {
1359 		if (flags & XFS_ITRUNC_DEFINITE) {
1360 			xfs_tosspages(ip, toss_start,
1361 					-1, FI_REMAPF_LOCKED);
1362 		} else {
1363 			error = xfs_flushinval_pages(ip, toss_start,
1364 					-1, FI_REMAPF_LOCKED);
1365 		}
1366 	}
1367 
1368 #ifdef DEBUG
1369 	if (new_size == 0) {
1370 		ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1371 	}
1372 #endif
1373 	return error;
1374 }
1375 
1376 /*
1377  * Shrink the file to the given new_size.  The new size must be smaller than
1378  * the current size.  This will free up the underlying blocks in the removed
1379  * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1380  *
1381  * The transaction passed to this routine must have made a permanent log
1382  * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1383  * given transaction and start new ones, so make sure everything involved in
1384  * the transaction is tidy before calling here.  Some transaction will be
1385  * returned to the caller to be committed.  The incoming transaction must
1386  * already include the inode, and both inode locks must be held exclusively.
1387  * The inode must also be "held" within the transaction.  On return the inode
1388  * will be "held" within the returned transaction.  This routine does NOT
1389  * require any disk space to be reserved for it within the transaction.
1390  *
1391  * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1392  * indicates the fork which is to be truncated.  For the attribute fork we only
1393  * support truncation to size 0.
1394  *
1395  * We use the sync parameter to indicate whether or not the first transaction
1396  * we perform might have to be synchronous.  For the attr fork, it needs to be
1397  * so if the unlink of the inode is not yet known to be permanent in the log.
1398  * This keeps us from freeing and reusing the blocks of the attribute fork
1399  * before the unlink of the inode becomes permanent.
1400  *
1401  * For the data fork, we normally have to run synchronously if we're being
1402  * called out of the inactive path or we're being called out of the create path
1403  * where we're truncating an existing file.  Either way, the truncate needs to
1404  * be sync so blocks don't reappear in the file with altered data in case of a
1405  * crash.  wsync filesystems can run the first case async because anything that
1406  * shrinks the inode has to run sync so by the time we're called here from
1407  * inactive, the inode size is permanently set to 0.
1408  *
1409  * Calls from the truncate path always need to be sync unless we're in a wsync
1410  * filesystem and the file has already been unlinked.
1411  *
1412  * The caller is responsible for correctly setting the sync parameter.  It gets
1413  * too hard for us to guess here which path we're being called out of just
1414  * based on inode state.
1415  *
1416  * If we get an error, we must return with the inode locked and linked into the
1417  * current transaction. This keeps things simple for the higher level code,
1418  * because it always knows that the inode is locked and held in the transaction
1419  * that returns to it whether errors occur or not.  We don't mark the inode
1420  * dirty on error so that transactions can be easily aborted if possible.
1421  */
1422 int
xfs_itruncate_finish(xfs_trans_t ** tp,xfs_inode_t * ip,xfs_fsize_t new_size,int fork,int sync)1423 xfs_itruncate_finish(
1424 	xfs_trans_t	**tp,
1425 	xfs_inode_t	*ip,
1426 	xfs_fsize_t	new_size,
1427 	int		fork,
1428 	int		sync)
1429 {
1430 	xfs_fsblock_t	first_block;
1431 	xfs_fileoff_t	first_unmap_block;
1432 	xfs_fileoff_t	last_block;
1433 	xfs_filblks_t	unmap_len=0;
1434 	xfs_mount_t	*mp;
1435 	xfs_trans_t	*ntp;
1436 	int		done;
1437 	int		committed;
1438 	xfs_bmap_free_t	free_list;
1439 	int		error;
1440 
1441 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1442 	ASSERT((new_size == 0) || (new_size <= ip->i_size));
1443 	ASSERT(*tp != NULL);
1444 	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1445 	ASSERT(ip->i_transp == *tp);
1446 	ASSERT(ip->i_itemp != NULL);
1447 	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1448 
1449 
1450 	ntp = *tp;
1451 	mp = (ntp)->t_mountp;
1452 	ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1453 
1454 	/*
1455 	 * We only support truncating the entire attribute fork.
1456 	 */
1457 	if (fork == XFS_ATTR_FORK) {
1458 		new_size = 0LL;
1459 	}
1460 	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1461 	trace_xfs_itruncate_finish_start(ip, new_size);
1462 
1463 	/*
1464 	 * The first thing we do is set the size to new_size permanently
1465 	 * on disk.  This way we don't have to worry about anyone ever
1466 	 * being able to look at the data being freed even in the face
1467 	 * of a crash.  What we're getting around here is the case where
1468 	 * we free a block, it is allocated to another file, it is written
1469 	 * to, and then we crash.  If the new data gets written to the
1470 	 * file but the log buffers containing the free and reallocation
1471 	 * don't, then we'd end up with garbage in the blocks being freed.
1472 	 * As long as we make the new_size permanent before actually
1473 	 * freeing any blocks it doesn't matter if they get writtten to.
1474 	 *
1475 	 * The callers must signal into us whether or not the size
1476 	 * setting here must be synchronous.  There are a few cases
1477 	 * where it doesn't have to be synchronous.  Those cases
1478 	 * occur if the file is unlinked and we know the unlink is
1479 	 * permanent or if the blocks being truncated are guaranteed
1480 	 * to be beyond the inode eof (regardless of the link count)
1481 	 * and the eof value is permanent.  Both of these cases occur
1482 	 * only on wsync-mounted filesystems.  In those cases, we're
1483 	 * guaranteed that no user will ever see the data in the blocks
1484 	 * that are being truncated so the truncate can run async.
1485 	 * In the free beyond eof case, the file may wind up with
1486 	 * more blocks allocated to it than it needs if we crash
1487 	 * and that won't get fixed until the next time the file
1488 	 * is re-opened and closed but that's ok as that shouldn't
1489 	 * be too many blocks.
1490 	 *
1491 	 * However, we can't just make all wsync xactions run async
1492 	 * because there's one call out of the create path that needs
1493 	 * to run sync where it's truncating an existing file to size
1494 	 * 0 whose size is > 0.
1495 	 *
1496 	 * It's probably possible to come up with a test in this
1497 	 * routine that would correctly distinguish all the above
1498 	 * cases from the values of the function parameters and the
1499 	 * inode state but for sanity's sake, I've decided to let the
1500 	 * layers above just tell us.  It's simpler to correctly figure
1501 	 * out in the layer above exactly under what conditions we
1502 	 * can run async and I think it's easier for others read and
1503 	 * follow the logic in case something has to be changed.
1504 	 * cscope is your friend -- rcc.
1505 	 *
1506 	 * The attribute fork is much simpler.
1507 	 *
1508 	 * For the attribute fork we allow the caller to tell us whether
1509 	 * the unlink of the inode that led to this call is yet permanent
1510 	 * in the on disk log.  If it is not and we will be freeing extents
1511 	 * in this inode then we make the first transaction synchronous
1512 	 * to make sure that the unlink is permanent by the time we free
1513 	 * the blocks.
1514 	 */
1515 	if (fork == XFS_DATA_FORK) {
1516 		if (ip->i_d.di_nextents > 0) {
1517 			/*
1518 			 * If we are not changing the file size then do
1519 			 * not update the on-disk file size - we may be
1520 			 * called from xfs_inactive_free_eofblocks().  If we
1521 			 * update the on-disk file size and then the system
1522 			 * crashes before the contents of the file are
1523 			 * flushed to disk then the files may be full of
1524 			 * holes (ie NULL files bug).
1525 			 */
1526 			if (ip->i_size != new_size) {
1527 				ip->i_d.di_size = new_size;
1528 				ip->i_size = new_size;
1529 				xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1530 			}
1531 		}
1532 	} else if (sync) {
1533 		ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1534 		if (ip->i_d.di_anextents > 0)
1535 			xfs_trans_set_sync(ntp);
1536 	}
1537 	ASSERT(fork == XFS_DATA_FORK ||
1538 		(fork == XFS_ATTR_FORK &&
1539 			((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1540 			 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1541 
1542 	/*
1543 	 * Since it is possible for space to become allocated beyond
1544 	 * the end of the file (in a crash where the space is allocated
1545 	 * but the inode size is not yet updated), simply remove any
1546 	 * blocks which show up between the new EOF and the maximum
1547 	 * possible file size.  If the first block to be removed is
1548 	 * beyond the maximum file size (ie it is the same as last_block),
1549 	 * then there is nothing to do.
1550 	 */
1551 	last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1552 	ASSERT(first_unmap_block <= last_block);
1553 	done = 0;
1554 	if (last_block == first_unmap_block) {
1555 		done = 1;
1556 	} else {
1557 		unmap_len = last_block - first_unmap_block + 1;
1558 	}
1559 	while (!done) {
1560 		/*
1561 		 * Free up up to XFS_ITRUNC_MAX_EXTENTS.  xfs_bunmapi()
1562 		 * will tell us whether it freed the entire range or
1563 		 * not.  If this is a synchronous mount (wsync),
1564 		 * then we can tell bunmapi to keep all the
1565 		 * transactions asynchronous since the unlink
1566 		 * transaction that made this inode inactive has
1567 		 * already hit the disk.  There's no danger of
1568 		 * the freed blocks being reused, there being a
1569 		 * crash, and the reused blocks suddenly reappearing
1570 		 * in this file with garbage in them once recovery
1571 		 * runs.
1572 		 */
1573 		xfs_bmap_init(&free_list, &first_block);
1574 		error = xfs_bunmapi(ntp, ip,
1575 				    first_unmap_block, unmap_len,
1576 				    xfs_bmapi_aflag(fork),
1577 				    XFS_ITRUNC_MAX_EXTENTS,
1578 				    &first_block, &free_list,
1579 				    &done);
1580 		if (error) {
1581 			/*
1582 			 * If the bunmapi call encounters an error,
1583 			 * return to the caller where the transaction
1584 			 * can be properly aborted.  We just need to
1585 			 * make sure we're not holding any resources
1586 			 * that we were not when we came in.
1587 			 */
1588 			xfs_bmap_cancel(&free_list);
1589 			return error;
1590 		}
1591 
1592 		/*
1593 		 * Duplicate the transaction that has the permanent
1594 		 * reservation and commit the old transaction.
1595 		 */
1596 		error = xfs_bmap_finish(tp, &free_list, &committed);
1597 		ntp = *tp;
1598 		if (committed)
1599 			xfs_trans_ijoin(ntp, ip);
1600 
1601 		if (error) {
1602 			/*
1603 			 * If the bmap finish call encounters an error, return
1604 			 * to the caller where the transaction can be properly
1605 			 * aborted.  We just need to make sure we're not
1606 			 * holding any resources that we were not when we came
1607 			 * in.
1608 			 *
1609 			 * Aborting from this point might lose some blocks in
1610 			 * the file system, but oh well.
1611 			 */
1612 			xfs_bmap_cancel(&free_list);
1613 			return error;
1614 		}
1615 
1616 		if (committed) {
1617 			/*
1618 			 * Mark the inode dirty so it will be logged and
1619 			 * moved forward in the log as part of every commit.
1620 			 */
1621 			xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1622 		}
1623 
1624 		ntp = xfs_trans_dup(ntp);
1625 		error = xfs_trans_commit(*tp, 0);
1626 		*tp = ntp;
1627 
1628 		xfs_trans_ijoin(ntp, ip);
1629 
1630 		if (error)
1631 			return error;
1632 		/*
1633 		 * transaction commit worked ok so we can drop the extra ticket
1634 		 * reference that we gained in xfs_trans_dup()
1635 		 */
1636 		xfs_log_ticket_put(ntp->t_ticket);
1637 		error = xfs_trans_reserve(ntp, 0,
1638 					XFS_ITRUNCATE_LOG_RES(mp), 0,
1639 					XFS_TRANS_PERM_LOG_RES,
1640 					XFS_ITRUNCATE_LOG_COUNT);
1641 		if (error)
1642 			return error;
1643 	}
1644 	/*
1645 	 * Only update the size in the case of the data fork, but
1646 	 * always re-log the inode so that our permanent transaction
1647 	 * can keep on rolling it forward in the log.
1648 	 */
1649 	if (fork == XFS_DATA_FORK) {
1650 		xfs_isize_check(mp, ip, new_size);
1651 		/*
1652 		 * If we are not changing the file size then do
1653 		 * not update the on-disk file size - we may be
1654 		 * called from xfs_inactive_free_eofblocks().  If we
1655 		 * update the on-disk file size and then the system
1656 		 * crashes before the contents of the file are
1657 		 * flushed to disk then the files may be full of
1658 		 * holes (ie NULL files bug).
1659 		 */
1660 		if (ip->i_size != new_size) {
1661 			ip->i_d.di_size = new_size;
1662 			ip->i_size = new_size;
1663 		}
1664 	}
1665 	xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1666 	ASSERT((new_size != 0) ||
1667 	       (fork == XFS_ATTR_FORK) ||
1668 	       (ip->i_delayed_blks == 0));
1669 	ASSERT((new_size != 0) ||
1670 	       (fork == XFS_ATTR_FORK) ||
1671 	       (ip->i_d.di_nextents == 0));
1672 	trace_xfs_itruncate_finish_end(ip, new_size);
1673 	return 0;
1674 }
1675 
1676 /*
1677  * This is called when the inode's link count goes to 0.
1678  * We place the on-disk inode on a list in the AGI.  It
1679  * will be pulled from this list when the inode is freed.
1680  */
1681 int
xfs_iunlink(xfs_trans_t * tp,xfs_inode_t * ip)1682 xfs_iunlink(
1683 	xfs_trans_t	*tp,
1684 	xfs_inode_t	*ip)
1685 {
1686 	xfs_mount_t	*mp;
1687 	xfs_agi_t	*agi;
1688 	xfs_dinode_t	*dip;
1689 	xfs_buf_t	*agibp;
1690 	xfs_buf_t	*ibp;
1691 	xfs_agino_t	agino;
1692 	short		bucket_index;
1693 	int		offset;
1694 	int		error;
1695 
1696 	ASSERT(ip->i_d.di_nlink == 0);
1697 	ASSERT(ip->i_d.di_mode != 0);
1698 	ASSERT(ip->i_transp == tp);
1699 
1700 	mp = tp->t_mountp;
1701 
1702 	/*
1703 	 * Get the agi buffer first.  It ensures lock ordering
1704 	 * on the list.
1705 	 */
1706 	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1707 	if (error)
1708 		return error;
1709 	agi = XFS_BUF_TO_AGI(agibp);
1710 
1711 	/*
1712 	 * Get the index into the agi hash table for the
1713 	 * list this inode will go on.
1714 	 */
1715 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1716 	ASSERT(agino != 0);
1717 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1718 	ASSERT(agi->agi_unlinked[bucket_index]);
1719 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1720 
1721 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1722 		/*
1723 		 * There is already another inode in the bucket we need
1724 		 * to add ourselves to.  Add us at the front of the list.
1725 		 * Here we put the head pointer into our next pointer,
1726 		 * and then we fall through to point the head at us.
1727 		 */
1728 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1729 		if (error)
1730 			return error;
1731 
1732 		ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1733 		/* both on-disk, don't endian flip twice */
1734 		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1735 		offset = ip->i_imap.im_boffset +
1736 			offsetof(xfs_dinode_t, di_next_unlinked);
1737 		xfs_trans_inode_buf(tp, ibp);
1738 		xfs_trans_log_buf(tp, ibp, offset,
1739 				  (offset + sizeof(xfs_agino_t) - 1));
1740 		xfs_inobp_check(mp, ibp);
1741 	}
1742 
1743 	/*
1744 	 * Point the bucket head pointer at the inode being inserted.
1745 	 */
1746 	ASSERT(agino != 0);
1747 	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1748 	offset = offsetof(xfs_agi_t, agi_unlinked) +
1749 		(sizeof(xfs_agino_t) * bucket_index);
1750 	xfs_trans_log_buf(tp, agibp, offset,
1751 			  (offset + sizeof(xfs_agino_t) - 1));
1752 	return 0;
1753 }
1754 
1755 /*
1756  * Pull the on-disk inode from the AGI unlinked list.
1757  */
1758 STATIC int
xfs_iunlink_remove(xfs_trans_t * tp,xfs_inode_t * ip)1759 xfs_iunlink_remove(
1760 	xfs_trans_t	*tp,
1761 	xfs_inode_t	*ip)
1762 {
1763 	xfs_ino_t	next_ino;
1764 	xfs_mount_t	*mp;
1765 	xfs_agi_t	*agi;
1766 	xfs_dinode_t	*dip;
1767 	xfs_buf_t	*agibp;
1768 	xfs_buf_t	*ibp;
1769 	xfs_agnumber_t	agno;
1770 	xfs_agino_t	agino;
1771 	xfs_agino_t	next_agino;
1772 	xfs_buf_t	*last_ibp;
1773 	xfs_dinode_t	*last_dip = NULL;
1774 	short		bucket_index;
1775 	int		offset, last_offset = 0;
1776 	int		error;
1777 
1778 	mp = tp->t_mountp;
1779 	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1780 
1781 	/*
1782 	 * Get the agi buffer first.  It ensures lock ordering
1783 	 * on the list.
1784 	 */
1785 	error = xfs_read_agi(mp, tp, agno, &agibp);
1786 	if (error)
1787 		return error;
1788 
1789 	agi = XFS_BUF_TO_AGI(agibp);
1790 
1791 	/*
1792 	 * Get the index into the agi hash table for the
1793 	 * list this inode will go on.
1794 	 */
1795 	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1796 	ASSERT(agino != 0);
1797 	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1798 	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1799 	ASSERT(agi->agi_unlinked[bucket_index]);
1800 
1801 	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1802 		/*
1803 		 * We're at the head of the list.  Get the inode's
1804 		 * on-disk buffer to see if there is anyone after us
1805 		 * on the list.  Only modify our next pointer if it
1806 		 * is not already NULLAGINO.  This saves us the overhead
1807 		 * of dealing with the buffer when there is no need to
1808 		 * change it.
1809 		 */
1810 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1811 		if (error) {
1812 			xfs_warn(mp, "%s: xfs_itobp() returned error %d.",
1813 				__func__, error);
1814 			return error;
1815 		}
1816 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1817 		ASSERT(next_agino != 0);
1818 		if (next_agino != NULLAGINO) {
1819 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1820 			offset = ip->i_imap.im_boffset +
1821 				offsetof(xfs_dinode_t, di_next_unlinked);
1822 			xfs_trans_inode_buf(tp, ibp);
1823 			xfs_trans_log_buf(tp, ibp, offset,
1824 					  (offset + sizeof(xfs_agino_t) - 1));
1825 			xfs_inobp_check(mp, ibp);
1826 		} else {
1827 			xfs_trans_brelse(tp, ibp);
1828 		}
1829 		/*
1830 		 * Point the bucket head pointer at the next inode.
1831 		 */
1832 		ASSERT(next_agino != 0);
1833 		ASSERT(next_agino != agino);
1834 		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1835 		offset = offsetof(xfs_agi_t, agi_unlinked) +
1836 			(sizeof(xfs_agino_t) * bucket_index);
1837 		xfs_trans_log_buf(tp, agibp, offset,
1838 				  (offset + sizeof(xfs_agino_t) - 1));
1839 	} else {
1840 		/*
1841 		 * We need to search the list for the inode being freed.
1842 		 */
1843 		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1844 		last_ibp = NULL;
1845 		while (next_agino != agino) {
1846 			/*
1847 			 * If the last inode wasn't the one pointing to
1848 			 * us, then release its buffer since we're not
1849 			 * going to do anything with it.
1850 			 */
1851 			if (last_ibp != NULL) {
1852 				xfs_trans_brelse(tp, last_ibp);
1853 			}
1854 			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1855 			error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1856 					    &last_ibp, &last_offset, 0);
1857 			if (error) {
1858 				xfs_warn(mp,
1859 					"%s: xfs_inotobp() returned error %d.",
1860 					__func__, error);
1861 				return error;
1862 			}
1863 			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1864 			ASSERT(next_agino != NULLAGINO);
1865 			ASSERT(next_agino != 0);
1866 		}
1867 		/*
1868 		 * Now last_ibp points to the buffer previous to us on
1869 		 * the unlinked list.  Pull us from the list.
1870 		 */
1871 		error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1872 		if (error) {
1873 			xfs_warn(mp, "%s: xfs_itobp(2) returned error %d.",
1874 				__func__, error);
1875 			return error;
1876 		}
1877 		next_agino = be32_to_cpu(dip->di_next_unlinked);
1878 		ASSERT(next_agino != 0);
1879 		ASSERT(next_agino != agino);
1880 		if (next_agino != NULLAGINO) {
1881 			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1882 			offset = ip->i_imap.im_boffset +
1883 				offsetof(xfs_dinode_t, di_next_unlinked);
1884 			xfs_trans_inode_buf(tp, ibp);
1885 			xfs_trans_log_buf(tp, ibp, offset,
1886 					  (offset + sizeof(xfs_agino_t) - 1));
1887 			xfs_inobp_check(mp, ibp);
1888 		} else {
1889 			xfs_trans_brelse(tp, ibp);
1890 		}
1891 		/*
1892 		 * Point the previous inode on the list to the next inode.
1893 		 */
1894 		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1895 		ASSERT(next_agino != 0);
1896 		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1897 		xfs_trans_inode_buf(tp, last_ibp);
1898 		xfs_trans_log_buf(tp, last_ibp, offset,
1899 				  (offset + sizeof(xfs_agino_t) - 1));
1900 		xfs_inobp_check(mp, last_ibp);
1901 	}
1902 	return 0;
1903 }
1904 
1905 /*
1906  * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1907  * inodes that are in memory - they all must be marked stale and attached to
1908  * the cluster buffer.
1909  */
1910 STATIC void
xfs_ifree_cluster(xfs_inode_t * free_ip,xfs_trans_t * tp,xfs_ino_t inum)1911 xfs_ifree_cluster(
1912 	xfs_inode_t	*free_ip,
1913 	xfs_trans_t	*tp,
1914 	xfs_ino_t	inum)
1915 {
1916 	xfs_mount_t		*mp = free_ip->i_mount;
1917 	int			blks_per_cluster;
1918 	int			nbufs;
1919 	int			ninodes;
1920 	int			i, j;
1921 	xfs_daddr_t		blkno;
1922 	xfs_buf_t		*bp;
1923 	xfs_inode_t		*ip;
1924 	xfs_inode_log_item_t	*iip;
1925 	xfs_log_item_t		*lip;
1926 	struct xfs_perag	*pag;
1927 
1928 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1929 	if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1930 		blks_per_cluster = 1;
1931 		ninodes = mp->m_sb.sb_inopblock;
1932 		nbufs = XFS_IALLOC_BLOCKS(mp);
1933 	} else {
1934 		blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1935 					mp->m_sb.sb_blocksize;
1936 		ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1937 		nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1938 	}
1939 
1940 	for (j = 0; j < nbufs; j++, inum += ninodes) {
1941 		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1942 					 XFS_INO_TO_AGBNO(mp, inum));
1943 
1944 		/*
1945 		 * We obtain and lock the backing buffer first in the process
1946 		 * here, as we have to ensure that any dirty inode that we
1947 		 * can't get the flush lock on is attached to the buffer.
1948 		 * If we scan the in-memory inodes first, then buffer IO can
1949 		 * complete before we get a lock on it, and hence we may fail
1950 		 * to mark all the active inodes on the buffer stale.
1951 		 */
1952 		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1953 					mp->m_bsize * blks_per_cluster,
1954 					XBF_LOCK);
1955 
1956 		/*
1957 		 * Walk the inodes already attached to the buffer and mark them
1958 		 * stale. These will all have the flush locks held, so an
1959 		 * in-memory inode walk can't lock them. By marking them all
1960 		 * stale first, we will not attempt to lock them in the loop
1961 		 * below as the XFS_ISTALE flag will be set.
1962 		 */
1963 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1964 		while (lip) {
1965 			if (lip->li_type == XFS_LI_INODE) {
1966 				iip = (xfs_inode_log_item_t *)lip;
1967 				ASSERT(iip->ili_logged == 1);
1968 				lip->li_cb = xfs_istale_done;
1969 				xfs_trans_ail_copy_lsn(mp->m_ail,
1970 							&iip->ili_flush_lsn,
1971 							&iip->ili_item.li_lsn);
1972 				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1973 			}
1974 			lip = lip->li_bio_list;
1975 		}
1976 
1977 
1978 		/*
1979 		 * For each inode in memory attempt to add it to the inode
1980 		 * buffer and set it up for being staled on buffer IO
1981 		 * completion.  This is safe as we've locked out tail pushing
1982 		 * and flushing by locking the buffer.
1983 		 *
1984 		 * We have already marked every inode that was part of a
1985 		 * transaction stale above, which means there is no point in
1986 		 * even trying to lock them.
1987 		 */
1988 		for (i = 0; i < ninodes; i++) {
1989 retry:
1990 			rcu_read_lock();
1991 			ip = radix_tree_lookup(&pag->pag_ici_root,
1992 					XFS_INO_TO_AGINO(mp, (inum + i)));
1993 
1994 			/* Inode not in memory, nothing to do */
1995 			if (!ip) {
1996 				rcu_read_unlock();
1997 				continue;
1998 			}
1999 
2000 			/*
2001 			 * because this is an RCU protected lookup, we could
2002 			 * find a recently freed or even reallocated inode
2003 			 * during the lookup. We need to check under the
2004 			 * i_flags_lock for a valid inode here. Skip it if it
2005 			 * is not valid, the wrong inode or stale.
2006 			 */
2007 			spin_lock(&ip->i_flags_lock);
2008 			if (ip->i_ino != inum + i ||
2009 			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2010 				spin_unlock(&ip->i_flags_lock);
2011 				rcu_read_unlock();
2012 				continue;
2013 			}
2014 			spin_unlock(&ip->i_flags_lock);
2015 
2016 			/*
2017 			 * Don't try to lock/unlock the current inode, but we
2018 			 * _cannot_ skip the other inodes that we did not find
2019 			 * in the list attached to the buffer and are not
2020 			 * already marked stale. If we can't lock it, back off
2021 			 * and retry.
2022 			 */
2023 			if (ip != free_ip &&
2024 			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2025 				rcu_read_unlock();
2026 				delay(1);
2027 				goto retry;
2028 			}
2029 			rcu_read_unlock();
2030 
2031 			xfs_iflock(ip);
2032 			xfs_iflags_set(ip, XFS_ISTALE);
2033 
2034 			/*
2035 			 * we don't need to attach clean inodes or those only
2036 			 * with unlogged changes (which we throw away, anyway).
2037 			 */
2038 			iip = ip->i_itemp;
2039 			if (!iip || xfs_inode_clean(ip)) {
2040 				ASSERT(ip != free_ip);
2041 				ip->i_update_core = 0;
2042 				xfs_ifunlock(ip);
2043 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2044 				continue;
2045 			}
2046 
2047 			iip->ili_last_fields = iip->ili_format.ilf_fields;
2048 			iip->ili_format.ilf_fields = 0;
2049 			iip->ili_logged = 1;
2050 			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2051 						&iip->ili_item.li_lsn);
2052 
2053 			xfs_buf_attach_iodone(bp, xfs_istale_done,
2054 						  &iip->ili_item);
2055 
2056 			if (ip != free_ip)
2057 				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2058 		}
2059 
2060 		xfs_trans_stale_inode_buf(tp, bp);
2061 		xfs_trans_binval(tp, bp);
2062 	}
2063 
2064 	xfs_perag_put(pag);
2065 }
2066 
2067 /*
2068  * This is called to return an inode to the inode free list.
2069  * The inode should already be truncated to 0 length and have
2070  * no pages associated with it.  This routine also assumes that
2071  * the inode is already a part of the transaction.
2072  *
2073  * The on-disk copy of the inode will have been added to the list
2074  * of unlinked inodes in the AGI. We need to remove the inode from
2075  * that list atomically with respect to freeing it here.
2076  */
2077 int
xfs_ifree(xfs_trans_t * tp,xfs_inode_t * ip,xfs_bmap_free_t * flist)2078 xfs_ifree(
2079 	xfs_trans_t	*tp,
2080 	xfs_inode_t	*ip,
2081 	xfs_bmap_free_t	*flist)
2082 {
2083 	int			error;
2084 	int			delete;
2085 	xfs_ino_t		first_ino;
2086 	xfs_dinode_t    	*dip;
2087 	xfs_buf_t       	*ibp;
2088 
2089 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2090 	ASSERT(ip->i_transp == tp);
2091 	ASSERT(ip->i_d.di_nlink == 0);
2092 	ASSERT(ip->i_d.di_nextents == 0);
2093 	ASSERT(ip->i_d.di_anextents == 0);
2094 	ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2095 	       ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2096 	ASSERT(ip->i_d.di_nblocks == 0);
2097 
2098 	/*
2099 	 * Pull the on-disk inode from the AGI unlinked list.
2100 	 */
2101 	error = xfs_iunlink_remove(tp, ip);
2102 	if (error != 0) {
2103 		return error;
2104 	}
2105 
2106 	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2107 	if (error != 0) {
2108 		return error;
2109 	}
2110 	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2111 	ip->i_d.di_flags = 0;
2112 	ip->i_d.di_dmevmask = 0;
2113 	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2114 	ip->i_df.if_ext_max =
2115 		XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2116 	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2117 	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2118 	/*
2119 	 * Bump the generation count so no one will be confused
2120 	 * by reincarnations of this inode.
2121 	 */
2122 	ip->i_d.di_gen++;
2123 
2124 	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2125 
2126 	error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2127 	if (error)
2128 		return error;
2129 
2130         /*
2131 	* Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2132 	* from picking up this inode when it is reclaimed (its incore state
2133 	* initialzed but not flushed to disk yet). The in-core di_mode is
2134 	* already cleared  and a corresponding transaction logged.
2135 	* The hack here just synchronizes the in-core to on-disk
2136 	* di_mode value in advance before the actual inode sync to disk.
2137 	* This is OK because the inode is already unlinked and would never
2138 	* change its di_mode again for this inode generation.
2139 	* This is a temporary hack that would require a proper fix
2140 	* in the future.
2141 	*/
2142 	dip->di_mode = 0;
2143 
2144 	if (delete) {
2145 		xfs_ifree_cluster(ip, tp, first_ino);
2146 	}
2147 
2148 	return 0;
2149 }
2150 
2151 /*
2152  * Reallocate the space for if_broot based on the number of records
2153  * being added or deleted as indicated in rec_diff.  Move the records
2154  * and pointers in if_broot to fit the new size.  When shrinking this
2155  * will eliminate holes between the records and pointers created by
2156  * the caller.  When growing this will create holes to be filled in
2157  * by the caller.
2158  *
2159  * The caller must not request to add more records than would fit in
2160  * the on-disk inode root.  If the if_broot is currently NULL, then
2161  * if we adding records one will be allocated.  The caller must also
2162  * not request that the number of records go below zero, although
2163  * it can go to zero.
2164  *
2165  * ip -- the inode whose if_broot area is changing
2166  * ext_diff -- the change in the number of records, positive or negative,
2167  *	 requested for the if_broot array.
2168  */
2169 void
xfs_iroot_realloc(xfs_inode_t * ip,int rec_diff,int whichfork)2170 xfs_iroot_realloc(
2171 	xfs_inode_t		*ip,
2172 	int			rec_diff,
2173 	int			whichfork)
2174 {
2175 	struct xfs_mount	*mp = ip->i_mount;
2176 	int			cur_max;
2177 	xfs_ifork_t		*ifp;
2178 	struct xfs_btree_block	*new_broot;
2179 	int			new_max;
2180 	size_t			new_size;
2181 	char			*np;
2182 	char			*op;
2183 
2184 	/*
2185 	 * Handle the degenerate case quietly.
2186 	 */
2187 	if (rec_diff == 0) {
2188 		return;
2189 	}
2190 
2191 	ifp = XFS_IFORK_PTR(ip, whichfork);
2192 	if (rec_diff > 0) {
2193 		/*
2194 		 * If there wasn't any memory allocated before, just
2195 		 * allocate it now and get out.
2196 		 */
2197 		if (ifp->if_broot_bytes == 0) {
2198 			new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2199 			ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2200 			ifp->if_broot_bytes = (int)new_size;
2201 			return;
2202 		}
2203 
2204 		/*
2205 		 * If there is already an existing if_broot, then we need
2206 		 * to realloc() it and shift the pointers to their new
2207 		 * location.  The records don't change location because
2208 		 * they are kept butted up against the btree block header.
2209 		 */
2210 		cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2211 		new_max = cur_max + rec_diff;
2212 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2213 		ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2214 				(size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2215 				KM_SLEEP | KM_NOFS);
2216 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2217 						     ifp->if_broot_bytes);
2218 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2219 						     (int)new_size);
2220 		ifp->if_broot_bytes = (int)new_size;
2221 		ASSERT(ifp->if_broot_bytes <=
2222 			XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2223 		memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2224 		return;
2225 	}
2226 
2227 	/*
2228 	 * rec_diff is less than 0.  In this case, we are shrinking the
2229 	 * if_broot buffer.  It must already exist.  If we go to zero
2230 	 * records, just get rid of the root and clear the status bit.
2231 	 */
2232 	ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2233 	cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2234 	new_max = cur_max + rec_diff;
2235 	ASSERT(new_max >= 0);
2236 	if (new_max > 0)
2237 		new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2238 	else
2239 		new_size = 0;
2240 	if (new_size > 0) {
2241 		new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2242 		/*
2243 		 * First copy over the btree block header.
2244 		 */
2245 		memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2246 	} else {
2247 		new_broot = NULL;
2248 		ifp->if_flags &= ~XFS_IFBROOT;
2249 	}
2250 
2251 	/*
2252 	 * Only copy the records and pointers if there are any.
2253 	 */
2254 	if (new_max > 0) {
2255 		/*
2256 		 * First copy the records.
2257 		 */
2258 		op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2259 		np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2260 		memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2261 
2262 		/*
2263 		 * Then copy the pointers.
2264 		 */
2265 		op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2266 						     ifp->if_broot_bytes);
2267 		np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2268 						     (int)new_size);
2269 		memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2270 	}
2271 	kmem_free(ifp->if_broot);
2272 	ifp->if_broot = new_broot;
2273 	ifp->if_broot_bytes = (int)new_size;
2274 	ASSERT(ifp->if_broot_bytes <=
2275 		XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2276 	return;
2277 }
2278 
2279 
2280 /*
2281  * This is called when the amount of space needed for if_data
2282  * is increased or decreased.  The change in size is indicated by
2283  * the number of bytes that need to be added or deleted in the
2284  * byte_diff parameter.
2285  *
2286  * If the amount of space needed has decreased below the size of the
2287  * inline buffer, then switch to using the inline buffer.  Otherwise,
2288  * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2289  * to what is needed.
2290  *
2291  * ip -- the inode whose if_data area is changing
2292  * byte_diff -- the change in the number of bytes, positive or negative,
2293  *	 requested for the if_data array.
2294  */
2295 void
xfs_idata_realloc(xfs_inode_t * ip,int byte_diff,int whichfork)2296 xfs_idata_realloc(
2297 	xfs_inode_t	*ip,
2298 	int		byte_diff,
2299 	int		whichfork)
2300 {
2301 	xfs_ifork_t	*ifp;
2302 	int		new_size;
2303 	int		real_size;
2304 
2305 	if (byte_diff == 0) {
2306 		return;
2307 	}
2308 
2309 	ifp = XFS_IFORK_PTR(ip, whichfork);
2310 	new_size = (int)ifp->if_bytes + byte_diff;
2311 	ASSERT(new_size >= 0);
2312 
2313 	if (new_size == 0) {
2314 		if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2315 			kmem_free(ifp->if_u1.if_data);
2316 		}
2317 		ifp->if_u1.if_data = NULL;
2318 		real_size = 0;
2319 	} else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2320 		/*
2321 		 * If the valid extents/data can fit in if_inline_ext/data,
2322 		 * copy them from the malloc'd vector and free it.
2323 		 */
2324 		if (ifp->if_u1.if_data == NULL) {
2325 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2326 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2327 			ASSERT(ifp->if_real_bytes != 0);
2328 			memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2329 			      new_size);
2330 			kmem_free(ifp->if_u1.if_data);
2331 			ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2332 		}
2333 		real_size = 0;
2334 	} else {
2335 		/*
2336 		 * Stuck with malloc/realloc.
2337 		 * For inline data, the underlying buffer must be
2338 		 * a multiple of 4 bytes in size so that it can be
2339 		 * logged and stay on word boundaries.  We enforce
2340 		 * that here.
2341 		 */
2342 		real_size = roundup(new_size, 4);
2343 		if (ifp->if_u1.if_data == NULL) {
2344 			ASSERT(ifp->if_real_bytes == 0);
2345 			ifp->if_u1.if_data = kmem_alloc(real_size,
2346 							KM_SLEEP | KM_NOFS);
2347 		} else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2348 			/*
2349 			 * Only do the realloc if the underlying size
2350 			 * is really changing.
2351 			 */
2352 			if (ifp->if_real_bytes != real_size) {
2353 				ifp->if_u1.if_data =
2354 					kmem_realloc(ifp->if_u1.if_data,
2355 							real_size,
2356 							ifp->if_real_bytes,
2357 							KM_SLEEP | KM_NOFS);
2358 			}
2359 		} else {
2360 			ASSERT(ifp->if_real_bytes == 0);
2361 			ifp->if_u1.if_data = kmem_alloc(real_size,
2362 							KM_SLEEP | KM_NOFS);
2363 			memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2364 				ifp->if_bytes);
2365 		}
2366 	}
2367 	ifp->if_real_bytes = real_size;
2368 	ifp->if_bytes = new_size;
2369 	ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2370 }
2371 
2372 void
xfs_idestroy_fork(xfs_inode_t * ip,int whichfork)2373 xfs_idestroy_fork(
2374 	xfs_inode_t	*ip,
2375 	int		whichfork)
2376 {
2377 	xfs_ifork_t	*ifp;
2378 
2379 	ifp = XFS_IFORK_PTR(ip, whichfork);
2380 	if (ifp->if_broot != NULL) {
2381 		kmem_free(ifp->if_broot);
2382 		ifp->if_broot = NULL;
2383 	}
2384 
2385 	/*
2386 	 * If the format is local, then we can't have an extents
2387 	 * array so just look for an inline data array.  If we're
2388 	 * not local then we may or may not have an extents list,
2389 	 * so check and free it up if we do.
2390 	 */
2391 	if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2392 		if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2393 		    (ifp->if_u1.if_data != NULL)) {
2394 			ASSERT(ifp->if_real_bytes != 0);
2395 			kmem_free(ifp->if_u1.if_data);
2396 			ifp->if_u1.if_data = NULL;
2397 			ifp->if_real_bytes = 0;
2398 		}
2399 	} else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2400 		   ((ifp->if_flags & XFS_IFEXTIREC) ||
2401 		    ((ifp->if_u1.if_extents != NULL) &&
2402 		     (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2403 		ASSERT(ifp->if_real_bytes != 0);
2404 		xfs_iext_destroy(ifp);
2405 	}
2406 	ASSERT(ifp->if_u1.if_extents == NULL ||
2407 	       ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2408 	ASSERT(ifp->if_real_bytes == 0);
2409 	if (whichfork == XFS_ATTR_FORK) {
2410 		kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2411 		ip->i_afp = NULL;
2412 	}
2413 }
2414 
2415 /*
2416  * This is called to unpin an inode.  The caller must have the inode locked
2417  * in at least shared mode so that the buffer cannot be subsequently pinned
2418  * once someone is waiting for it to be unpinned.
2419  */
2420 static void
xfs_iunpin_nowait(struct xfs_inode * ip)2421 xfs_iunpin_nowait(
2422 	struct xfs_inode	*ip)
2423 {
2424 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2425 
2426 	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2427 
2428 	/* Give the log a push to start the unpinning I/O */
2429 	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2430 
2431 }
2432 
2433 void
xfs_iunpin_wait(struct xfs_inode * ip)2434 xfs_iunpin_wait(
2435 	struct xfs_inode	*ip)
2436 {
2437 	if (xfs_ipincount(ip)) {
2438 		xfs_iunpin_nowait(ip);
2439 		wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2440 	}
2441 }
2442 
2443 /*
2444  * xfs_iextents_copy()
2445  *
2446  * This is called to copy the REAL extents (as opposed to the delayed
2447  * allocation extents) from the inode into the given buffer.  It
2448  * returns the number of bytes copied into the buffer.
2449  *
2450  * If there are no delayed allocation extents, then we can just
2451  * memcpy() the extents into the buffer.  Otherwise, we need to
2452  * examine each extent in turn and skip those which are delayed.
2453  */
2454 int
xfs_iextents_copy(xfs_inode_t * ip,xfs_bmbt_rec_t * dp,int whichfork)2455 xfs_iextents_copy(
2456 	xfs_inode_t		*ip,
2457 	xfs_bmbt_rec_t		*dp,
2458 	int			whichfork)
2459 {
2460 	int			copied;
2461 	int			i;
2462 	xfs_ifork_t		*ifp;
2463 	int			nrecs;
2464 	xfs_fsblock_t		start_block;
2465 
2466 	ifp = XFS_IFORK_PTR(ip, whichfork);
2467 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2468 	ASSERT(ifp->if_bytes > 0);
2469 
2470 	nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2471 	XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2472 	ASSERT(nrecs > 0);
2473 
2474 	/*
2475 	 * There are some delayed allocation extents in the
2476 	 * inode, so copy the extents one at a time and skip
2477 	 * the delayed ones.  There must be at least one
2478 	 * non-delayed extent.
2479 	 */
2480 	copied = 0;
2481 	for (i = 0; i < nrecs; i++) {
2482 		xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2483 		start_block = xfs_bmbt_get_startblock(ep);
2484 		if (isnullstartblock(start_block)) {
2485 			/*
2486 			 * It's a delayed allocation extent, so skip it.
2487 			 */
2488 			continue;
2489 		}
2490 
2491 		/* Translate to on disk format */
2492 		put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2493 		put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2494 		dp++;
2495 		copied++;
2496 	}
2497 	ASSERT(copied != 0);
2498 	xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2499 
2500 	return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2501 }
2502 
2503 /*
2504  * Each of the following cases stores data into the same region
2505  * of the on-disk inode, so only one of them can be valid at
2506  * any given time. While it is possible to have conflicting formats
2507  * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2508  * in EXTENTS format, this can only happen when the fork has
2509  * changed formats after being modified but before being flushed.
2510  * In these cases, the format always takes precedence, because the
2511  * format indicates the current state of the fork.
2512  */
2513 /*ARGSUSED*/
2514 STATIC void
xfs_iflush_fork(xfs_inode_t * ip,xfs_dinode_t * dip,xfs_inode_log_item_t * iip,int whichfork,xfs_buf_t * bp)2515 xfs_iflush_fork(
2516 	xfs_inode_t		*ip,
2517 	xfs_dinode_t		*dip,
2518 	xfs_inode_log_item_t	*iip,
2519 	int			whichfork,
2520 	xfs_buf_t		*bp)
2521 {
2522 	char			*cp;
2523 	xfs_ifork_t		*ifp;
2524 	xfs_mount_t		*mp;
2525 #ifdef XFS_TRANS_DEBUG
2526 	int			first;
2527 #endif
2528 	static const short	brootflag[2] =
2529 		{ XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2530 	static const short	dataflag[2] =
2531 		{ XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2532 	static const short	extflag[2] =
2533 		{ XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2534 
2535 	if (!iip)
2536 		return;
2537 	ifp = XFS_IFORK_PTR(ip, whichfork);
2538 	/*
2539 	 * This can happen if we gave up in iformat in an error path,
2540 	 * for the attribute fork.
2541 	 */
2542 	if (!ifp) {
2543 		ASSERT(whichfork == XFS_ATTR_FORK);
2544 		return;
2545 	}
2546 	cp = XFS_DFORK_PTR(dip, whichfork);
2547 	mp = ip->i_mount;
2548 	switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2549 	case XFS_DINODE_FMT_LOCAL:
2550 		if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2551 		    (ifp->if_bytes > 0)) {
2552 			ASSERT(ifp->if_u1.if_data != NULL);
2553 			ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2554 			memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2555 		}
2556 		break;
2557 
2558 	case XFS_DINODE_FMT_EXTENTS:
2559 		ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2560 		       !(iip->ili_format.ilf_fields & extflag[whichfork]));
2561 		ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2562 			(ifp->if_bytes == 0));
2563 		ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2564 			(ifp->if_bytes > 0));
2565 		if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2566 		    (ifp->if_bytes > 0)) {
2567 			ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2568 			(void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2569 				whichfork);
2570 		}
2571 		break;
2572 
2573 	case XFS_DINODE_FMT_BTREE:
2574 		if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2575 		    (ifp->if_broot_bytes > 0)) {
2576 			ASSERT(ifp->if_broot != NULL);
2577 			ASSERT(ifp->if_broot_bytes <=
2578 			       (XFS_IFORK_SIZE(ip, whichfork) +
2579 				XFS_BROOT_SIZE_ADJ));
2580 			xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2581 				(xfs_bmdr_block_t *)cp,
2582 				XFS_DFORK_SIZE(dip, mp, whichfork));
2583 		}
2584 		break;
2585 
2586 	case XFS_DINODE_FMT_DEV:
2587 		if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2588 			ASSERT(whichfork == XFS_DATA_FORK);
2589 			xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2590 		}
2591 		break;
2592 
2593 	case XFS_DINODE_FMT_UUID:
2594 		if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2595 			ASSERT(whichfork == XFS_DATA_FORK);
2596 			memcpy(XFS_DFORK_DPTR(dip),
2597 			       &ip->i_df.if_u2.if_uuid,
2598 			       sizeof(uuid_t));
2599 		}
2600 		break;
2601 
2602 	default:
2603 		ASSERT(0);
2604 		break;
2605 	}
2606 }
2607 
2608 STATIC int
xfs_iflush_cluster(xfs_inode_t * ip,xfs_buf_t * bp)2609 xfs_iflush_cluster(
2610 	xfs_inode_t	*ip,
2611 	xfs_buf_t	*bp)
2612 {
2613 	xfs_mount_t		*mp = ip->i_mount;
2614 	struct xfs_perag	*pag;
2615 	unsigned long		first_index, mask;
2616 	unsigned long		inodes_per_cluster;
2617 	int			ilist_size;
2618 	xfs_inode_t		**ilist;
2619 	xfs_inode_t		*iq;
2620 	int			nr_found;
2621 	int			clcount = 0;
2622 	int			bufwasdelwri;
2623 	int			i;
2624 
2625 	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2626 
2627 	inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2628 	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2629 	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2630 	if (!ilist)
2631 		goto out_put;
2632 
2633 	mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2634 	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2635 	rcu_read_lock();
2636 	/* really need a gang lookup range call here */
2637 	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2638 					first_index, inodes_per_cluster);
2639 	if (nr_found == 0)
2640 		goto out_free;
2641 
2642 	for (i = 0; i < nr_found; i++) {
2643 		iq = ilist[i];
2644 		if (iq == ip)
2645 			continue;
2646 
2647 		/*
2648 		 * because this is an RCU protected lookup, we could find a
2649 		 * recently freed or even reallocated inode during the lookup.
2650 		 * We need to check under the i_flags_lock for a valid inode
2651 		 * here. Skip it if it is not valid or the wrong inode.
2652 		 */
2653 		spin_lock(&ip->i_flags_lock);
2654 		if (!ip->i_ino ||
2655 		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2656 			spin_unlock(&ip->i_flags_lock);
2657 			continue;
2658 		}
2659 		spin_unlock(&ip->i_flags_lock);
2660 
2661 		/*
2662 		 * Do an un-protected check to see if the inode is dirty and
2663 		 * is a candidate for flushing.  These checks will be repeated
2664 		 * later after the appropriate locks are acquired.
2665 		 */
2666 		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2667 			continue;
2668 
2669 		/*
2670 		 * Try to get locks.  If any are unavailable or it is pinned,
2671 		 * then this inode cannot be flushed and is skipped.
2672 		 */
2673 
2674 		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2675 			continue;
2676 		if (!xfs_iflock_nowait(iq)) {
2677 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2678 			continue;
2679 		}
2680 		if (xfs_ipincount(iq)) {
2681 			xfs_ifunlock(iq);
2682 			xfs_iunlock(iq, XFS_ILOCK_SHARED);
2683 			continue;
2684 		}
2685 
2686 		/*
2687 		 * arriving here means that this inode can be flushed.  First
2688 		 * re-check that it's dirty before flushing.
2689 		 */
2690 		if (!xfs_inode_clean(iq)) {
2691 			int	error;
2692 			error = xfs_iflush_int(iq, bp);
2693 			if (error) {
2694 				xfs_iunlock(iq, XFS_ILOCK_SHARED);
2695 				goto cluster_corrupt_out;
2696 			}
2697 			clcount++;
2698 		} else {
2699 			xfs_ifunlock(iq);
2700 		}
2701 		xfs_iunlock(iq, XFS_ILOCK_SHARED);
2702 	}
2703 
2704 	if (clcount) {
2705 		XFS_STATS_INC(xs_icluster_flushcnt);
2706 		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2707 	}
2708 
2709 out_free:
2710 	rcu_read_unlock();
2711 	kmem_free(ilist);
2712 out_put:
2713 	xfs_perag_put(pag);
2714 	return 0;
2715 
2716 
2717 cluster_corrupt_out:
2718 	/*
2719 	 * Corruption detected in the clustering loop.  Invalidate the
2720 	 * inode buffer and shut down the filesystem.
2721 	 */
2722 	rcu_read_unlock();
2723 	/*
2724 	 * Clean up the buffer.  If it was B_DELWRI, just release it --
2725 	 * brelse can handle it with no problems.  If not, shut down the
2726 	 * filesystem before releasing the buffer.
2727 	 */
2728 	bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2729 	if (bufwasdelwri)
2730 		xfs_buf_relse(bp);
2731 
2732 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2733 
2734 	if (!bufwasdelwri) {
2735 		/*
2736 		 * Just like incore_relse: if we have b_iodone functions,
2737 		 * mark the buffer as an error and call them.  Otherwise
2738 		 * mark it as stale and brelse.
2739 		 */
2740 		if (XFS_BUF_IODONE_FUNC(bp)) {
2741 			XFS_BUF_UNDONE(bp);
2742 			XFS_BUF_STALE(bp);
2743 			XFS_BUF_ERROR(bp,EIO);
2744 			xfs_buf_ioend(bp, 0);
2745 		} else {
2746 			XFS_BUF_STALE(bp);
2747 			xfs_buf_relse(bp);
2748 		}
2749 	}
2750 
2751 	/*
2752 	 * Unlocks the flush lock
2753 	 */
2754 	xfs_iflush_abort(iq);
2755 	kmem_free(ilist);
2756 	xfs_perag_put(pag);
2757 	return XFS_ERROR(EFSCORRUPTED);
2758 }
2759 
2760 /*
2761  * xfs_iflush() will write a modified inode's changes out to the
2762  * inode's on disk home.  The caller must have the inode lock held
2763  * in at least shared mode and the inode flush completion must be
2764  * active as well.  The inode lock will still be held upon return from
2765  * the call and the caller is free to unlock it.
2766  * The inode flush will be completed when the inode reaches the disk.
2767  * The flags indicate how the inode's buffer should be written out.
2768  */
2769 int
xfs_iflush(xfs_inode_t * ip,uint flags)2770 xfs_iflush(
2771 	xfs_inode_t		*ip,
2772 	uint			flags)
2773 {
2774 	xfs_inode_log_item_t	*iip;
2775 	xfs_buf_t		*bp;
2776 	xfs_dinode_t		*dip;
2777 	xfs_mount_t		*mp;
2778 	int			error;
2779 
2780 	XFS_STATS_INC(xs_iflush_count);
2781 
2782 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2783 	ASSERT(!completion_done(&ip->i_flush));
2784 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2785 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2786 
2787 	iip = ip->i_itemp;
2788 	mp = ip->i_mount;
2789 
2790 	/*
2791 	 * We can't flush the inode until it is unpinned, so wait for it if we
2792 	 * are allowed to block.  We know no one new can pin it, because we are
2793 	 * holding the inode lock shared and you need to hold it exclusively to
2794 	 * pin the inode.
2795 	 *
2796 	 * If we are not allowed to block, force the log out asynchronously so
2797 	 * that when we come back the inode will be unpinned. If other inodes
2798 	 * in the same cluster are dirty, they will probably write the inode
2799 	 * out for us if they occur after the log force completes.
2800 	 */
2801 	if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2802 		xfs_iunpin_nowait(ip);
2803 		xfs_ifunlock(ip);
2804 		return EAGAIN;
2805 	}
2806 	xfs_iunpin_wait(ip);
2807 
2808 	/*
2809 	 * For stale inodes we cannot rely on the backing buffer remaining
2810 	 * stale in cache for the remaining life of the stale inode and so
2811 	 * xfs_itobp() below may give us a buffer that no longer contains
2812 	 * inodes below. We have to check this after ensuring the inode is
2813 	 * unpinned so that it is safe to reclaim the stale inode after the
2814 	 * flush call.
2815 	 */
2816 	if (xfs_iflags_test(ip, XFS_ISTALE)) {
2817 		xfs_ifunlock(ip);
2818 		return 0;
2819 	}
2820 
2821 	/*
2822 	 * This may have been unpinned because the filesystem is shutting
2823 	 * down forcibly. If that's the case we must not write this inode
2824 	 * to disk, because the log record didn't make it to disk!
2825 	 */
2826 	if (XFS_FORCED_SHUTDOWN(mp)) {
2827 		ip->i_update_core = 0;
2828 		if (iip)
2829 			iip->ili_format.ilf_fields = 0;
2830 		xfs_ifunlock(ip);
2831 		return XFS_ERROR(EIO);
2832 	}
2833 
2834 	/*
2835 	 * Get the buffer containing the on-disk inode.
2836 	 */
2837 	error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2838 				(flags & SYNC_TRYLOCK) ? XBF_TRYLOCK : XBF_LOCK);
2839 	if (error || !bp) {
2840 		xfs_ifunlock(ip);
2841 		return error;
2842 	}
2843 
2844 	/*
2845 	 * First flush out the inode that xfs_iflush was called with.
2846 	 */
2847 	error = xfs_iflush_int(ip, bp);
2848 	if (error)
2849 		goto corrupt_out;
2850 
2851 	/*
2852 	 * If the buffer is pinned then push on the log now so we won't
2853 	 * get stuck waiting in the write for too long.
2854 	 */
2855 	if (XFS_BUF_ISPINNED(bp))
2856 		xfs_log_force(mp, 0);
2857 
2858 	/*
2859 	 * inode clustering:
2860 	 * see if other inodes can be gathered into this write
2861 	 */
2862 	error = xfs_iflush_cluster(ip, bp);
2863 	if (error)
2864 		goto cluster_corrupt_out;
2865 
2866 	if (flags & SYNC_WAIT)
2867 		error = xfs_bwrite(mp, bp);
2868 	else
2869 		xfs_bdwrite(mp, bp);
2870 	return error;
2871 
2872 corrupt_out:
2873 	xfs_buf_relse(bp);
2874 	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2875 cluster_corrupt_out:
2876 	/*
2877 	 * Unlocks the flush lock
2878 	 */
2879 	xfs_iflush_abort(ip);
2880 	return XFS_ERROR(EFSCORRUPTED);
2881 }
2882 
2883 
2884 STATIC int
xfs_iflush_int(xfs_inode_t * ip,xfs_buf_t * bp)2885 xfs_iflush_int(
2886 	xfs_inode_t		*ip,
2887 	xfs_buf_t		*bp)
2888 {
2889 	xfs_inode_log_item_t	*iip;
2890 	xfs_dinode_t		*dip;
2891 	xfs_mount_t		*mp;
2892 #ifdef XFS_TRANS_DEBUG
2893 	int			first;
2894 #endif
2895 
2896 	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2897 	ASSERT(!completion_done(&ip->i_flush));
2898 	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2899 	       ip->i_d.di_nextents > ip->i_df.if_ext_max);
2900 
2901 	iip = ip->i_itemp;
2902 	mp = ip->i_mount;
2903 
2904 	/* set *dip = inode's place in the buffer */
2905 	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2906 
2907 	/*
2908 	 * Clear i_update_core before copying out the data.
2909 	 * This is for coordination with our timestamp updates
2910 	 * that don't hold the inode lock. They will always
2911 	 * update the timestamps BEFORE setting i_update_core,
2912 	 * so if we clear i_update_core after they set it we
2913 	 * are guaranteed to see their updates to the timestamps.
2914 	 * I believe that this depends on strongly ordered memory
2915 	 * semantics, but we have that.  We use the SYNCHRONIZE
2916 	 * macro to make sure that the compiler does not reorder
2917 	 * the i_update_core access below the data copy below.
2918 	 */
2919 	ip->i_update_core = 0;
2920 	SYNCHRONIZE();
2921 
2922 	/*
2923 	 * Make sure to get the latest timestamps from the Linux inode.
2924 	 */
2925 	xfs_synchronize_times(ip);
2926 
2927 	if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2928 			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2929 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2930 			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2931 			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2932 		goto corrupt_out;
2933 	}
2934 	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2935 				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2936 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2937 			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2938 			__func__, ip->i_ino, ip, ip->i_d.di_magic);
2939 		goto corrupt_out;
2940 	}
2941 	if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2942 		if (XFS_TEST_ERROR(
2943 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2944 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2945 		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2946 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2947 				"%s: Bad regular inode %Lu, ptr 0x%p",
2948 				__func__, ip->i_ino, ip);
2949 			goto corrupt_out;
2950 		}
2951 	} else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2952 		if (XFS_TEST_ERROR(
2953 		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2954 		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2955 		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2956 		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2957 			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2958 				"%s: Bad directory inode %Lu, ptr 0x%p",
2959 				__func__, ip->i_ino, ip);
2960 			goto corrupt_out;
2961 		}
2962 	}
2963 	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2964 				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2965 				XFS_RANDOM_IFLUSH_5)) {
2966 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2967 			"%s: detected corrupt incore inode %Lu, "
2968 			"total extents = %d, nblocks = %Ld, ptr 0x%p",
2969 			__func__, ip->i_ino,
2970 			ip->i_d.di_nextents + ip->i_d.di_anextents,
2971 			ip->i_d.di_nblocks, ip);
2972 		goto corrupt_out;
2973 	}
2974 	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2975 				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2976 		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2977 			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2978 			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
2979 		goto corrupt_out;
2980 	}
2981 	/*
2982 	 * bump the flush iteration count, used to detect flushes which
2983 	 * postdate a log record during recovery.
2984 	 */
2985 
2986 	ip->i_d.di_flushiter++;
2987 
2988 	/*
2989 	 * Copy the dirty parts of the inode into the on-disk
2990 	 * inode.  We always copy out the core of the inode,
2991 	 * because if the inode is dirty at all the core must
2992 	 * be.
2993 	 */
2994 	xfs_dinode_to_disk(dip, &ip->i_d);
2995 
2996 	/* Wrap, we never let the log put out DI_MAX_FLUSH */
2997 	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2998 		ip->i_d.di_flushiter = 0;
2999 
3000 	/*
3001 	 * If this is really an old format inode and the superblock version
3002 	 * has not been updated to support only new format inodes, then
3003 	 * convert back to the old inode format.  If the superblock version
3004 	 * has been updated, then make the conversion permanent.
3005 	 */
3006 	ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3007 	if (ip->i_d.di_version == 1) {
3008 		if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
3009 			/*
3010 			 * Convert it back.
3011 			 */
3012 			ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3013 			dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
3014 		} else {
3015 			/*
3016 			 * The superblock version has already been bumped,
3017 			 * so just make the conversion to the new inode
3018 			 * format permanent.
3019 			 */
3020 			ip->i_d.di_version = 2;
3021 			dip->di_version = 2;
3022 			ip->i_d.di_onlink = 0;
3023 			dip->di_onlink = 0;
3024 			memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3025 			memset(&(dip->di_pad[0]), 0,
3026 			      sizeof(dip->di_pad));
3027 			ASSERT(xfs_get_projid(ip) == 0);
3028 		}
3029 	}
3030 
3031 	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3032 	if (XFS_IFORK_Q(ip))
3033 		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3034 	xfs_inobp_check(mp, bp);
3035 
3036 	/*
3037 	 * We've recorded everything logged in the inode, so we'd
3038 	 * like to clear the ilf_fields bits so we don't log and
3039 	 * flush things unnecessarily.  However, we can't stop
3040 	 * logging all this information until the data we've copied
3041 	 * into the disk buffer is written to disk.  If we did we might
3042 	 * overwrite the copy of the inode in the log with all the
3043 	 * data after re-logging only part of it, and in the face of
3044 	 * a crash we wouldn't have all the data we need to recover.
3045 	 *
3046 	 * What we do is move the bits to the ili_last_fields field.
3047 	 * When logging the inode, these bits are moved back to the
3048 	 * ilf_fields field.  In the xfs_iflush_done() routine we
3049 	 * clear ili_last_fields, since we know that the information
3050 	 * those bits represent is permanently on disk.  As long as
3051 	 * the flush completes before the inode is logged again, then
3052 	 * both ilf_fields and ili_last_fields will be cleared.
3053 	 *
3054 	 * We can play with the ilf_fields bits here, because the inode
3055 	 * lock must be held exclusively in order to set bits there
3056 	 * and the flush lock protects the ili_last_fields bits.
3057 	 * Set ili_logged so the flush done
3058 	 * routine can tell whether or not to look in the AIL.
3059 	 * Also, store the current LSN of the inode so that we can tell
3060 	 * whether the item has moved in the AIL from xfs_iflush_done().
3061 	 * In order to read the lsn we need the AIL lock, because
3062 	 * it is a 64 bit value that cannot be read atomically.
3063 	 */
3064 	if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3065 		iip->ili_last_fields = iip->ili_format.ilf_fields;
3066 		iip->ili_format.ilf_fields = 0;
3067 		iip->ili_logged = 1;
3068 
3069 		xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3070 					&iip->ili_item.li_lsn);
3071 
3072 		/*
3073 		 * Attach the function xfs_iflush_done to the inode's
3074 		 * buffer.  This will remove the inode from the AIL
3075 		 * and unlock the inode's flush lock when the inode is
3076 		 * completely written to disk.
3077 		 */
3078 		xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3079 
3080 		ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3081 		ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3082 	} else {
3083 		/*
3084 		 * We're flushing an inode which is not in the AIL and has
3085 		 * not been logged but has i_update_core set.  For this
3086 		 * case we can use a B_DELWRI flush and immediately drop
3087 		 * the inode flush lock because we can avoid the whole
3088 		 * AIL state thing.  It's OK to drop the flush lock now,
3089 		 * because we've already locked the buffer and to do anything
3090 		 * you really need both.
3091 		 */
3092 		if (iip != NULL) {
3093 			ASSERT(iip->ili_logged == 0);
3094 			ASSERT(iip->ili_last_fields == 0);
3095 			ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3096 		}
3097 		xfs_ifunlock(ip);
3098 	}
3099 
3100 	return 0;
3101 
3102 corrupt_out:
3103 	return XFS_ERROR(EFSCORRUPTED);
3104 }
3105 
3106 /*
3107  * Return a pointer to the extent record at file index idx.
3108  */
3109 xfs_bmbt_rec_host_t *
xfs_iext_get_ext(xfs_ifork_t * ifp,xfs_extnum_t idx)3110 xfs_iext_get_ext(
3111 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3112 	xfs_extnum_t	idx)		/* index of target extent */
3113 {
3114 	ASSERT(idx >= 0);
3115 	if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3116 		return ifp->if_u1.if_ext_irec->er_extbuf;
3117 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3118 		xfs_ext_irec_t	*erp;		/* irec pointer */
3119 		int		erp_idx = 0;	/* irec index */
3120 		xfs_extnum_t	page_idx = idx;	/* ext index in target list */
3121 
3122 		erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3123 		return &erp->er_extbuf[page_idx];
3124 	} else if (ifp->if_bytes) {
3125 		return &ifp->if_u1.if_extents[idx];
3126 	} else {
3127 		return NULL;
3128 	}
3129 }
3130 
3131 /*
3132  * Insert new item(s) into the extent records for incore inode
3133  * fork 'ifp'.  'count' new items are inserted at index 'idx'.
3134  */
3135 void
xfs_iext_insert(xfs_inode_t * ip,xfs_extnum_t idx,xfs_extnum_t count,xfs_bmbt_irec_t * new,int state)3136 xfs_iext_insert(
3137 	xfs_inode_t	*ip,		/* incore inode pointer */
3138 	xfs_extnum_t	idx,		/* starting index of new items */
3139 	xfs_extnum_t	count,		/* number of inserted items */
3140 	xfs_bmbt_irec_t	*new,		/* items to insert */
3141 	int		state)		/* type of extent conversion */
3142 {
3143 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3144 	xfs_extnum_t	i;		/* extent record index */
3145 
3146 	trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3147 
3148 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3149 	xfs_iext_add(ifp, idx, count);
3150 	for (i = idx; i < idx + count; i++, new++)
3151 		xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3152 }
3153 
3154 /*
3155  * This is called when the amount of space required for incore file
3156  * extents needs to be increased. The ext_diff parameter stores the
3157  * number of new extents being added and the idx parameter contains
3158  * the extent index where the new extents will be added. If the new
3159  * extents are being appended, then we just need to (re)allocate and
3160  * initialize the space. Otherwise, if the new extents are being
3161  * inserted into the middle of the existing entries, a bit more work
3162  * is required to make room for the new extents to be inserted. The
3163  * caller is responsible for filling in the new extent entries upon
3164  * return.
3165  */
3166 void
xfs_iext_add(xfs_ifork_t * ifp,xfs_extnum_t idx,int ext_diff)3167 xfs_iext_add(
3168 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3169 	xfs_extnum_t	idx,		/* index to begin adding exts */
3170 	int		ext_diff)	/* number of extents to add */
3171 {
3172 	int		byte_diff;	/* new bytes being added */
3173 	int		new_size;	/* size of extents after adding */
3174 	xfs_extnum_t	nextents;	/* number of extents in file */
3175 
3176 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3177 	ASSERT((idx >= 0) && (idx <= nextents));
3178 	byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3179 	new_size = ifp->if_bytes + byte_diff;
3180 	/*
3181 	 * If the new number of extents (nextents + ext_diff)
3182 	 * fits inside the inode, then continue to use the inline
3183 	 * extent buffer.
3184 	 */
3185 	if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3186 		if (idx < nextents) {
3187 			memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3188 				&ifp->if_u2.if_inline_ext[idx],
3189 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3190 			memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3191 		}
3192 		ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3193 		ifp->if_real_bytes = 0;
3194 		ifp->if_lastex = nextents + ext_diff;
3195 	}
3196 	/*
3197 	 * Otherwise use a linear (direct) extent list.
3198 	 * If the extents are currently inside the inode,
3199 	 * xfs_iext_realloc_direct will switch us from
3200 	 * inline to direct extent allocation mode.
3201 	 */
3202 	else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3203 		xfs_iext_realloc_direct(ifp, new_size);
3204 		if (idx < nextents) {
3205 			memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3206 				&ifp->if_u1.if_extents[idx],
3207 				(nextents - idx) * sizeof(xfs_bmbt_rec_t));
3208 			memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3209 		}
3210 	}
3211 	/* Indirection array */
3212 	else {
3213 		xfs_ext_irec_t	*erp;
3214 		int		erp_idx = 0;
3215 		int		page_idx = idx;
3216 
3217 		ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3218 		if (ifp->if_flags & XFS_IFEXTIREC) {
3219 			erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3220 		} else {
3221 			xfs_iext_irec_init(ifp);
3222 			ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3223 			erp = ifp->if_u1.if_ext_irec;
3224 		}
3225 		/* Extents fit in target extent page */
3226 		if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3227 			if (page_idx < erp->er_extcount) {
3228 				memmove(&erp->er_extbuf[page_idx + ext_diff],
3229 					&erp->er_extbuf[page_idx],
3230 					(erp->er_extcount - page_idx) *
3231 					sizeof(xfs_bmbt_rec_t));
3232 				memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3233 			}
3234 			erp->er_extcount += ext_diff;
3235 			xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3236 		}
3237 		/* Insert a new extent page */
3238 		else if (erp) {
3239 			xfs_iext_add_indirect_multi(ifp,
3240 				erp_idx, page_idx, ext_diff);
3241 		}
3242 		/*
3243 		 * If extent(s) are being appended to the last page in
3244 		 * the indirection array and the new extent(s) don't fit
3245 		 * in the page, then erp is NULL and erp_idx is set to
3246 		 * the next index needed in the indirection array.
3247 		 */
3248 		else {
3249 			int	count = ext_diff;
3250 
3251 			while (count) {
3252 				erp = xfs_iext_irec_new(ifp, erp_idx);
3253 				erp->er_extcount = count;
3254 				count -= MIN(count, (int)XFS_LINEAR_EXTS);
3255 				if (count) {
3256 					erp_idx++;
3257 				}
3258 			}
3259 		}
3260 	}
3261 	ifp->if_bytes = new_size;
3262 }
3263 
3264 /*
3265  * This is called when incore extents are being added to the indirection
3266  * array and the new extents do not fit in the target extent list. The
3267  * erp_idx parameter contains the irec index for the target extent list
3268  * in the indirection array, and the idx parameter contains the extent
3269  * index within the list. The number of extents being added is stored
3270  * in the count parameter.
3271  *
3272  *    |-------|   |-------|
3273  *    |       |   |       |    idx - number of extents before idx
3274  *    |  idx  |   | count |
3275  *    |       |   |       |    count - number of extents being inserted at idx
3276  *    |-------|   |-------|
3277  *    | count |   | nex2  |    nex2 - number of extents after idx + count
3278  *    |-------|   |-------|
3279  */
3280 void
xfs_iext_add_indirect_multi(xfs_ifork_t * ifp,int erp_idx,xfs_extnum_t idx,int count)3281 xfs_iext_add_indirect_multi(
3282 	xfs_ifork_t	*ifp,			/* inode fork pointer */
3283 	int		erp_idx,		/* target extent irec index */
3284 	xfs_extnum_t	idx,			/* index within target list */
3285 	int		count)			/* new extents being added */
3286 {
3287 	int		byte_diff;		/* new bytes being added */
3288 	xfs_ext_irec_t	*erp;			/* pointer to irec entry */
3289 	xfs_extnum_t	ext_diff;		/* number of extents to add */
3290 	xfs_extnum_t	ext_cnt;		/* new extents still needed */
3291 	xfs_extnum_t	nex2;			/* extents after idx + count */
3292 	xfs_bmbt_rec_t	*nex2_ep = NULL;	/* temp list for nex2 extents */
3293 	int		nlists;			/* number of irec's (lists) */
3294 
3295 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3296 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
3297 	nex2 = erp->er_extcount - idx;
3298 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3299 
3300 	/*
3301 	 * Save second part of target extent list
3302 	 * (all extents past */
3303 	if (nex2) {
3304 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3305 		nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3306 		memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3307 		erp->er_extcount -= nex2;
3308 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3309 		memset(&erp->er_extbuf[idx], 0, byte_diff);
3310 	}
3311 
3312 	/*
3313 	 * Add the new extents to the end of the target
3314 	 * list, then allocate new irec record(s) and
3315 	 * extent buffer(s) as needed to store the rest
3316 	 * of the new extents.
3317 	 */
3318 	ext_cnt = count;
3319 	ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3320 	if (ext_diff) {
3321 		erp->er_extcount += ext_diff;
3322 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3323 		ext_cnt -= ext_diff;
3324 	}
3325 	while (ext_cnt) {
3326 		erp_idx++;
3327 		erp = xfs_iext_irec_new(ifp, erp_idx);
3328 		ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3329 		erp->er_extcount = ext_diff;
3330 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3331 		ext_cnt -= ext_diff;
3332 	}
3333 
3334 	/* Add nex2 extents back to indirection array */
3335 	if (nex2) {
3336 		xfs_extnum_t	ext_avail;
3337 		int		i;
3338 
3339 		byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3340 		ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3341 		i = 0;
3342 		/*
3343 		 * If nex2 extents fit in the current page, append
3344 		 * nex2_ep after the new extents.
3345 		 */
3346 		if (nex2 <= ext_avail) {
3347 			i = erp->er_extcount;
3348 		}
3349 		/*
3350 		 * Otherwise, check if space is available in the
3351 		 * next page.
3352 		 */
3353 		else if ((erp_idx < nlists - 1) &&
3354 			 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3355 			  ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3356 			erp_idx++;
3357 			erp++;
3358 			/* Create a hole for nex2 extents */
3359 			memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3360 				erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3361 		}
3362 		/*
3363 		 * Final choice, create a new extent page for
3364 		 * nex2 extents.
3365 		 */
3366 		else {
3367 			erp_idx++;
3368 			erp = xfs_iext_irec_new(ifp, erp_idx);
3369 		}
3370 		memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3371 		kmem_free(nex2_ep);
3372 		erp->er_extcount += nex2;
3373 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3374 	}
3375 }
3376 
3377 /*
3378  * This is called when the amount of space required for incore file
3379  * extents needs to be decreased. The ext_diff parameter stores the
3380  * number of extents to be removed and the idx parameter contains
3381  * the extent index where the extents will be removed from.
3382  *
3383  * If the amount of space needed has decreased below the linear
3384  * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3385  * extent array.  Otherwise, use kmem_realloc() to adjust the
3386  * size to what is needed.
3387  */
3388 void
xfs_iext_remove(xfs_inode_t * ip,xfs_extnum_t idx,int ext_diff,int state)3389 xfs_iext_remove(
3390 	xfs_inode_t	*ip,		/* incore inode pointer */
3391 	xfs_extnum_t	idx,		/* index to begin removing exts */
3392 	int		ext_diff,	/* number of extents to remove */
3393 	int		state)		/* type of extent conversion */
3394 {
3395 	xfs_ifork_t	*ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3396 	xfs_extnum_t	nextents;	/* number of extents in file */
3397 	int		new_size;	/* size of extents after removal */
3398 
3399 	trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3400 
3401 	ASSERT(ext_diff > 0);
3402 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3403 	new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3404 
3405 	if (new_size == 0) {
3406 		xfs_iext_destroy(ifp);
3407 	} else if (ifp->if_flags & XFS_IFEXTIREC) {
3408 		xfs_iext_remove_indirect(ifp, idx, ext_diff);
3409 	} else if (ifp->if_real_bytes) {
3410 		xfs_iext_remove_direct(ifp, idx, ext_diff);
3411 	} else {
3412 		xfs_iext_remove_inline(ifp, idx, ext_diff);
3413 	}
3414 	ifp->if_bytes = new_size;
3415 }
3416 
3417 /*
3418  * This removes ext_diff extents from the inline buffer, beginning
3419  * at extent index idx.
3420  */
3421 void
xfs_iext_remove_inline(xfs_ifork_t * ifp,xfs_extnum_t idx,int ext_diff)3422 xfs_iext_remove_inline(
3423 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3424 	xfs_extnum_t	idx,		/* index to begin removing exts */
3425 	int		ext_diff)	/* number of extents to remove */
3426 {
3427 	int		nextents;	/* number of extents in file */
3428 
3429 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3430 	ASSERT(idx < XFS_INLINE_EXTS);
3431 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3432 	ASSERT(((nextents - ext_diff) > 0) &&
3433 		(nextents - ext_diff) < XFS_INLINE_EXTS);
3434 
3435 	if (idx + ext_diff < nextents) {
3436 		memmove(&ifp->if_u2.if_inline_ext[idx],
3437 			&ifp->if_u2.if_inline_ext[idx + ext_diff],
3438 			(nextents - (idx + ext_diff)) *
3439 			 sizeof(xfs_bmbt_rec_t));
3440 		memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3441 			0, ext_diff * sizeof(xfs_bmbt_rec_t));
3442 	} else {
3443 		memset(&ifp->if_u2.if_inline_ext[idx], 0,
3444 			ext_diff * sizeof(xfs_bmbt_rec_t));
3445 	}
3446 }
3447 
3448 /*
3449  * This removes ext_diff extents from a linear (direct) extent list,
3450  * beginning at extent index idx. If the extents are being removed
3451  * from the end of the list (ie. truncate) then we just need to re-
3452  * allocate the list to remove the extra space. Otherwise, if the
3453  * extents are being removed from the middle of the existing extent
3454  * entries, then we first need to move the extent records beginning
3455  * at idx + ext_diff up in the list to overwrite the records being
3456  * removed, then remove the extra space via kmem_realloc.
3457  */
3458 void
xfs_iext_remove_direct(xfs_ifork_t * ifp,xfs_extnum_t idx,int ext_diff)3459 xfs_iext_remove_direct(
3460 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3461 	xfs_extnum_t	idx,		/* index to begin removing exts */
3462 	int		ext_diff)	/* number of extents to remove */
3463 {
3464 	xfs_extnum_t	nextents;	/* number of extents in file */
3465 	int		new_size;	/* size of extents after removal */
3466 
3467 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3468 	new_size = ifp->if_bytes -
3469 		(ext_diff * sizeof(xfs_bmbt_rec_t));
3470 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3471 
3472 	if (new_size == 0) {
3473 		xfs_iext_destroy(ifp);
3474 		return;
3475 	}
3476 	/* Move extents up in the list (if needed) */
3477 	if (idx + ext_diff < nextents) {
3478 		memmove(&ifp->if_u1.if_extents[idx],
3479 			&ifp->if_u1.if_extents[idx + ext_diff],
3480 			(nextents - (idx + ext_diff)) *
3481 			 sizeof(xfs_bmbt_rec_t));
3482 	}
3483 	memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3484 		0, ext_diff * sizeof(xfs_bmbt_rec_t));
3485 	/*
3486 	 * Reallocate the direct extent list. If the extents
3487 	 * will fit inside the inode then xfs_iext_realloc_direct
3488 	 * will switch from direct to inline extent allocation
3489 	 * mode for us.
3490 	 */
3491 	xfs_iext_realloc_direct(ifp, new_size);
3492 	ifp->if_bytes = new_size;
3493 }
3494 
3495 /*
3496  * This is called when incore extents are being removed from the
3497  * indirection array and the extents being removed span multiple extent
3498  * buffers. The idx parameter contains the file extent index where we
3499  * want to begin removing extents, and the count parameter contains
3500  * how many extents need to be removed.
3501  *
3502  *    |-------|   |-------|
3503  *    | nex1  |   |       |    nex1 - number of extents before idx
3504  *    |-------|   | count |
3505  *    |       |   |       |    count - number of extents being removed at idx
3506  *    | count |   |-------|
3507  *    |       |   | nex2  |    nex2 - number of extents after idx + count
3508  *    |-------|   |-------|
3509  */
3510 void
xfs_iext_remove_indirect(xfs_ifork_t * ifp,xfs_extnum_t idx,int count)3511 xfs_iext_remove_indirect(
3512 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3513 	xfs_extnum_t	idx,		/* index to begin removing extents */
3514 	int		count)		/* number of extents to remove */
3515 {
3516 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3517 	int		erp_idx = 0;	/* indirection array index */
3518 	xfs_extnum_t	ext_cnt;	/* extents left to remove */
3519 	xfs_extnum_t	ext_diff;	/* extents to remove in current list */
3520 	xfs_extnum_t	nex1;		/* number of extents before idx */
3521 	xfs_extnum_t	nex2;		/* extents after idx + count */
3522 	int		page_idx = idx;	/* index in target extent list */
3523 
3524 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3525 	erp = xfs_iext_idx_to_irec(ifp,  &page_idx, &erp_idx, 0);
3526 	ASSERT(erp != NULL);
3527 	nex1 = page_idx;
3528 	ext_cnt = count;
3529 	while (ext_cnt) {
3530 		nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3531 		ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3532 		/*
3533 		 * Check for deletion of entire list;
3534 		 * xfs_iext_irec_remove() updates extent offsets.
3535 		 */
3536 		if (ext_diff == erp->er_extcount) {
3537 			xfs_iext_irec_remove(ifp, erp_idx);
3538 			ext_cnt -= ext_diff;
3539 			nex1 = 0;
3540 			if (ext_cnt) {
3541 				ASSERT(erp_idx < ifp->if_real_bytes /
3542 					XFS_IEXT_BUFSZ);
3543 				erp = &ifp->if_u1.if_ext_irec[erp_idx];
3544 				nex1 = 0;
3545 				continue;
3546 			} else {
3547 				break;
3548 			}
3549 		}
3550 		/* Move extents up (if needed) */
3551 		if (nex2) {
3552 			memmove(&erp->er_extbuf[nex1],
3553 				&erp->er_extbuf[nex1 + ext_diff],
3554 				nex2 * sizeof(xfs_bmbt_rec_t));
3555 		}
3556 		/* Zero out rest of page */
3557 		memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3558 			((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3559 		/* Update remaining counters */
3560 		erp->er_extcount -= ext_diff;
3561 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3562 		ext_cnt -= ext_diff;
3563 		nex1 = 0;
3564 		erp_idx++;
3565 		erp++;
3566 	}
3567 	ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3568 	xfs_iext_irec_compact(ifp);
3569 }
3570 
3571 /*
3572  * Create, destroy, or resize a linear (direct) block of extents.
3573  */
3574 void
xfs_iext_realloc_direct(xfs_ifork_t * ifp,int new_size)3575 xfs_iext_realloc_direct(
3576 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3577 	int		new_size)	/* new size of extents */
3578 {
3579 	int		rnew_size;	/* real new size of extents */
3580 
3581 	rnew_size = new_size;
3582 
3583 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3584 		((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3585 		 (new_size != ifp->if_real_bytes)));
3586 
3587 	/* Free extent records */
3588 	if (new_size == 0) {
3589 		xfs_iext_destroy(ifp);
3590 	}
3591 	/* Resize direct extent list and zero any new bytes */
3592 	else if (ifp->if_real_bytes) {
3593 		/* Check if extents will fit inside the inode */
3594 		if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3595 			xfs_iext_direct_to_inline(ifp, new_size /
3596 				(uint)sizeof(xfs_bmbt_rec_t));
3597 			ifp->if_bytes = new_size;
3598 			return;
3599 		}
3600 		if (!is_power_of_2(new_size)){
3601 			rnew_size = roundup_pow_of_two(new_size);
3602 		}
3603 		if (rnew_size != ifp->if_real_bytes) {
3604 			ifp->if_u1.if_extents =
3605 				kmem_realloc(ifp->if_u1.if_extents,
3606 						rnew_size,
3607 						ifp->if_real_bytes, KM_NOFS);
3608 		}
3609 		if (rnew_size > ifp->if_real_bytes) {
3610 			memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3611 				(uint)sizeof(xfs_bmbt_rec_t)], 0,
3612 				rnew_size - ifp->if_real_bytes);
3613 		}
3614 	}
3615 	/*
3616 	 * Switch from the inline extent buffer to a direct
3617 	 * extent list. Be sure to include the inline extent
3618 	 * bytes in new_size.
3619 	 */
3620 	else {
3621 		new_size += ifp->if_bytes;
3622 		if (!is_power_of_2(new_size)) {
3623 			rnew_size = roundup_pow_of_two(new_size);
3624 		}
3625 		xfs_iext_inline_to_direct(ifp, rnew_size);
3626 	}
3627 	ifp->if_real_bytes = rnew_size;
3628 	ifp->if_bytes = new_size;
3629 }
3630 
3631 /*
3632  * Switch from linear (direct) extent records to inline buffer.
3633  */
3634 void
xfs_iext_direct_to_inline(xfs_ifork_t * ifp,xfs_extnum_t nextents)3635 xfs_iext_direct_to_inline(
3636 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3637 	xfs_extnum_t	nextents)	/* number of extents in file */
3638 {
3639 	ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3640 	ASSERT(nextents <= XFS_INLINE_EXTS);
3641 	/*
3642 	 * The inline buffer was zeroed when we switched
3643 	 * from inline to direct extent allocation mode,
3644 	 * so we don't need to clear it here.
3645 	 */
3646 	memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3647 		nextents * sizeof(xfs_bmbt_rec_t));
3648 	kmem_free(ifp->if_u1.if_extents);
3649 	ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3650 	ifp->if_real_bytes = 0;
3651 }
3652 
3653 /*
3654  * Switch from inline buffer to linear (direct) extent records.
3655  * new_size should already be rounded up to the next power of 2
3656  * by the caller (when appropriate), so use new_size as it is.
3657  * However, since new_size may be rounded up, we can't update
3658  * if_bytes here. It is the caller's responsibility to update
3659  * if_bytes upon return.
3660  */
3661 void
xfs_iext_inline_to_direct(xfs_ifork_t * ifp,int new_size)3662 xfs_iext_inline_to_direct(
3663 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3664 	int		new_size)	/* number of extents in file */
3665 {
3666 	ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3667 	memset(ifp->if_u1.if_extents, 0, new_size);
3668 	if (ifp->if_bytes) {
3669 		memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3670 			ifp->if_bytes);
3671 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3672 			sizeof(xfs_bmbt_rec_t));
3673 	}
3674 	ifp->if_real_bytes = new_size;
3675 }
3676 
3677 /*
3678  * Resize an extent indirection array to new_size bytes.
3679  */
3680 STATIC void
xfs_iext_realloc_indirect(xfs_ifork_t * ifp,int new_size)3681 xfs_iext_realloc_indirect(
3682 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3683 	int		new_size)	/* new indirection array size */
3684 {
3685 	int		nlists;		/* number of irec's (ex lists) */
3686 	int		size;		/* current indirection array size */
3687 
3688 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3689 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3690 	size = nlists * sizeof(xfs_ext_irec_t);
3691 	ASSERT(ifp->if_real_bytes);
3692 	ASSERT((new_size >= 0) && (new_size != size));
3693 	if (new_size == 0) {
3694 		xfs_iext_destroy(ifp);
3695 	} else {
3696 		ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3697 			kmem_realloc(ifp->if_u1.if_ext_irec,
3698 				new_size, size, KM_NOFS);
3699 	}
3700 }
3701 
3702 /*
3703  * Switch from indirection array to linear (direct) extent allocations.
3704  */
3705 STATIC void
xfs_iext_indirect_to_direct(xfs_ifork_t * ifp)3706 xfs_iext_indirect_to_direct(
3707 	 xfs_ifork_t	*ifp)		/* inode fork pointer */
3708 {
3709 	xfs_bmbt_rec_host_t *ep;	/* extent record pointer */
3710 	xfs_extnum_t	nextents;	/* number of extents in file */
3711 	int		size;		/* size of file extents */
3712 
3713 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3714 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3715 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3716 	size = nextents * sizeof(xfs_bmbt_rec_t);
3717 
3718 	xfs_iext_irec_compact_pages(ifp);
3719 	ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3720 
3721 	ep = ifp->if_u1.if_ext_irec->er_extbuf;
3722 	kmem_free(ifp->if_u1.if_ext_irec);
3723 	ifp->if_flags &= ~XFS_IFEXTIREC;
3724 	ifp->if_u1.if_extents = ep;
3725 	ifp->if_bytes = size;
3726 	if (nextents < XFS_LINEAR_EXTS) {
3727 		xfs_iext_realloc_direct(ifp, size);
3728 	}
3729 }
3730 
3731 /*
3732  * Free incore file extents.
3733  */
3734 void
xfs_iext_destroy(xfs_ifork_t * ifp)3735 xfs_iext_destroy(
3736 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3737 {
3738 	if (ifp->if_flags & XFS_IFEXTIREC) {
3739 		int	erp_idx;
3740 		int	nlists;
3741 
3742 		nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3743 		for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3744 			xfs_iext_irec_remove(ifp, erp_idx);
3745 		}
3746 		ifp->if_flags &= ~XFS_IFEXTIREC;
3747 	} else if (ifp->if_real_bytes) {
3748 		kmem_free(ifp->if_u1.if_extents);
3749 	} else if (ifp->if_bytes) {
3750 		memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3751 			sizeof(xfs_bmbt_rec_t));
3752 	}
3753 	ifp->if_u1.if_extents = NULL;
3754 	ifp->if_real_bytes = 0;
3755 	ifp->if_bytes = 0;
3756 }
3757 
3758 /*
3759  * Return a pointer to the extent record for file system block bno.
3760  */
3761 xfs_bmbt_rec_host_t *			/* pointer to found extent record */
xfs_iext_bno_to_ext(xfs_ifork_t * ifp,xfs_fileoff_t bno,xfs_extnum_t * idxp)3762 xfs_iext_bno_to_ext(
3763 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3764 	xfs_fileoff_t	bno,		/* block number to search for */
3765 	xfs_extnum_t	*idxp)		/* index of target extent */
3766 {
3767 	xfs_bmbt_rec_host_t *base;	/* pointer to first extent */
3768 	xfs_filblks_t	blockcount = 0;	/* number of blocks in extent */
3769 	xfs_bmbt_rec_host_t *ep = NULL;	/* pointer to target extent */
3770 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3771 	int		high;		/* upper boundary in search */
3772 	xfs_extnum_t	idx = 0;	/* index of target extent */
3773 	int		low;		/* lower boundary in search */
3774 	xfs_extnum_t	nextents;	/* number of file extents */
3775 	xfs_fileoff_t	startoff = 0;	/* start offset of extent */
3776 
3777 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3778 	if (nextents == 0) {
3779 		*idxp = 0;
3780 		return NULL;
3781 	}
3782 	low = 0;
3783 	if (ifp->if_flags & XFS_IFEXTIREC) {
3784 		/* Find target extent list */
3785 		int	erp_idx = 0;
3786 		erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3787 		base = erp->er_extbuf;
3788 		high = erp->er_extcount - 1;
3789 	} else {
3790 		base = ifp->if_u1.if_extents;
3791 		high = nextents - 1;
3792 	}
3793 	/* Binary search extent records */
3794 	while (low <= high) {
3795 		idx = (low + high) >> 1;
3796 		ep = base + idx;
3797 		startoff = xfs_bmbt_get_startoff(ep);
3798 		blockcount = xfs_bmbt_get_blockcount(ep);
3799 		if (bno < startoff) {
3800 			high = idx - 1;
3801 		} else if (bno >= startoff + blockcount) {
3802 			low = idx + 1;
3803 		} else {
3804 			/* Convert back to file-based extent index */
3805 			if (ifp->if_flags & XFS_IFEXTIREC) {
3806 				idx += erp->er_extoff;
3807 			}
3808 			*idxp = idx;
3809 			return ep;
3810 		}
3811 	}
3812 	/* Convert back to file-based extent index */
3813 	if (ifp->if_flags & XFS_IFEXTIREC) {
3814 		idx += erp->er_extoff;
3815 	}
3816 	if (bno >= startoff + blockcount) {
3817 		if (++idx == nextents) {
3818 			ep = NULL;
3819 		} else {
3820 			ep = xfs_iext_get_ext(ifp, idx);
3821 		}
3822 	}
3823 	*idxp = idx;
3824 	return ep;
3825 }
3826 
3827 /*
3828  * Return a pointer to the indirection array entry containing the
3829  * extent record for filesystem block bno. Store the index of the
3830  * target irec in *erp_idxp.
3831  */
3832 xfs_ext_irec_t *			/* pointer to found extent record */
xfs_iext_bno_to_irec(xfs_ifork_t * ifp,xfs_fileoff_t bno,int * erp_idxp)3833 xfs_iext_bno_to_irec(
3834 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3835 	xfs_fileoff_t	bno,		/* block number to search for */
3836 	int		*erp_idxp)	/* irec index of target ext list */
3837 {
3838 	xfs_ext_irec_t	*erp = NULL;	/* indirection array pointer */
3839 	xfs_ext_irec_t	*erp_next;	/* next indirection array entry */
3840 	int		erp_idx;	/* indirection array index */
3841 	int		nlists;		/* number of extent irec's (lists) */
3842 	int		high;		/* binary search upper limit */
3843 	int		low;		/* binary search lower limit */
3844 
3845 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3846 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3847 	erp_idx = 0;
3848 	low = 0;
3849 	high = nlists - 1;
3850 	while (low <= high) {
3851 		erp_idx = (low + high) >> 1;
3852 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3853 		erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3854 		if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3855 			high = erp_idx - 1;
3856 		} else if (erp_next && bno >=
3857 			   xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3858 			low = erp_idx + 1;
3859 		} else {
3860 			break;
3861 		}
3862 	}
3863 	*erp_idxp = erp_idx;
3864 	return erp;
3865 }
3866 
3867 /*
3868  * Return a pointer to the indirection array entry containing the
3869  * extent record at file extent index *idxp. Store the index of the
3870  * target irec in *erp_idxp and store the page index of the target
3871  * extent record in *idxp.
3872  */
3873 xfs_ext_irec_t *
xfs_iext_idx_to_irec(xfs_ifork_t * ifp,xfs_extnum_t * idxp,int * erp_idxp,int realloc)3874 xfs_iext_idx_to_irec(
3875 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3876 	xfs_extnum_t	*idxp,		/* extent index (file -> page) */
3877 	int		*erp_idxp,	/* pointer to target irec */
3878 	int		realloc)	/* new bytes were just added */
3879 {
3880 	xfs_ext_irec_t	*prev;		/* pointer to previous irec */
3881 	xfs_ext_irec_t	*erp = NULL;	/* pointer to current irec */
3882 	int		erp_idx;	/* indirection array index */
3883 	int		nlists;		/* number of irec's (ex lists) */
3884 	int		high;		/* binary search upper limit */
3885 	int		low;		/* binary search lower limit */
3886 	xfs_extnum_t	page_idx = *idxp; /* extent index in target list */
3887 
3888 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3889 	ASSERT(page_idx >= 0 && page_idx <=
3890 		ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3891 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3892 	erp_idx = 0;
3893 	low = 0;
3894 	high = nlists - 1;
3895 
3896 	/* Binary search extent irec's */
3897 	while (low <= high) {
3898 		erp_idx = (low + high) >> 1;
3899 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
3900 		prev = erp_idx > 0 ? erp - 1 : NULL;
3901 		if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3902 		     realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3903 			high = erp_idx - 1;
3904 		} else if (page_idx > erp->er_extoff + erp->er_extcount ||
3905 			   (page_idx == erp->er_extoff + erp->er_extcount &&
3906 			    !realloc)) {
3907 			low = erp_idx + 1;
3908 		} else if (page_idx == erp->er_extoff + erp->er_extcount &&
3909 			   erp->er_extcount == XFS_LINEAR_EXTS) {
3910 			ASSERT(realloc);
3911 			page_idx = 0;
3912 			erp_idx++;
3913 			erp = erp_idx < nlists ? erp + 1 : NULL;
3914 			break;
3915 		} else {
3916 			page_idx -= erp->er_extoff;
3917 			break;
3918 		}
3919 	}
3920 	*idxp = page_idx;
3921 	*erp_idxp = erp_idx;
3922 	return(erp);
3923 }
3924 
3925 /*
3926  * Allocate and initialize an indirection array once the space needed
3927  * for incore extents increases above XFS_IEXT_BUFSZ.
3928  */
3929 void
xfs_iext_irec_init(xfs_ifork_t * ifp)3930 xfs_iext_irec_init(
3931 	xfs_ifork_t	*ifp)		/* inode fork pointer */
3932 {
3933 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3934 	xfs_extnum_t	nextents;	/* number of extents in file */
3935 
3936 	ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3937 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3938 	ASSERT(nextents <= XFS_LINEAR_EXTS);
3939 
3940 	erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3941 
3942 	if (nextents == 0) {
3943 		ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3944 	} else if (!ifp->if_real_bytes) {
3945 		xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3946 	} else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3947 		xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3948 	}
3949 	erp->er_extbuf = ifp->if_u1.if_extents;
3950 	erp->er_extcount = nextents;
3951 	erp->er_extoff = 0;
3952 
3953 	ifp->if_flags |= XFS_IFEXTIREC;
3954 	ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3955 	ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3956 	ifp->if_u1.if_ext_irec = erp;
3957 
3958 	return;
3959 }
3960 
3961 /*
3962  * Allocate and initialize a new entry in the indirection array.
3963  */
3964 xfs_ext_irec_t *
xfs_iext_irec_new(xfs_ifork_t * ifp,int erp_idx)3965 xfs_iext_irec_new(
3966 	xfs_ifork_t	*ifp,		/* inode fork pointer */
3967 	int		erp_idx)	/* index for new irec */
3968 {
3969 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
3970 	int		i;		/* loop counter */
3971 	int		nlists;		/* number of irec's (ex lists) */
3972 
3973 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3974 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3975 
3976 	/* Resize indirection array */
3977 	xfs_iext_realloc_indirect(ifp, ++nlists *
3978 				  sizeof(xfs_ext_irec_t));
3979 	/*
3980 	 * Move records down in the array so the
3981 	 * new page can use erp_idx.
3982 	 */
3983 	erp = ifp->if_u1.if_ext_irec;
3984 	for (i = nlists - 1; i > erp_idx; i--) {
3985 		memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3986 	}
3987 	ASSERT(i == erp_idx);
3988 
3989 	/* Initialize new extent record */
3990 	erp = ifp->if_u1.if_ext_irec;
3991 	erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3992 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3993 	memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3994 	erp[erp_idx].er_extcount = 0;
3995 	erp[erp_idx].er_extoff = erp_idx > 0 ?
3996 		erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3997 	return (&erp[erp_idx]);
3998 }
3999 
4000 /*
4001  * Remove a record from the indirection array.
4002  */
4003 void
xfs_iext_irec_remove(xfs_ifork_t * ifp,int erp_idx)4004 xfs_iext_irec_remove(
4005 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4006 	int		erp_idx)	/* irec index to remove */
4007 {
4008 	xfs_ext_irec_t	*erp;		/* indirection array pointer */
4009 	int		i;		/* loop counter */
4010 	int		nlists;		/* number of irec's (ex lists) */
4011 
4012 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4013 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4014 	erp = &ifp->if_u1.if_ext_irec[erp_idx];
4015 	if (erp->er_extbuf) {
4016 		xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4017 			-erp->er_extcount);
4018 		kmem_free(erp->er_extbuf);
4019 	}
4020 	/* Compact extent records */
4021 	erp = ifp->if_u1.if_ext_irec;
4022 	for (i = erp_idx; i < nlists - 1; i++) {
4023 		memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4024 	}
4025 	/*
4026 	 * Manually free the last extent record from the indirection
4027 	 * array.  A call to xfs_iext_realloc_indirect() with a size
4028 	 * of zero would result in a call to xfs_iext_destroy() which
4029 	 * would in turn call this function again, creating a nasty
4030 	 * infinite loop.
4031 	 */
4032 	if (--nlists) {
4033 		xfs_iext_realloc_indirect(ifp,
4034 			nlists * sizeof(xfs_ext_irec_t));
4035 	} else {
4036 		kmem_free(ifp->if_u1.if_ext_irec);
4037 	}
4038 	ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4039 }
4040 
4041 /*
4042  * This is called to clean up large amounts of unused memory allocated
4043  * by the indirection array.  Before compacting anything though, verify
4044  * that the indirection array is still needed and switch back to the
4045  * linear extent list (or even the inline buffer) if possible.  The
4046  * compaction policy is as follows:
4047  *
4048  *    Full Compaction: Extents fit into a single page (or inline buffer)
4049  * Partial Compaction: Extents occupy less than 50% of allocated space
4050  *      No Compaction: Extents occupy at least 50% of allocated space
4051  */
4052 void
xfs_iext_irec_compact(xfs_ifork_t * ifp)4053 xfs_iext_irec_compact(
4054 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4055 {
4056 	xfs_extnum_t	nextents;	/* number of extents in file */
4057 	int		nlists;		/* number of irec's (ex lists) */
4058 
4059 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4060 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4061 	nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4062 
4063 	if (nextents == 0) {
4064 		xfs_iext_destroy(ifp);
4065 	} else if (nextents <= XFS_INLINE_EXTS) {
4066 		xfs_iext_indirect_to_direct(ifp);
4067 		xfs_iext_direct_to_inline(ifp, nextents);
4068 	} else if (nextents <= XFS_LINEAR_EXTS) {
4069 		xfs_iext_indirect_to_direct(ifp);
4070 	} else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4071 		xfs_iext_irec_compact_pages(ifp);
4072 	}
4073 }
4074 
4075 /*
4076  * Combine extents from neighboring extent pages.
4077  */
4078 void
xfs_iext_irec_compact_pages(xfs_ifork_t * ifp)4079 xfs_iext_irec_compact_pages(
4080 	xfs_ifork_t	*ifp)		/* inode fork pointer */
4081 {
4082 	xfs_ext_irec_t	*erp, *erp_next;/* pointers to irec entries */
4083 	int		erp_idx = 0;	/* indirection array index */
4084 	int		nlists;		/* number of irec's (ex lists) */
4085 
4086 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4087 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4088 	while (erp_idx < nlists - 1) {
4089 		erp = &ifp->if_u1.if_ext_irec[erp_idx];
4090 		erp_next = erp + 1;
4091 		if (erp_next->er_extcount <=
4092 		    (XFS_LINEAR_EXTS - erp->er_extcount)) {
4093 			memcpy(&erp->er_extbuf[erp->er_extcount],
4094 				erp_next->er_extbuf, erp_next->er_extcount *
4095 				sizeof(xfs_bmbt_rec_t));
4096 			erp->er_extcount += erp_next->er_extcount;
4097 			/*
4098 			 * Free page before removing extent record
4099 			 * so er_extoffs don't get modified in
4100 			 * xfs_iext_irec_remove.
4101 			 */
4102 			kmem_free(erp_next->er_extbuf);
4103 			erp_next->er_extbuf = NULL;
4104 			xfs_iext_irec_remove(ifp, erp_idx + 1);
4105 			nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4106 		} else {
4107 			erp_idx++;
4108 		}
4109 	}
4110 }
4111 
4112 /*
4113  * This is called to update the er_extoff field in the indirection
4114  * array when extents have been added or removed from one of the
4115  * extent lists. erp_idx contains the irec index to begin updating
4116  * at and ext_diff contains the number of extents that were added
4117  * or removed.
4118  */
4119 void
xfs_iext_irec_update_extoffs(xfs_ifork_t * ifp,int erp_idx,int ext_diff)4120 xfs_iext_irec_update_extoffs(
4121 	xfs_ifork_t	*ifp,		/* inode fork pointer */
4122 	int		erp_idx,	/* irec index to update */
4123 	int		ext_diff)	/* number of new extents */
4124 {
4125 	int		i;		/* loop counter */
4126 	int		nlists;		/* number of irec's (ex lists */
4127 
4128 	ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4129 	nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4130 	for (i = erp_idx; i < nlists; i++) {
4131 		ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4132 	}
4133 }
4134