1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_inode.h"
16 #include "xfs_dir2.h"
17 #include "xfs_ialloc.h"
18 #include "xfs_alloc.h"
19 #include "xfs_rtalloc.h"
20 #include "xfs_bmap.h"
21 #include "xfs_trans.h"
22 #include "xfs_trans_priv.h"
23 #include "xfs_log.h"
24 #include "xfs_log_priv.h"
25 #include "xfs_error.h"
26 #include "xfs_quota.h"
27 #include "xfs_fsops.h"
28 #include "xfs_icache.h"
29 #include "xfs_sysfs.h"
30 #include "xfs_rmap_btree.h"
31 #include "xfs_refcount_btree.h"
32 #include "xfs_reflink.h"
33 #include "xfs_extent_busy.h"
34 #include "xfs_health.h"
35 #include "xfs_trace.h"
36 #include "xfs_ag.h"
37 
38 static DEFINE_MUTEX(xfs_uuid_table_mutex);
39 static int xfs_uuid_table_size;
40 static uuid_t *xfs_uuid_table;
41 
42 void
xfs_uuid_table_free(void)43 xfs_uuid_table_free(void)
44 {
45 	if (xfs_uuid_table_size == 0)
46 		return;
47 	kmem_free(xfs_uuid_table);
48 	xfs_uuid_table = NULL;
49 	xfs_uuid_table_size = 0;
50 }
51 
52 /*
53  * See if the UUID is unique among mounted XFS filesystems.
54  * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55  */
56 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)57 xfs_uuid_mount(
58 	struct xfs_mount	*mp)
59 {
60 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
61 	int			hole, i;
62 
63 	/* Publish UUID in struct super_block */
64 	uuid_copy(&mp->m_super->s_uuid, uuid);
65 
66 	if (xfs_has_nouuid(mp))
67 		return 0;
68 
69 	if (uuid_is_null(uuid)) {
70 		xfs_warn(mp, "Filesystem has null UUID - can't mount");
71 		return -EINVAL;
72 	}
73 
74 	mutex_lock(&xfs_uuid_table_mutex);
75 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
76 		if (uuid_is_null(&xfs_uuid_table[i])) {
77 			hole = i;
78 			continue;
79 		}
80 		if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 			goto out_duplicate;
82 	}
83 
84 	if (hole < 0) {
85 		xfs_uuid_table = krealloc(xfs_uuid_table,
86 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
87 			GFP_KERNEL | __GFP_NOFAIL);
88 		hole = xfs_uuid_table_size++;
89 	}
90 	xfs_uuid_table[hole] = *uuid;
91 	mutex_unlock(&xfs_uuid_table_mutex);
92 
93 	return 0;
94 
95  out_duplicate:
96 	mutex_unlock(&xfs_uuid_table_mutex);
97 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
98 	return -EINVAL;
99 }
100 
101 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)102 xfs_uuid_unmount(
103 	struct xfs_mount	*mp)
104 {
105 	uuid_t			*uuid = &mp->m_sb.sb_uuid;
106 	int			i;
107 
108 	if (xfs_has_nouuid(mp))
109 		return;
110 
111 	mutex_lock(&xfs_uuid_table_mutex);
112 	for (i = 0; i < xfs_uuid_table_size; i++) {
113 		if (uuid_is_null(&xfs_uuid_table[i]))
114 			continue;
115 		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 			continue;
117 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 		break;
119 	}
120 	ASSERT(i < xfs_uuid_table_size);
121 	mutex_unlock(&xfs_uuid_table_mutex);
122 }
123 
124 /*
125  * Check size of device based on the (data/realtime) block count.
126  * Note: this check is used by the growfs code as well as mount.
127  */
128 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)129 xfs_sb_validate_fsb_count(
130 	xfs_sb_t	*sbp,
131 	uint64_t	nblocks)
132 {
133 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 	ASSERT(sbp->sb_blocklog >= BBSHIFT);
135 
136 	/* Limited by ULONG_MAX of page cache index */
137 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
138 		return -EFBIG;
139 	return 0;
140 }
141 
142 /*
143  * xfs_readsb
144  *
145  * Does the initial read of the superblock.
146  */
147 int
xfs_readsb(struct xfs_mount * mp,int flags)148 xfs_readsb(
149 	struct xfs_mount *mp,
150 	int		flags)
151 {
152 	unsigned int	sector_size;
153 	struct xfs_buf	*bp;
154 	struct xfs_sb	*sbp = &mp->m_sb;
155 	int		error;
156 	int		loud = !(flags & XFS_MFSI_QUIET);
157 	const struct xfs_buf_ops *buf_ops;
158 
159 	ASSERT(mp->m_sb_bp == NULL);
160 	ASSERT(mp->m_ddev_targp != NULL);
161 
162 	/*
163 	 * For the initial read, we must guess at the sector
164 	 * size based on the block device.  It's enough to
165 	 * get the sb_sectsize out of the superblock and
166 	 * then reread with the proper length.
167 	 * We don't verify it yet, because it may not be complete.
168 	 */
169 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 	buf_ops = NULL;
171 
172 	/*
173 	 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 	 * around at all times to optimize access to the superblock. Therefore,
175 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 	 * elevated.
177 	 */
178 reread:
179 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
180 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 				      buf_ops);
182 	if (error) {
183 		if (loud)
184 			xfs_warn(mp, "SB validate failed with error %d.", error);
185 		/* bad CRC means corrupted metadata */
186 		if (error == -EFSBADCRC)
187 			error = -EFSCORRUPTED;
188 		return error;
189 	}
190 
191 	/*
192 	 * Initialize the mount structure from the superblock.
193 	 */
194 	xfs_sb_from_disk(sbp, bp->b_addr);
195 
196 	/*
197 	 * If we haven't validated the superblock, do so now before we try
198 	 * to check the sector size and reread the superblock appropriately.
199 	 */
200 	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 		if (loud)
202 			xfs_warn(mp, "Invalid superblock magic number");
203 		error = -EINVAL;
204 		goto release_buf;
205 	}
206 
207 	/*
208 	 * We must be able to do sector-sized and sector-aligned IO.
209 	 */
210 	if (sector_size > sbp->sb_sectsize) {
211 		if (loud)
212 			xfs_warn(mp, "device supports %u byte sectors (not %u)",
213 				sector_size, sbp->sb_sectsize);
214 		error = -ENOSYS;
215 		goto release_buf;
216 	}
217 
218 	if (buf_ops == NULL) {
219 		/*
220 		 * Re-read the superblock so the buffer is correctly sized,
221 		 * and properly verified.
222 		 */
223 		xfs_buf_relse(bp);
224 		sector_size = sbp->sb_sectsize;
225 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
226 		goto reread;
227 	}
228 
229 	mp->m_features |= xfs_sb_version_to_features(sbp);
230 	xfs_reinit_percpu_counters(mp);
231 
232 	/* no need to be quiet anymore, so reset the buf ops */
233 	bp->b_ops = &xfs_sb_buf_ops;
234 
235 	mp->m_sb_bp = bp;
236 	xfs_buf_unlock(bp);
237 	return 0;
238 
239 release_buf:
240 	xfs_buf_relse(bp);
241 	return error;
242 }
243 
244 /*
245  * If the sunit/swidth change would move the precomputed root inode value, we
246  * must reject the ondisk change because repair will stumble over that.
247  * However, we allow the mount to proceed because we never rejected this
248  * combination before.  Returns true to update the sb, false otherwise.
249  */
250 static inline int
xfs_check_new_dalign(struct xfs_mount * mp,int new_dalign,bool * update_sb)251 xfs_check_new_dalign(
252 	struct xfs_mount	*mp,
253 	int			new_dalign,
254 	bool			*update_sb)
255 {
256 	struct xfs_sb		*sbp = &mp->m_sb;
257 	xfs_ino_t		calc_ino;
258 
259 	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261 
262 	if (sbp->sb_rootino == calc_ino) {
263 		*update_sb = true;
264 		return 0;
265 	}
266 
267 	xfs_warn(mp,
268 "Cannot change stripe alignment; would require moving root inode.");
269 
270 	/*
271 	 * XXX: Next time we add a new incompat feature, this should start
272 	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
273 	 * that we're ignoring the administrator's instructions.
274 	 */
275 	xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 	*update_sb = false;
277 	return 0;
278 }
279 
280 /*
281  * If we were provided with new sunit/swidth values as mount options, make sure
282  * that they pass basic alignment and superblock feature checks, and convert
283  * them into the same units (FSB) that everything else expects.  This step
284  * /must/ be done before computing the inode geometry.
285  */
286 STATIC int
xfs_validate_new_dalign(struct xfs_mount * mp)287 xfs_validate_new_dalign(
288 	struct xfs_mount	*mp)
289 {
290 	if (mp->m_dalign == 0)
291 		return 0;
292 
293 	/*
294 	 * If stripe unit and stripe width are not multiples
295 	 * of the fs blocksize turn off alignment.
296 	 */
297 	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 		xfs_warn(mp,
300 	"alignment check failed: sunit/swidth vs. blocksize(%d)",
301 			mp->m_sb.sb_blocksize);
302 		return -EINVAL;
303 	}
304 
305 	/*
306 	 * Convert the stripe unit and width to FSBs.
307 	 */
308 	mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
309 	if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 		xfs_warn(mp,
311 	"alignment check failed: sunit/swidth vs. agsize(%d)",
312 			mp->m_sb.sb_agblocks);
313 		return -EINVAL;
314 	}
315 
316 	if (!mp->m_dalign) {
317 		xfs_warn(mp,
318 	"alignment check failed: sunit(%d) less than bsize(%d)",
319 			mp->m_dalign, mp->m_sb.sb_blocksize);
320 		return -EINVAL;
321 	}
322 
323 	mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
324 
325 	if (!xfs_has_dalign(mp)) {
326 		xfs_warn(mp,
327 "cannot change alignment: superblock does not support data alignment");
328 		return -EINVAL;
329 	}
330 
331 	return 0;
332 }
333 
334 /* Update alignment values based on mount options and sb values. */
335 STATIC int
xfs_update_alignment(struct xfs_mount * mp)336 xfs_update_alignment(
337 	struct xfs_mount	*mp)
338 {
339 	struct xfs_sb		*sbp = &mp->m_sb;
340 
341 	if (mp->m_dalign) {
342 		bool		update_sb;
343 		int		error;
344 
345 		if (sbp->sb_unit == mp->m_dalign &&
346 		    sbp->sb_width == mp->m_swidth)
347 			return 0;
348 
349 		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
350 		if (error || !update_sb)
351 			return error;
352 
353 		sbp->sb_unit = mp->m_dalign;
354 		sbp->sb_width = mp->m_swidth;
355 		mp->m_update_sb = true;
356 	} else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
357 		mp->m_dalign = sbp->sb_unit;
358 		mp->m_swidth = sbp->sb_width;
359 	}
360 
361 	return 0;
362 }
363 
364 /*
365  * precalculate the low space thresholds for dynamic speculative preallocation.
366  */
367 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)368 xfs_set_low_space_thresholds(
369 	struct xfs_mount	*mp)
370 {
371 	uint64_t		dblocks = mp->m_sb.sb_dblocks;
372 	uint64_t		rtexts = mp->m_sb.sb_rextents;
373 	int			i;
374 
375 	do_div(dblocks, 100);
376 	do_div(rtexts, 100);
377 
378 	for (i = 0; i < XFS_LOWSP_MAX; i++) {
379 		mp->m_low_space[i] = dblocks * (i + 1);
380 		mp->m_low_rtexts[i] = rtexts * (i + 1);
381 	}
382 }
383 
384 /*
385  * Check that the data (and log if separate) is an ok size.
386  */
387 STATIC int
xfs_check_sizes(struct xfs_mount * mp)388 xfs_check_sizes(
389 	struct xfs_mount *mp)
390 {
391 	struct xfs_buf	*bp;
392 	xfs_daddr_t	d;
393 	int		error;
394 
395 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
396 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
397 		xfs_warn(mp, "filesystem size mismatch detected");
398 		return -EFBIG;
399 	}
400 	error = xfs_buf_read_uncached(mp->m_ddev_targp,
401 					d - XFS_FSS_TO_BB(mp, 1),
402 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
403 	if (error) {
404 		xfs_warn(mp, "last sector read failed");
405 		return error;
406 	}
407 	xfs_buf_relse(bp);
408 
409 	if (mp->m_logdev_targp == mp->m_ddev_targp)
410 		return 0;
411 
412 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
413 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
414 		xfs_warn(mp, "log size mismatch detected");
415 		return -EFBIG;
416 	}
417 	error = xfs_buf_read_uncached(mp->m_logdev_targp,
418 					d - XFS_FSB_TO_BB(mp, 1),
419 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
420 	if (error) {
421 		xfs_warn(mp, "log device read failed");
422 		return error;
423 	}
424 	xfs_buf_relse(bp);
425 	return 0;
426 }
427 
428 /*
429  * Clear the quotaflags in memory and in the superblock.
430  */
431 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)432 xfs_mount_reset_sbqflags(
433 	struct xfs_mount	*mp)
434 {
435 	mp->m_qflags = 0;
436 
437 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
438 	if (mp->m_sb.sb_qflags == 0)
439 		return 0;
440 	spin_lock(&mp->m_sb_lock);
441 	mp->m_sb.sb_qflags = 0;
442 	spin_unlock(&mp->m_sb_lock);
443 
444 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
445 		return 0;
446 
447 	return xfs_sync_sb(mp, false);
448 }
449 
450 uint64_t
xfs_default_resblks(xfs_mount_t * mp)451 xfs_default_resblks(xfs_mount_t *mp)
452 {
453 	uint64_t resblks;
454 
455 	/*
456 	 * We default to 5% or 8192 fsbs of space reserved, whichever is
457 	 * smaller.  This is intended to cover concurrent allocation
458 	 * transactions when we initially hit enospc. These each require a 4
459 	 * block reservation. Hence by default we cover roughly 2000 concurrent
460 	 * allocation reservations.
461 	 */
462 	resblks = mp->m_sb.sb_dblocks;
463 	do_div(resblks, 20);
464 	resblks = min_t(uint64_t, resblks, 8192);
465 	return resblks;
466 }
467 
468 /* Ensure the summary counts are correct. */
469 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)470 xfs_check_summary_counts(
471 	struct xfs_mount	*mp)
472 {
473 	int			error = 0;
474 
475 	/*
476 	 * The AG0 superblock verifier rejects in-progress filesystems,
477 	 * so we should never see the flag set this far into mounting.
478 	 */
479 	if (mp->m_sb.sb_inprogress) {
480 		xfs_err(mp, "sb_inprogress set after log recovery??");
481 		WARN_ON(1);
482 		return -EFSCORRUPTED;
483 	}
484 
485 	/*
486 	 * Now the log is mounted, we know if it was an unclean shutdown or
487 	 * not. If it was, with the first phase of recovery has completed, we
488 	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
489 	 * but they are recovered transactionally in the second recovery phase
490 	 * later.
491 	 *
492 	 * If the log was clean when we mounted, we can check the summary
493 	 * counters.  If any of them are obviously incorrect, we can recompute
494 	 * them from the AGF headers in the next step.
495 	 */
496 	if (xfs_is_clean(mp) &&
497 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
498 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
499 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
500 		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
501 
502 	/*
503 	 * We can safely re-initialise incore superblock counters from the
504 	 * per-ag data. These may not be correct if the filesystem was not
505 	 * cleanly unmounted, so we waited for recovery to finish before doing
506 	 * this.
507 	 *
508 	 * If the filesystem was cleanly unmounted or the previous check did
509 	 * not flag anything weird, then we can trust the values in the
510 	 * superblock to be correct and we don't need to do anything here.
511 	 * Otherwise, recalculate the summary counters.
512 	 */
513 	if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
514 	    xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
515 		error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 		if (error)
517 			return error;
518 	}
519 
520 	/*
521 	 * Older kernels misused sb_frextents to reflect both incore
522 	 * reservations made by running transactions and the actual count of
523 	 * free rt extents in the ondisk metadata.  Transactions committed
524 	 * during runtime can therefore contain a superblock update that
525 	 * undercounts the number of free rt extents tracked in the rt bitmap.
526 	 * A clean unmount record will have the correct frextents value since
527 	 * there can be no other transactions running at that point.
528 	 *
529 	 * If we're mounting the rt volume after recovering the log, recompute
530 	 * frextents from the rtbitmap file to fix the inconsistency.
531 	 */
532 	if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
533 		error = xfs_rtalloc_reinit_frextents(mp);
534 		if (error)
535 			return error;
536 	}
537 
538 	return 0;
539 }
540 
541 /*
542  * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
543  * internal inode structures can be sitting in the CIL and AIL at this point,
544  * so we need to unpin them, write them back and/or reclaim them before unmount
545  * can proceed.  In other words, callers are required to have inactivated all
546  * inodes.
547  *
548  * An inode cluster that has been freed can have its buffer still pinned in
549  * memory because the transaction is still sitting in a iclog. The stale inodes
550  * on that buffer will be pinned to the buffer until the transaction hits the
551  * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
552  * may never see the pinned buffer, so nothing will push out the iclog and
553  * unpin the buffer.
554  *
555  * Hence we need to force the log to unpin everything first. However, log
556  * forces don't wait for the discards they issue to complete, so we have to
557  * explicitly wait for them to complete here as well.
558  *
559  * Then we can tell the world we are unmounting so that error handling knows
560  * that the filesystem is going away and we should error out anything that we
561  * have been retrying in the background.  This will prevent never-ending
562  * retries in AIL pushing from hanging the unmount.
563  *
564  * Finally, we can push the AIL to clean all the remaining dirty objects, then
565  * reclaim the remaining inodes that are still in memory at this point in time.
566  */
567 static void
xfs_unmount_flush_inodes(struct xfs_mount * mp)568 xfs_unmount_flush_inodes(
569 	struct xfs_mount	*mp)
570 {
571 	xfs_log_force(mp, XFS_LOG_SYNC);
572 	xfs_extent_busy_wait_all(mp);
573 	flush_workqueue(xfs_discard_wq);
574 
575 	set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
576 
577 	xfs_ail_push_all_sync(mp->m_ail);
578 	xfs_inodegc_stop(mp);
579 	cancel_delayed_work_sync(&mp->m_reclaim_work);
580 	xfs_reclaim_inodes(mp);
581 	xfs_health_unmount(mp);
582 }
583 
584 static void
xfs_mount_setup_inode_geom(struct xfs_mount * mp)585 xfs_mount_setup_inode_geom(
586 	struct xfs_mount	*mp)
587 {
588 	struct xfs_ino_geometry *igeo = M_IGEO(mp);
589 
590 	igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
591 	ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
592 
593 	xfs_ialloc_setup_geometry(mp);
594 }
595 
596 /* Compute maximum possible height for per-AG btree types for this fs. */
597 static inline void
xfs_agbtree_compute_maxlevels(struct xfs_mount * mp)598 xfs_agbtree_compute_maxlevels(
599 	struct xfs_mount	*mp)
600 {
601 	unsigned int		levels;
602 
603 	levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
604 	levels = max(levels, mp->m_rmap_maxlevels);
605 	mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
606 }
607 
608 /*
609  * This function does the following on an initial mount of a file system:
610  *	- reads the superblock from disk and init the mount struct
611  *	- if we're a 32-bit kernel, do a size check on the superblock
612  *		so we don't mount terabyte filesystems
613  *	- init mount struct realtime fields
614  *	- allocate inode hash table for fs
615  *	- init directory manager
616  *	- perform recovery and init the log manager
617  */
618 int
xfs_mountfs(struct xfs_mount * mp)619 xfs_mountfs(
620 	struct xfs_mount	*mp)
621 {
622 	struct xfs_sb		*sbp = &(mp->m_sb);
623 	struct xfs_inode	*rip;
624 	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
625 	uint64_t		resblks;
626 	uint			quotamount = 0;
627 	uint			quotaflags = 0;
628 	int			error = 0;
629 
630 	xfs_sb_mount_common(mp, sbp);
631 
632 	/*
633 	 * Check for a mismatched features2 values.  Older kernels read & wrote
634 	 * into the wrong sb offset for sb_features2 on some platforms due to
635 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
636 	 * which made older superblock reading/writing routines swap it as a
637 	 * 64-bit value.
638 	 *
639 	 * For backwards compatibility, we make both slots equal.
640 	 *
641 	 * If we detect a mismatched field, we OR the set bits into the existing
642 	 * features2 field in case it has already been modified; we don't want
643 	 * to lose any features.  We then update the bad location with the ORed
644 	 * value so that older kernels will see any features2 flags. The
645 	 * superblock writeback code ensures the new sb_features2 is copied to
646 	 * sb_bad_features2 before it is logged or written to disk.
647 	 */
648 	if (xfs_sb_has_mismatched_features2(sbp)) {
649 		xfs_warn(mp, "correcting sb_features alignment problem");
650 		sbp->sb_features2 |= sbp->sb_bad_features2;
651 		mp->m_update_sb = true;
652 	}
653 
654 
655 	/* always use v2 inodes by default now */
656 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
657 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
658 		mp->m_features |= XFS_FEAT_NLINK;
659 		mp->m_update_sb = true;
660 	}
661 
662 	/*
663 	 * If we were given new sunit/swidth options, do some basic validation
664 	 * checks and convert the incore dalign and swidth values to the
665 	 * same units (FSB) that everything else uses.  This /must/ happen
666 	 * before computing the inode geometry.
667 	 */
668 	error = xfs_validate_new_dalign(mp);
669 	if (error)
670 		goto out;
671 
672 	xfs_alloc_compute_maxlevels(mp);
673 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
674 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
675 	xfs_mount_setup_inode_geom(mp);
676 	xfs_rmapbt_compute_maxlevels(mp);
677 	xfs_refcountbt_compute_maxlevels(mp);
678 
679 	xfs_agbtree_compute_maxlevels(mp);
680 
681 	/*
682 	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
683 	 * is NOT aligned turn off m_dalign since allocator alignment is within
684 	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
685 	 * we must compute the free space and rmap btree geometry before doing
686 	 * this.
687 	 */
688 	error = xfs_update_alignment(mp);
689 	if (error)
690 		goto out;
691 
692 	/* enable fail_at_unmount as default */
693 	mp->m_fail_unmount = true;
694 
695 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
696 			       NULL, mp->m_super->s_id);
697 	if (error)
698 		goto out;
699 
700 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
701 			       &mp->m_kobj, "stats");
702 	if (error)
703 		goto out_remove_sysfs;
704 
705 	error = xfs_error_sysfs_init(mp);
706 	if (error)
707 		goto out_del_stats;
708 
709 	error = xfs_errortag_init(mp);
710 	if (error)
711 		goto out_remove_error_sysfs;
712 
713 	error = xfs_uuid_mount(mp);
714 	if (error)
715 		goto out_remove_errortag;
716 
717 	/*
718 	 * Update the preferred write size based on the information from the
719 	 * on-disk superblock.
720 	 */
721 	mp->m_allocsize_log =
722 		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
723 	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
724 
725 	/* set the low space thresholds for dynamic preallocation */
726 	xfs_set_low_space_thresholds(mp);
727 
728 	/*
729 	 * If enabled, sparse inode chunk alignment is expected to match the
730 	 * cluster size. Full inode chunk alignment must match the chunk size,
731 	 * but that is checked on sb read verification...
732 	 */
733 	if (xfs_has_sparseinodes(mp) &&
734 	    mp->m_sb.sb_spino_align !=
735 			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
736 		xfs_warn(mp,
737 	"Sparse inode block alignment (%u) must match cluster size (%llu).",
738 			 mp->m_sb.sb_spino_align,
739 			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
740 		error = -EINVAL;
741 		goto out_remove_uuid;
742 	}
743 
744 	/*
745 	 * Check that the data (and log if separate) is an ok size.
746 	 */
747 	error = xfs_check_sizes(mp);
748 	if (error)
749 		goto out_remove_uuid;
750 
751 	/*
752 	 * Initialize realtime fields in the mount structure
753 	 */
754 	error = xfs_rtmount_init(mp);
755 	if (error) {
756 		xfs_warn(mp, "RT mount failed");
757 		goto out_remove_uuid;
758 	}
759 
760 	/*
761 	 *  Copies the low order bits of the timestamp and the randomly
762 	 *  set "sequence" number out of a UUID.
763 	 */
764 	mp->m_fixedfsid[0] =
765 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
766 		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
767 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
768 
769 	error = xfs_da_mount(mp);
770 	if (error) {
771 		xfs_warn(mp, "Failed dir/attr init: %d", error);
772 		goto out_remove_uuid;
773 	}
774 
775 	/*
776 	 * Initialize the precomputed transaction reservations values.
777 	 */
778 	xfs_trans_init(mp);
779 
780 	/*
781 	 * Allocate and initialize the per-ag data.
782 	 */
783 	error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
784 			&mp->m_maxagi);
785 	if (error) {
786 		xfs_warn(mp, "Failed per-ag init: %d", error);
787 		goto out_free_dir;
788 	}
789 
790 	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
791 		xfs_warn(mp, "no log defined");
792 		error = -EFSCORRUPTED;
793 		goto out_free_perag;
794 	}
795 
796 	error = xfs_inodegc_register_shrinker(mp);
797 	if (error)
798 		goto out_fail_wait;
799 
800 	/*
801 	 * Log's mount-time initialization. The first part of recovery can place
802 	 * some items on the AIL, to be handled when recovery is finished or
803 	 * cancelled.
804 	 */
805 	error = xfs_log_mount(mp, mp->m_logdev_targp,
806 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
807 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
808 	if (error) {
809 		xfs_warn(mp, "log mount failed");
810 		goto out_inodegc_shrinker;
811 	}
812 
813 	/* Enable background inode inactivation workers. */
814 	xfs_inodegc_start(mp);
815 	xfs_blockgc_start(mp);
816 
817 	/*
818 	 * Now that we've recovered any pending superblock feature bit
819 	 * additions, we can finish setting up the attr2 behaviour for the
820 	 * mount. The noattr2 option overrides the superblock flag, so only
821 	 * check the superblock feature flag if the mount option is not set.
822 	 */
823 	if (xfs_has_noattr2(mp)) {
824 		mp->m_features &= ~XFS_FEAT_ATTR2;
825 	} else if (!xfs_has_attr2(mp) &&
826 		   (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
827 		mp->m_features |= XFS_FEAT_ATTR2;
828 	}
829 
830 	/*
831 	 * Get and sanity-check the root inode.
832 	 * Save the pointer to it in the mount structure.
833 	 */
834 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
835 			 XFS_ILOCK_EXCL, &rip);
836 	if (error) {
837 		xfs_warn(mp,
838 			"Failed to read root inode 0x%llx, error %d",
839 			sbp->sb_rootino, -error);
840 		goto out_log_dealloc;
841 	}
842 
843 	ASSERT(rip != NULL);
844 
845 	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
846 		xfs_warn(mp, "corrupted root inode %llu: not a directory",
847 			(unsigned long long)rip->i_ino);
848 		xfs_iunlock(rip, XFS_ILOCK_EXCL);
849 		error = -EFSCORRUPTED;
850 		goto out_rele_rip;
851 	}
852 	mp->m_rootip = rip;	/* save it */
853 
854 	xfs_iunlock(rip, XFS_ILOCK_EXCL);
855 
856 	/*
857 	 * Initialize realtime inode pointers in the mount structure
858 	 */
859 	error = xfs_rtmount_inodes(mp);
860 	if (error) {
861 		/*
862 		 * Free up the root inode.
863 		 */
864 		xfs_warn(mp, "failed to read RT inodes");
865 		goto out_rele_rip;
866 	}
867 
868 	/* Make sure the summary counts are ok. */
869 	error = xfs_check_summary_counts(mp);
870 	if (error)
871 		goto out_rtunmount;
872 
873 	/*
874 	 * If this is a read-only mount defer the superblock updates until
875 	 * the next remount into writeable mode.  Otherwise we would never
876 	 * perform the update e.g. for the root filesystem.
877 	 */
878 	if (mp->m_update_sb && !xfs_is_readonly(mp)) {
879 		error = xfs_sync_sb(mp, false);
880 		if (error) {
881 			xfs_warn(mp, "failed to write sb changes");
882 			goto out_rtunmount;
883 		}
884 	}
885 
886 	/*
887 	 * Initialise the XFS quota management subsystem for this mount
888 	 */
889 	if (XFS_IS_QUOTA_ON(mp)) {
890 		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
891 		if (error)
892 			goto out_rtunmount;
893 	} else {
894 		/*
895 		 * If a file system had quotas running earlier, but decided to
896 		 * mount without -o uquota/pquota/gquota options, revoke the
897 		 * quotachecked license.
898 		 */
899 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
900 			xfs_notice(mp, "resetting quota flags");
901 			error = xfs_mount_reset_sbqflags(mp);
902 			if (error)
903 				goto out_rtunmount;
904 		}
905 	}
906 
907 	/*
908 	 * Finish recovering the file system.  This part needed to be delayed
909 	 * until after the root and real-time bitmap inodes were consistently
910 	 * read in.  Temporarily create per-AG space reservations for metadata
911 	 * btree shape changes because space freeing transactions (for inode
912 	 * inactivation) require the per-AG reservation in lieu of reserving
913 	 * blocks.
914 	 */
915 	error = xfs_fs_reserve_ag_blocks(mp);
916 	if (error && error == -ENOSPC)
917 		xfs_warn(mp,
918 	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
919 	error = xfs_log_mount_finish(mp);
920 	xfs_fs_unreserve_ag_blocks(mp);
921 	if (error) {
922 		xfs_warn(mp, "log mount finish failed");
923 		goto out_rtunmount;
924 	}
925 
926 	/*
927 	 * Now the log is fully replayed, we can transition to full read-only
928 	 * mode for read-only mounts. This will sync all the metadata and clean
929 	 * the log so that the recovery we just performed does not have to be
930 	 * replayed again on the next mount.
931 	 *
932 	 * We use the same quiesce mechanism as the rw->ro remount, as they are
933 	 * semantically identical operations.
934 	 */
935 	if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
936 		xfs_log_clean(mp);
937 
938 	/*
939 	 * Complete the quota initialisation, post-log-replay component.
940 	 */
941 	if (quotamount) {
942 		ASSERT(mp->m_qflags == 0);
943 		mp->m_qflags = quotaflags;
944 
945 		xfs_qm_mount_quotas(mp);
946 	}
947 
948 	/*
949 	 * Now we are mounted, reserve a small amount of unused space for
950 	 * privileged transactions. This is needed so that transaction
951 	 * space required for critical operations can dip into this pool
952 	 * when at ENOSPC. This is needed for operations like create with
953 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
954 	 * are not allowed to use this reserved space.
955 	 *
956 	 * This may drive us straight to ENOSPC on mount, but that implies
957 	 * we were already there on the last unmount. Warn if this occurs.
958 	 */
959 	if (!xfs_is_readonly(mp)) {
960 		resblks = xfs_default_resblks(mp);
961 		error = xfs_reserve_blocks(mp, &resblks, NULL);
962 		if (error)
963 			xfs_warn(mp,
964 	"Unable to allocate reserve blocks. Continuing without reserve pool.");
965 
966 		/* Reserve AG blocks for future btree expansion. */
967 		error = xfs_fs_reserve_ag_blocks(mp);
968 		if (error && error != -ENOSPC)
969 			goto out_agresv;
970 	}
971 
972 	return 0;
973 
974  out_agresv:
975 	xfs_fs_unreserve_ag_blocks(mp);
976 	xfs_qm_unmount_quotas(mp);
977  out_rtunmount:
978 	xfs_rtunmount_inodes(mp);
979  out_rele_rip:
980 	xfs_irele(rip);
981 	/* Clean out dquots that might be in memory after quotacheck. */
982 	xfs_qm_unmount(mp);
983 
984 	/*
985 	 * Inactivate all inodes that might still be in memory after a log
986 	 * intent recovery failure so that reclaim can free them.  Metadata
987 	 * inodes and the root directory shouldn't need inactivation, but the
988 	 * mount failed for some reason, so pull down all the state and flee.
989 	 */
990 	xfs_inodegc_flush(mp);
991 
992 	/*
993 	 * Flush all inode reclamation work and flush the log.
994 	 * We have to do this /after/ rtunmount and qm_unmount because those
995 	 * two will have scheduled delayed reclaim for the rt/quota inodes.
996 	 *
997 	 * This is slightly different from the unmountfs call sequence
998 	 * because we could be tearing down a partially set up mount.  In
999 	 * particular, if log_mount_finish fails we bail out without calling
1000 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1001 	 * quota inodes.
1002 	 */
1003 	xfs_unmount_flush_inodes(mp);
1004  out_log_dealloc:
1005 	xfs_log_mount_cancel(mp);
1006  out_inodegc_shrinker:
1007 	unregister_shrinker(&mp->m_inodegc_shrinker);
1008  out_fail_wait:
1009 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1010 		xfs_buftarg_drain(mp->m_logdev_targp);
1011 	xfs_buftarg_drain(mp->m_ddev_targp);
1012  out_free_perag:
1013 	xfs_free_perag(mp);
1014  out_free_dir:
1015 	xfs_da_unmount(mp);
1016  out_remove_uuid:
1017 	xfs_uuid_unmount(mp);
1018  out_remove_errortag:
1019 	xfs_errortag_del(mp);
1020  out_remove_error_sysfs:
1021 	xfs_error_sysfs_del(mp);
1022  out_del_stats:
1023 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1024  out_remove_sysfs:
1025 	xfs_sysfs_del(&mp->m_kobj);
1026  out:
1027 	return error;
1028 }
1029 
1030 /*
1031  * This flushes out the inodes,dquots and the superblock, unmounts the
1032  * log and makes sure that incore structures are freed.
1033  */
1034 void
xfs_unmountfs(struct xfs_mount * mp)1035 xfs_unmountfs(
1036 	struct xfs_mount	*mp)
1037 {
1038 	uint64_t		resblks;
1039 	int			error;
1040 
1041 	/*
1042 	 * Perform all on-disk metadata updates required to inactivate inodes
1043 	 * that the VFS evicted earlier in the unmount process.  Freeing inodes
1044 	 * and discarding CoW fork preallocations can cause shape changes to
1045 	 * the free inode and refcount btrees, respectively, so we must finish
1046 	 * this before we discard the metadata space reservations.  Metadata
1047 	 * inodes and the root directory do not require inactivation.
1048 	 */
1049 	xfs_inodegc_flush(mp);
1050 
1051 	xfs_blockgc_stop(mp);
1052 	xfs_fs_unreserve_ag_blocks(mp);
1053 	xfs_qm_unmount_quotas(mp);
1054 	xfs_rtunmount_inodes(mp);
1055 	xfs_irele(mp->m_rootip);
1056 
1057 	xfs_unmount_flush_inodes(mp);
1058 
1059 	xfs_qm_unmount(mp);
1060 
1061 	/*
1062 	 * Unreserve any blocks we have so that when we unmount we don't account
1063 	 * the reserved free space as used. This is really only necessary for
1064 	 * lazy superblock counting because it trusts the incore superblock
1065 	 * counters to be absolutely correct on clean unmount.
1066 	 *
1067 	 * We don't bother correcting this elsewhere for lazy superblock
1068 	 * counting because on mount of an unclean filesystem we reconstruct the
1069 	 * correct counter value and this is irrelevant.
1070 	 *
1071 	 * For non-lazy counter filesystems, this doesn't matter at all because
1072 	 * we only every apply deltas to the superblock and hence the incore
1073 	 * value does not matter....
1074 	 */
1075 	resblks = 0;
1076 	error = xfs_reserve_blocks(mp, &resblks, NULL);
1077 	if (error)
1078 		xfs_warn(mp, "Unable to free reserved block pool. "
1079 				"Freespace may not be correct on next mount.");
1080 
1081 	xfs_log_unmount(mp);
1082 	xfs_da_unmount(mp);
1083 	xfs_uuid_unmount(mp);
1084 
1085 #if defined(DEBUG)
1086 	xfs_errortag_clearall(mp);
1087 #endif
1088 	unregister_shrinker(&mp->m_inodegc_shrinker);
1089 	xfs_free_perag(mp);
1090 
1091 	xfs_errortag_del(mp);
1092 	xfs_error_sysfs_del(mp);
1093 	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1094 	xfs_sysfs_del(&mp->m_kobj);
1095 }
1096 
1097 /*
1098  * Determine whether modifications can proceed. The caller specifies the minimum
1099  * freeze level for which modifications should not be allowed. This allows
1100  * certain operations to proceed while the freeze sequence is in progress, if
1101  * necessary.
1102  */
1103 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1104 xfs_fs_writable(
1105 	struct xfs_mount	*mp,
1106 	int			level)
1107 {
1108 	ASSERT(level > SB_UNFROZEN);
1109 	if ((mp->m_super->s_writers.frozen >= level) ||
1110 	    xfs_is_shutdown(mp) || xfs_is_readonly(mp))
1111 		return false;
1112 
1113 	return true;
1114 }
1115 
1116 /* Adjust m_fdblocks or m_frextents. */
1117 int
xfs_mod_freecounter(struct xfs_mount * mp,struct percpu_counter * counter,int64_t delta,bool rsvd)1118 xfs_mod_freecounter(
1119 	struct xfs_mount	*mp,
1120 	struct percpu_counter	*counter,
1121 	int64_t			delta,
1122 	bool			rsvd)
1123 {
1124 	int64_t			lcounter;
1125 	long long		res_used;
1126 	uint64_t		set_aside = 0;
1127 	s32			batch;
1128 	bool			has_resv_pool;
1129 
1130 	ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1131 	has_resv_pool = (counter == &mp->m_fdblocks);
1132 	if (rsvd)
1133 		ASSERT(has_resv_pool);
1134 
1135 	if (delta > 0) {
1136 		/*
1137 		 * If the reserve pool is depleted, put blocks back into it
1138 		 * first. Most of the time the pool is full.
1139 		 */
1140 		if (likely(!has_resv_pool ||
1141 			   mp->m_resblks == mp->m_resblks_avail)) {
1142 			percpu_counter_add(counter, delta);
1143 			return 0;
1144 		}
1145 
1146 		spin_lock(&mp->m_sb_lock);
1147 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1148 
1149 		if (res_used > delta) {
1150 			mp->m_resblks_avail += delta;
1151 		} else {
1152 			delta -= res_used;
1153 			mp->m_resblks_avail = mp->m_resblks;
1154 			percpu_counter_add(counter, delta);
1155 		}
1156 		spin_unlock(&mp->m_sb_lock);
1157 		return 0;
1158 	}
1159 
1160 	/*
1161 	 * Taking blocks away, need to be more accurate the closer we
1162 	 * are to zero.
1163 	 *
1164 	 * If the counter has a value of less than 2 * max batch size,
1165 	 * then make everything serialise as we are real close to
1166 	 * ENOSPC.
1167 	 */
1168 	if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
1169 				     XFS_FDBLOCKS_BATCH) < 0)
1170 		batch = 1;
1171 	else
1172 		batch = XFS_FDBLOCKS_BATCH;
1173 
1174 	/*
1175 	 * Set aside allocbt blocks because these blocks are tracked as free
1176 	 * space but not available for allocation. Technically this means that a
1177 	 * single reservation cannot consume all remaining free space, but the
1178 	 * ratio of allocbt blocks to usable free blocks should be rather small.
1179 	 * The tradeoff without this is that filesystems that maintain high
1180 	 * perag block reservations can over reserve physical block availability
1181 	 * and fail physical allocation, which leads to much more serious
1182 	 * problems (i.e. transaction abort, pagecache discards, etc.) than
1183 	 * slightly premature -ENOSPC.
1184 	 */
1185 	if (has_resv_pool)
1186 		set_aside = xfs_fdblocks_unavailable(mp);
1187 	percpu_counter_add_batch(counter, delta, batch);
1188 	if (__percpu_counter_compare(counter, set_aside,
1189 				     XFS_FDBLOCKS_BATCH) >= 0) {
1190 		/* we had space! */
1191 		return 0;
1192 	}
1193 
1194 	/*
1195 	 * lock up the sb for dipping into reserves before releasing the space
1196 	 * that took us to ENOSPC.
1197 	 */
1198 	spin_lock(&mp->m_sb_lock);
1199 	percpu_counter_add(counter, -delta);
1200 	if (!has_resv_pool || !rsvd)
1201 		goto fdblocks_enospc;
1202 
1203 	lcounter = (long long)mp->m_resblks_avail + delta;
1204 	if (lcounter >= 0) {
1205 		mp->m_resblks_avail = lcounter;
1206 		spin_unlock(&mp->m_sb_lock);
1207 		return 0;
1208 	}
1209 	xfs_warn_once(mp,
1210 "Reserve blocks depleted! Consider increasing reserve pool size.");
1211 
1212 fdblocks_enospc:
1213 	spin_unlock(&mp->m_sb_lock);
1214 	return -ENOSPC;
1215 }
1216 
1217 /*
1218  * Used to free the superblock along various error paths.
1219  */
1220 void
xfs_freesb(struct xfs_mount * mp)1221 xfs_freesb(
1222 	struct xfs_mount	*mp)
1223 {
1224 	struct xfs_buf		*bp = mp->m_sb_bp;
1225 
1226 	xfs_buf_lock(bp);
1227 	mp->m_sb_bp = NULL;
1228 	xfs_buf_relse(bp);
1229 }
1230 
1231 /*
1232  * If the underlying (data/log/rt) device is readonly, there are some
1233  * operations that cannot proceed.
1234  */
1235 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1236 xfs_dev_is_read_only(
1237 	struct xfs_mount	*mp,
1238 	char			*message)
1239 {
1240 	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1241 	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1242 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1243 		xfs_notice(mp, "%s required on read-only device.", message);
1244 		xfs_notice(mp, "write access unavailable, cannot proceed.");
1245 		return -EROFS;
1246 	}
1247 	return 0;
1248 }
1249 
1250 /* Force the summary counters to be recalculated at next mount. */
1251 void
xfs_force_summary_recalc(struct xfs_mount * mp)1252 xfs_force_summary_recalc(
1253 	struct xfs_mount	*mp)
1254 {
1255 	if (!xfs_has_lazysbcount(mp))
1256 		return;
1257 
1258 	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1259 }
1260 
1261 /*
1262  * Enable a log incompat feature flag in the primary superblock.  The caller
1263  * cannot have any other transactions in progress.
1264  */
1265 int
xfs_add_incompat_log_feature(struct xfs_mount * mp,uint32_t feature)1266 xfs_add_incompat_log_feature(
1267 	struct xfs_mount	*mp,
1268 	uint32_t		feature)
1269 {
1270 	struct xfs_dsb		*dsb;
1271 	int			error;
1272 
1273 	ASSERT(hweight32(feature) == 1);
1274 	ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1275 
1276 	/*
1277 	 * Force the log to disk and kick the background AIL thread to reduce
1278 	 * the chances that the bwrite will stall waiting for the AIL to unpin
1279 	 * the primary superblock buffer.  This isn't a data integrity
1280 	 * operation, so we don't need a synchronous push.
1281 	 */
1282 	error = xfs_log_force(mp, XFS_LOG_SYNC);
1283 	if (error)
1284 		return error;
1285 	xfs_ail_push_all(mp->m_ail);
1286 
1287 	/*
1288 	 * Lock the primary superblock buffer to serialize all callers that
1289 	 * are trying to set feature bits.
1290 	 */
1291 	xfs_buf_lock(mp->m_sb_bp);
1292 	xfs_buf_hold(mp->m_sb_bp);
1293 
1294 	if (xfs_is_shutdown(mp)) {
1295 		error = -EIO;
1296 		goto rele;
1297 	}
1298 
1299 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1300 		goto rele;
1301 
1302 	/*
1303 	 * Write the primary superblock to disk immediately, because we need
1304 	 * the log_incompat bit to be set in the primary super now to protect
1305 	 * the log items that we're going to commit later.
1306 	 */
1307 	dsb = mp->m_sb_bp->b_addr;
1308 	xfs_sb_to_disk(dsb, &mp->m_sb);
1309 	dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1310 	error = xfs_bwrite(mp->m_sb_bp);
1311 	if (error)
1312 		goto shutdown;
1313 
1314 	/*
1315 	 * Add the feature bits to the incore superblock before we unlock the
1316 	 * buffer.
1317 	 */
1318 	xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1319 	xfs_buf_relse(mp->m_sb_bp);
1320 
1321 	/* Log the superblock to disk. */
1322 	return xfs_sync_sb(mp, false);
1323 shutdown:
1324 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1325 rele:
1326 	xfs_buf_relse(mp->m_sb_bp);
1327 	return error;
1328 }
1329 
1330 /*
1331  * Clear all the log incompat flags from the superblock.
1332  *
1333  * The caller cannot be in a transaction, must ensure that the log does not
1334  * contain any log items protected by any log incompat bit, and must ensure
1335  * that there are no other threads that depend on the state of the log incompat
1336  * feature flags in the primary super.
1337  *
1338  * Returns true if the superblock is dirty.
1339  */
1340 bool
xfs_clear_incompat_log_features(struct xfs_mount * mp)1341 xfs_clear_incompat_log_features(
1342 	struct xfs_mount	*mp)
1343 {
1344 	bool			ret = false;
1345 
1346 	if (!xfs_has_crc(mp) ||
1347 	    !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1348 				XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
1349 	    xfs_is_shutdown(mp))
1350 		return false;
1351 
1352 	/*
1353 	 * Update the incore superblock.  We synchronize on the primary super
1354 	 * buffer lock to be consistent with the add function, though at least
1355 	 * in theory this shouldn't be necessary.
1356 	 */
1357 	xfs_buf_lock(mp->m_sb_bp);
1358 	xfs_buf_hold(mp->m_sb_bp);
1359 
1360 	if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1361 				XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1362 		xfs_sb_remove_incompat_log_features(&mp->m_sb);
1363 		ret = true;
1364 	}
1365 
1366 	xfs_buf_relse(mp->m_sb_bp);
1367 	return ret;
1368 }
1369 
1370 /*
1371  * Update the in-core delayed block counter.
1372  *
1373  * We prefer to update the counter without having to take a spinlock for every
1374  * counter update (i.e. batching).  Each change to delayed allocation
1375  * reservations can change can easily exceed the default percpu counter
1376  * batching, so we use a larger batch factor here.
1377  *
1378  * Note that we don't currently have any callers requiring fast summation
1379  * (e.g. percpu_counter_read) so we can use a big batch value here.
1380  */
1381 #define XFS_DELALLOC_BATCH	(4096)
1382 void
xfs_mod_delalloc(struct xfs_mount * mp,int64_t delta)1383 xfs_mod_delalloc(
1384 	struct xfs_mount	*mp,
1385 	int64_t			delta)
1386 {
1387 	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1388 			XFS_DELALLOC_BATCH);
1389 }
1390