1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_types.h"
21 #include "xfs_bit.h"
22 #include "xfs_log.h"
23 #include "xfs_inum.h"
24 #include "xfs_trans.h"
25 #include "xfs_sb.h"
26 #include "xfs_ag.h"
27 #include "xfs_mount.h"
28 #include "xfs_buf_item.h"
29 #include "xfs_trans_priv.h"
30 #include "xfs_error.h"
31 #include "xfs_trace.h"
32 
33 
34 kmem_zone_t	*xfs_buf_item_zone;
35 
BUF_ITEM(struct xfs_log_item * lip)36 static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
37 {
38 	return container_of(lip, struct xfs_buf_log_item, bli_item);
39 }
40 
41 
42 #ifdef XFS_TRANS_DEBUG
43 /*
44  * This function uses an alternate strategy for tracking the bytes
45  * that the user requests to be logged.  This can then be used
46  * in conjunction with the bli_orig array in the buf log item to
47  * catch bugs in our callers' code.
48  *
49  * We also double check the bits set in xfs_buf_item_log using a
50  * simple algorithm to check that every byte is accounted for.
51  */
52 STATIC void
xfs_buf_item_log_debug(xfs_buf_log_item_t * bip,uint first,uint last)53 xfs_buf_item_log_debug(
54 	xfs_buf_log_item_t	*bip,
55 	uint			first,
56 	uint			last)
57 {
58 	uint	x;
59 	uint	byte;
60 	uint	nbytes;
61 	uint	chunk_num;
62 	uint	word_num;
63 	uint	bit_num;
64 	uint	bit_set;
65 	uint	*wordp;
66 
67 	ASSERT(bip->bli_logged != NULL);
68 	byte = first;
69 	nbytes = last - first + 1;
70 	bfset(bip->bli_logged, first, nbytes);
71 	for (x = 0; x < nbytes; x++) {
72 		chunk_num = byte >> XFS_BLF_SHIFT;
73 		word_num = chunk_num >> BIT_TO_WORD_SHIFT;
74 		bit_num = chunk_num & (NBWORD - 1);
75 		wordp = &(bip->bli_format.blf_data_map[word_num]);
76 		bit_set = *wordp & (1 << bit_num);
77 		ASSERT(bit_set);
78 		byte++;
79 	}
80 }
81 
82 /*
83  * This function is called when we flush something into a buffer without
84  * logging it.  This happens for things like inodes which are logged
85  * separately from the buffer.
86  */
87 void
xfs_buf_item_flush_log_debug(xfs_buf_t * bp,uint first,uint last)88 xfs_buf_item_flush_log_debug(
89 	xfs_buf_t	*bp,
90 	uint		first,
91 	uint		last)
92 {
93 	xfs_buf_log_item_t	*bip;
94 	uint			nbytes;
95 
96 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
97 	if ((bip == NULL) || (bip->bli_item.li_type != XFS_LI_BUF)) {
98 		return;
99 	}
100 
101 	ASSERT(bip->bli_logged != NULL);
102 	nbytes = last - first + 1;
103 	bfset(bip->bli_logged, first, nbytes);
104 }
105 
106 /*
107  * This function is called to verify that our callers have logged
108  * all the bytes that they changed.
109  *
110  * It does this by comparing the original copy of the buffer stored in
111  * the buf log item's bli_orig array to the current copy of the buffer
112  * and ensuring that all bytes which mismatch are set in the bli_logged
113  * array of the buf log item.
114  */
115 STATIC void
xfs_buf_item_log_check(xfs_buf_log_item_t * bip)116 xfs_buf_item_log_check(
117 	xfs_buf_log_item_t	*bip)
118 {
119 	char		*orig;
120 	char		*buffer;
121 	int		x;
122 	xfs_buf_t	*bp;
123 
124 	ASSERT(bip->bli_orig != NULL);
125 	ASSERT(bip->bli_logged != NULL);
126 
127 	bp = bip->bli_buf;
128 	ASSERT(XFS_BUF_COUNT(bp) > 0);
129 	ASSERT(XFS_BUF_PTR(bp) != NULL);
130 	orig = bip->bli_orig;
131 	buffer = XFS_BUF_PTR(bp);
132 	for (x = 0; x < XFS_BUF_COUNT(bp); x++) {
133 		if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
134 			xfs_emerg(bp->b_mount,
135 				"%s: bip %x buffer %x orig %x index %d",
136 				__func__, bip, bp, orig, x);
137 			ASSERT(0);
138 		}
139 	}
140 }
141 #else
142 #define		xfs_buf_item_log_debug(x,y,z)
143 #define		xfs_buf_item_log_check(x)
144 #endif
145 
146 STATIC void	xfs_buf_do_callbacks(struct xfs_buf *bp);
147 
148 /*
149  * This returns the number of log iovecs needed to log the
150  * given buf log item.
151  *
152  * It calculates this as 1 iovec for the buf log format structure
153  * and 1 for each stretch of non-contiguous chunks to be logged.
154  * Contiguous chunks are logged in a single iovec.
155  *
156  * If the XFS_BLI_STALE flag has been set, then log nothing.
157  */
158 STATIC uint
xfs_buf_item_size(struct xfs_log_item * lip)159 xfs_buf_item_size(
160 	struct xfs_log_item	*lip)
161 {
162 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
163 	struct xfs_buf		*bp = bip->bli_buf;
164 	uint			nvecs;
165 	int			next_bit;
166 	int			last_bit;
167 
168 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
169 	if (bip->bli_flags & XFS_BLI_STALE) {
170 		/*
171 		 * The buffer is stale, so all we need to log
172 		 * is the buf log format structure with the
173 		 * cancel flag in it.
174 		 */
175 		trace_xfs_buf_item_size_stale(bip);
176 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
177 		return 1;
178 	}
179 
180 	ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
181 	nvecs = 1;
182 	last_bit = xfs_next_bit(bip->bli_format.blf_data_map,
183 					 bip->bli_format.blf_map_size, 0);
184 	ASSERT(last_bit != -1);
185 	nvecs++;
186 	while (last_bit != -1) {
187 		/*
188 		 * This takes the bit number to start looking from and
189 		 * returns the next set bit from there.  It returns -1
190 		 * if there are no more bits set or the start bit is
191 		 * beyond the end of the bitmap.
192 		 */
193 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
194 						 bip->bli_format.blf_map_size,
195 						 last_bit + 1);
196 		/*
197 		 * If we run out of bits, leave the loop,
198 		 * else if we find a new set of bits bump the number of vecs,
199 		 * else keep scanning the current set of bits.
200 		 */
201 		if (next_bit == -1) {
202 			last_bit = -1;
203 		} else if (next_bit != last_bit + 1) {
204 			last_bit = next_bit;
205 			nvecs++;
206 		} else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
207 			   (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
208 			    XFS_BLF_CHUNK)) {
209 			last_bit = next_bit;
210 			nvecs++;
211 		} else {
212 			last_bit++;
213 		}
214 	}
215 
216 	trace_xfs_buf_item_size(bip);
217 	return nvecs;
218 }
219 
220 /*
221  * This is called to fill in the vector of log iovecs for the
222  * given log buf item.  It fills the first entry with a buf log
223  * format structure, and the rest point to contiguous chunks
224  * within the buffer.
225  */
226 STATIC void
xfs_buf_item_format(struct xfs_log_item * lip,struct xfs_log_iovec * vecp)227 xfs_buf_item_format(
228 	struct xfs_log_item	*lip,
229 	struct xfs_log_iovec	*vecp)
230 {
231 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
232 	struct xfs_buf	*bp = bip->bli_buf;
233 	uint		base_size;
234 	uint		nvecs;
235 	int		first_bit;
236 	int		last_bit;
237 	int		next_bit;
238 	uint		nbits;
239 	uint		buffer_offset;
240 
241 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
242 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
243 	       (bip->bli_flags & XFS_BLI_STALE));
244 
245 	/*
246 	 * The size of the base structure is the size of the
247 	 * declared structure plus the space for the extra words
248 	 * of the bitmap.  We subtract one from the map size, because
249 	 * the first element of the bitmap is accounted for in the
250 	 * size of the base structure.
251 	 */
252 	base_size =
253 		(uint)(sizeof(xfs_buf_log_format_t) +
254 		       ((bip->bli_format.blf_map_size - 1) * sizeof(uint)));
255 	vecp->i_addr = &bip->bli_format;
256 	vecp->i_len = base_size;
257 	vecp->i_type = XLOG_REG_TYPE_BFORMAT;
258 	vecp++;
259 	nvecs = 1;
260 
261 	/*
262 	 * If it is an inode buffer, transfer the in-memory state to the
263 	 * format flags and clear the in-memory state. We do not transfer
264 	 * this state if the inode buffer allocation has not yet been committed
265 	 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
266 	 * correct replay of the inode allocation.
267 	 */
268 	if (bip->bli_flags & XFS_BLI_INODE_BUF) {
269 		if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
270 		      xfs_log_item_in_current_chkpt(lip)))
271 			bip->bli_format.blf_flags |= XFS_BLF_INODE_BUF;
272 		bip->bli_flags &= ~XFS_BLI_INODE_BUF;
273 	}
274 
275 	if (bip->bli_flags & XFS_BLI_STALE) {
276 		/*
277 		 * The buffer is stale, so all we need to log
278 		 * is the buf log format structure with the
279 		 * cancel flag in it.
280 		 */
281 		trace_xfs_buf_item_format_stale(bip);
282 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
283 		bip->bli_format.blf_size = nvecs;
284 		return;
285 	}
286 
287 	/*
288 	 * Fill in an iovec for each set of contiguous chunks.
289 	 */
290 	first_bit = xfs_next_bit(bip->bli_format.blf_data_map,
291 					 bip->bli_format.blf_map_size, 0);
292 	ASSERT(first_bit != -1);
293 	last_bit = first_bit;
294 	nbits = 1;
295 	for (;;) {
296 		/*
297 		 * This takes the bit number to start looking from and
298 		 * returns the next set bit from there.  It returns -1
299 		 * if there are no more bits set or the start bit is
300 		 * beyond the end of the bitmap.
301 		 */
302 		next_bit = xfs_next_bit(bip->bli_format.blf_data_map,
303 						 bip->bli_format.blf_map_size,
304 						 (uint)last_bit + 1);
305 		/*
306 		 * If we run out of bits fill in the last iovec and get
307 		 * out of the loop.
308 		 * Else if we start a new set of bits then fill in the
309 		 * iovec for the series we were looking at and start
310 		 * counting the bits in the new one.
311 		 * Else we're still in the same set of bits so just
312 		 * keep counting and scanning.
313 		 */
314 		if (next_bit == -1) {
315 			buffer_offset = first_bit * XFS_BLF_CHUNK;
316 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
317 			vecp->i_len = nbits * XFS_BLF_CHUNK;
318 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
319 			nvecs++;
320 			break;
321 		} else if (next_bit != last_bit + 1) {
322 			buffer_offset = first_bit * XFS_BLF_CHUNK;
323 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
324 			vecp->i_len = nbits * XFS_BLF_CHUNK;
325 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
326 			nvecs++;
327 			vecp++;
328 			first_bit = next_bit;
329 			last_bit = next_bit;
330 			nbits = 1;
331 		} else if (xfs_buf_offset(bp, next_bit << XFS_BLF_SHIFT) !=
332 			   (xfs_buf_offset(bp, last_bit << XFS_BLF_SHIFT) +
333 			    XFS_BLF_CHUNK)) {
334 			buffer_offset = first_bit * XFS_BLF_CHUNK;
335 			vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
336 			vecp->i_len = nbits * XFS_BLF_CHUNK;
337 			vecp->i_type = XLOG_REG_TYPE_BCHUNK;
338 /* You would think we need to bump the nvecs here too, but we do not
339  * this number is used by recovery, and it gets confused by the boundary
340  * split here
341  *			nvecs++;
342  */
343 			vecp++;
344 			first_bit = next_bit;
345 			last_bit = next_bit;
346 			nbits = 1;
347 		} else {
348 			last_bit++;
349 			nbits++;
350 		}
351 	}
352 	bip->bli_format.blf_size = nvecs;
353 
354 	/*
355 	 * Check to make sure everything is consistent.
356 	 */
357 	trace_xfs_buf_item_format(bip);
358 	xfs_buf_item_log_check(bip);
359 }
360 
361 /*
362  * This is called to pin the buffer associated with the buf log item in memory
363  * so it cannot be written out.
364  *
365  * We also always take a reference to the buffer log item here so that the bli
366  * is held while the item is pinned in memory. This means that we can
367  * unconditionally drop the reference count a transaction holds when the
368  * transaction is completed.
369  */
370 STATIC void
xfs_buf_item_pin(struct xfs_log_item * lip)371 xfs_buf_item_pin(
372 	struct xfs_log_item	*lip)
373 {
374 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
375 
376 	ASSERT(XFS_BUF_ISBUSY(bip->bli_buf));
377 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
378 	ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
379 	       (bip->bli_flags & XFS_BLI_STALE));
380 
381 	trace_xfs_buf_item_pin(bip);
382 
383 	atomic_inc(&bip->bli_refcount);
384 	atomic_inc(&bip->bli_buf->b_pin_count);
385 }
386 
387 /*
388  * This is called to unpin the buffer associated with the buf log
389  * item which was previously pinned with a call to xfs_buf_item_pin().
390  *
391  * Also drop the reference to the buf item for the current transaction.
392  * If the XFS_BLI_STALE flag is set and we are the last reference,
393  * then free up the buf log item and unlock the buffer.
394  *
395  * If the remove flag is set we are called from uncommit in the
396  * forced-shutdown path.  If that is true and the reference count on
397  * the log item is going to drop to zero we need to free the item's
398  * descriptor in the transaction.
399  */
400 STATIC void
xfs_buf_item_unpin(struct xfs_log_item * lip,int remove)401 xfs_buf_item_unpin(
402 	struct xfs_log_item	*lip,
403 	int			remove)
404 {
405 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
406 	xfs_buf_t	*bp = bip->bli_buf;
407 	struct xfs_ail	*ailp = lip->li_ailp;
408 	int		stale = bip->bli_flags & XFS_BLI_STALE;
409 	int		freed;
410 
411 	ASSERT(XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *) == bip);
412 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
413 
414 	trace_xfs_buf_item_unpin(bip);
415 
416 	freed = atomic_dec_and_test(&bip->bli_refcount);
417 
418 	if (atomic_dec_and_test(&bp->b_pin_count))
419 		wake_up_all(&bp->b_waiters);
420 
421 	if (freed && stale) {
422 		ASSERT(bip->bli_flags & XFS_BLI_STALE);
423 		ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
424 		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
425 		ASSERT(XFS_BUF_ISSTALE(bp));
426 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
427 
428 		trace_xfs_buf_item_unpin_stale(bip);
429 
430 		if (remove) {
431 			/*
432 			 * If we are in a transaction context, we have to
433 			 * remove the log item from the transaction as we are
434 			 * about to release our reference to the buffer.  If we
435 			 * don't, the unlock that occurs later in
436 			 * xfs_trans_uncommit() will try to reference the
437 			 * buffer which we no longer have a hold on.
438 			 */
439 			if (lip->li_desc)
440 				xfs_trans_del_item(lip);
441 
442 			/*
443 			 * Since the transaction no longer refers to the buffer,
444 			 * the buffer should no longer refer to the transaction.
445 			 */
446 			XFS_BUF_SET_FSPRIVATE2(bp, NULL);
447 		}
448 
449 		/*
450 		 * If we get called here because of an IO error, we may
451 		 * or may not have the item on the AIL. xfs_trans_ail_delete()
452 		 * will take care of that situation.
453 		 * xfs_trans_ail_delete() drops the AIL lock.
454 		 */
455 		if (bip->bli_flags & XFS_BLI_STALE_INODE) {
456 			xfs_buf_do_callbacks(bp);
457 			XFS_BUF_SET_FSPRIVATE(bp, NULL);
458 			XFS_BUF_CLR_IODONE_FUNC(bp);
459 		} else {
460 			spin_lock(&ailp->xa_lock);
461 			xfs_trans_ail_delete(ailp, (xfs_log_item_t *)bip);
462 			xfs_buf_item_relse(bp);
463 			ASSERT(XFS_BUF_FSPRIVATE(bp, void *) == NULL);
464 		}
465 		xfs_buf_relse(bp);
466 	}
467 }
468 
469 /*
470  * This is called to attempt to lock the buffer associated with this
471  * buf log item.  Don't sleep on the buffer lock.  If we can't get
472  * the lock right away, return 0.  If we can get the lock, take a
473  * reference to the buffer. If this is a delayed write buffer that
474  * needs AIL help to be written back, invoke the pushbuf routine
475  * rather than the normal success path.
476  */
477 STATIC uint
xfs_buf_item_trylock(struct xfs_log_item * lip)478 xfs_buf_item_trylock(
479 	struct xfs_log_item	*lip)
480 {
481 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
482 	struct xfs_buf		*bp = bip->bli_buf;
483 
484 	if (XFS_BUF_ISPINNED(bp))
485 		return XFS_ITEM_PINNED;
486 	if (!XFS_BUF_CPSEMA(bp))
487 		return XFS_ITEM_LOCKED;
488 
489 	/* take a reference to the buffer.  */
490 	XFS_BUF_HOLD(bp);
491 
492 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
493 	trace_xfs_buf_item_trylock(bip);
494 	if (XFS_BUF_ISDELAYWRITE(bp))
495 		return XFS_ITEM_PUSHBUF;
496 	return XFS_ITEM_SUCCESS;
497 }
498 
499 /*
500  * Release the buffer associated with the buf log item.  If there is no dirty
501  * logged data associated with the buffer recorded in the buf log item, then
502  * free the buf log item and remove the reference to it in the buffer.
503  *
504  * This call ignores the recursion count.  It is only called when the buffer
505  * should REALLY be unlocked, regardless of the recursion count.
506  *
507  * We unconditionally drop the transaction's reference to the log item. If the
508  * item was logged, then another reference was taken when it was pinned, so we
509  * can safely drop the transaction reference now.  This also allows us to avoid
510  * potential races with the unpin code freeing the bli by not referencing the
511  * bli after we've dropped the reference count.
512  *
513  * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
514  * if necessary but do not unlock the buffer.  This is for support of
515  * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
516  * free the item.
517  */
518 STATIC void
xfs_buf_item_unlock(struct xfs_log_item * lip)519 xfs_buf_item_unlock(
520 	struct xfs_log_item	*lip)
521 {
522 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
523 	struct xfs_buf		*bp = bip->bli_buf;
524 	int			aborted;
525 	uint			hold;
526 
527 	/* Clear the buffer's association with this transaction. */
528 	XFS_BUF_SET_FSPRIVATE2(bp, NULL);
529 
530 	/*
531 	 * If this is a transaction abort, don't return early.  Instead, allow
532 	 * the brelse to happen.  Normally it would be done for stale
533 	 * (cancelled) buffers at unpin time, but we'll never go through the
534 	 * pin/unpin cycle if we abort inside commit.
535 	 */
536 	aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
537 
538 	/*
539 	 * Before possibly freeing the buf item, determine if we should
540 	 * release the buffer at the end of this routine.
541 	 */
542 	hold = bip->bli_flags & XFS_BLI_HOLD;
543 
544 	/* Clear the per transaction state. */
545 	bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
546 
547 	/*
548 	 * If the buf item is marked stale, then don't do anything.  We'll
549 	 * unlock the buffer and free the buf item when the buffer is unpinned
550 	 * for the last time.
551 	 */
552 	if (bip->bli_flags & XFS_BLI_STALE) {
553 		trace_xfs_buf_item_unlock_stale(bip);
554 		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
555 		if (!aborted) {
556 			atomic_dec(&bip->bli_refcount);
557 			return;
558 		}
559 	}
560 
561 	trace_xfs_buf_item_unlock(bip);
562 
563 	/*
564 	 * If the buf item isn't tracking any data, free it, otherwise drop the
565 	 * reference we hold to it.
566 	 */
567 	if (xfs_bitmap_empty(bip->bli_format.blf_data_map,
568 			     bip->bli_format.blf_map_size))
569 		xfs_buf_item_relse(bp);
570 	else
571 		atomic_dec(&bip->bli_refcount);
572 
573 	if (!hold)
574 		xfs_buf_relse(bp);
575 }
576 
577 /*
578  * This is called to find out where the oldest active copy of the
579  * buf log item in the on disk log resides now that the last log
580  * write of it completed at the given lsn.
581  * We always re-log all the dirty data in a buffer, so usually the
582  * latest copy in the on disk log is the only one that matters.  For
583  * those cases we simply return the given lsn.
584  *
585  * The one exception to this is for buffers full of newly allocated
586  * inodes.  These buffers are only relogged with the XFS_BLI_INODE_BUF
587  * flag set, indicating that only the di_next_unlinked fields from the
588  * inodes in the buffers will be replayed during recovery.  If the
589  * original newly allocated inode images have not yet been flushed
590  * when the buffer is so relogged, then we need to make sure that we
591  * keep the old images in the 'active' portion of the log.  We do this
592  * by returning the original lsn of that transaction here rather than
593  * the current one.
594  */
595 STATIC xfs_lsn_t
xfs_buf_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)596 xfs_buf_item_committed(
597 	struct xfs_log_item	*lip,
598 	xfs_lsn_t		lsn)
599 {
600 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
601 
602 	trace_xfs_buf_item_committed(bip);
603 
604 	if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
605 		return lip->li_lsn;
606 	return lsn;
607 }
608 
609 /*
610  * The buffer is locked, but is not a delayed write buffer. This happens
611  * if we race with IO completion and hence we don't want to try to write it
612  * again. Just release the buffer.
613  */
614 STATIC void
xfs_buf_item_push(struct xfs_log_item * lip)615 xfs_buf_item_push(
616 	struct xfs_log_item	*lip)
617 {
618 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
619 	struct xfs_buf		*bp = bip->bli_buf;
620 
621 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
622 	ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
623 
624 	trace_xfs_buf_item_push(bip);
625 
626 	xfs_buf_relse(bp);
627 }
628 
629 /*
630  * The buffer is locked and is a delayed write buffer. Promote the buffer
631  * in the delayed write queue as the caller knows that they must invoke
632  * the xfsbufd to get this buffer written. We have to unlock the buffer
633  * to allow the xfsbufd to write it, too.
634  */
635 STATIC void
xfs_buf_item_pushbuf(struct xfs_log_item * lip)636 xfs_buf_item_pushbuf(
637 	struct xfs_log_item	*lip)
638 {
639 	struct xfs_buf_log_item	*bip = BUF_ITEM(lip);
640 	struct xfs_buf		*bp = bip->bli_buf;
641 
642 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
643 	ASSERT(XFS_BUF_ISDELAYWRITE(bp));
644 
645 	trace_xfs_buf_item_pushbuf(bip);
646 
647 	xfs_buf_delwri_promote(bp);
648 	xfs_buf_relse(bp);
649 }
650 
651 STATIC void
xfs_buf_item_committing(struct xfs_log_item * lip,xfs_lsn_t commit_lsn)652 xfs_buf_item_committing(
653 	struct xfs_log_item	*lip,
654 	xfs_lsn_t		commit_lsn)
655 {
656 }
657 
658 /*
659  * This is the ops vector shared by all buf log items.
660  */
661 static struct xfs_item_ops xfs_buf_item_ops = {
662 	.iop_size	= xfs_buf_item_size,
663 	.iop_format	= xfs_buf_item_format,
664 	.iop_pin	= xfs_buf_item_pin,
665 	.iop_unpin	= xfs_buf_item_unpin,
666 	.iop_trylock	= xfs_buf_item_trylock,
667 	.iop_unlock	= xfs_buf_item_unlock,
668 	.iop_committed	= xfs_buf_item_committed,
669 	.iop_push	= xfs_buf_item_push,
670 	.iop_pushbuf	= xfs_buf_item_pushbuf,
671 	.iop_committing = xfs_buf_item_committing
672 };
673 
674 
675 /*
676  * Allocate a new buf log item to go with the given buffer.
677  * Set the buffer's b_fsprivate field to point to the new
678  * buf log item.  If there are other item's attached to the
679  * buffer (see xfs_buf_attach_iodone() below), then put the
680  * buf log item at the front.
681  */
682 void
xfs_buf_item_init(xfs_buf_t * bp,xfs_mount_t * mp)683 xfs_buf_item_init(
684 	xfs_buf_t	*bp,
685 	xfs_mount_t	*mp)
686 {
687 	xfs_log_item_t		*lip;
688 	xfs_buf_log_item_t	*bip;
689 	int			chunks;
690 	int			map_size;
691 
692 	/*
693 	 * Check to see if there is already a buf log item for
694 	 * this buffer.  If there is, it is guaranteed to be
695 	 * the first.  If we do already have one, there is
696 	 * nothing to do here so return.
697 	 */
698 	ASSERT(bp->b_target->bt_mount == mp);
699 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
700 		lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
701 		if (lip->li_type == XFS_LI_BUF) {
702 			return;
703 		}
704 	}
705 
706 	/*
707 	 * chunks is the number of XFS_BLF_CHUNK size pieces
708 	 * the buffer can be divided into. Make sure not to
709 	 * truncate any pieces.  map_size is the size of the
710 	 * bitmap needed to describe the chunks of the buffer.
711 	 */
712 	chunks = (int)((XFS_BUF_COUNT(bp) + (XFS_BLF_CHUNK - 1)) >> XFS_BLF_SHIFT);
713 	map_size = (int)((chunks + NBWORD) >> BIT_TO_WORD_SHIFT);
714 
715 	bip = (xfs_buf_log_item_t*)kmem_zone_zalloc(xfs_buf_item_zone,
716 						    KM_SLEEP);
717 	xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
718 	bip->bli_buf = bp;
719 	xfs_buf_hold(bp);
720 	bip->bli_format.blf_type = XFS_LI_BUF;
721 	bip->bli_format.blf_blkno = (__int64_t)XFS_BUF_ADDR(bp);
722 	bip->bli_format.blf_len = (ushort)BTOBB(XFS_BUF_COUNT(bp));
723 	bip->bli_format.blf_map_size = map_size;
724 
725 #ifdef XFS_TRANS_DEBUG
726 	/*
727 	 * Allocate the arrays for tracking what needs to be logged
728 	 * and what our callers request to be logged.  bli_orig
729 	 * holds a copy of the original, clean buffer for comparison
730 	 * against, and bli_logged keeps a 1 bit flag per byte in
731 	 * the buffer to indicate which bytes the callers have asked
732 	 * to have logged.
733 	 */
734 	bip->bli_orig = (char *)kmem_alloc(XFS_BUF_COUNT(bp), KM_SLEEP);
735 	memcpy(bip->bli_orig, XFS_BUF_PTR(bp), XFS_BUF_COUNT(bp));
736 	bip->bli_logged = (char *)kmem_zalloc(XFS_BUF_COUNT(bp) / NBBY, KM_SLEEP);
737 #endif
738 
739 	/*
740 	 * Put the buf item into the list of items attached to the
741 	 * buffer at the front.
742 	 */
743 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
744 		bip->bli_item.li_bio_list =
745 				XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
746 	}
747 	XFS_BUF_SET_FSPRIVATE(bp, bip);
748 }
749 
750 
751 /*
752  * Mark bytes first through last inclusive as dirty in the buf
753  * item's bitmap.
754  */
755 void
xfs_buf_item_log(xfs_buf_log_item_t * bip,uint first,uint last)756 xfs_buf_item_log(
757 	xfs_buf_log_item_t	*bip,
758 	uint			first,
759 	uint			last)
760 {
761 	uint		first_bit;
762 	uint		last_bit;
763 	uint		bits_to_set;
764 	uint		bits_set;
765 	uint		word_num;
766 	uint		*wordp;
767 	uint		bit;
768 	uint		end_bit;
769 	uint		mask;
770 
771 	/*
772 	 * Mark the item as having some dirty data for
773 	 * quick reference in xfs_buf_item_dirty.
774 	 */
775 	bip->bli_flags |= XFS_BLI_DIRTY;
776 
777 	/*
778 	 * Convert byte offsets to bit numbers.
779 	 */
780 	first_bit = first >> XFS_BLF_SHIFT;
781 	last_bit = last >> XFS_BLF_SHIFT;
782 
783 	/*
784 	 * Calculate the total number of bits to be set.
785 	 */
786 	bits_to_set = last_bit - first_bit + 1;
787 
788 	/*
789 	 * Get a pointer to the first word in the bitmap
790 	 * to set a bit in.
791 	 */
792 	word_num = first_bit >> BIT_TO_WORD_SHIFT;
793 	wordp = &(bip->bli_format.blf_data_map[word_num]);
794 
795 	/*
796 	 * Calculate the starting bit in the first word.
797 	 */
798 	bit = first_bit & (uint)(NBWORD - 1);
799 
800 	/*
801 	 * First set any bits in the first word of our range.
802 	 * If it starts at bit 0 of the word, it will be
803 	 * set below rather than here.  That is what the variable
804 	 * bit tells us. The variable bits_set tracks the number
805 	 * of bits that have been set so far.  End_bit is the number
806 	 * of the last bit to be set in this word plus one.
807 	 */
808 	if (bit) {
809 		end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
810 		mask = ((1 << (end_bit - bit)) - 1) << bit;
811 		*wordp |= mask;
812 		wordp++;
813 		bits_set = end_bit - bit;
814 	} else {
815 		bits_set = 0;
816 	}
817 
818 	/*
819 	 * Now set bits a whole word at a time that are between
820 	 * first_bit and last_bit.
821 	 */
822 	while ((bits_to_set - bits_set) >= NBWORD) {
823 		*wordp |= 0xffffffff;
824 		bits_set += NBWORD;
825 		wordp++;
826 	}
827 
828 	/*
829 	 * Finally, set any bits left to be set in one last partial word.
830 	 */
831 	end_bit = bits_to_set - bits_set;
832 	if (end_bit) {
833 		mask = (1 << end_bit) - 1;
834 		*wordp |= mask;
835 	}
836 
837 	xfs_buf_item_log_debug(bip, first, last);
838 }
839 
840 
841 /*
842  * Return 1 if the buffer has some data that has been logged (at any
843  * point, not just the current transaction) and 0 if not.
844  */
845 uint
xfs_buf_item_dirty(xfs_buf_log_item_t * bip)846 xfs_buf_item_dirty(
847 	xfs_buf_log_item_t	*bip)
848 {
849 	return (bip->bli_flags & XFS_BLI_DIRTY);
850 }
851 
852 STATIC void
xfs_buf_item_free(xfs_buf_log_item_t * bip)853 xfs_buf_item_free(
854 	xfs_buf_log_item_t	*bip)
855 {
856 #ifdef XFS_TRANS_DEBUG
857 	kmem_free(bip->bli_orig);
858 	kmem_free(bip->bli_logged);
859 #endif /* XFS_TRANS_DEBUG */
860 
861 	kmem_zone_free(xfs_buf_item_zone, bip);
862 }
863 
864 /*
865  * This is called when the buf log item is no longer needed.  It should
866  * free the buf log item associated with the given buffer and clear
867  * the buffer's pointer to the buf log item.  If there are no more
868  * items in the list, clear the b_iodone field of the buffer (see
869  * xfs_buf_attach_iodone() below).
870  */
871 void
xfs_buf_item_relse(xfs_buf_t * bp)872 xfs_buf_item_relse(
873 	xfs_buf_t	*bp)
874 {
875 	xfs_buf_log_item_t	*bip;
876 
877 	trace_xfs_buf_item_relse(bp, _RET_IP_);
878 
879 	bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*);
880 	XFS_BUF_SET_FSPRIVATE(bp, bip->bli_item.li_bio_list);
881 	if ((XFS_BUF_FSPRIVATE(bp, void *) == NULL) &&
882 	    (XFS_BUF_IODONE_FUNC(bp) != NULL)) {
883 		XFS_BUF_CLR_IODONE_FUNC(bp);
884 	}
885 	xfs_buf_rele(bp);
886 	xfs_buf_item_free(bip);
887 }
888 
889 
890 /*
891  * Add the given log item with its callback to the list of callbacks
892  * to be called when the buffer's I/O completes.  If it is not set
893  * already, set the buffer's b_iodone() routine to be
894  * xfs_buf_iodone_callbacks() and link the log item into the list of
895  * items rooted at b_fsprivate.  Items are always added as the second
896  * entry in the list if there is a first, because the buf item code
897  * assumes that the buf log item is first.
898  */
899 void
xfs_buf_attach_iodone(xfs_buf_t * bp,void (* cb)(xfs_buf_t *,xfs_log_item_t *),xfs_log_item_t * lip)900 xfs_buf_attach_iodone(
901 	xfs_buf_t	*bp,
902 	void		(*cb)(xfs_buf_t *, xfs_log_item_t *),
903 	xfs_log_item_t	*lip)
904 {
905 	xfs_log_item_t	*head_lip;
906 
907 	ASSERT(XFS_BUF_ISBUSY(bp));
908 	ASSERT(XFS_BUF_VALUSEMA(bp) <= 0);
909 
910 	lip->li_cb = cb;
911 	if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) {
912 		head_lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
913 		lip->li_bio_list = head_lip->li_bio_list;
914 		head_lip->li_bio_list = lip;
915 	} else {
916 		XFS_BUF_SET_FSPRIVATE(bp, lip);
917 	}
918 
919 	ASSERT((XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks) ||
920 	       (XFS_BUF_IODONE_FUNC(bp) == NULL));
921 	XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks);
922 }
923 
924 /*
925  * We can have many callbacks on a buffer. Running the callbacks individually
926  * can cause a lot of contention on the AIL lock, so we allow for a single
927  * callback to be able to scan the remaining lip->li_bio_list for other items
928  * of the same type and callback to be processed in the first call.
929  *
930  * As a result, the loop walking the callback list below will also modify the
931  * list. it removes the first item from the list and then runs the callback.
932  * The loop then restarts from the new head of the list. This allows the
933  * callback to scan and modify the list attached to the buffer and we don't
934  * have to care about maintaining a next item pointer.
935  */
936 STATIC void
xfs_buf_do_callbacks(struct xfs_buf * bp)937 xfs_buf_do_callbacks(
938 	struct xfs_buf		*bp)
939 {
940 	struct xfs_log_item	*lip;
941 
942 	while ((lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *)) != NULL) {
943 		XFS_BUF_SET_FSPRIVATE(bp, lip->li_bio_list);
944 		ASSERT(lip->li_cb != NULL);
945 		/*
946 		 * Clear the next pointer so we don't have any
947 		 * confusion if the item is added to another buf.
948 		 * Don't touch the log item after calling its
949 		 * callback, because it could have freed itself.
950 		 */
951 		lip->li_bio_list = NULL;
952 		lip->li_cb(bp, lip);
953 	}
954 }
955 
956 /*
957  * This is the iodone() function for buffers which have had callbacks
958  * attached to them by xfs_buf_attach_iodone().  It should remove each
959  * log item from the buffer's list and call the callback of each in turn.
960  * When done, the buffer's fsprivate field is set to NULL and the buffer
961  * is unlocked with a call to iodone().
962  */
963 void
xfs_buf_iodone_callbacks(struct xfs_buf * bp)964 xfs_buf_iodone_callbacks(
965 	struct xfs_buf		*bp)
966 {
967 	struct xfs_log_item	*lip = bp->b_fspriv;
968 	struct xfs_mount	*mp = lip->li_mountp;
969 	static ulong		lasttime;
970 	static xfs_buftarg_t	*lasttarg;
971 
972 	if (likely(!XFS_BUF_GETERROR(bp)))
973 		goto do_callbacks;
974 
975 	/*
976 	 * If we've already decided to shutdown the filesystem because of
977 	 * I/O errors, there's no point in giving this a retry.
978 	 */
979 	if (XFS_FORCED_SHUTDOWN(mp)) {
980 		XFS_BUF_SUPER_STALE(bp);
981 		trace_xfs_buf_item_iodone(bp, _RET_IP_);
982 		goto do_callbacks;
983 	}
984 
985 	if (XFS_BUF_TARGET(bp) != lasttarg ||
986 	    time_after(jiffies, (lasttime + 5*HZ))) {
987 		lasttime = jiffies;
988 		xfs_alert(mp, "Device %s: metadata write error block 0x%llx",
989 			XFS_BUFTARG_NAME(XFS_BUF_TARGET(bp)),
990 		      (__uint64_t)XFS_BUF_ADDR(bp));
991 	}
992 	lasttarg = XFS_BUF_TARGET(bp);
993 
994 	/*
995 	 * If the write was asynchronous then no one will be looking for the
996 	 * error.  Clear the error state and write the buffer out again.
997 	 *
998 	 * During sync or umount we'll write all pending buffers again
999 	 * synchronous, which will catch these errors if they keep hanging
1000 	 * around.
1001 	 */
1002 	if (XFS_BUF_ISASYNC(bp)) {
1003 		XFS_BUF_ERROR(bp, 0); /* errno of 0 unsets the flag */
1004 
1005 		if (!XFS_BUF_ISSTALE(bp)) {
1006 			XFS_BUF_DELAYWRITE(bp);
1007 			XFS_BUF_DONE(bp);
1008 			XFS_BUF_SET_START(bp);
1009 		}
1010 		ASSERT(XFS_BUF_IODONE_FUNC(bp));
1011 		trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1012 		xfs_buf_relse(bp);
1013 		return;
1014 	}
1015 
1016 	/*
1017 	 * If the write of the buffer was synchronous, we want to make
1018 	 * sure to return the error to the caller of xfs_bwrite().
1019 	 */
1020 	XFS_BUF_STALE(bp);
1021 	XFS_BUF_DONE(bp);
1022 	XFS_BUF_UNDELAYWRITE(bp);
1023 
1024 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1025 	xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1026 
1027 do_callbacks:
1028 	xfs_buf_do_callbacks(bp);
1029 	XFS_BUF_SET_FSPRIVATE(bp, NULL);
1030 	XFS_BUF_CLR_IODONE_FUNC(bp);
1031 	xfs_buf_ioend(bp, 0);
1032 }
1033 
1034 /*
1035  * This is the iodone() function for buffers which have been
1036  * logged.  It is called when they are eventually flushed out.
1037  * It should remove the buf item from the AIL, and free the buf item.
1038  * It is called by xfs_buf_iodone_callbacks() above which will take
1039  * care of cleaning up the buffer itself.
1040  */
1041 void
xfs_buf_iodone(struct xfs_buf * bp,struct xfs_log_item * lip)1042 xfs_buf_iodone(
1043 	struct xfs_buf		*bp,
1044 	struct xfs_log_item	*lip)
1045 {
1046 	struct xfs_ail		*ailp = lip->li_ailp;
1047 
1048 	ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1049 
1050 	xfs_buf_rele(bp);
1051 
1052 	/*
1053 	 * If we are forcibly shutting down, this may well be
1054 	 * off the AIL already. That's because we simulate the
1055 	 * log-committed callbacks to unpin these buffers. Or we may never
1056 	 * have put this item on AIL because of the transaction was
1057 	 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1058 	 *
1059 	 * Either way, AIL is useless if we're forcing a shutdown.
1060 	 */
1061 	spin_lock(&ailp->xa_lock);
1062 	xfs_trans_ail_delete(ailp, lip);
1063 	xfs_buf_item_free(BUF_ITEM(lip));
1064 }
1065