1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
9
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24
25 struct kmem_cache *xfs_buf_cache;
26
27 /*
28 * Locking orders
29 *
30 * xfs_buf_ioacct_inc:
31 * xfs_buf_ioacct_dec:
32 * b_sema (caller holds)
33 * b_lock
34 *
35 * xfs_buf_stale:
36 * b_sema (caller holds)
37 * b_lock
38 * lru_lock
39 *
40 * xfs_buf_rele:
41 * b_lock
42 * pag_buf_lock
43 * lru_lock
44 *
45 * xfs_buftarg_drain_rele
46 * lru_lock
47 * b_lock (trylock due to inversion)
48 *
49 * xfs_buftarg_isolate
50 * lru_lock
51 * b_lock (trylock due to inversion)
52 */
53
54 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55
56 static inline int
xfs_buf_submit(struct xfs_buf * bp)57 xfs_buf_submit(
58 struct xfs_buf *bp)
59 {
60 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61 }
62
63 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)64 xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
66 {
67 /*
68 * Return true if the buffer is vmapped.
69 *
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
73 */
74 return bp->b_addr && bp->b_page_count > 1;
75 }
76
77 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)78 xfs_buf_vmap_len(
79 struct xfs_buf *bp)
80 {
81 return (bp->b_page_count * PAGE_SIZE);
82 }
83
84 /*
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * in-flight buffers.
92 *
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
96 */
97 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)98 xfs_buf_ioacct_inc(
99 struct xfs_buf *bp)
100 {
101 if (bp->b_flags & XBF_NO_IOACCT)
102 return;
103
104 ASSERT(bp->b_flags & XBF_ASYNC);
105 spin_lock(&bp->b_lock);
106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 percpu_counter_inc(&bp->b_target->bt_io_count);
109 }
110 spin_unlock(&bp->b_lock);
111 }
112
113 /*
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
116 */
117 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)118 __xfs_buf_ioacct_dec(
119 struct xfs_buf *bp)
120 {
121 lockdep_assert_held(&bp->b_lock);
122
123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 percpu_counter_dec(&bp->b_target->bt_io_count);
126 }
127 }
128
129 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)130 xfs_buf_ioacct_dec(
131 struct xfs_buf *bp)
132 {
133 spin_lock(&bp->b_lock);
134 __xfs_buf_ioacct_dec(bp);
135 spin_unlock(&bp->b_lock);
136 }
137
138 /*
139 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140 * b_lru_ref count so that the buffer is freed immediately when the buffer
141 * reference count falls to zero. If the buffer is already on the LRU, we need
142 * to remove the reference that LRU holds on the buffer.
143 *
144 * This prevents build-up of stale buffers on the LRU.
145 */
146 void
xfs_buf_stale(struct xfs_buf * bp)147 xfs_buf_stale(
148 struct xfs_buf *bp)
149 {
150 ASSERT(xfs_buf_islocked(bp));
151
152 bp->b_flags |= XBF_STALE;
153
154 /*
155 * Clear the delwri status so that a delwri queue walker will not
156 * flush this buffer to disk now that it is stale. The delwri queue has
157 * a reference to the buffer, so this is safe to do.
158 */
159 bp->b_flags &= ~_XBF_DELWRI_Q;
160
161 /*
162 * Once the buffer is marked stale and unlocked, a subsequent lookup
163 * could reset b_flags. There is no guarantee that the buffer is
164 * unaccounted (released to LRU) before that occurs. Drop in-flight
165 * status now to preserve accounting consistency.
166 */
167 spin_lock(&bp->b_lock);
168 __xfs_buf_ioacct_dec(bp);
169
170 atomic_set(&bp->b_lru_ref, 0);
171 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
172 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
173 atomic_dec(&bp->b_hold);
174
175 ASSERT(atomic_read(&bp->b_hold) >= 1);
176 spin_unlock(&bp->b_lock);
177 }
178
179 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)180 xfs_buf_get_maps(
181 struct xfs_buf *bp,
182 int map_count)
183 {
184 ASSERT(bp->b_maps == NULL);
185 bp->b_map_count = map_count;
186
187 if (map_count == 1) {
188 bp->b_maps = &bp->__b_map;
189 return 0;
190 }
191
192 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193 KM_NOFS);
194 if (!bp->b_maps)
195 return -ENOMEM;
196 return 0;
197 }
198
199 /*
200 * Frees b_pages if it was allocated.
201 */
202 static void
xfs_buf_free_maps(struct xfs_buf * bp)203 xfs_buf_free_maps(
204 struct xfs_buf *bp)
205 {
206 if (bp->b_maps != &bp->__b_map) {
207 kmem_free(bp->b_maps);
208 bp->b_maps = NULL;
209 }
210 }
211
212 static int
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)213 _xfs_buf_alloc(
214 struct xfs_buftarg *target,
215 struct xfs_buf_map *map,
216 int nmaps,
217 xfs_buf_flags_t flags,
218 struct xfs_buf **bpp)
219 {
220 struct xfs_buf *bp;
221 int error;
222 int i;
223
224 *bpp = NULL;
225 bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
226
227 /*
228 * We don't want certain flags to appear in b_flags unless they are
229 * specifically set by later operations on the buffer.
230 */
231 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
232
233 atomic_set(&bp->b_hold, 1);
234 atomic_set(&bp->b_lru_ref, 1);
235 init_completion(&bp->b_iowait);
236 INIT_LIST_HEAD(&bp->b_lru);
237 INIT_LIST_HEAD(&bp->b_list);
238 INIT_LIST_HEAD(&bp->b_li_list);
239 sema_init(&bp->b_sema, 0); /* held, no waiters */
240 spin_lock_init(&bp->b_lock);
241 bp->b_target = target;
242 bp->b_mount = target->bt_mount;
243 bp->b_flags = flags;
244
245 /*
246 * Set length and io_length to the same value initially.
247 * I/O routines should use io_length, which will be the same in
248 * most cases but may be reset (e.g. XFS recovery).
249 */
250 error = xfs_buf_get_maps(bp, nmaps);
251 if (error) {
252 kmem_cache_free(xfs_buf_cache, bp);
253 return error;
254 }
255
256 bp->b_rhash_key = map[0].bm_bn;
257 bp->b_length = 0;
258 for (i = 0; i < nmaps; i++) {
259 bp->b_maps[i].bm_bn = map[i].bm_bn;
260 bp->b_maps[i].bm_len = map[i].bm_len;
261 bp->b_length += map[i].bm_len;
262 }
263
264 atomic_set(&bp->b_pin_count, 0);
265 init_waitqueue_head(&bp->b_waiters);
266
267 XFS_STATS_INC(bp->b_mount, xb_create);
268 trace_xfs_buf_init(bp, _RET_IP_);
269
270 *bpp = bp;
271 return 0;
272 }
273
274 static void
xfs_buf_free_pages(struct xfs_buf * bp)275 xfs_buf_free_pages(
276 struct xfs_buf *bp)
277 {
278 uint i;
279
280 ASSERT(bp->b_flags & _XBF_PAGES);
281
282 if (xfs_buf_is_vmapped(bp))
283 vm_unmap_ram(bp->b_addr, bp->b_page_count);
284
285 for (i = 0; i < bp->b_page_count; i++) {
286 if (bp->b_pages[i])
287 __free_page(bp->b_pages[i]);
288 }
289 if (current->reclaim_state)
290 current->reclaim_state->reclaimed_slab += bp->b_page_count;
291
292 if (bp->b_pages != bp->b_page_array)
293 kmem_free(bp->b_pages);
294 bp->b_pages = NULL;
295 bp->b_flags &= ~_XBF_PAGES;
296 }
297
298 static void
xfs_buf_free_callback(struct callback_head * cb)299 xfs_buf_free_callback(
300 struct callback_head *cb)
301 {
302 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
303
304 xfs_buf_free_maps(bp);
305 kmem_cache_free(xfs_buf_cache, bp);
306 }
307
308 static void
xfs_buf_free(struct xfs_buf * bp)309 xfs_buf_free(
310 struct xfs_buf *bp)
311 {
312 trace_xfs_buf_free(bp, _RET_IP_);
313
314 ASSERT(list_empty(&bp->b_lru));
315
316 if (bp->b_flags & _XBF_PAGES)
317 xfs_buf_free_pages(bp);
318 else if (bp->b_flags & _XBF_KMEM)
319 kmem_free(bp->b_addr);
320
321 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
322 }
323
324 static int
xfs_buf_alloc_kmem(struct xfs_buf * bp,xfs_buf_flags_t flags)325 xfs_buf_alloc_kmem(
326 struct xfs_buf *bp,
327 xfs_buf_flags_t flags)
328 {
329 xfs_km_flags_t kmflag_mask = KM_NOFS;
330 size_t size = BBTOB(bp->b_length);
331
332 /* Assure zeroed buffer for non-read cases. */
333 if (!(flags & XBF_READ))
334 kmflag_mask |= KM_ZERO;
335
336 bp->b_addr = kmem_alloc(size, kmflag_mask);
337 if (!bp->b_addr)
338 return -ENOMEM;
339
340 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
341 ((unsigned long)bp->b_addr & PAGE_MASK)) {
342 /* b_addr spans two pages - use alloc_page instead */
343 kmem_free(bp->b_addr);
344 bp->b_addr = NULL;
345 return -ENOMEM;
346 }
347 bp->b_offset = offset_in_page(bp->b_addr);
348 bp->b_pages = bp->b_page_array;
349 bp->b_pages[0] = kmem_to_page(bp->b_addr);
350 bp->b_page_count = 1;
351 bp->b_flags |= _XBF_KMEM;
352 return 0;
353 }
354
355 static int
xfs_buf_alloc_pages(struct xfs_buf * bp,xfs_buf_flags_t flags)356 xfs_buf_alloc_pages(
357 struct xfs_buf *bp,
358 xfs_buf_flags_t flags)
359 {
360 gfp_t gfp_mask = __GFP_NOWARN;
361 long filled = 0;
362
363 if (flags & XBF_READ_AHEAD)
364 gfp_mask |= __GFP_NORETRY;
365 else
366 gfp_mask |= GFP_NOFS;
367
368 /* Make sure that we have a page list */
369 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
370 if (bp->b_page_count <= XB_PAGES) {
371 bp->b_pages = bp->b_page_array;
372 } else {
373 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
374 gfp_mask);
375 if (!bp->b_pages)
376 return -ENOMEM;
377 }
378 bp->b_flags |= _XBF_PAGES;
379
380 /* Assure zeroed buffer for non-read cases. */
381 if (!(flags & XBF_READ))
382 gfp_mask |= __GFP_ZERO;
383
384 /*
385 * Bulk filling of pages can take multiple calls. Not filling the entire
386 * array is not an allocation failure, so don't back off if we get at
387 * least one extra page.
388 */
389 for (;;) {
390 long last = filled;
391
392 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
393 bp->b_pages);
394 if (filled == bp->b_page_count) {
395 XFS_STATS_INC(bp->b_mount, xb_page_found);
396 break;
397 }
398
399 if (filled != last)
400 continue;
401
402 if (flags & XBF_READ_AHEAD) {
403 xfs_buf_free_pages(bp);
404 return -ENOMEM;
405 }
406
407 XFS_STATS_INC(bp->b_mount, xb_page_retries);
408 memalloc_retry_wait(gfp_mask);
409 }
410 return 0;
411 }
412
413 /*
414 * Map buffer into kernel address-space if necessary.
415 */
416 STATIC int
_xfs_buf_map_pages(struct xfs_buf * bp,xfs_buf_flags_t flags)417 _xfs_buf_map_pages(
418 struct xfs_buf *bp,
419 xfs_buf_flags_t flags)
420 {
421 ASSERT(bp->b_flags & _XBF_PAGES);
422 if (bp->b_page_count == 1) {
423 /* A single page buffer is always mappable */
424 bp->b_addr = page_address(bp->b_pages[0]);
425 } else if (flags & XBF_UNMAPPED) {
426 bp->b_addr = NULL;
427 } else {
428 int retried = 0;
429 unsigned nofs_flag;
430
431 /*
432 * vm_map_ram() will allocate auxiliary structures (e.g.
433 * pagetables) with GFP_KERNEL, yet we are likely to be under
434 * GFP_NOFS context here. Hence we need to tell memory reclaim
435 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
436 * memory reclaim re-entering the filesystem here and
437 * potentially deadlocking.
438 */
439 nofs_flag = memalloc_nofs_save();
440 do {
441 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
442 -1);
443 if (bp->b_addr)
444 break;
445 vm_unmap_aliases();
446 } while (retried++ <= 1);
447 memalloc_nofs_restore(nofs_flag);
448
449 if (!bp->b_addr)
450 return -ENOMEM;
451 }
452
453 return 0;
454 }
455
456 /*
457 * Finding and Reading Buffers
458 */
459 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)460 _xfs_buf_obj_cmp(
461 struct rhashtable_compare_arg *arg,
462 const void *obj)
463 {
464 const struct xfs_buf_map *map = arg->key;
465 const struct xfs_buf *bp = obj;
466
467 /*
468 * The key hashing in the lookup path depends on the key being the
469 * first element of the compare_arg, make sure to assert this.
470 */
471 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
472
473 if (bp->b_rhash_key != map->bm_bn)
474 return 1;
475
476 if (unlikely(bp->b_length != map->bm_len)) {
477 /*
478 * found a block number match. If the range doesn't
479 * match, the only way this is allowed is if the buffer
480 * in the cache is stale and the transaction that made
481 * it stale has not yet committed. i.e. we are
482 * reallocating a busy extent. Skip this buffer and
483 * continue searching for an exact match.
484 */
485 ASSERT(bp->b_flags & XBF_STALE);
486 return 1;
487 }
488 return 0;
489 }
490
491 static const struct rhashtable_params xfs_buf_hash_params = {
492 .min_size = 32, /* empty AGs have minimal footprint */
493 .nelem_hint = 16,
494 .key_len = sizeof(xfs_daddr_t),
495 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
496 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
497 .automatic_shrinking = true,
498 .obj_cmpfn = _xfs_buf_obj_cmp,
499 };
500
501 int
xfs_buf_hash_init(struct xfs_perag * pag)502 xfs_buf_hash_init(
503 struct xfs_perag *pag)
504 {
505 spin_lock_init(&pag->pag_buf_lock);
506 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
507 }
508
509 void
xfs_buf_hash_destroy(struct xfs_perag * pag)510 xfs_buf_hash_destroy(
511 struct xfs_perag *pag)
512 {
513 rhashtable_destroy(&pag->pag_buf_hash);
514 }
515
516 static int
xfs_buf_map_verify(struct xfs_buftarg * btp,struct xfs_buf_map * map)517 xfs_buf_map_verify(
518 struct xfs_buftarg *btp,
519 struct xfs_buf_map *map)
520 {
521 xfs_daddr_t eofs;
522
523 /* Check for IOs smaller than the sector size / not sector aligned */
524 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
526
527 /*
528 * Corrupted block numbers can get through to here, unfortunately, so we
529 * have to check that the buffer falls within the filesystem bounds.
530 */
531 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533 xfs_alert(btp->bt_mount,
534 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 __func__, map->bm_bn, eofs);
536 WARN_ON(1);
537 return -EFSCORRUPTED;
538 }
539 return 0;
540 }
541
542 static int
xfs_buf_find_lock(struct xfs_buf * bp,xfs_buf_flags_t flags)543 xfs_buf_find_lock(
544 struct xfs_buf *bp,
545 xfs_buf_flags_t flags)
546 {
547 if (flags & XBF_TRYLOCK) {
548 if (!xfs_buf_trylock(bp)) {
549 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550 return -EAGAIN;
551 }
552 } else {
553 xfs_buf_lock(bp);
554 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
555 }
556
557 /*
558 * if the buffer is stale, clear all the external state associated with
559 * it. We need to keep flags such as how we allocated the buffer memory
560 * intact here.
561 */
562 if (bp->b_flags & XBF_STALE) {
563 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
564 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
565 bp->b_ops = NULL;
566 }
567 return 0;
568 }
569
570 static inline int
xfs_buf_lookup(struct xfs_perag * pag,struct xfs_buf_map * map,xfs_buf_flags_t flags,struct xfs_buf ** bpp)571 xfs_buf_lookup(
572 struct xfs_perag *pag,
573 struct xfs_buf_map *map,
574 xfs_buf_flags_t flags,
575 struct xfs_buf **bpp)
576 {
577 struct xfs_buf *bp;
578 int error;
579
580 rcu_read_lock();
581 bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
582 if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
583 rcu_read_unlock();
584 return -ENOENT;
585 }
586 rcu_read_unlock();
587
588 error = xfs_buf_find_lock(bp, flags);
589 if (error) {
590 xfs_buf_rele(bp);
591 return error;
592 }
593
594 trace_xfs_buf_find(bp, flags, _RET_IP_);
595 *bpp = bp;
596 return 0;
597 }
598
599 /*
600 * Insert the new_bp into the hash table. This consumes the perag reference
601 * taken for the lookup regardless of the result of the insert.
602 */
603 static int
xfs_buf_find_insert(struct xfs_buftarg * btp,struct xfs_perag * pag,struct xfs_buf_map * cmap,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)604 xfs_buf_find_insert(
605 struct xfs_buftarg *btp,
606 struct xfs_perag *pag,
607 struct xfs_buf_map *cmap,
608 struct xfs_buf_map *map,
609 int nmaps,
610 xfs_buf_flags_t flags,
611 struct xfs_buf **bpp)
612 {
613 struct xfs_buf *new_bp;
614 struct xfs_buf *bp;
615 int error;
616
617 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
618 if (error)
619 goto out_drop_pag;
620
621 /*
622 * For buffers that fit entirely within a single page, first attempt to
623 * allocate the memory from the heap to minimise memory usage. If we
624 * can't get heap memory for these small buffers, we fall back to using
625 * the page allocator.
626 */
627 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
628 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
629 error = xfs_buf_alloc_pages(new_bp, flags);
630 if (error)
631 goto out_free_buf;
632 }
633
634 spin_lock(&pag->pag_buf_lock);
635 bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
636 &new_bp->b_rhash_head, xfs_buf_hash_params);
637 if (IS_ERR(bp)) {
638 error = PTR_ERR(bp);
639 spin_unlock(&pag->pag_buf_lock);
640 goto out_free_buf;
641 }
642 if (bp) {
643 /* found an existing buffer */
644 atomic_inc(&bp->b_hold);
645 spin_unlock(&pag->pag_buf_lock);
646 error = xfs_buf_find_lock(bp, flags);
647 if (error)
648 xfs_buf_rele(bp);
649 else
650 *bpp = bp;
651 goto out_free_buf;
652 }
653
654 /* The new buffer keeps the perag reference until it is freed. */
655 new_bp->b_pag = pag;
656 spin_unlock(&pag->pag_buf_lock);
657 *bpp = new_bp;
658 return 0;
659
660 out_free_buf:
661 xfs_buf_free(new_bp);
662 out_drop_pag:
663 xfs_perag_put(pag);
664 return error;
665 }
666
667 /*
668 * Assembles a buffer covering the specified range. The code is optimised for
669 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
670 * more hits than misses.
671 */
672 int
xfs_buf_get_map(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)673 xfs_buf_get_map(
674 struct xfs_buftarg *btp,
675 struct xfs_buf_map *map,
676 int nmaps,
677 xfs_buf_flags_t flags,
678 struct xfs_buf **bpp)
679 {
680 struct xfs_perag *pag;
681 struct xfs_buf *bp = NULL;
682 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
683 int error;
684 int i;
685
686 for (i = 0; i < nmaps; i++)
687 cmap.bm_len += map[i].bm_len;
688
689 error = xfs_buf_map_verify(btp, &cmap);
690 if (error)
691 return error;
692
693 pag = xfs_perag_get(btp->bt_mount,
694 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
695
696 error = xfs_buf_lookup(pag, &cmap, flags, &bp);
697 if (error && error != -ENOENT)
698 goto out_put_perag;
699
700 /* cache hits always outnumber misses by at least 10:1 */
701 if (unlikely(!bp)) {
702 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
703
704 if (flags & XBF_INCORE)
705 goto out_put_perag;
706
707 /* xfs_buf_find_insert() consumes the perag reference. */
708 error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
709 flags, &bp);
710 if (error)
711 return error;
712 } else {
713 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
714 xfs_perag_put(pag);
715 }
716
717 /* We do not hold a perag reference anymore. */
718 if (!bp->b_addr) {
719 error = _xfs_buf_map_pages(bp, flags);
720 if (unlikely(error)) {
721 xfs_warn_ratelimited(btp->bt_mount,
722 "%s: failed to map %u pages", __func__,
723 bp->b_page_count);
724 xfs_buf_relse(bp);
725 return error;
726 }
727 }
728
729 /*
730 * Clear b_error if this is a lookup from a caller that doesn't expect
731 * valid data to be found in the buffer.
732 */
733 if (!(flags & XBF_READ))
734 xfs_buf_ioerror(bp, 0);
735
736 XFS_STATS_INC(btp->bt_mount, xb_get);
737 trace_xfs_buf_get(bp, flags, _RET_IP_);
738 *bpp = bp;
739 return 0;
740
741 out_put_perag:
742 xfs_perag_put(pag);
743 return error;
744 }
745
746 int
_xfs_buf_read(struct xfs_buf * bp,xfs_buf_flags_t flags)747 _xfs_buf_read(
748 struct xfs_buf *bp,
749 xfs_buf_flags_t flags)
750 {
751 ASSERT(!(flags & XBF_WRITE));
752 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
753
754 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
755 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
756
757 return xfs_buf_submit(bp);
758 }
759
760 /*
761 * Reverify a buffer found in cache without an attached ->b_ops.
762 *
763 * If the caller passed an ops structure and the buffer doesn't have ops
764 * assigned, set the ops and use it to verify the contents. If verification
765 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
766 * already in XBF_DONE state on entry.
767 *
768 * Under normal operations, every in-core buffer is verified on read I/O
769 * completion. There are two scenarios that can lead to in-core buffers without
770 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
771 * filesystem, though these buffers are purged at the end of recovery. The
772 * other is online repair, which intentionally reads with a NULL buffer ops to
773 * run several verifiers across an in-core buffer in order to establish buffer
774 * type. If repair can't establish that, the buffer will be left in memory
775 * with NULL buffer ops.
776 */
777 int
xfs_buf_reverify(struct xfs_buf * bp,const struct xfs_buf_ops * ops)778 xfs_buf_reverify(
779 struct xfs_buf *bp,
780 const struct xfs_buf_ops *ops)
781 {
782 ASSERT(bp->b_flags & XBF_DONE);
783 ASSERT(bp->b_error == 0);
784
785 if (!ops || bp->b_ops)
786 return 0;
787
788 bp->b_ops = ops;
789 bp->b_ops->verify_read(bp);
790 if (bp->b_error)
791 bp->b_flags &= ~XBF_DONE;
792 return bp->b_error;
793 }
794
795 int
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops,xfs_failaddr_t fa)796 xfs_buf_read_map(
797 struct xfs_buftarg *target,
798 struct xfs_buf_map *map,
799 int nmaps,
800 xfs_buf_flags_t flags,
801 struct xfs_buf **bpp,
802 const struct xfs_buf_ops *ops,
803 xfs_failaddr_t fa)
804 {
805 struct xfs_buf *bp;
806 int error;
807
808 flags |= XBF_READ;
809 *bpp = NULL;
810
811 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
812 if (error)
813 return error;
814
815 trace_xfs_buf_read(bp, flags, _RET_IP_);
816
817 if (!(bp->b_flags & XBF_DONE)) {
818 /* Initiate the buffer read and wait. */
819 XFS_STATS_INC(target->bt_mount, xb_get_read);
820 bp->b_ops = ops;
821 error = _xfs_buf_read(bp, flags);
822
823 /* Readahead iodone already dropped the buffer, so exit. */
824 if (flags & XBF_ASYNC)
825 return 0;
826 } else {
827 /* Buffer already read; all we need to do is check it. */
828 error = xfs_buf_reverify(bp, ops);
829
830 /* Readahead already finished; drop the buffer and exit. */
831 if (flags & XBF_ASYNC) {
832 xfs_buf_relse(bp);
833 return 0;
834 }
835
836 /* We do not want read in the flags */
837 bp->b_flags &= ~XBF_READ;
838 ASSERT(bp->b_ops != NULL || ops == NULL);
839 }
840
841 /*
842 * If we've had a read error, then the contents of the buffer are
843 * invalid and should not be used. To ensure that a followup read tries
844 * to pull the buffer from disk again, we clear the XBF_DONE flag and
845 * mark the buffer stale. This ensures that anyone who has a current
846 * reference to the buffer will interpret it's contents correctly and
847 * future cache lookups will also treat it as an empty, uninitialised
848 * buffer.
849 */
850 if (error) {
851 /*
852 * Check against log shutdown for error reporting because
853 * metadata writeback may require a read first and we need to
854 * report errors in metadata writeback until the log is shut
855 * down. High level transaction read functions already check
856 * against mount shutdown, anyway, so we only need to be
857 * concerned about low level IO interactions here.
858 */
859 if (!xlog_is_shutdown(target->bt_mount->m_log))
860 xfs_buf_ioerror_alert(bp, fa);
861
862 bp->b_flags &= ~XBF_DONE;
863 xfs_buf_stale(bp);
864 xfs_buf_relse(bp);
865
866 /* bad CRC means corrupted metadata */
867 if (error == -EFSBADCRC)
868 error = -EFSCORRUPTED;
869 return error;
870 }
871
872 *bpp = bp;
873 return 0;
874 }
875
876 /*
877 * If we are not low on memory then do the readahead in a deadlock
878 * safe manner.
879 */
880 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)881 xfs_buf_readahead_map(
882 struct xfs_buftarg *target,
883 struct xfs_buf_map *map,
884 int nmaps,
885 const struct xfs_buf_ops *ops)
886 {
887 struct xfs_buf *bp;
888
889 xfs_buf_read_map(target, map, nmaps,
890 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
891 __this_address);
892 }
893
894 /*
895 * Read an uncached buffer from disk. Allocates and returns a locked
896 * buffer containing the disk contents or nothing. Uncached buffers always have
897 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
898 * is cached or uncached during fault diagnosis.
899 */
900 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)901 xfs_buf_read_uncached(
902 struct xfs_buftarg *target,
903 xfs_daddr_t daddr,
904 size_t numblks,
905 xfs_buf_flags_t flags,
906 struct xfs_buf **bpp,
907 const struct xfs_buf_ops *ops)
908 {
909 struct xfs_buf *bp;
910 int error;
911
912 *bpp = NULL;
913
914 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
915 if (error)
916 return error;
917
918 /* set up the buffer for a read IO */
919 ASSERT(bp->b_map_count == 1);
920 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
921 bp->b_maps[0].bm_bn = daddr;
922 bp->b_flags |= XBF_READ;
923 bp->b_ops = ops;
924
925 xfs_buf_submit(bp);
926 if (bp->b_error) {
927 error = bp->b_error;
928 xfs_buf_relse(bp);
929 return error;
930 }
931
932 *bpp = bp;
933 return 0;
934 }
935
936 int
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,xfs_buf_flags_t flags,struct xfs_buf ** bpp)937 xfs_buf_get_uncached(
938 struct xfs_buftarg *target,
939 size_t numblks,
940 xfs_buf_flags_t flags,
941 struct xfs_buf **bpp)
942 {
943 int error;
944 struct xfs_buf *bp;
945 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
946
947 *bpp = NULL;
948
949 /* flags might contain irrelevant bits, pass only what we care about */
950 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
951 if (error)
952 return error;
953
954 error = xfs_buf_alloc_pages(bp, flags);
955 if (error)
956 goto fail_free_buf;
957
958 error = _xfs_buf_map_pages(bp, 0);
959 if (unlikely(error)) {
960 xfs_warn(target->bt_mount,
961 "%s: failed to map pages", __func__);
962 goto fail_free_buf;
963 }
964
965 trace_xfs_buf_get_uncached(bp, _RET_IP_);
966 *bpp = bp;
967 return 0;
968
969 fail_free_buf:
970 xfs_buf_free(bp);
971 return error;
972 }
973
974 /*
975 * Increment reference count on buffer, to hold the buffer concurrently
976 * with another thread which may release (free) the buffer asynchronously.
977 * Must hold the buffer already to call this function.
978 */
979 void
xfs_buf_hold(struct xfs_buf * bp)980 xfs_buf_hold(
981 struct xfs_buf *bp)
982 {
983 trace_xfs_buf_hold(bp, _RET_IP_);
984 atomic_inc(&bp->b_hold);
985 }
986
987 /*
988 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
989 * placed on LRU or freed (depending on b_lru_ref).
990 */
991 void
xfs_buf_rele(struct xfs_buf * bp)992 xfs_buf_rele(
993 struct xfs_buf *bp)
994 {
995 struct xfs_perag *pag = bp->b_pag;
996 bool release;
997 bool freebuf = false;
998
999 trace_xfs_buf_rele(bp, _RET_IP_);
1000
1001 if (!pag) {
1002 ASSERT(list_empty(&bp->b_lru));
1003 if (atomic_dec_and_test(&bp->b_hold)) {
1004 xfs_buf_ioacct_dec(bp);
1005 xfs_buf_free(bp);
1006 }
1007 return;
1008 }
1009
1010 ASSERT(atomic_read(&bp->b_hold) > 0);
1011
1012 /*
1013 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1014 * calls. The pag_buf_lock being taken on the last reference only
1015 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1016 * to last reference we drop here is not serialised against the last
1017 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1018 * first, the last "release" reference can win the race to the lock and
1019 * free the buffer before the second-to-last reference is processed,
1020 * leading to a use-after-free scenario.
1021 */
1022 spin_lock(&bp->b_lock);
1023 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1024 if (!release) {
1025 /*
1026 * Drop the in-flight state if the buffer is already on the LRU
1027 * and it holds the only reference. This is racy because we
1028 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1029 * ensures the decrement occurs only once per-buf.
1030 */
1031 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1032 __xfs_buf_ioacct_dec(bp);
1033 goto out_unlock;
1034 }
1035
1036 /* the last reference has been dropped ... */
1037 __xfs_buf_ioacct_dec(bp);
1038 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1039 /*
1040 * If the buffer is added to the LRU take a new reference to the
1041 * buffer for the LRU and clear the (now stale) dispose list
1042 * state flag
1043 */
1044 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1045 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1046 atomic_inc(&bp->b_hold);
1047 }
1048 spin_unlock(&pag->pag_buf_lock);
1049 } else {
1050 /*
1051 * most of the time buffers will already be removed from the
1052 * LRU, so optimise that case by checking for the
1053 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1054 * was on was the disposal list
1055 */
1056 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1057 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1058 } else {
1059 ASSERT(list_empty(&bp->b_lru));
1060 }
1061
1062 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1063 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1064 xfs_buf_hash_params);
1065 spin_unlock(&pag->pag_buf_lock);
1066 xfs_perag_put(pag);
1067 freebuf = true;
1068 }
1069
1070 out_unlock:
1071 spin_unlock(&bp->b_lock);
1072
1073 if (freebuf)
1074 xfs_buf_free(bp);
1075 }
1076
1077
1078 /*
1079 * Lock a buffer object, if it is not already locked.
1080 *
1081 * If we come across a stale, pinned, locked buffer, we know that we are
1082 * being asked to lock a buffer that has been reallocated. Because it is
1083 * pinned, we know that the log has not been pushed to disk and hence it
1084 * will still be locked. Rather than continuing to have trylock attempts
1085 * fail until someone else pushes the log, push it ourselves before
1086 * returning. This means that the xfsaild will not get stuck trying
1087 * to push on stale inode buffers.
1088 */
1089 int
xfs_buf_trylock(struct xfs_buf * bp)1090 xfs_buf_trylock(
1091 struct xfs_buf *bp)
1092 {
1093 int locked;
1094
1095 locked = down_trylock(&bp->b_sema) == 0;
1096 if (locked)
1097 trace_xfs_buf_trylock(bp, _RET_IP_);
1098 else
1099 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1100 return locked;
1101 }
1102
1103 /*
1104 * Lock a buffer object.
1105 *
1106 * If we come across a stale, pinned, locked buffer, we know that we
1107 * are being asked to lock a buffer that has been reallocated. Because
1108 * it is pinned, we know that the log has not been pushed to disk and
1109 * hence it will still be locked. Rather than sleeping until someone
1110 * else pushes the log, push it ourselves before trying to get the lock.
1111 */
1112 void
xfs_buf_lock(struct xfs_buf * bp)1113 xfs_buf_lock(
1114 struct xfs_buf *bp)
1115 {
1116 trace_xfs_buf_lock(bp, _RET_IP_);
1117
1118 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1119 xfs_log_force(bp->b_mount, 0);
1120 down(&bp->b_sema);
1121
1122 trace_xfs_buf_lock_done(bp, _RET_IP_);
1123 }
1124
1125 void
xfs_buf_unlock(struct xfs_buf * bp)1126 xfs_buf_unlock(
1127 struct xfs_buf *bp)
1128 {
1129 ASSERT(xfs_buf_islocked(bp));
1130
1131 up(&bp->b_sema);
1132 trace_xfs_buf_unlock(bp, _RET_IP_);
1133 }
1134
1135 STATIC void
xfs_buf_wait_unpin(struct xfs_buf * bp)1136 xfs_buf_wait_unpin(
1137 struct xfs_buf *bp)
1138 {
1139 DECLARE_WAITQUEUE (wait, current);
1140
1141 if (atomic_read(&bp->b_pin_count) == 0)
1142 return;
1143
1144 add_wait_queue(&bp->b_waiters, &wait);
1145 for (;;) {
1146 set_current_state(TASK_UNINTERRUPTIBLE);
1147 if (atomic_read(&bp->b_pin_count) == 0)
1148 break;
1149 io_schedule();
1150 }
1151 remove_wait_queue(&bp->b_waiters, &wait);
1152 set_current_state(TASK_RUNNING);
1153 }
1154
1155 static void
xfs_buf_ioerror_alert_ratelimited(struct xfs_buf * bp)1156 xfs_buf_ioerror_alert_ratelimited(
1157 struct xfs_buf *bp)
1158 {
1159 static unsigned long lasttime;
1160 static struct xfs_buftarg *lasttarg;
1161
1162 if (bp->b_target != lasttarg ||
1163 time_after(jiffies, (lasttime + 5*HZ))) {
1164 lasttime = jiffies;
1165 xfs_buf_ioerror_alert(bp, __this_address);
1166 }
1167 lasttarg = bp->b_target;
1168 }
1169
1170 /*
1171 * Account for this latest trip around the retry handler, and decide if
1172 * we've failed enough times to constitute a permanent failure.
1173 */
1174 static bool
xfs_buf_ioerror_permanent(struct xfs_buf * bp,struct xfs_error_cfg * cfg)1175 xfs_buf_ioerror_permanent(
1176 struct xfs_buf *bp,
1177 struct xfs_error_cfg *cfg)
1178 {
1179 struct xfs_mount *mp = bp->b_mount;
1180
1181 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1182 ++bp->b_retries > cfg->max_retries)
1183 return true;
1184 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1185 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1186 return true;
1187
1188 /* At unmount we may treat errors differently */
1189 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1190 return true;
1191
1192 return false;
1193 }
1194
1195 /*
1196 * On a sync write or shutdown we just want to stale the buffer and let the
1197 * caller handle the error in bp->b_error appropriately.
1198 *
1199 * If the write was asynchronous then no one will be looking for the error. If
1200 * this is the first failure of this type, clear the error state and write the
1201 * buffer out again. This means we always retry an async write failure at least
1202 * once, but we also need to set the buffer up to behave correctly now for
1203 * repeated failures.
1204 *
1205 * If we get repeated async write failures, then we take action according to the
1206 * error configuration we have been set up to use.
1207 *
1208 * Returns true if this function took care of error handling and the caller must
1209 * not touch the buffer again. Return false if the caller should proceed with
1210 * normal I/O completion handling.
1211 */
1212 static bool
xfs_buf_ioend_handle_error(struct xfs_buf * bp)1213 xfs_buf_ioend_handle_error(
1214 struct xfs_buf *bp)
1215 {
1216 struct xfs_mount *mp = bp->b_mount;
1217 struct xfs_error_cfg *cfg;
1218
1219 /*
1220 * If we've already shutdown the journal because of I/O errors, there's
1221 * no point in giving this a retry.
1222 */
1223 if (xlog_is_shutdown(mp->m_log))
1224 goto out_stale;
1225
1226 xfs_buf_ioerror_alert_ratelimited(bp);
1227
1228 /*
1229 * We're not going to bother about retrying this during recovery.
1230 * One strike!
1231 */
1232 if (bp->b_flags & _XBF_LOGRECOVERY) {
1233 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1234 return false;
1235 }
1236
1237 /*
1238 * Synchronous writes will have callers process the error.
1239 */
1240 if (!(bp->b_flags & XBF_ASYNC))
1241 goto out_stale;
1242
1243 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1244
1245 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1246 if (bp->b_last_error != bp->b_error ||
1247 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1248 bp->b_last_error = bp->b_error;
1249 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1250 !bp->b_first_retry_time)
1251 bp->b_first_retry_time = jiffies;
1252 goto resubmit;
1253 }
1254
1255 /*
1256 * Permanent error - we need to trigger a shutdown if we haven't already
1257 * to indicate that inconsistency will result from this action.
1258 */
1259 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1260 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1261 goto out_stale;
1262 }
1263
1264 /* Still considered a transient error. Caller will schedule retries. */
1265 if (bp->b_flags & _XBF_INODES)
1266 xfs_buf_inode_io_fail(bp);
1267 else if (bp->b_flags & _XBF_DQUOTS)
1268 xfs_buf_dquot_io_fail(bp);
1269 else
1270 ASSERT(list_empty(&bp->b_li_list));
1271 xfs_buf_ioerror(bp, 0);
1272 xfs_buf_relse(bp);
1273 return true;
1274
1275 resubmit:
1276 xfs_buf_ioerror(bp, 0);
1277 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1278 xfs_buf_submit(bp);
1279 return true;
1280 out_stale:
1281 xfs_buf_stale(bp);
1282 bp->b_flags |= XBF_DONE;
1283 bp->b_flags &= ~XBF_WRITE;
1284 trace_xfs_buf_error_relse(bp, _RET_IP_);
1285 return false;
1286 }
1287
1288 static void
xfs_buf_ioend(struct xfs_buf * bp)1289 xfs_buf_ioend(
1290 struct xfs_buf *bp)
1291 {
1292 trace_xfs_buf_iodone(bp, _RET_IP_);
1293
1294 /*
1295 * Pull in IO completion errors now. We are guaranteed to be running
1296 * single threaded, so we don't need the lock to read b_io_error.
1297 */
1298 if (!bp->b_error && bp->b_io_error)
1299 xfs_buf_ioerror(bp, bp->b_io_error);
1300
1301 if (bp->b_flags & XBF_READ) {
1302 if (!bp->b_error && bp->b_ops)
1303 bp->b_ops->verify_read(bp);
1304 if (!bp->b_error)
1305 bp->b_flags |= XBF_DONE;
1306 } else {
1307 if (!bp->b_error) {
1308 bp->b_flags &= ~XBF_WRITE_FAIL;
1309 bp->b_flags |= XBF_DONE;
1310 }
1311
1312 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1313 return;
1314
1315 /* clear the retry state */
1316 bp->b_last_error = 0;
1317 bp->b_retries = 0;
1318 bp->b_first_retry_time = 0;
1319
1320 /*
1321 * Note that for things like remote attribute buffers, there may
1322 * not be a buffer log item here, so processing the buffer log
1323 * item must remain optional.
1324 */
1325 if (bp->b_log_item)
1326 xfs_buf_item_done(bp);
1327
1328 if (bp->b_flags & _XBF_INODES)
1329 xfs_buf_inode_iodone(bp);
1330 else if (bp->b_flags & _XBF_DQUOTS)
1331 xfs_buf_dquot_iodone(bp);
1332
1333 }
1334
1335 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1336 _XBF_LOGRECOVERY);
1337
1338 if (bp->b_flags & XBF_ASYNC)
1339 xfs_buf_relse(bp);
1340 else
1341 complete(&bp->b_iowait);
1342 }
1343
1344 static void
xfs_buf_ioend_work(struct work_struct * work)1345 xfs_buf_ioend_work(
1346 struct work_struct *work)
1347 {
1348 struct xfs_buf *bp =
1349 container_of(work, struct xfs_buf, b_ioend_work);
1350
1351 xfs_buf_ioend(bp);
1352 }
1353
1354 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1355 xfs_buf_ioend_async(
1356 struct xfs_buf *bp)
1357 {
1358 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1359 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1360 }
1361
1362 void
__xfs_buf_ioerror(struct xfs_buf * bp,int error,xfs_failaddr_t failaddr)1363 __xfs_buf_ioerror(
1364 struct xfs_buf *bp,
1365 int error,
1366 xfs_failaddr_t failaddr)
1367 {
1368 ASSERT(error <= 0 && error >= -1000);
1369 bp->b_error = error;
1370 trace_xfs_buf_ioerror(bp, error, failaddr);
1371 }
1372
1373 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,xfs_failaddr_t func)1374 xfs_buf_ioerror_alert(
1375 struct xfs_buf *bp,
1376 xfs_failaddr_t func)
1377 {
1378 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1379 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1380 func, (uint64_t)xfs_buf_daddr(bp),
1381 bp->b_length, -bp->b_error);
1382 }
1383
1384 /*
1385 * To simulate an I/O failure, the buffer must be locked and held with at least
1386 * three references. The LRU reference is dropped by the stale call. The buf
1387 * item reference is dropped via ioend processing. The third reference is owned
1388 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1389 */
1390 void
xfs_buf_ioend_fail(struct xfs_buf * bp)1391 xfs_buf_ioend_fail(
1392 struct xfs_buf *bp)
1393 {
1394 bp->b_flags &= ~XBF_DONE;
1395 xfs_buf_stale(bp);
1396 xfs_buf_ioerror(bp, -EIO);
1397 xfs_buf_ioend(bp);
1398 }
1399
1400 int
xfs_bwrite(struct xfs_buf * bp)1401 xfs_bwrite(
1402 struct xfs_buf *bp)
1403 {
1404 int error;
1405
1406 ASSERT(xfs_buf_islocked(bp));
1407
1408 bp->b_flags |= XBF_WRITE;
1409 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1410 XBF_DONE);
1411
1412 error = xfs_buf_submit(bp);
1413 if (error)
1414 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1415 return error;
1416 }
1417
1418 static void
xfs_buf_bio_end_io(struct bio * bio)1419 xfs_buf_bio_end_io(
1420 struct bio *bio)
1421 {
1422 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1423
1424 if (!bio->bi_status &&
1425 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1426 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1427 bio->bi_status = BLK_STS_IOERR;
1428
1429 /*
1430 * don't overwrite existing errors - otherwise we can lose errors on
1431 * buffers that require multiple bios to complete.
1432 */
1433 if (bio->bi_status) {
1434 int error = blk_status_to_errno(bio->bi_status);
1435
1436 cmpxchg(&bp->b_io_error, 0, error);
1437 }
1438
1439 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1440 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1441
1442 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1443 xfs_buf_ioend_async(bp);
1444 bio_put(bio);
1445 }
1446
1447 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,blk_opf_t op)1448 xfs_buf_ioapply_map(
1449 struct xfs_buf *bp,
1450 int map,
1451 int *buf_offset,
1452 int *count,
1453 blk_opf_t op)
1454 {
1455 int page_index;
1456 unsigned int total_nr_pages = bp->b_page_count;
1457 int nr_pages;
1458 struct bio *bio;
1459 sector_t sector = bp->b_maps[map].bm_bn;
1460 int size;
1461 int offset;
1462
1463 /* skip the pages in the buffer before the start offset */
1464 page_index = 0;
1465 offset = *buf_offset;
1466 while (offset >= PAGE_SIZE) {
1467 page_index++;
1468 offset -= PAGE_SIZE;
1469 }
1470
1471 /*
1472 * Limit the IO size to the length of the current vector, and update the
1473 * remaining IO count for the next time around.
1474 */
1475 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1476 *count -= size;
1477 *buf_offset += size;
1478
1479 next_chunk:
1480 atomic_inc(&bp->b_io_remaining);
1481 nr_pages = bio_max_segs(total_nr_pages);
1482
1483 bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1484 bio->bi_iter.bi_sector = sector;
1485 bio->bi_end_io = xfs_buf_bio_end_io;
1486 bio->bi_private = bp;
1487
1488 for (; size && nr_pages; nr_pages--, page_index++) {
1489 int rbytes, nbytes = PAGE_SIZE - offset;
1490
1491 if (nbytes > size)
1492 nbytes = size;
1493
1494 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1495 offset);
1496 if (rbytes < nbytes)
1497 break;
1498
1499 offset = 0;
1500 sector += BTOBB(nbytes);
1501 size -= nbytes;
1502 total_nr_pages--;
1503 }
1504
1505 if (likely(bio->bi_iter.bi_size)) {
1506 if (xfs_buf_is_vmapped(bp)) {
1507 flush_kernel_vmap_range(bp->b_addr,
1508 xfs_buf_vmap_len(bp));
1509 }
1510 submit_bio(bio);
1511 if (size)
1512 goto next_chunk;
1513 } else {
1514 /*
1515 * This is guaranteed not to be the last io reference count
1516 * because the caller (xfs_buf_submit) holds a count itself.
1517 */
1518 atomic_dec(&bp->b_io_remaining);
1519 xfs_buf_ioerror(bp, -EIO);
1520 bio_put(bio);
1521 }
1522
1523 }
1524
1525 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1526 _xfs_buf_ioapply(
1527 struct xfs_buf *bp)
1528 {
1529 struct blk_plug plug;
1530 blk_opf_t op;
1531 int offset;
1532 int size;
1533 int i;
1534
1535 /*
1536 * Make sure we capture only current IO errors rather than stale errors
1537 * left over from previous use of the buffer (e.g. failed readahead).
1538 */
1539 bp->b_error = 0;
1540
1541 if (bp->b_flags & XBF_WRITE) {
1542 op = REQ_OP_WRITE;
1543
1544 /*
1545 * Run the write verifier callback function if it exists. If
1546 * this function fails it will mark the buffer with an error and
1547 * the IO should not be dispatched.
1548 */
1549 if (bp->b_ops) {
1550 bp->b_ops->verify_write(bp);
1551 if (bp->b_error) {
1552 xfs_force_shutdown(bp->b_mount,
1553 SHUTDOWN_CORRUPT_INCORE);
1554 return;
1555 }
1556 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1557 struct xfs_mount *mp = bp->b_mount;
1558
1559 /*
1560 * non-crc filesystems don't attach verifiers during
1561 * log recovery, so don't warn for such filesystems.
1562 */
1563 if (xfs_has_crc(mp)) {
1564 xfs_warn(mp,
1565 "%s: no buf ops on daddr 0x%llx len %d",
1566 __func__, xfs_buf_daddr(bp),
1567 bp->b_length);
1568 xfs_hex_dump(bp->b_addr,
1569 XFS_CORRUPTION_DUMP_LEN);
1570 dump_stack();
1571 }
1572 }
1573 } else {
1574 op = REQ_OP_READ;
1575 if (bp->b_flags & XBF_READ_AHEAD)
1576 op |= REQ_RAHEAD;
1577 }
1578
1579 /* we only use the buffer cache for meta-data */
1580 op |= REQ_META;
1581
1582 /*
1583 * Walk all the vectors issuing IO on them. Set up the initial offset
1584 * into the buffer and the desired IO size before we start -
1585 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1586 * subsequent call.
1587 */
1588 offset = bp->b_offset;
1589 size = BBTOB(bp->b_length);
1590 blk_start_plug(&plug);
1591 for (i = 0; i < bp->b_map_count; i++) {
1592 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1593 if (bp->b_error)
1594 break;
1595 if (size <= 0)
1596 break; /* all done */
1597 }
1598 blk_finish_plug(&plug);
1599 }
1600
1601 /*
1602 * Wait for I/O completion of a sync buffer and return the I/O error code.
1603 */
1604 static int
xfs_buf_iowait(struct xfs_buf * bp)1605 xfs_buf_iowait(
1606 struct xfs_buf *bp)
1607 {
1608 ASSERT(!(bp->b_flags & XBF_ASYNC));
1609
1610 trace_xfs_buf_iowait(bp, _RET_IP_);
1611 wait_for_completion(&bp->b_iowait);
1612 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1613
1614 return bp->b_error;
1615 }
1616
1617 /*
1618 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1619 * the buffer lock ownership and the current reference to the IO. It is not
1620 * safe to reference the buffer after a call to this function unless the caller
1621 * holds an additional reference itself.
1622 */
1623 static int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1624 __xfs_buf_submit(
1625 struct xfs_buf *bp,
1626 bool wait)
1627 {
1628 int error = 0;
1629
1630 trace_xfs_buf_submit(bp, _RET_IP_);
1631
1632 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1633
1634 /*
1635 * On log shutdown we stale and complete the buffer immediately. We can
1636 * be called to read the superblock before the log has been set up, so
1637 * be careful checking the log state.
1638 *
1639 * Checking the mount shutdown state here can result in the log tail
1640 * moving inappropriately on disk as the log may not yet be shut down.
1641 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1642 * and move the tail of the log forwards without having written this
1643 * buffer to disk. This corrupts the log tail state in memory, and
1644 * because the log may not be shut down yet, it can then be propagated
1645 * to disk before the log is shutdown. Hence we check log shutdown
1646 * state here rather than mount state to avoid corrupting the log tail
1647 * on shutdown.
1648 */
1649 if (bp->b_mount->m_log &&
1650 xlog_is_shutdown(bp->b_mount->m_log)) {
1651 xfs_buf_ioend_fail(bp);
1652 return -EIO;
1653 }
1654
1655 /*
1656 * Grab a reference so the buffer does not go away underneath us. For
1657 * async buffers, I/O completion drops the callers reference, which
1658 * could occur before submission returns.
1659 */
1660 xfs_buf_hold(bp);
1661
1662 if (bp->b_flags & XBF_WRITE)
1663 xfs_buf_wait_unpin(bp);
1664
1665 /* clear the internal error state to avoid spurious errors */
1666 bp->b_io_error = 0;
1667
1668 /*
1669 * Set the count to 1 initially, this will stop an I/O completion
1670 * callout which happens before we have started all the I/O from calling
1671 * xfs_buf_ioend too early.
1672 */
1673 atomic_set(&bp->b_io_remaining, 1);
1674 if (bp->b_flags & XBF_ASYNC)
1675 xfs_buf_ioacct_inc(bp);
1676 _xfs_buf_ioapply(bp);
1677
1678 /*
1679 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1680 * reference we took above. If we drop it to zero, run completion so
1681 * that we don't return to the caller with completion still pending.
1682 */
1683 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1684 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1685 xfs_buf_ioend(bp);
1686 else
1687 xfs_buf_ioend_async(bp);
1688 }
1689
1690 if (wait)
1691 error = xfs_buf_iowait(bp);
1692
1693 /*
1694 * Release the hold that keeps the buffer referenced for the entire
1695 * I/O. Note that if the buffer is async, it is not safe to reference
1696 * after this release.
1697 */
1698 xfs_buf_rele(bp);
1699 return error;
1700 }
1701
1702 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1703 xfs_buf_offset(
1704 struct xfs_buf *bp,
1705 size_t offset)
1706 {
1707 struct page *page;
1708
1709 if (bp->b_addr)
1710 return bp->b_addr + offset;
1711
1712 page = bp->b_pages[offset >> PAGE_SHIFT];
1713 return page_address(page) + (offset & (PAGE_SIZE-1));
1714 }
1715
1716 void
xfs_buf_zero(struct xfs_buf * bp,size_t boff,size_t bsize)1717 xfs_buf_zero(
1718 struct xfs_buf *bp,
1719 size_t boff,
1720 size_t bsize)
1721 {
1722 size_t bend;
1723
1724 bend = boff + bsize;
1725 while (boff < bend) {
1726 struct page *page;
1727 int page_index, page_offset, csize;
1728
1729 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1730 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1731 page = bp->b_pages[page_index];
1732 csize = min_t(size_t, PAGE_SIZE - page_offset,
1733 BBTOB(bp->b_length) - boff);
1734
1735 ASSERT((csize + page_offset) <= PAGE_SIZE);
1736
1737 memset(page_address(page) + page_offset, 0, csize);
1738
1739 boff += csize;
1740 }
1741 }
1742
1743 /*
1744 * Log a message about and stale a buffer that a caller has decided is corrupt.
1745 *
1746 * This function should be called for the kinds of metadata corruption that
1747 * cannot be detect from a verifier, such as incorrect inter-block relationship
1748 * data. Do /not/ call this function from a verifier function.
1749 *
1750 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1751 * be marked stale, but b_error will not be set. The caller is responsible for
1752 * releasing the buffer or fixing it.
1753 */
1754 void
__xfs_buf_mark_corrupt(struct xfs_buf * bp,xfs_failaddr_t fa)1755 __xfs_buf_mark_corrupt(
1756 struct xfs_buf *bp,
1757 xfs_failaddr_t fa)
1758 {
1759 ASSERT(bp->b_flags & XBF_DONE);
1760
1761 xfs_buf_corruption_error(bp, fa);
1762 xfs_buf_stale(bp);
1763 }
1764
1765 /*
1766 * Handling of buffer targets (buftargs).
1767 */
1768
1769 /*
1770 * Wait for any bufs with callbacks that have been submitted but have not yet
1771 * returned. These buffers will have an elevated hold count, so wait on those
1772 * while freeing all the buffers only held by the LRU.
1773 */
1774 static enum lru_status
xfs_buftarg_drain_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1775 xfs_buftarg_drain_rele(
1776 struct list_head *item,
1777 struct list_lru_one *lru,
1778 spinlock_t *lru_lock,
1779 void *arg)
1780
1781 {
1782 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1783 struct list_head *dispose = arg;
1784
1785 if (atomic_read(&bp->b_hold) > 1) {
1786 /* need to wait, so skip it this pass */
1787 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1788 return LRU_SKIP;
1789 }
1790 if (!spin_trylock(&bp->b_lock))
1791 return LRU_SKIP;
1792
1793 /*
1794 * clear the LRU reference count so the buffer doesn't get
1795 * ignored in xfs_buf_rele().
1796 */
1797 atomic_set(&bp->b_lru_ref, 0);
1798 bp->b_state |= XFS_BSTATE_DISPOSE;
1799 list_lru_isolate_move(lru, item, dispose);
1800 spin_unlock(&bp->b_lock);
1801 return LRU_REMOVED;
1802 }
1803
1804 /*
1805 * Wait for outstanding I/O on the buftarg to complete.
1806 */
1807 void
xfs_buftarg_wait(struct xfs_buftarg * btp)1808 xfs_buftarg_wait(
1809 struct xfs_buftarg *btp)
1810 {
1811 /*
1812 * First wait on the buftarg I/O count for all in-flight buffers to be
1813 * released. This is critical as new buffers do not make the LRU until
1814 * they are released.
1815 *
1816 * Next, flush the buffer workqueue to ensure all completion processing
1817 * has finished. Just waiting on buffer locks is not sufficient for
1818 * async IO as the reference count held over IO is not released until
1819 * after the buffer lock is dropped. Hence we need to ensure here that
1820 * all reference counts have been dropped before we start walking the
1821 * LRU list.
1822 */
1823 while (percpu_counter_sum(&btp->bt_io_count))
1824 delay(100);
1825 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1826 }
1827
1828 void
xfs_buftarg_drain(struct xfs_buftarg * btp)1829 xfs_buftarg_drain(
1830 struct xfs_buftarg *btp)
1831 {
1832 LIST_HEAD(dispose);
1833 int loop = 0;
1834 bool write_fail = false;
1835
1836 xfs_buftarg_wait(btp);
1837
1838 /* loop until there is nothing left on the lru list. */
1839 while (list_lru_count(&btp->bt_lru)) {
1840 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1841 &dispose, LONG_MAX);
1842
1843 while (!list_empty(&dispose)) {
1844 struct xfs_buf *bp;
1845 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1846 list_del_init(&bp->b_lru);
1847 if (bp->b_flags & XBF_WRITE_FAIL) {
1848 write_fail = true;
1849 xfs_buf_alert_ratelimited(bp,
1850 "XFS: Corruption Alert",
1851 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1852 (long long)xfs_buf_daddr(bp));
1853 }
1854 xfs_buf_rele(bp);
1855 }
1856 if (loop++ != 0)
1857 delay(100);
1858 }
1859
1860 /*
1861 * If one or more failed buffers were freed, that means dirty metadata
1862 * was thrown away. This should only ever happen after I/O completion
1863 * handling has elevated I/O error(s) to permanent failures and shuts
1864 * down the journal.
1865 */
1866 if (write_fail) {
1867 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1868 xfs_alert(btp->bt_mount,
1869 "Please run xfs_repair to determine the extent of the problem.");
1870 }
1871 }
1872
1873 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1874 xfs_buftarg_isolate(
1875 struct list_head *item,
1876 struct list_lru_one *lru,
1877 spinlock_t *lru_lock,
1878 void *arg)
1879 {
1880 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1881 struct list_head *dispose = arg;
1882
1883 /*
1884 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1885 * If we fail to get the lock, just skip it.
1886 */
1887 if (!spin_trylock(&bp->b_lock))
1888 return LRU_SKIP;
1889 /*
1890 * Decrement the b_lru_ref count unless the value is already
1891 * zero. If the value is already zero, we need to reclaim the
1892 * buffer, otherwise it gets another trip through the LRU.
1893 */
1894 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1895 spin_unlock(&bp->b_lock);
1896 return LRU_ROTATE;
1897 }
1898
1899 bp->b_state |= XFS_BSTATE_DISPOSE;
1900 list_lru_isolate_move(lru, item, dispose);
1901 spin_unlock(&bp->b_lock);
1902 return LRU_REMOVED;
1903 }
1904
1905 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1906 xfs_buftarg_shrink_scan(
1907 struct shrinker *shrink,
1908 struct shrink_control *sc)
1909 {
1910 struct xfs_buftarg *btp = container_of(shrink,
1911 struct xfs_buftarg, bt_shrinker);
1912 LIST_HEAD(dispose);
1913 unsigned long freed;
1914
1915 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1916 xfs_buftarg_isolate, &dispose);
1917
1918 while (!list_empty(&dispose)) {
1919 struct xfs_buf *bp;
1920 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1921 list_del_init(&bp->b_lru);
1922 xfs_buf_rele(bp);
1923 }
1924
1925 return freed;
1926 }
1927
1928 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1929 xfs_buftarg_shrink_count(
1930 struct shrinker *shrink,
1931 struct shrink_control *sc)
1932 {
1933 struct xfs_buftarg *btp = container_of(shrink,
1934 struct xfs_buftarg, bt_shrinker);
1935 return list_lru_shrink_count(&btp->bt_lru, sc);
1936 }
1937
1938 void
xfs_free_buftarg(struct xfs_buftarg * btp)1939 xfs_free_buftarg(
1940 struct xfs_buftarg *btp)
1941 {
1942 unregister_shrinker(&btp->bt_shrinker);
1943 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1944 percpu_counter_destroy(&btp->bt_io_count);
1945 list_lru_destroy(&btp->bt_lru);
1946
1947 blkdev_issue_flush(btp->bt_bdev);
1948 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1949
1950 kmem_free(btp);
1951 }
1952
1953 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1954 xfs_setsize_buftarg(
1955 xfs_buftarg_t *btp,
1956 unsigned int sectorsize)
1957 {
1958 /* Set up metadata sector size info */
1959 btp->bt_meta_sectorsize = sectorsize;
1960 btp->bt_meta_sectormask = sectorsize - 1;
1961
1962 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1963 xfs_warn(btp->bt_mount,
1964 "Cannot set_blocksize to %u on device %pg",
1965 sectorsize, btp->bt_bdev);
1966 return -EINVAL;
1967 }
1968
1969 /* Set up device logical sector size mask */
1970 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1971 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1972
1973 return 0;
1974 }
1975
1976 /*
1977 * When allocating the initial buffer target we have not yet
1978 * read in the superblock, so don't know what sized sectors
1979 * are being used at this early stage. Play safe.
1980 */
1981 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1982 xfs_setsize_buftarg_early(
1983 xfs_buftarg_t *btp,
1984 struct block_device *bdev)
1985 {
1986 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1987 }
1988
1989 struct xfs_buftarg *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev)1990 xfs_alloc_buftarg(
1991 struct xfs_mount *mp,
1992 struct block_device *bdev)
1993 {
1994 xfs_buftarg_t *btp;
1995 const struct dax_holder_operations *ops = NULL;
1996
1997 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1998 ops = &xfs_dax_holder_operations;
1999 #endif
2000 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2001
2002 btp->bt_mount = mp;
2003 btp->bt_dev = bdev->bd_dev;
2004 btp->bt_bdev = bdev;
2005 btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off,
2006 mp, ops);
2007
2008 /*
2009 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2010 * per 30 seconds so as to not spam logs too much on repeated errors.
2011 */
2012 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2013 DEFAULT_RATELIMIT_BURST);
2014
2015 if (xfs_setsize_buftarg_early(btp, bdev))
2016 goto error_free;
2017
2018 if (list_lru_init(&btp->bt_lru))
2019 goto error_free;
2020
2021 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2022 goto error_lru;
2023
2024 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2025 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
2026 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
2027 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
2028 if (register_shrinker(&btp->bt_shrinker, "xfs-buf:%s",
2029 mp->m_super->s_id))
2030 goto error_pcpu;
2031 return btp;
2032
2033 error_pcpu:
2034 percpu_counter_destroy(&btp->bt_io_count);
2035 error_lru:
2036 list_lru_destroy(&btp->bt_lru);
2037 error_free:
2038 kmem_free(btp);
2039 return NULL;
2040 }
2041
2042 /*
2043 * Cancel a delayed write list.
2044 *
2045 * Remove each buffer from the list, clear the delwri queue flag and drop the
2046 * associated buffer reference.
2047 */
2048 void
xfs_buf_delwri_cancel(struct list_head * list)2049 xfs_buf_delwri_cancel(
2050 struct list_head *list)
2051 {
2052 struct xfs_buf *bp;
2053
2054 while (!list_empty(list)) {
2055 bp = list_first_entry(list, struct xfs_buf, b_list);
2056
2057 xfs_buf_lock(bp);
2058 bp->b_flags &= ~_XBF_DELWRI_Q;
2059 list_del_init(&bp->b_list);
2060 xfs_buf_relse(bp);
2061 }
2062 }
2063
2064 /*
2065 * Add a buffer to the delayed write list.
2066 *
2067 * This queues a buffer for writeout if it hasn't already been. Note that
2068 * neither this routine nor the buffer list submission functions perform
2069 * any internal synchronization. It is expected that the lists are thread-local
2070 * to the callers.
2071 *
2072 * Returns true if we queued up the buffer, or false if it already had
2073 * been on the buffer list.
2074 */
2075 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)2076 xfs_buf_delwri_queue(
2077 struct xfs_buf *bp,
2078 struct list_head *list)
2079 {
2080 ASSERT(xfs_buf_islocked(bp));
2081 ASSERT(!(bp->b_flags & XBF_READ));
2082
2083 /*
2084 * If the buffer is already marked delwri it already is queued up
2085 * by someone else for imediate writeout. Just ignore it in that
2086 * case.
2087 */
2088 if (bp->b_flags & _XBF_DELWRI_Q) {
2089 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2090 return false;
2091 }
2092
2093 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2094
2095 /*
2096 * If a buffer gets written out synchronously or marked stale while it
2097 * is on a delwri list we lazily remove it. To do this, the other party
2098 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2099 * It remains referenced and on the list. In a rare corner case it
2100 * might get readded to a delwri list after the synchronous writeout, in
2101 * which case we need just need to re-add the flag here.
2102 */
2103 bp->b_flags |= _XBF_DELWRI_Q;
2104 if (list_empty(&bp->b_list)) {
2105 atomic_inc(&bp->b_hold);
2106 list_add_tail(&bp->b_list, list);
2107 }
2108
2109 return true;
2110 }
2111
2112 /*
2113 * Compare function is more complex than it needs to be because
2114 * the return value is only 32 bits and we are doing comparisons
2115 * on 64 bit values
2116 */
2117 static int
xfs_buf_cmp(void * priv,const struct list_head * a,const struct list_head * b)2118 xfs_buf_cmp(
2119 void *priv,
2120 const struct list_head *a,
2121 const struct list_head *b)
2122 {
2123 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2124 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2125 xfs_daddr_t diff;
2126
2127 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2128 if (diff < 0)
2129 return -1;
2130 if (diff > 0)
2131 return 1;
2132 return 0;
2133 }
2134
2135 /*
2136 * Submit buffers for write. If wait_list is specified, the buffers are
2137 * submitted using sync I/O and placed on the wait list such that the caller can
2138 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2139 * at I/O completion time. In either case, buffers remain locked until I/O
2140 * completes and the buffer is released from the queue.
2141 */
2142 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)2143 xfs_buf_delwri_submit_buffers(
2144 struct list_head *buffer_list,
2145 struct list_head *wait_list)
2146 {
2147 struct xfs_buf *bp, *n;
2148 int pinned = 0;
2149 struct blk_plug plug;
2150
2151 list_sort(NULL, buffer_list, xfs_buf_cmp);
2152
2153 blk_start_plug(&plug);
2154 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2155 if (!wait_list) {
2156 if (!xfs_buf_trylock(bp))
2157 continue;
2158 if (xfs_buf_ispinned(bp)) {
2159 xfs_buf_unlock(bp);
2160 pinned++;
2161 continue;
2162 }
2163 } else {
2164 xfs_buf_lock(bp);
2165 }
2166
2167 /*
2168 * Someone else might have written the buffer synchronously or
2169 * marked it stale in the meantime. In that case only the
2170 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2171 * reference and remove it from the list here.
2172 */
2173 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2174 list_del_init(&bp->b_list);
2175 xfs_buf_relse(bp);
2176 continue;
2177 }
2178
2179 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2180
2181 /*
2182 * If we have a wait list, each buffer (and associated delwri
2183 * queue reference) transfers to it and is submitted
2184 * synchronously. Otherwise, drop the buffer from the delwri
2185 * queue and submit async.
2186 */
2187 bp->b_flags &= ~_XBF_DELWRI_Q;
2188 bp->b_flags |= XBF_WRITE;
2189 if (wait_list) {
2190 bp->b_flags &= ~XBF_ASYNC;
2191 list_move_tail(&bp->b_list, wait_list);
2192 } else {
2193 bp->b_flags |= XBF_ASYNC;
2194 list_del_init(&bp->b_list);
2195 }
2196 __xfs_buf_submit(bp, false);
2197 }
2198 blk_finish_plug(&plug);
2199
2200 return pinned;
2201 }
2202
2203 /*
2204 * Write out a buffer list asynchronously.
2205 *
2206 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2207 * out and not wait for I/O completion on any of the buffers. This interface
2208 * is only safely useable for callers that can track I/O completion by higher
2209 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2210 * function.
2211 *
2212 * Note: this function will skip buffers it would block on, and in doing so
2213 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2214 * it is up to the caller to ensure that the buffer list is fully submitted or
2215 * cancelled appropriately when they are finished with the list. Failure to
2216 * cancel or resubmit the list until it is empty will result in leaked buffers
2217 * at unmount time.
2218 */
2219 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2220 xfs_buf_delwri_submit_nowait(
2221 struct list_head *buffer_list)
2222 {
2223 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2224 }
2225
2226 /*
2227 * Write out a buffer list synchronously.
2228 *
2229 * This will take the @buffer_list, write all buffers out and wait for I/O
2230 * completion on all of the buffers. @buffer_list is consumed by the function,
2231 * so callers must have some other way of tracking buffers if they require such
2232 * functionality.
2233 */
2234 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2235 xfs_buf_delwri_submit(
2236 struct list_head *buffer_list)
2237 {
2238 LIST_HEAD (wait_list);
2239 int error = 0, error2;
2240 struct xfs_buf *bp;
2241
2242 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2243
2244 /* Wait for IO to complete. */
2245 while (!list_empty(&wait_list)) {
2246 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2247
2248 list_del_init(&bp->b_list);
2249
2250 /*
2251 * Wait on the locked buffer, check for errors and unlock and
2252 * release the delwri queue reference.
2253 */
2254 error2 = xfs_buf_iowait(bp);
2255 xfs_buf_relse(bp);
2256 if (!error)
2257 error = error2;
2258 }
2259
2260 return error;
2261 }
2262
2263 /*
2264 * Push a single buffer on a delwri queue.
2265 *
2266 * The purpose of this function is to submit a single buffer of a delwri queue
2267 * and return with the buffer still on the original queue. The waiting delwri
2268 * buffer submission infrastructure guarantees transfer of the delwri queue
2269 * buffer reference to a temporary wait list. We reuse this infrastructure to
2270 * transfer the buffer back to the original queue.
2271 *
2272 * Note the buffer transitions from the queued state, to the submitted and wait
2273 * listed state and back to the queued state during this call. The buffer
2274 * locking and queue management logic between _delwri_pushbuf() and
2275 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2276 * before returning.
2277 */
2278 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2279 xfs_buf_delwri_pushbuf(
2280 struct xfs_buf *bp,
2281 struct list_head *buffer_list)
2282 {
2283 LIST_HEAD (submit_list);
2284 int error;
2285
2286 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2287
2288 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2289
2290 /*
2291 * Isolate the buffer to a new local list so we can submit it for I/O
2292 * independently from the rest of the original list.
2293 */
2294 xfs_buf_lock(bp);
2295 list_move(&bp->b_list, &submit_list);
2296 xfs_buf_unlock(bp);
2297
2298 /*
2299 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2300 * the buffer on the wait list with the original reference. Rather than
2301 * bounce the buffer from a local wait list back to the original list
2302 * after I/O completion, reuse the original list as the wait list.
2303 */
2304 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2305
2306 /*
2307 * The buffer is now locked, under I/O and wait listed on the original
2308 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2309 * return with the buffer unlocked and on the original queue.
2310 */
2311 error = xfs_buf_iowait(bp);
2312 bp->b_flags |= _XBF_DELWRI_Q;
2313 xfs_buf_unlock(bp);
2314
2315 return error;
2316 }
2317
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2318 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2319 {
2320 /*
2321 * Set the lru reference count to 0 based on the error injection tag.
2322 * This allows userspace to disrupt buffer caching for debug/testing
2323 * purposes.
2324 */
2325 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2326 lru_ref = 0;
2327
2328 atomic_set(&bp->b_lru_ref, lru_ref);
2329 }
2330
2331 /*
2332 * Verify an on-disk magic value against the magic value specified in the
2333 * verifier structure. The verifier magic is in disk byte order so the caller is
2334 * expected to pass the value directly from disk.
2335 */
2336 bool
xfs_verify_magic(struct xfs_buf * bp,__be32 dmagic)2337 xfs_verify_magic(
2338 struct xfs_buf *bp,
2339 __be32 dmagic)
2340 {
2341 struct xfs_mount *mp = bp->b_mount;
2342 int idx;
2343
2344 idx = xfs_has_crc(mp);
2345 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2346 return false;
2347 return dmagic == bp->b_ops->magic[idx];
2348 }
2349 /*
2350 * Verify an on-disk magic value against the magic value specified in the
2351 * verifier structure. The verifier magic is in disk byte order so the caller is
2352 * expected to pass the value directly from disk.
2353 */
2354 bool
xfs_verify_magic16(struct xfs_buf * bp,__be16 dmagic)2355 xfs_verify_magic16(
2356 struct xfs_buf *bp,
2357 __be16 dmagic)
2358 {
2359 struct xfs_mount *mp = bp->b_mount;
2360 int idx;
2361
2362 idx = xfs_has_crc(mp);
2363 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2364 return false;
2365 return dmagic == bp->b_ops->magic16[idx];
2366 }
2367