1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_alloc.h"
17 #include "xfs_btree.h"
18 #include "xfs_bmap_btree.h"
19 #include "xfs_bmap.h"
20 #include "xfs_error.h"
21 #include "xfs_quota.h"
22 #include "xfs_trace.h"
23 #include "xfs_rmap.h"
24 #include "xfs_ag.h"
25
26 static struct kmem_cache *xfs_bmbt_cur_cache;
27
28 /*
29 * Convert on-disk form of btree root to in-memory form.
30 */
31 void
xfs_bmdr_to_bmbt(struct xfs_inode * ip,xfs_bmdr_block_t * dblock,int dblocklen,struct xfs_btree_block * rblock,int rblocklen)32 xfs_bmdr_to_bmbt(
33 struct xfs_inode *ip,
34 xfs_bmdr_block_t *dblock,
35 int dblocklen,
36 struct xfs_btree_block *rblock,
37 int rblocklen)
38 {
39 struct xfs_mount *mp = ip->i_mount;
40 int dmxr;
41 xfs_bmbt_key_t *fkp;
42 __be64 *fpp;
43 xfs_bmbt_key_t *tkp;
44 __be64 *tpp;
45
46 xfs_btree_init_block_int(mp, rblock, XFS_BUF_DADDR_NULL,
47 XFS_BTNUM_BMAP, 0, 0, ip->i_ino,
48 XFS_BTREE_LONG_PTRS);
49 rblock->bb_level = dblock->bb_level;
50 ASSERT(be16_to_cpu(rblock->bb_level) > 0);
51 rblock->bb_numrecs = dblock->bb_numrecs;
52 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
53 fkp = XFS_BMDR_KEY_ADDR(dblock, 1);
54 tkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
55 fpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
56 tpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
57 dmxr = be16_to_cpu(dblock->bb_numrecs);
58 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
59 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
60 }
61
62 void
xfs_bmbt_disk_get_all(const struct xfs_bmbt_rec * rec,struct xfs_bmbt_irec * irec)63 xfs_bmbt_disk_get_all(
64 const struct xfs_bmbt_rec *rec,
65 struct xfs_bmbt_irec *irec)
66 {
67 uint64_t l0 = get_unaligned_be64(&rec->l0);
68 uint64_t l1 = get_unaligned_be64(&rec->l1);
69
70 irec->br_startoff = (l0 & xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
71 irec->br_startblock = ((l0 & xfs_mask64lo(9)) << 43) | (l1 >> 21);
72 irec->br_blockcount = l1 & xfs_mask64lo(21);
73 if (l0 >> (64 - BMBT_EXNTFLAG_BITLEN))
74 irec->br_state = XFS_EXT_UNWRITTEN;
75 else
76 irec->br_state = XFS_EXT_NORM;
77 }
78
79 /*
80 * Extract the blockcount field from an on disk bmap extent record.
81 */
82 xfs_filblks_t
xfs_bmbt_disk_get_blockcount(const struct xfs_bmbt_rec * r)83 xfs_bmbt_disk_get_blockcount(
84 const struct xfs_bmbt_rec *r)
85 {
86 return (xfs_filblks_t)(be64_to_cpu(r->l1) & xfs_mask64lo(21));
87 }
88
89 /*
90 * Extract the startoff field from a disk format bmap extent record.
91 */
92 xfs_fileoff_t
xfs_bmbt_disk_get_startoff(const struct xfs_bmbt_rec * r)93 xfs_bmbt_disk_get_startoff(
94 const struct xfs_bmbt_rec *r)
95 {
96 return ((xfs_fileoff_t)be64_to_cpu(r->l0) &
97 xfs_mask64lo(64 - BMBT_EXNTFLAG_BITLEN)) >> 9;
98 }
99
100 /*
101 * Set all the fields in a bmap extent record from the uncompressed form.
102 */
103 void
xfs_bmbt_disk_set_all(struct xfs_bmbt_rec * r,struct xfs_bmbt_irec * s)104 xfs_bmbt_disk_set_all(
105 struct xfs_bmbt_rec *r,
106 struct xfs_bmbt_irec *s)
107 {
108 int extent_flag = (s->br_state != XFS_EXT_NORM);
109
110 ASSERT(s->br_state == XFS_EXT_NORM || s->br_state == XFS_EXT_UNWRITTEN);
111 ASSERT(!(s->br_startoff & xfs_mask64hi(64-BMBT_STARTOFF_BITLEN)));
112 ASSERT(!(s->br_blockcount & xfs_mask64hi(64-BMBT_BLOCKCOUNT_BITLEN)));
113 ASSERT(!(s->br_startblock & xfs_mask64hi(64-BMBT_STARTBLOCK_BITLEN)));
114
115 put_unaligned_be64(
116 ((xfs_bmbt_rec_base_t)extent_flag << 63) |
117 ((xfs_bmbt_rec_base_t)s->br_startoff << 9) |
118 ((xfs_bmbt_rec_base_t)s->br_startblock >> 43), &r->l0);
119 put_unaligned_be64(
120 ((xfs_bmbt_rec_base_t)s->br_startblock << 21) |
121 ((xfs_bmbt_rec_base_t)s->br_blockcount &
122 (xfs_bmbt_rec_base_t)xfs_mask64lo(21)), &r->l1);
123 }
124
125 /*
126 * Convert in-memory form of btree root to on-disk form.
127 */
128 void
xfs_bmbt_to_bmdr(struct xfs_mount * mp,struct xfs_btree_block * rblock,int rblocklen,xfs_bmdr_block_t * dblock,int dblocklen)129 xfs_bmbt_to_bmdr(
130 struct xfs_mount *mp,
131 struct xfs_btree_block *rblock,
132 int rblocklen,
133 xfs_bmdr_block_t *dblock,
134 int dblocklen)
135 {
136 int dmxr;
137 xfs_bmbt_key_t *fkp;
138 __be64 *fpp;
139 xfs_bmbt_key_t *tkp;
140 __be64 *tpp;
141
142 if (xfs_has_crc(mp)) {
143 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_CRC_MAGIC));
144 ASSERT(uuid_equal(&rblock->bb_u.l.bb_uuid,
145 &mp->m_sb.sb_meta_uuid));
146 ASSERT(rblock->bb_u.l.bb_blkno ==
147 cpu_to_be64(XFS_BUF_DADDR_NULL));
148 } else
149 ASSERT(rblock->bb_magic == cpu_to_be32(XFS_BMAP_MAGIC));
150 ASSERT(rblock->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK));
151 ASSERT(rblock->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK));
152 ASSERT(rblock->bb_level != 0);
153 dblock->bb_level = rblock->bb_level;
154 dblock->bb_numrecs = rblock->bb_numrecs;
155 dmxr = xfs_bmdr_maxrecs(dblocklen, 0);
156 fkp = XFS_BMBT_KEY_ADDR(mp, rblock, 1);
157 tkp = XFS_BMDR_KEY_ADDR(dblock, 1);
158 fpp = XFS_BMAP_BROOT_PTR_ADDR(mp, rblock, 1, rblocklen);
159 tpp = XFS_BMDR_PTR_ADDR(dblock, 1, dmxr);
160 dmxr = be16_to_cpu(dblock->bb_numrecs);
161 memcpy(tkp, fkp, sizeof(*fkp) * dmxr);
162 memcpy(tpp, fpp, sizeof(*fpp) * dmxr);
163 }
164
165 STATIC struct xfs_btree_cur *
xfs_bmbt_dup_cursor(struct xfs_btree_cur * cur)166 xfs_bmbt_dup_cursor(
167 struct xfs_btree_cur *cur)
168 {
169 struct xfs_btree_cur *new;
170
171 new = xfs_bmbt_init_cursor(cur->bc_mp, cur->bc_tp,
172 cur->bc_ino.ip, cur->bc_ino.whichfork);
173
174 /*
175 * Copy the firstblock, dfops, and flags values,
176 * since init cursor doesn't get them.
177 */
178 new->bc_ino.flags = cur->bc_ino.flags;
179
180 return new;
181 }
182
183 STATIC void
xfs_bmbt_update_cursor(struct xfs_btree_cur * src,struct xfs_btree_cur * dst)184 xfs_bmbt_update_cursor(
185 struct xfs_btree_cur *src,
186 struct xfs_btree_cur *dst)
187 {
188 ASSERT((dst->bc_tp->t_highest_agno != NULLAGNUMBER) ||
189 (dst->bc_ino.ip->i_diflags & XFS_DIFLAG_REALTIME));
190
191 dst->bc_ino.allocated += src->bc_ino.allocated;
192 dst->bc_tp->t_highest_agno = src->bc_tp->t_highest_agno;
193
194 src->bc_ino.allocated = 0;
195 }
196
197 STATIC int
xfs_bmbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)198 xfs_bmbt_alloc_block(
199 struct xfs_btree_cur *cur,
200 const union xfs_btree_ptr *start,
201 union xfs_btree_ptr *new,
202 int *stat)
203 {
204 struct xfs_alloc_arg args;
205 int error;
206
207 memset(&args, 0, sizeof(args));
208 args.tp = cur->bc_tp;
209 args.mp = cur->bc_mp;
210 xfs_rmap_ino_bmbt_owner(&args.oinfo, cur->bc_ino.ip->i_ino,
211 cur->bc_ino.whichfork);
212 args.minlen = args.maxlen = args.prod = 1;
213 args.wasdel = cur->bc_ino.flags & XFS_BTCUR_BMBT_WASDEL;
214 if (!args.wasdel && args.tp->t_blk_res == 0)
215 return -ENOSPC;
216
217 /*
218 * If we are coming here from something like unwritten extent
219 * conversion, there has been no data extent allocation already done, so
220 * we have to ensure that we attempt to locate the entire set of bmbt
221 * allocations in the same AG, as xfs_bmapi_write() would have reserved.
222 */
223 if (cur->bc_tp->t_highest_agno == NULLAGNUMBER)
224 args.minleft = xfs_bmapi_minleft(cur->bc_tp, cur->bc_ino.ip,
225 cur->bc_ino.whichfork);
226
227 error = xfs_alloc_vextent_start_ag(&args, be64_to_cpu(start->l));
228 if (error)
229 return error;
230
231 if (args.fsbno == NULLFSBLOCK && args.minleft) {
232 /*
233 * Could not find an AG with enough free space to satisfy
234 * a full btree split. Try again and if
235 * successful activate the lowspace algorithm.
236 */
237 args.minleft = 0;
238 error = xfs_alloc_vextent_start_ag(&args, 0);
239 if (error)
240 return error;
241 cur->bc_tp->t_flags |= XFS_TRANS_LOWMODE;
242 }
243 if (WARN_ON_ONCE(args.fsbno == NULLFSBLOCK)) {
244 *stat = 0;
245 return 0;
246 }
247
248 ASSERT(args.len == 1);
249 cur->bc_ino.allocated++;
250 cur->bc_ino.ip->i_nblocks++;
251 xfs_trans_log_inode(args.tp, cur->bc_ino.ip, XFS_ILOG_CORE);
252 xfs_trans_mod_dquot_byino(args.tp, cur->bc_ino.ip,
253 XFS_TRANS_DQ_BCOUNT, 1L);
254
255 new->l = cpu_to_be64(args.fsbno);
256
257 *stat = 1;
258 return 0;
259 }
260
261 STATIC int
xfs_bmbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)262 xfs_bmbt_free_block(
263 struct xfs_btree_cur *cur,
264 struct xfs_buf *bp)
265 {
266 struct xfs_mount *mp = cur->bc_mp;
267 struct xfs_inode *ip = cur->bc_ino.ip;
268 struct xfs_trans *tp = cur->bc_tp;
269 xfs_fsblock_t fsbno = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
270 struct xfs_owner_info oinfo;
271 int error;
272
273 xfs_rmap_ino_bmbt_owner(&oinfo, ip->i_ino, cur->bc_ino.whichfork);
274 error = xfs_free_extent_later(cur->bc_tp, fsbno, 1, &oinfo,
275 XFS_AG_RESV_NONE);
276 if (error)
277 return error;
278
279 ip->i_nblocks--;
280 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
281 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT, -1L);
282 return 0;
283 }
284
285 STATIC int
xfs_bmbt_get_minrecs(struct xfs_btree_cur * cur,int level)286 xfs_bmbt_get_minrecs(
287 struct xfs_btree_cur *cur,
288 int level)
289 {
290 if (level == cur->bc_nlevels - 1) {
291 struct xfs_ifork *ifp;
292
293 ifp = xfs_ifork_ptr(cur->bc_ino.ip,
294 cur->bc_ino.whichfork);
295
296 return xfs_bmbt_maxrecs(cur->bc_mp,
297 ifp->if_broot_bytes, level == 0) / 2;
298 }
299
300 return cur->bc_mp->m_bmap_dmnr[level != 0];
301 }
302
303 int
xfs_bmbt_get_maxrecs(struct xfs_btree_cur * cur,int level)304 xfs_bmbt_get_maxrecs(
305 struct xfs_btree_cur *cur,
306 int level)
307 {
308 if (level == cur->bc_nlevels - 1) {
309 struct xfs_ifork *ifp;
310
311 ifp = xfs_ifork_ptr(cur->bc_ino.ip,
312 cur->bc_ino.whichfork);
313
314 return xfs_bmbt_maxrecs(cur->bc_mp,
315 ifp->if_broot_bytes, level == 0);
316 }
317
318 return cur->bc_mp->m_bmap_dmxr[level != 0];
319
320 }
321
322 /*
323 * Get the maximum records we could store in the on-disk format.
324 *
325 * For non-root nodes this is equivalent to xfs_bmbt_get_maxrecs, but
326 * for the root node this checks the available space in the dinode fork
327 * so that we can resize the in-memory buffer to match it. After a
328 * resize to the maximum size this function returns the same value
329 * as xfs_bmbt_get_maxrecs for the root node, too.
330 */
331 STATIC int
xfs_bmbt_get_dmaxrecs(struct xfs_btree_cur * cur,int level)332 xfs_bmbt_get_dmaxrecs(
333 struct xfs_btree_cur *cur,
334 int level)
335 {
336 if (level != cur->bc_nlevels - 1)
337 return cur->bc_mp->m_bmap_dmxr[level != 0];
338 return xfs_bmdr_maxrecs(cur->bc_ino.forksize, level == 0);
339 }
340
341 STATIC void
xfs_bmbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)342 xfs_bmbt_init_key_from_rec(
343 union xfs_btree_key *key,
344 const union xfs_btree_rec *rec)
345 {
346 key->bmbt.br_startoff =
347 cpu_to_be64(xfs_bmbt_disk_get_startoff(&rec->bmbt));
348 }
349
350 STATIC void
xfs_bmbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)351 xfs_bmbt_init_high_key_from_rec(
352 union xfs_btree_key *key,
353 const union xfs_btree_rec *rec)
354 {
355 key->bmbt.br_startoff = cpu_to_be64(
356 xfs_bmbt_disk_get_startoff(&rec->bmbt) +
357 xfs_bmbt_disk_get_blockcount(&rec->bmbt) - 1);
358 }
359
360 STATIC void
xfs_bmbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)361 xfs_bmbt_init_rec_from_cur(
362 struct xfs_btree_cur *cur,
363 union xfs_btree_rec *rec)
364 {
365 xfs_bmbt_disk_set_all(&rec->bmbt, &cur->bc_rec.b);
366 }
367
368 STATIC void
xfs_bmbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)369 xfs_bmbt_init_ptr_from_cur(
370 struct xfs_btree_cur *cur,
371 union xfs_btree_ptr *ptr)
372 {
373 ptr->l = 0;
374 }
375
376 STATIC int64_t
xfs_bmbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)377 xfs_bmbt_key_diff(
378 struct xfs_btree_cur *cur,
379 const union xfs_btree_key *key)
380 {
381 return (int64_t)be64_to_cpu(key->bmbt.br_startoff) -
382 cur->bc_rec.b.br_startoff;
383 }
384
385 STATIC int64_t
xfs_bmbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2,const union xfs_btree_key * mask)386 xfs_bmbt_diff_two_keys(
387 struct xfs_btree_cur *cur,
388 const union xfs_btree_key *k1,
389 const union xfs_btree_key *k2,
390 const union xfs_btree_key *mask)
391 {
392 uint64_t a = be64_to_cpu(k1->bmbt.br_startoff);
393 uint64_t b = be64_to_cpu(k2->bmbt.br_startoff);
394
395 ASSERT(!mask || mask->bmbt.br_startoff);
396
397 /*
398 * Note: This routine previously casted a and b to int64 and subtracted
399 * them to generate a result. This lead to problems if b was the
400 * "maximum" key value (all ones) being signed incorrectly, hence this
401 * somewhat less efficient version.
402 */
403 if (a > b)
404 return 1;
405 if (b > a)
406 return -1;
407 return 0;
408 }
409
410 static xfs_failaddr_t
xfs_bmbt_verify(struct xfs_buf * bp)411 xfs_bmbt_verify(
412 struct xfs_buf *bp)
413 {
414 struct xfs_mount *mp = bp->b_mount;
415 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
416 xfs_failaddr_t fa;
417 unsigned int level;
418
419 if (!xfs_verify_magic(bp, block->bb_magic))
420 return __this_address;
421
422 if (xfs_has_crc(mp)) {
423 /*
424 * XXX: need a better way of verifying the owner here. Right now
425 * just make sure there has been one set.
426 */
427 fa = xfs_btree_lblock_v5hdr_verify(bp, XFS_RMAP_OWN_UNKNOWN);
428 if (fa)
429 return fa;
430 }
431
432 /*
433 * numrecs and level verification.
434 *
435 * We don't know what fork we belong to, so just verify that the level
436 * is less than the maximum of the two. Later checks will be more
437 * precise.
438 */
439 level = be16_to_cpu(block->bb_level);
440 if (level > max(mp->m_bm_maxlevels[0], mp->m_bm_maxlevels[1]))
441 return __this_address;
442
443 return xfs_btree_lblock_verify(bp, mp->m_bmap_dmxr[level != 0]);
444 }
445
446 static void
xfs_bmbt_read_verify(struct xfs_buf * bp)447 xfs_bmbt_read_verify(
448 struct xfs_buf *bp)
449 {
450 xfs_failaddr_t fa;
451
452 if (!xfs_btree_lblock_verify_crc(bp))
453 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
454 else {
455 fa = xfs_bmbt_verify(bp);
456 if (fa)
457 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
458 }
459
460 if (bp->b_error)
461 trace_xfs_btree_corrupt(bp, _RET_IP_);
462 }
463
464 static void
xfs_bmbt_write_verify(struct xfs_buf * bp)465 xfs_bmbt_write_verify(
466 struct xfs_buf *bp)
467 {
468 xfs_failaddr_t fa;
469
470 fa = xfs_bmbt_verify(bp);
471 if (fa) {
472 trace_xfs_btree_corrupt(bp, _RET_IP_);
473 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
474 return;
475 }
476 xfs_btree_lblock_calc_crc(bp);
477 }
478
479 const struct xfs_buf_ops xfs_bmbt_buf_ops = {
480 .name = "xfs_bmbt",
481 .magic = { cpu_to_be32(XFS_BMAP_MAGIC),
482 cpu_to_be32(XFS_BMAP_CRC_MAGIC) },
483 .verify_read = xfs_bmbt_read_verify,
484 .verify_write = xfs_bmbt_write_verify,
485 .verify_struct = xfs_bmbt_verify,
486 };
487
488
489 STATIC int
xfs_bmbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)490 xfs_bmbt_keys_inorder(
491 struct xfs_btree_cur *cur,
492 const union xfs_btree_key *k1,
493 const union xfs_btree_key *k2)
494 {
495 return be64_to_cpu(k1->bmbt.br_startoff) <
496 be64_to_cpu(k2->bmbt.br_startoff);
497 }
498
499 STATIC int
xfs_bmbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)500 xfs_bmbt_recs_inorder(
501 struct xfs_btree_cur *cur,
502 const union xfs_btree_rec *r1,
503 const union xfs_btree_rec *r2)
504 {
505 return xfs_bmbt_disk_get_startoff(&r1->bmbt) +
506 xfs_bmbt_disk_get_blockcount(&r1->bmbt) <=
507 xfs_bmbt_disk_get_startoff(&r2->bmbt);
508 }
509
510 STATIC enum xbtree_key_contig
xfs_bmbt_keys_contiguous(struct xfs_btree_cur * cur,const union xfs_btree_key * key1,const union xfs_btree_key * key2,const union xfs_btree_key * mask)511 xfs_bmbt_keys_contiguous(
512 struct xfs_btree_cur *cur,
513 const union xfs_btree_key *key1,
514 const union xfs_btree_key *key2,
515 const union xfs_btree_key *mask)
516 {
517 ASSERT(!mask || mask->bmbt.br_startoff);
518
519 return xbtree_key_contig(be64_to_cpu(key1->bmbt.br_startoff),
520 be64_to_cpu(key2->bmbt.br_startoff));
521 }
522
523 static const struct xfs_btree_ops xfs_bmbt_ops = {
524 .rec_len = sizeof(xfs_bmbt_rec_t),
525 .key_len = sizeof(xfs_bmbt_key_t),
526
527 .dup_cursor = xfs_bmbt_dup_cursor,
528 .update_cursor = xfs_bmbt_update_cursor,
529 .alloc_block = xfs_bmbt_alloc_block,
530 .free_block = xfs_bmbt_free_block,
531 .get_maxrecs = xfs_bmbt_get_maxrecs,
532 .get_minrecs = xfs_bmbt_get_minrecs,
533 .get_dmaxrecs = xfs_bmbt_get_dmaxrecs,
534 .init_key_from_rec = xfs_bmbt_init_key_from_rec,
535 .init_high_key_from_rec = xfs_bmbt_init_high_key_from_rec,
536 .init_rec_from_cur = xfs_bmbt_init_rec_from_cur,
537 .init_ptr_from_cur = xfs_bmbt_init_ptr_from_cur,
538 .key_diff = xfs_bmbt_key_diff,
539 .diff_two_keys = xfs_bmbt_diff_two_keys,
540 .buf_ops = &xfs_bmbt_buf_ops,
541 .keys_inorder = xfs_bmbt_keys_inorder,
542 .recs_inorder = xfs_bmbt_recs_inorder,
543 .keys_contiguous = xfs_bmbt_keys_contiguous,
544 };
545
546 /*
547 * Allocate a new bmap btree cursor.
548 */
549 struct xfs_btree_cur * /* new bmap btree cursor */
xfs_bmbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_inode * ip,int whichfork)550 xfs_bmbt_init_cursor(
551 struct xfs_mount *mp, /* file system mount point */
552 struct xfs_trans *tp, /* transaction pointer */
553 struct xfs_inode *ip, /* inode owning the btree */
554 int whichfork) /* data or attr fork */
555 {
556 struct xfs_ifork *ifp = xfs_ifork_ptr(ip, whichfork);
557 struct xfs_btree_cur *cur;
558 ASSERT(whichfork != XFS_COW_FORK);
559
560 cur = xfs_btree_alloc_cursor(mp, tp, XFS_BTNUM_BMAP,
561 mp->m_bm_maxlevels[whichfork], xfs_bmbt_cur_cache);
562 cur->bc_nlevels = be16_to_cpu(ifp->if_broot->bb_level) + 1;
563 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_bmbt_2);
564
565 cur->bc_ops = &xfs_bmbt_ops;
566 cur->bc_flags = XFS_BTREE_LONG_PTRS | XFS_BTREE_ROOT_IN_INODE;
567 if (xfs_has_crc(mp))
568 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
569
570 cur->bc_ino.forksize = xfs_inode_fork_size(ip, whichfork);
571 cur->bc_ino.ip = ip;
572 cur->bc_ino.allocated = 0;
573 cur->bc_ino.flags = 0;
574 cur->bc_ino.whichfork = whichfork;
575
576 return cur;
577 }
578
579 /* Calculate number of records in a block mapping btree block. */
580 static inline unsigned int
xfs_bmbt_block_maxrecs(unsigned int blocklen,bool leaf)581 xfs_bmbt_block_maxrecs(
582 unsigned int blocklen,
583 bool leaf)
584 {
585 if (leaf)
586 return blocklen / sizeof(xfs_bmbt_rec_t);
587 return blocklen / (sizeof(xfs_bmbt_key_t) + sizeof(xfs_bmbt_ptr_t));
588 }
589
590 /*
591 * Calculate number of records in a bmap btree block.
592 */
593 int
xfs_bmbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)594 xfs_bmbt_maxrecs(
595 struct xfs_mount *mp,
596 int blocklen,
597 int leaf)
598 {
599 blocklen -= XFS_BMBT_BLOCK_LEN(mp);
600 return xfs_bmbt_block_maxrecs(blocklen, leaf);
601 }
602
603 /*
604 * Calculate the maximum possible height of the btree that the on-disk format
605 * supports. This is used for sizing structures large enough to support every
606 * possible configuration of a filesystem that might get mounted.
607 */
608 unsigned int
xfs_bmbt_maxlevels_ondisk(void)609 xfs_bmbt_maxlevels_ondisk(void)
610 {
611 unsigned int minrecs[2];
612 unsigned int blocklen;
613
614 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
615 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
616
617 minrecs[0] = xfs_bmbt_block_maxrecs(blocklen, true) / 2;
618 minrecs[1] = xfs_bmbt_block_maxrecs(blocklen, false) / 2;
619
620 /* One extra level for the inode root. */
621 return xfs_btree_compute_maxlevels(minrecs,
622 XFS_MAX_EXTCNT_DATA_FORK_LARGE) + 1;
623 }
624
625 /*
626 * Calculate number of records in a bmap btree inode root.
627 */
628 int
xfs_bmdr_maxrecs(int blocklen,int leaf)629 xfs_bmdr_maxrecs(
630 int blocklen,
631 int leaf)
632 {
633 blocklen -= sizeof(xfs_bmdr_block_t);
634
635 if (leaf)
636 return blocklen / sizeof(xfs_bmdr_rec_t);
637 return blocklen / (sizeof(xfs_bmdr_key_t) + sizeof(xfs_bmdr_ptr_t));
638 }
639
640 /*
641 * Change the owner of a btree format fork fo the inode passed in. Change it to
642 * the owner of that is passed in so that we can change owners before or after
643 * we switch forks between inodes. The operation that the caller is doing will
644 * determine whether is needs to change owner before or after the switch.
645 *
646 * For demand paged transactional modification, the fork switch should be done
647 * after reading in all the blocks, modifying them and pinning them in the
648 * transaction. For modification when the buffers are already pinned in memory,
649 * the fork switch can be done before changing the owner as we won't need to
650 * validate the owner until the btree buffers are unpinned and writes can occur
651 * again.
652 *
653 * For recovery based ownership change, there is no transactional context and
654 * so a buffer list must be supplied so that we can record the buffers that we
655 * modified for the caller to issue IO on.
656 */
657 int
xfs_bmbt_change_owner(struct xfs_trans * tp,struct xfs_inode * ip,int whichfork,xfs_ino_t new_owner,struct list_head * buffer_list)658 xfs_bmbt_change_owner(
659 struct xfs_trans *tp,
660 struct xfs_inode *ip,
661 int whichfork,
662 xfs_ino_t new_owner,
663 struct list_head *buffer_list)
664 {
665 struct xfs_btree_cur *cur;
666 int error;
667
668 ASSERT(tp || buffer_list);
669 ASSERT(!(tp && buffer_list));
670 ASSERT(xfs_ifork_ptr(ip, whichfork)->if_format == XFS_DINODE_FMT_BTREE);
671
672 cur = xfs_bmbt_init_cursor(ip->i_mount, tp, ip, whichfork);
673 cur->bc_ino.flags |= XFS_BTCUR_BMBT_INVALID_OWNER;
674
675 error = xfs_btree_change_owner(cur, new_owner, buffer_list);
676 xfs_btree_del_cursor(cur, error);
677 return error;
678 }
679
680 /* Calculate the bmap btree size for some records. */
681 unsigned long long
xfs_bmbt_calc_size(struct xfs_mount * mp,unsigned long long len)682 xfs_bmbt_calc_size(
683 struct xfs_mount *mp,
684 unsigned long long len)
685 {
686 return xfs_btree_calc_size(mp->m_bmap_dmnr, len);
687 }
688
689 int __init
xfs_bmbt_init_cur_cache(void)690 xfs_bmbt_init_cur_cache(void)
691 {
692 xfs_bmbt_cur_cache = kmem_cache_create("xfs_bmbt_cur",
693 xfs_btree_cur_sizeof(xfs_bmbt_maxlevels_ondisk()),
694 0, 0, NULL);
695
696 if (!xfs_bmbt_cur_cache)
697 return -ENOMEM;
698 return 0;
699 }
700
701 void
xfs_bmbt_destroy_cur_cache(void)702 xfs_bmbt_destroy_cur_cache(void)
703 {
704 kmem_cache_destroy(xfs_bmbt_cur_cache);
705 xfs_bmbt_cur_cache = NULL;
706 }
707