1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_trace.h"
20 #include "xfs_trans.h"
21 #include "xfs_ag.h"
22
23 static struct kmem_cache *xfs_allocbt_cur_cache;
24
25 STATIC struct xfs_btree_cur *
xfs_allocbt_dup_cursor(struct xfs_btree_cur * cur)26 xfs_allocbt_dup_cursor(
27 struct xfs_btree_cur *cur)
28 {
29 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
30 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
31 }
32
33 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)34 xfs_allocbt_set_root(
35 struct xfs_btree_cur *cur,
36 const union xfs_btree_ptr *ptr,
37 int inc)
38 {
39 struct xfs_buf *agbp = cur->bc_ag.agbp;
40 struct xfs_agf *agf = agbp->b_addr;
41 int btnum = cur->bc_btnum;
42
43 ASSERT(ptr->s != 0);
44
45 agf->agf_roots[btnum] = ptr->s;
46 be32_add_cpu(&agf->agf_levels[btnum], inc);
47 cur->bc_ag.pag->pagf_levels[btnum] += inc;
48
49 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
50 }
51
52 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)53 xfs_allocbt_alloc_block(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *start,
56 union xfs_btree_ptr *new,
57 int *stat)
58 {
59 int error;
60 xfs_agblock_t bno;
61
62 /* Allocate the new block from the freelist. If we can't, give up. */
63 error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
64 cur->bc_ag.agbp, &bno, 1);
65 if (error)
66 return error;
67
68 if (bno == NULLAGBLOCK) {
69 *stat = 0;
70 return 0;
71 }
72
73 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
74 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
75
76 new->s = cpu_to_be32(bno);
77
78 *stat = 1;
79 return 0;
80 }
81
82 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)83 xfs_allocbt_free_block(
84 struct xfs_btree_cur *cur,
85 struct xfs_buf *bp)
86 {
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 xfs_agblock_t bno;
89 int error;
90
91 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
92 error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
93 bno, 1);
94 if (error)
95 return error;
96
97 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
98 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
99 XFS_EXTENT_BUSY_SKIP_DISCARD);
100 return 0;
101 }
102
103 /*
104 * Update the longest extent in the AGF
105 */
106 STATIC void
xfs_allocbt_update_lastrec(struct xfs_btree_cur * cur,const struct xfs_btree_block * block,const union xfs_btree_rec * rec,int ptr,int reason)107 xfs_allocbt_update_lastrec(
108 struct xfs_btree_cur *cur,
109 const struct xfs_btree_block *block,
110 const union xfs_btree_rec *rec,
111 int ptr,
112 int reason)
113 {
114 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
115 struct xfs_perag *pag;
116 __be32 len;
117 int numrecs;
118
119 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
120
121 switch (reason) {
122 case LASTREC_UPDATE:
123 /*
124 * If this is the last leaf block and it's the last record,
125 * then update the size of the longest extent in the AG.
126 */
127 if (ptr != xfs_btree_get_numrecs(block))
128 return;
129 len = rec->alloc.ar_blockcount;
130 break;
131 case LASTREC_INSREC:
132 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
133 be32_to_cpu(agf->agf_longest))
134 return;
135 len = rec->alloc.ar_blockcount;
136 break;
137 case LASTREC_DELREC:
138 numrecs = xfs_btree_get_numrecs(block);
139 if (ptr <= numrecs)
140 return;
141 ASSERT(ptr == numrecs + 1);
142
143 if (numrecs) {
144 xfs_alloc_rec_t *rrp;
145
146 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
147 len = rrp->ar_blockcount;
148 } else {
149 len = 0;
150 }
151
152 break;
153 default:
154 ASSERT(0);
155 return;
156 }
157
158 agf->agf_longest = len;
159 pag = cur->bc_ag.agbp->b_pag;
160 pag->pagf_longest = be32_to_cpu(len);
161 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
162 }
163
164 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)165 xfs_allocbt_get_minrecs(
166 struct xfs_btree_cur *cur,
167 int level)
168 {
169 return cur->bc_mp->m_alloc_mnr[level != 0];
170 }
171
172 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)173 xfs_allocbt_get_maxrecs(
174 struct xfs_btree_cur *cur,
175 int level)
176 {
177 return cur->bc_mp->m_alloc_mxr[level != 0];
178 }
179
180 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)181 xfs_allocbt_init_key_from_rec(
182 union xfs_btree_key *key,
183 const union xfs_btree_rec *rec)
184 {
185 key->alloc.ar_startblock = rec->alloc.ar_startblock;
186 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
187 }
188
189 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)190 xfs_bnobt_init_high_key_from_rec(
191 union xfs_btree_key *key,
192 const union xfs_btree_rec *rec)
193 {
194 __u32 x;
195
196 x = be32_to_cpu(rec->alloc.ar_startblock);
197 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
198 key->alloc.ar_startblock = cpu_to_be32(x);
199 key->alloc.ar_blockcount = 0;
200 }
201
202 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)203 xfs_cntbt_init_high_key_from_rec(
204 union xfs_btree_key *key,
205 const union xfs_btree_rec *rec)
206 {
207 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
208 key->alloc.ar_startblock = 0;
209 }
210
211 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)212 xfs_allocbt_init_rec_from_cur(
213 struct xfs_btree_cur *cur,
214 union xfs_btree_rec *rec)
215 {
216 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
217 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
218 }
219
220 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)221 xfs_allocbt_init_ptr_from_cur(
222 struct xfs_btree_cur *cur,
223 union xfs_btree_ptr *ptr)
224 {
225 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
226
227 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
228
229 ptr->s = agf->agf_roots[cur->bc_btnum];
230 }
231
232 STATIC int64_t
xfs_bnobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)233 xfs_bnobt_key_diff(
234 struct xfs_btree_cur *cur,
235 const union xfs_btree_key *key)
236 {
237 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
238 const struct xfs_alloc_rec *kp = &key->alloc;
239
240 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
241 }
242
243 STATIC int64_t
xfs_cntbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)244 xfs_cntbt_key_diff(
245 struct xfs_btree_cur *cur,
246 const union xfs_btree_key *key)
247 {
248 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
249 const struct xfs_alloc_rec *kp = &key->alloc;
250 int64_t diff;
251
252 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
253 if (diff)
254 return diff;
255
256 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
257 }
258
259 STATIC int64_t
xfs_bnobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)260 xfs_bnobt_diff_two_keys(
261 struct xfs_btree_cur *cur,
262 const union xfs_btree_key *k1,
263 const union xfs_btree_key *k2)
264 {
265 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
266 be32_to_cpu(k2->alloc.ar_startblock);
267 }
268
269 STATIC int64_t
xfs_cntbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)270 xfs_cntbt_diff_two_keys(
271 struct xfs_btree_cur *cur,
272 const union xfs_btree_key *k1,
273 const union xfs_btree_key *k2)
274 {
275 int64_t diff;
276
277 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
278 be32_to_cpu(k2->alloc.ar_blockcount);
279 if (diff)
280 return diff;
281
282 return be32_to_cpu(k1->alloc.ar_startblock) -
283 be32_to_cpu(k2->alloc.ar_startblock);
284 }
285
286 static xfs_failaddr_t
xfs_allocbt_verify(struct xfs_buf * bp)287 xfs_allocbt_verify(
288 struct xfs_buf *bp)
289 {
290 struct xfs_mount *mp = bp->b_mount;
291 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
292 struct xfs_perag *pag = bp->b_pag;
293 xfs_failaddr_t fa;
294 unsigned int level;
295 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
296
297 if (!xfs_verify_magic(bp, block->bb_magic))
298 return __this_address;
299
300 if (xfs_has_crc(mp)) {
301 fa = xfs_btree_sblock_v5hdr_verify(bp);
302 if (fa)
303 return fa;
304 }
305
306 /*
307 * The perag may not be attached during grow operations or fully
308 * initialized from the AGF during log recovery. Therefore we can only
309 * check against maximum tree depth from those contexts.
310 *
311 * Otherwise check against the per-tree limit. Peek at one of the
312 * verifier magic values to determine the type of tree we're verifying
313 * against.
314 */
315 level = be16_to_cpu(block->bb_level);
316 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
317 btnum = XFS_BTNUM_CNTi;
318 if (pag && pag->pagf_init) {
319 if (level >= pag->pagf_levels[btnum])
320 return __this_address;
321 } else if (level >= mp->m_alloc_maxlevels)
322 return __this_address;
323
324 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
325 }
326
327 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)328 xfs_allocbt_read_verify(
329 struct xfs_buf *bp)
330 {
331 xfs_failaddr_t fa;
332
333 if (!xfs_btree_sblock_verify_crc(bp))
334 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
335 else {
336 fa = xfs_allocbt_verify(bp);
337 if (fa)
338 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
339 }
340
341 if (bp->b_error)
342 trace_xfs_btree_corrupt(bp, _RET_IP_);
343 }
344
345 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)346 xfs_allocbt_write_verify(
347 struct xfs_buf *bp)
348 {
349 xfs_failaddr_t fa;
350
351 fa = xfs_allocbt_verify(bp);
352 if (fa) {
353 trace_xfs_btree_corrupt(bp, _RET_IP_);
354 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
355 return;
356 }
357 xfs_btree_sblock_calc_crc(bp);
358
359 }
360
361 const struct xfs_buf_ops xfs_bnobt_buf_ops = {
362 .name = "xfs_bnobt",
363 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
364 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
365 .verify_read = xfs_allocbt_read_verify,
366 .verify_write = xfs_allocbt_write_verify,
367 .verify_struct = xfs_allocbt_verify,
368 };
369
370 const struct xfs_buf_ops xfs_cntbt_buf_ops = {
371 .name = "xfs_cntbt",
372 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
373 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
374 .verify_read = xfs_allocbt_read_verify,
375 .verify_write = xfs_allocbt_write_verify,
376 .verify_struct = xfs_allocbt_verify,
377 };
378
379 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)380 xfs_bnobt_keys_inorder(
381 struct xfs_btree_cur *cur,
382 const union xfs_btree_key *k1,
383 const union xfs_btree_key *k2)
384 {
385 return be32_to_cpu(k1->alloc.ar_startblock) <
386 be32_to_cpu(k2->alloc.ar_startblock);
387 }
388
389 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)390 xfs_bnobt_recs_inorder(
391 struct xfs_btree_cur *cur,
392 const union xfs_btree_rec *r1,
393 const union xfs_btree_rec *r2)
394 {
395 return be32_to_cpu(r1->alloc.ar_startblock) +
396 be32_to_cpu(r1->alloc.ar_blockcount) <=
397 be32_to_cpu(r2->alloc.ar_startblock);
398 }
399
400 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)401 xfs_cntbt_keys_inorder(
402 struct xfs_btree_cur *cur,
403 const union xfs_btree_key *k1,
404 const union xfs_btree_key *k2)
405 {
406 return be32_to_cpu(k1->alloc.ar_blockcount) <
407 be32_to_cpu(k2->alloc.ar_blockcount) ||
408 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
409 be32_to_cpu(k1->alloc.ar_startblock) <
410 be32_to_cpu(k2->alloc.ar_startblock));
411 }
412
413 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)414 xfs_cntbt_recs_inorder(
415 struct xfs_btree_cur *cur,
416 const union xfs_btree_rec *r1,
417 const union xfs_btree_rec *r2)
418 {
419 return be32_to_cpu(r1->alloc.ar_blockcount) <
420 be32_to_cpu(r2->alloc.ar_blockcount) ||
421 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
422 be32_to_cpu(r1->alloc.ar_startblock) <
423 be32_to_cpu(r2->alloc.ar_startblock));
424 }
425
426 static const struct xfs_btree_ops xfs_bnobt_ops = {
427 .rec_len = sizeof(xfs_alloc_rec_t),
428 .key_len = sizeof(xfs_alloc_key_t),
429
430 .dup_cursor = xfs_allocbt_dup_cursor,
431 .set_root = xfs_allocbt_set_root,
432 .alloc_block = xfs_allocbt_alloc_block,
433 .free_block = xfs_allocbt_free_block,
434 .update_lastrec = xfs_allocbt_update_lastrec,
435 .get_minrecs = xfs_allocbt_get_minrecs,
436 .get_maxrecs = xfs_allocbt_get_maxrecs,
437 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
438 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
439 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
440 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
441 .key_diff = xfs_bnobt_key_diff,
442 .buf_ops = &xfs_bnobt_buf_ops,
443 .diff_two_keys = xfs_bnobt_diff_two_keys,
444 .keys_inorder = xfs_bnobt_keys_inorder,
445 .recs_inorder = xfs_bnobt_recs_inorder,
446 };
447
448 static const struct xfs_btree_ops xfs_cntbt_ops = {
449 .rec_len = sizeof(xfs_alloc_rec_t),
450 .key_len = sizeof(xfs_alloc_key_t),
451
452 .dup_cursor = xfs_allocbt_dup_cursor,
453 .set_root = xfs_allocbt_set_root,
454 .alloc_block = xfs_allocbt_alloc_block,
455 .free_block = xfs_allocbt_free_block,
456 .update_lastrec = xfs_allocbt_update_lastrec,
457 .get_minrecs = xfs_allocbt_get_minrecs,
458 .get_maxrecs = xfs_allocbt_get_maxrecs,
459 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
460 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
461 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
462 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
463 .key_diff = xfs_cntbt_key_diff,
464 .buf_ops = &xfs_cntbt_buf_ops,
465 .diff_two_keys = xfs_cntbt_diff_two_keys,
466 .keys_inorder = xfs_cntbt_keys_inorder,
467 .recs_inorder = xfs_cntbt_recs_inorder,
468 };
469
470 /* Allocate most of a new allocation btree cursor. */
471 STATIC struct xfs_btree_cur *
xfs_allocbt_init_common(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_btnum_t btnum)472 xfs_allocbt_init_common(
473 struct xfs_mount *mp,
474 struct xfs_trans *tp,
475 struct xfs_perag *pag,
476 xfs_btnum_t btnum)
477 {
478 struct xfs_btree_cur *cur;
479
480 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
481
482 cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
483 xfs_allocbt_cur_cache);
484 cur->bc_ag.abt.active = false;
485
486 if (btnum == XFS_BTNUM_CNT) {
487 cur->bc_ops = &xfs_cntbt_ops;
488 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
489 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
490 } else {
491 cur->bc_ops = &xfs_bnobt_ops;
492 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
493 }
494
495 /* take a reference for the cursor */
496 atomic_inc(&pag->pag_ref);
497 cur->bc_ag.pag = pag;
498
499 if (xfs_has_crc(mp))
500 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
501
502 return cur;
503 }
504
505 /*
506 * Allocate a new allocation btree cursor.
507 */
508 struct xfs_btree_cur * /* new alloc btree cursor */
xfs_allocbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag,xfs_btnum_t btnum)509 xfs_allocbt_init_cursor(
510 struct xfs_mount *mp, /* file system mount point */
511 struct xfs_trans *tp, /* transaction pointer */
512 struct xfs_buf *agbp, /* buffer for agf structure */
513 struct xfs_perag *pag,
514 xfs_btnum_t btnum) /* btree identifier */
515 {
516 struct xfs_agf *agf = agbp->b_addr;
517 struct xfs_btree_cur *cur;
518
519 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
520 if (btnum == XFS_BTNUM_CNT)
521 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
522 else
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
524
525 cur->bc_ag.agbp = agbp;
526
527 return cur;
528 }
529
530 /* Create a free space btree cursor with a fake root for staging. */
531 struct xfs_btree_cur *
xfs_allocbt_stage_cursor(struct xfs_mount * mp,struct xbtree_afakeroot * afake,struct xfs_perag * pag,xfs_btnum_t btnum)532 xfs_allocbt_stage_cursor(
533 struct xfs_mount *mp,
534 struct xbtree_afakeroot *afake,
535 struct xfs_perag *pag,
536 xfs_btnum_t btnum)
537 {
538 struct xfs_btree_cur *cur;
539
540 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
541 xfs_btree_stage_afakeroot(cur, afake);
542 return cur;
543 }
544
545 /*
546 * Install a new free space btree root. Caller is responsible for invalidating
547 * and freeing the old btree blocks.
548 */
549 void
xfs_allocbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)550 xfs_allocbt_commit_staged_btree(
551 struct xfs_btree_cur *cur,
552 struct xfs_trans *tp,
553 struct xfs_buf *agbp)
554 {
555 struct xfs_agf *agf = agbp->b_addr;
556 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
557
558 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
559
560 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
561 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
562 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
563
564 if (cur->bc_btnum == XFS_BTNUM_BNO) {
565 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
566 } else {
567 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
568 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
569 }
570 }
571
572 /* Calculate number of records in an alloc btree block. */
573 static inline unsigned int
xfs_allocbt_block_maxrecs(unsigned int blocklen,bool leaf)574 xfs_allocbt_block_maxrecs(
575 unsigned int blocklen,
576 bool leaf)
577 {
578 if (leaf)
579 return blocklen / sizeof(xfs_alloc_rec_t);
580 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
581 }
582
583 /*
584 * Calculate number of records in an alloc btree block.
585 */
586 int
xfs_allocbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)587 xfs_allocbt_maxrecs(
588 struct xfs_mount *mp,
589 int blocklen,
590 int leaf)
591 {
592 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
593 return xfs_allocbt_block_maxrecs(blocklen, leaf);
594 }
595
596 /* Free space btrees are at their largest when every other block is free. */
597 #define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
598
599 /* Compute the max possible height for free space btrees. */
600 unsigned int
xfs_allocbt_maxlevels_ondisk(void)601 xfs_allocbt_maxlevels_ondisk(void)
602 {
603 unsigned int minrecs[2];
604 unsigned int blocklen;
605
606 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
607 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
608
609 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
610 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
611
612 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
613 }
614
615 /* Calculate the freespace btree size for some records. */
616 xfs_extlen_t
xfs_allocbt_calc_size(struct xfs_mount * mp,unsigned long long len)617 xfs_allocbt_calc_size(
618 struct xfs_mount *mp,
619 unsigned long long len)
620 {
621 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
622 }
623
624 int __init
xfs_allocbt_init_cur_cache(void)625 xfs_allocbt_init_cur_cache(void)
626 {
627 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
628 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
629 0, 0, NULL);
630
631 if (!xfs_allocbt_cur_cache)
632 return -ENOMEM;
633 return 0;
634 }
635
636 void
xfs_allocbt_destroy_cur_cache(void)637 xfs_allocbt_destroy_cur_cache(void)
638 {
639 kmem_cache_destroy(xfs_allocbt_cur_cache);
640 xfs_allocbt_cur_cache = NULL;
641 }
642