1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_btree.h"
14 #include "xfs_btree_staging.h"
15 #include "xfs_alloc_btree.h"
16 #include "xfs_alloc.h"
17 #include "xfs_extent_busy.h"
18 #include "xfs_error.h"
19 #include "xfs_trace.h"
20 #include "xfs_trans.h"
21 #include "xfs_ag.h"
22
23 static struct kmem_cache *xfs_allocbt_cur_cache;
24
25 STATIC struct xfs_btree_cur *
xfs_allocbt_dup_cursor(struct xfs_btree_cur * cur)26 xfs_allocbt_dup_cursor(
27 struct xfs_btree_cur *cur)
28 {
29 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
30 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
31 }
32
33 STATIC void
xfs_allocbt_set_root(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int inc)34 xfs_allocbt_set_root(
35 struct xfs_btree_cur *cur,
36 const union xfs_btree_ptr *ptr,
37 int inc)
38 {
39 struct xfs_buf *agbp = cur->bc_ag.agbp;
40 struct xfs_agf *agf = agbp->b_addr;
41 int btnum = cur->bc_btnum;
42
43 ASSERT(ptr->s != 0);
44
45 agf->agf_roots[btnum] = ptr->s;
46 be32_add_cpu(&agf->agf_levels[btnum], inc);
47 cur->bc_ag.pag->pagf_levels[btnum] += inc;
48
49 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
50 }
51
52 STATIC int
xfs_allocbt_alloc_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)53 xfs_allocbt_alloc_block(
54 struct xfs_btree_cur *cur,
55 const union xfs_btree_ptr *start,
56 union xfs_btree_ptr *new,
57 int *stat)
58 {
59 int error;
60 xfs_agblock_t bno;
61
62 /* Allocate the new block from the freelist. If we can't, give up. */
63 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
64 &bno, 1);
65 if (error)
66 return error;
67
68 if (bno == NULLAGBLOCK) {
69 *stat = 0;
70 return 0;
71 }
72
73 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
74 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agbp->b_pag, bno, 1, false);
75
76 new->s = cpu_to_be32(bno);
77
78 *stat = 1;
79 return 0;
80 }
81
82 STATIC int
xfs_allocbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)83 xfs_allocbt_free_block(
84 struct xfs_btree_cur *cur,
85 struct xfs_buf *bp)
86 {
87 struct xfs_buf *agbp = cur->bc_ag.agbp;
88 xfs_agblock_t bno;
89 int error;
90
91 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
92 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
93 if (error)
94 return error;
95
96 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
97 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
98 XFS_EXTENT_BUSY_SKIP_DISCARD);
99 return 0;
100 }
101
102 /*
103 * Update the longest extent in the AGF
104 */
105 STATIC void
xfs_allocbt_update_lastrec(struct xfs_btree_cur * cur,const struct xfs_btree_block * block,const union xfs_btree_rec * rec,int ptr,int reason)106 xfs_allocbt_update_lastrec(
107 struct xfs_btree_cur *cur,
108 const struct xfs_btree_block *block,
109 const union xfs_btree_rec *rec,
110 int ptr,
111 int reason)
112 {
113 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
114 struct xfs_perag *pag;
115 __be32 len;
116 int numrecs;
117
118 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
119
120 switch (reason) {
121 case LASTREC_UPDATE:
122 /*
123 * If this is the last leaf block and it's the last record,
124 * then update the size of the longest extent in the AG.
125 */
126 if (ptr != xfs_btree_get_numrecs(block))
127 return;
128 len = rec->alloc.ar_blockcount;
129 break;
130 case LASTREC_INSREC:
131 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
132 be32_to_cpu(agf->agf_longest))
133 return;
134 len = rec->alloc.ar_blockcount;
135 break;
136 case LASTREC_DELREC:
137 numrecs = xfs_btree_get_numrecs(block);
138 if (ptr <= numrecs)
139 return;
140 ASSERT(ptr == numrecs + 1);
141
142 if (numrecs) {
143 xfs_alloc_rec_t *rrp;
144
145 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
146 len = rrp->ar_blockcount;
147 } else {
148 len = 0;
149 }
150
151 break;
152 default:
153 ASSERT(0);
154 return;
155 }
156
157 agf->agf_longest = len;
158 pag = cur->bc_ag.agbp->b_pag;
159 pag->pagf_longest = be32_to_cpu(len);
160 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
161 }
162
163 STATIC int
xfs_allocbt_get_minrecs(struct xfs_btree_cur * cur,int level)164 xfs_allocbt_get_minrecs(
165 struct xfs_btree_cur *cur,
166 int level)
167 {
168 return cur->bc_mp->m_alloc_mnr[level != 0];
169 }
170
171 STATIC int
xfs_allocbt_get_maxrecs(struct xfs_btree_cur * cur,int level)172 xfs_allocbt_get_maxrecs(
173 struct xfs_btree_cur *cur,
174 int level)
175 {
176 return cur->bc_mp->m_alloc_mxr[level != 0];
177 }
178
179 STATIC void
xfs_allocbt_init_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)180 xfs_allocbt_init_key_from_rec(
181 union xfs_btree_key *key,
182 const union xfs_btree_rec *rec)
183 {
184 key->alloc.ar_startblock = rec->alloc.ar_startblock;
185 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
186 }
187
188 STATIC void
xfs_bnobt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)189 xfs_bnobt_init_high_key_from_rec(
190 union xfs_btree_key *key,
191 const union xfs_btree_rec *rec)
192 {
193 __u32 x;
194
195 x = be32_to_cpu(rec->alloc.ar_startblock);
196 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
197 key->alloc.ar_startblock = cpu_to_be32(x);
198 key->alloc.ar_blockcount = 0;
199 }
200
201 STATIC void
xfs_cntbt_init_high_key_from_rec(union xfs_btree_key * key,const union xfs_btree_rec * rec)202 xfs_cntbt_init_high_key_from_rec(
203 union xfs_btree_key *key,
204 const union xfs_btree_rec *rec)
205 {
206 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
207 key->alloc.ar_startblock = 0;
208 }
209
210 STATIC void
xfs_allocbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)211 xfs_allocbt_init_rec_from_cur(
212 struct xfs_btree_cur *cur,
213 union xfs_btree_rec *rec)
214 {
215 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
216 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
217 }
218
219 STATIC void
xfs_allocbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)220 xfs_allocbt_init_ptr_from_cur(
221 struct xfs_btree_cur *cur,
222 union xfs_btree_ptr *ptr)
223 {
224 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
225
226 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
227
228 ptr->s = agf->agf_roots[cur->bc_btnum];
229 }
230
231 STATIC int64_t
xfs_bnobt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)232 xfs_bnobt_key_diff(
233 struct xfs_btree_cur *cur,
234 const union xfs_btree_key *key)
235 {
236 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
237 const struct xfs_alloc_rec *kp = &key->alloc;
238
239 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
240 }
241
242 STATIC int64_t
xfs_cntbt_key_diff(struct xfs_btree_cur * cur,const union xfs_btree_key * key)243 xfs_cntbt_key_diff(
244 struct xfs_btree_cur *cur,
245 const union xfs_btree_key *key)
246 {
247 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
248 const struct xfs_alloc_rec *kp = &key->alloc;
249 int64_t diff;
250
251 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
252 if (diff)
253 return diff;
254
255 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
256 }
257
258 STATIC int64_t
xfs_bnobt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)259 xfs_bnobt_diff_two_keys(
260 struct xfs_btree_cur *cur,
261 const union xfs_btree_key *k1,
262 const union xfs_btree_key *k2)
263 {
264 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
265 be32_to_cpu(k2->alloc.ar_startblock);
266 }
267
268 STATIC int64_t
xfs_cntbt_diff_two_keys(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)269 xfs_cntbt_diff_two_keys(
270 struct xfs_btree_cur *cur,
271 const union xfs_btree_key *k1,
272 const union xfs_btree_key *k2)
273 {
274 int64_t diff;
275
276 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
277 be32_to_cpu(k2->alloc.ar_blockcount);
278 if (diff)
279 return diff;
280
281 return be32_to_cpu(k1->alloc.ar_startblock) -
282 be32_to_cpu(k2->alloc.ar_startblock);
283 }
284
285 static xfs_failaddr_t
xfs_allocbt_verify(struct xfs_buf * bp)286 xfs_allocbt_verify(
287 struct xfs_buf *bp)
288 {
289 struct xfs_mount *mp = bp->b_mount;
290 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
291 struct xfs_perag *pag = bp->b_pag;
292 xfs_failaddr_t fa;
293 unsigned int level;
294 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
295
296 if (!xfs_verify_magic(bp, block->bb_magic))
297 return __this_address;
298
299 if (xfs_has_crc(mp)) {
300 fa = xfs_btree_sblock_v5hdr_verify(bp);
301 if (fa)
302 return fa;
303 }
304
305 /*
306 * The perag may not be attached during grow operations or fully
307 * initialized from the AGF during log recovery. Therefore we can only
308 * check against maximum tree depth from those contexts.
309 *
310 * Otherwise check against the per-tree limit. Peek at one of the
311 * verifier magic values to determine the type of tree we're verifying
312 * against.
313 */
314 level = be16_to_cpu(block->bb_level);
315 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
316 btnum = XFS_BTNUM_CNTi;
317 if (pag && pag->pagf_init) {
318 if (level >= pag->pagf_levels[btnum])
319 return __this_address;
320 } else if (level >= mp->m_alloc_maxlevels)
321 return __this_address;
322
323 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
324 }
325
326 static void
xfs_allocbt_read_verify(struct xfs_buf * bp)327 xfs_allocbt_read_verify(
328 struct xfs_buf *bp)
329 {
330 xfs_failaddr_t fa;
331
332 if (!xfs_btree_sblock_verify_crc(bp))
333 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
334 else {
335 fa = xfs_allocbt_verify(bp);
336 if (fa)
337 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
338 }
339
340 if (bp->b_error)
341 trace_xfs_btree_corrupt(bp, _RET_IP_);
342 }
343
344 static void
xfs_allocbt_write_verify(struct xfs_buf * bp)345 xfs_allocbt_write_verify(
346 struct xfs_buf *bp)
347 {
348 xfs_failaddr_t fa;
349
350 fa = xfs_allocbt_verify(bp);
351 if (fa) {
352 trace_xfs_btree_corrupt(bp, _RET_IP_);
353 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
354 return;
355 }
356 xfs_btree_sblock_calc_crc(bp);
357
358 }
359
360 const struct xfs_buf_ops xfs_bnobt_buf_ops = {
361 .name = "xfs_bnobt",
362 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
363 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
364 .verify_read = xfs_allocbt_read_verify,
365 .verify_write = xfs_allocbt_write_verify,
366 .verify_struct = xfs_allocbt_verify,
367 };
368
369 const struct xfs_buf_ops xfs_cntbt_buf_ops = {
370 .name = "xfs_cntbt",
371 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
372 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
373 .verify_read = xfs_allocbt_read_verify,
374 .verify_write = xfs_allocbt_write_verify,
375 .verify_struct = xfs_allocbt_verify,
376 };
377
378 STATIC int
xfs_bnobt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)379 xfs_bnobt_keys_inorder(
380 struct xfs_btree_cur *cur,
381 const union xfs_btree_key *k1,
382 const union xfs_btree_key *k2)
383 {
384 return be32_to_cpu(k1->alloc.ar_startblock) <
385 be32_to_cpu(k2->alloc.ar_startblock);
386 }
387
388 STATIC int
xfs_bnobt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)389 xfs_bnobt_recs_inorder(
390 struct xfs_btree_cur *cur,
391 const union xfs_btree_rec *r1,
392 const union xfs_btree_rec *r2)
393 {
394 return be32_to_cpu(r1->alloc.ar_startblock) +
395 be32_to_cpu(r1->alloc.ar_blockcount) <=
396 be32_to_cpu(r2->alloc.ar_startblock);
397 }
398
399 STATIC int
xfs_cntbt_keys_inorder(struct xfs_btree_cur * cur,const union xfs_btree_key * k1,const union xfs_btree_key * k2)400 xfs_cntbt_keys_inorder(
401 struct xfs_btree_cur *cur,
402 const union xfs_btree_key *k1,
403 const union xfs_btree_key *k2)
404 {
405 return be32_to_cpu(k1->alloc.ar_blockcount) <
406 be32_to_cpu(k2->alloc.ar_blockcount) ||
407 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
408 be32_to_cpu(k1->alloc.ar_startblock) <
409 be32_to_cpu(k2->alloc.ar_startblock));
410 }
411
412 STATIC int
xfs_cntbt_recs_inorder(struct xfs_btree_cur * cur,const union xfs_btree_rec * r1,const union xfs_btree_rec * r2)413 xfs_cntbt_recs_inorder(
414 struct xfs_btree_cur *cur,
415 const union xfs_btree_rec *r1,
416 const union xfs_btree_rec *r2)
417 {
418 return be32_to_cpu(r1->alloc.ar_blockcount) <
419 be32_to_cpu(r2->alloc.ar_blockcount) ||
420 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
421 be32_to_cpu(r1->alloc.ar_startblock) <
422 be32_to_cpu(r2->alloc.ar_startblock));
423 }
424
425 static const struct xfs_btree_ops xfs_bnobt_ops = {
426 .rec_len = sizeof(xfs_alloc_rec_t),
427 .key_len = sizeof(xfs_alloc_key_t),
428
429 .dup_cursor = xfs_allocbt_dup_cursor,
430 .set_root = xfs_allocbt_set_root,
431 .alloc_block = xfs_allocbt_alloc_block,
432 .free_block = xfs_allocbt_free_block,
433 .update_lastrec = xfs_allocbt_update_lastrec,
434 .get_minrecs = xfs_allocbt_get_minrecs,
435 .get_maxrecs = xfs_allocbt_get_maxrecs,
436 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
437 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
438 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
439 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
440 .key_diff = xfs_bnobt_key_diff,
441 .buf_ops = &xfs_bnobt_buf_ops,
442 .diff_two_keys = xfs_bnobt_diff_two_keys,
443 .keys_inorder = xfs_bnobt_keys_inorder,
444 .recs_inorder = xfs_bnobt_recs_inorder,
445 };
446
447 static const struct xfs_btree_ops xfs_cntbt_ops = {
448 .rec_len = sizeof(xfs_alloc_rec_t),
449 .key_len = sizeof(xfs_alloc_key_t),
450
451 .dup_cursor = xfs_allocbt_dup_cursor,
452 .set_root = xfs_allocbt_set_root,
453 .alloc_block = xfs_allocbt_alloc_block,
454 .free_block = xfs_allocbt_free_block,
455 .update_lastrec = xfs_allocbt_update_lastrec,
456 .get_minrecs = xfs_allocbt_get_minrecs,
457 .get_maxrecs = xfs_allocbt_get_maxrecs,
458 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
459 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
460 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
461 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
462 .key_diff = xfs_cntbt_key_diff,
463 .buf_ops = &xfs_cntbt_buf_ops,
464 .diff_two_keys = xfs_cntbt_diff_two_keys,
465 .keys_inorder = xfs_cntbt_keys_inorder,
466 .recs_inorder = xfs_cntbt_recs_inorder,
467 };
468
469 /* Allocate most of a new allocation btree cursor. */
470 STATIC struct xfs_btree_cur *
xfs_allocbt_init_common(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_perag * pag,xfs_btnum_t btnum)471 xfs_allocbt_init_common(
472 struct xfs_mount *mp,
473 struct xfs_trans *tp,
474 struct xfs_perag *pag,
475 xfs_btnum_t btnum)
476 {
477 struct xfs_btree_cur *cur;
478
479 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
480
481 cur = xfs_btree_alloc_cursor(mp, tp, btnum, mp->m_alloc_maxlevels,
482 xfs_allocbt_cur_cache);
483 cur->bc_ag.abt.active = false;
484
485 if (btnum == XFS_BTNUM_CNT) {
486 cur->bc_ops = &xfs_cntbt_ops;
487 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
488 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
489 } else {
490 cur->bc_ops = &xfs_bnobt_ops;
491 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
492 }
493
494 /* take a reference for the cursor */
495 atomic_inc(&pag->pag_ref);
496 cur->bc_ag.pag = pag;
497
498 if (xfs_has_crc(mp))
499 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
500
501 return cur;
502 }
503
504 /*
505 * Allocate a new allocation btree cursor.
506 */
507 struct xfs_btree_cur * /* new alloc btree cursor */
xfs_allocbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag,xfs_btnum_t btnum)508 xfs_allocbt_init_cursor(
509 struct xfs_mount *mp, /* file system mount point */
510 struct xfs_trans *tp, /* transaction pointer */
511 struct xfs_buf *agbp, /* buffer for agf structure */
512 struct xfs_perag *pag,
513 xfs_btnum_t btnum) /* btree identifier */
514 {
515 struct xfs_agf *agf = agbp->b_addr;
516 struct xfs_btree_cur *cur;
517
518 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
519 if (btnum == XFS_BTNUM_CNT)
520 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
521 else
522 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
523
524 cur->bc_ag.agbp = agbp;
525
526 return cur;
527 }
528
529 /* Create a free space btree cursor with a fake root for staging. */
530 struct xfs_btree_cur *
xfs_allocbt_stage_cursor(struct xfs_mount * mp,struct xbtree_afakeroot * afake,struct xfs_perag * pag,xfs_btnum_t btnum)531 xfs_allocbt_stage_cursor(
532 struct xfs_mount *mp,
533 struct xbtree_afakeroot *afake,
534 struct xfs_perag *pag,
535 xfs_btnum_t btnum)
536 {
537 struct xfs_btree_cur *cur;
538
539 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
540 xfs_btree_stage_afakeroot(cur, afake);
541 return cur;
542 }
543
544 /*
545 * Install a new free space btree root. Caller is responsible for invalidating
546 * and freeing the old btree blocks.
547 */
548 void
xfs_allocbt_commit_staged_btree(struct xfs_btree_cur * cur,struct xfs_trans * tp,struct xfs_buf * agbp)549 xfs_allocbt_commit_staged_btree(
550 struct xfs_btree_cur *cur,
551 struct xfs_trans *tp,
552 struct xfs_buf *agbp)
553 {
554 struct xfs_agf *agf = agbp->b_addr;
555 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
556
557 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
558
559 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
560 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
561 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
562
563 if (cur->bc_btnum == XFS_BTNUM_BNO) {
564 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
565 } else {
566 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
567 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
568 }
569 }
570
571 /* Calculate number of records in an alloc btree block. */
572 static inline unsigned int
xfs_allocbt_block_maxrecs(unsigned int blocklen,bool leaf)573 xfs_allocbt_block_maxrecs(
574 unsigned int blocklen,
575 bool leaf)
576 {
577 if (leaf)
578 return blocklen / sizeof(xfs_alloc_rec_t);
579 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
580 }
581
582 /*
583 * Calculate number of records in an alloc btree block.
584 */
585 int
xfs_allocbt_maxrecs(struct xfs_mount * mp,int blocklen,int leaf)586 xfs_allocbt_maxrecs(
587 struct xfs_mount *mp,
588 int blocklen,
589 int leaf)
590 {
591 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
592 return xfs_allocbt_block_maxrecs(blocklen, leaf);
593 }
594
595 /* Free space btrees are at their largest when every other block is free. */
596 #define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
597
598 /* Compute the max possible height for free space btrees. */
599 unsigned int
xfs_allocbt_maxlevels_ondisk(void)600 xfs_allocbt_maxlevels_ondisk(void)
601 {
602 unsigned int minrecs[2];
603 unsigned int blocklen;
604
605 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
606 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
607
608 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
609 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
610
611 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
612 }
613
614 /* Calculate the freespace btree size for some records. */
615 xfs_extlen_t
xfs_allocbt_calc_size(struct xfs_mount * mp,unsigned long long len)616 xfs_allocbt_calc_size(
617 struct xfs_mount *mp,
618 unsigned long long len)
619 {
620 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
621 }
622
623 int __init
xfs_allocbt_init_cur_cache(void)624 xfs_allocbt_init_cur_cache(void)
625 {
626 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
627 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
628 0, 0, NULL);
629
630 if (!xfs_allocbt_cur_cache)
631 return -ENOMEM;
632 return 0;
633 }
634
635 void
xfs_allocbt_destroy_cur_cache(void)636 xfs_allocbt_destroy_cur_cache(void)
637 {
638 kmem_cache_destroy(xfs_allocbt_cur_cache);
639 xfs_allocbt_cur_cache = NULL;
640 }
641