1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_btree.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_rmap.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24 #include "xfs_health.h"
25 #include "xfs_error.h"
26 #include "xfs_bmap.h"
27 #include "xfs_defer.h"
28 #include "xfs_log_format.h"
29 #include "xfs_trans.h"
30 #include "xfs_trace.h"
31 #include "xfs_inode.h"
32 #include "xfs_icache.h"
33
34
35 /*
36 * Passive reference counting access wrappers to the perag structures. If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)42 xfs_perag_get(
43 struct xfs_mount *mp,
44 xfs_agnumber_t agno)
45 {
46 struct xfs_perag *pag;
47
48 rcu_read_lock();
49 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
50 if (pag) {
51 trace_xfs_perag_get(pag, _RET_IP_);
52 ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 atomic_inc(&pag->pag_ref);
54 }
55 rcu_read_unlock();
56 return pag;
57 }
58
59 /*
60 * search from @first to find the next perag with the given tag set.
61 */
62 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,unsigned int tag)63 xfs_perag_get_tag(
64 struct xfs_mount *mp,
65 xfs_agnumber_t first,
66 unsigned int tag)
67 {
68 struct xfs_perag *pag;
69 int found;
70
71 rcu_read_lock();
72 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
73 (void **)&pag, first, 1, tag);
74 if (found <= 0) {
75 rcu_read_unlock();
76 return NULL;
77 }
78 trace_xfs_perag_get_tag(pag, _RET_IP_);
79 atomic_inc(&pag->pag_ref);
80 rcu_read_unlock();
81 return pag;
82 }
83
84 /* Get a passive reference to the given perag. */
85 struct xfs_perag *
xfs_perag_hold(struct xfs_perag * pag)86 xfs_perag_hold(
87 struct xfs_perag *pag)
88 {
89 ASSERT(atomic_read(&pag->pag_ref) > 0 ||
90 atomic_read(&pag->pag_active_ref) > 0);
91
92 trace_xfs_perag_hold(pag, _RET_IP_);
93 atomic_inc(&pag->pag_ref);
94 return pag;
95 }
96
97 void
xfs_perag_put(struct xfs_perag * pag)98 xfs_perag_put(
99 struct xfs_perag *pag)
100 {
101 trace_xfs_perag_put(pag, _RET_IP_);
102 ASSERT(atomic_read(&pag->pag_ref) > 0);
103 atomic_dec(&pag->pag_ref);
104 }
105
106 /*
107 * Active references for perag structures. This is for short term access to the
108 * per ag structures for walking trees or accessing state. If an AG is being
109 * shrunk or is offline, then this will fail to find that AG and return NULL
110 * instead.
111 */
112 struct xfs_perag *
xfs_perag_grab(struct xfs_mount * mp,xfs_agnumber_t agno)113 xfs_perag_grab(
114 struct xfs_mount *mp,
115 xfs_agnumber_t agno)
116 {
117 struct xfs_perag *pag;
118
119 rcu_read_lock();
120 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
121 if (pag) {
122 trace_xfs_perag_grab(pag, _RET_IP_);
123 if (!atomic_inc_not_zero(&pag->pag_active_ref))
124 pag = NULL;
125 }
126 rcu_read_unlock();
127 return pag;
128 }
129
130 /*
131 * search from @first to find the next perag with the given tag set.
132 */
133 struct xfs_perag *
xfs_perag_grab_tag(struct xfs_mount * mp,xfs_agnumber_t first,int tag)134 xfs_perag_grab_tag(
135 struct xfs_mount *mp,
136 xfs_agnumber_t first,
137 int tag)
138 {
139 struct xfs_perag *pag;
140 int found;
141
142 rcu_read_lock();
143 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
144 (void **)&pag, first, 1, tag);
145 if (found <= 0) {
146 rcu_read_unlock();
147 return NULL;
148 }
149 trace_xfs_perag_grab_tag(pag, _RET_IP_);
150 if (!atomic_inc_not_zero(&pag->pag_active_ref))
151 pag = NULL;
152 rcu_read_unlock();
153 return pag;
154 }
155
156 void
xfs_perag_rele(struct xfs_perag * pag)157 xfs_perag_rele(
158 struct xfs_perag *pag)
159 {
160 trace_xfs_perag_rele(pag, _RET_IP_);
161 if (atomic_dec_and_test(&pag->pag_active_ref))
162 wake_up(&pag->pag_active_wq);
163 }
164
165 /*
166 * xfs_initialize_perag_data
167 *
168 * Read in each per-ag structure so we can count up the number of
169 * allocated inodes, free inodes and used filesystem blocks as this
170 * information is no longer persistent in the superblock. Once we have
171 * this information, write it into the in-core superblock structure.
172 */
173 int
xfs_initialize_perag_data(struct xfs_mount * mp,xfs_agnumber_t agcount)174 xfs_initialize_perag_data(
175 struct xfs_mount *mp,
176 xfs_agnumber_t agcount)
177 {
178 xfs_agnumber_t index;
179 struct xfs_perag *pag;
180 struct xfs_sb *sbp = &mp->m_sb;
181 uint64_t ifree = 0;
182 uint64_t ialloc = 0;
183 uint64_t bfree = 0;
184 uint64_t bfreelst = 0;
185 uint64_t btree = 0;
186 uint64_t fdblocks;
187 int error = 0;
188
189 for (index = 0; index < agcount; index++) {
190 /*
191 * Read the AGF and AGI buffers to populate the per-ag
192 * structures for us.
193 */
194 pag = xfs_perag_get(mp, index);
195 error = xfs_alloc_read_agf(pag, NULL, 0, NULL);
196 if (!error)
197 error = xfs_ialloc_read_agi(pag, NULL, NULL);
198 if (error) {
199 xfs_perag_put(pag);
200 return error;
201 }
202
203 ifree += pag->pagi_freecount;
204 ialloc += pag->pagi_count;
205 bfree += pag->pagf_freeblks;
206 bfreelst += pag->pagf_flcount;
207 btree += pag->pagf_btreeblks;
208 xfs_perag_put(pag);
209 }
210 fdblocks = bfree + bfreelst + btree;
211
212 /*
213 * If the new summary counts are obviously incorrect, fail the
214 * mount operation because that implies the AGFs are also corrupt.
215 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
216 * will prevent xfs_repair from fixing anything.
217 */
218 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
219 xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
220 error = -EFSCORRUPTED;
221 goto out;
222 }
223
224 /* Overwrite incore superblock counters with just-read data */
225 spin_lock(&mp->m_sb_lock);
226 sbp->sb_ifree = ifree;
227 sbp->sb_icount = ialloc;
228 sbp->sb_fdblocks = fdblocks;
229 spin_unlock(&mp->m_sb_lock);
230
231 xfs_reinit_percpu_counters(mp);
232 out:
233 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
234 return error;
235 }
236
237 STATIC void
__xfs_free_perag(struct rcu_head * head)238 __xfs_free_perag(
239 struct rcu_head *head)
240 {
241 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
242
243 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
244 kmem_free(pag);
245 }
246
247 /*
248 * Free up the per-ag resources associated with the mount structure.
249 */
250 void
xfs_free_perag(struct xfs_mount * mp)251 xfs_free_perag(
252 struct xfs_mount *mp)
253 {
254 struct xfs_perag *pag;
255 xfs_agnumber_t agno;
256
257 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
258 spin_lock(&mp->m_perag_lock);
259 pag = radix_tree_delete(&mp->m_perag_tree, agno);
260 spin_unlock(&mp->m_perag_lock);
261 ASSERT(pag);
262 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
263 xfs_defer_drain_free(&pag->pag_intents_drain);
264
265 cancel_delayed_work_sync(&pag->pag_blockgc_work);
266 xfs_buf_hash_destroy(pag);
267
268 /* drop the mount's active reference */
269 xfs_perag_rele(pag);
270 XFS_IS_CORRUPT(pag->pag_mount,
271 atomic_read(&pag->pag_active_ref) != 0);
272 call_rcu(&pag->rcu_head, __xfs_free_perag);
273 }
274 }
275
276 /* Find the size of the AG, in blocks. */
277 static xfs_agblock_t
__xfs_ag_block_count(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agnumber_t agcount,xfs_rfsblock_t dblocks)278 __xfs_ag_block_count(
279 struct xfs_mount *mp,
280 xfs_agnumber_t agno,
281 xfs_agnumber_t agcount,
282 xfs_rfsblock_t dblocks)
283 {
284 ASSERT(agno < agcount);
285
286 if (agno < agcount - 1)
287 return mp->m_sb.sb_agblocks;
288 return dblocks - (agno * mp->m_sb.sb_agblocks);
289 }
290
291 xfs_agblock_t
xfs_ag_block_count(struct xfs_mount * mp,xfs_agnumber_t agno)292 xfs_ag_block_count(
293 struct xfs_mount *mp,
294 xfs_agnumber_t agno)
295 {
296 return __xfs_ag_block_count(mp, agno, mp->m_sb.sb_agcount,
297 mp->m_sb.sb_dblocks);
298 }
299
300 /* Calculate the first and last possible inode number in an AG. */
301 static void
__xfs_agino_range(struct xfs_mount * mp,xfs_agblock_t eoag,xfs_agino_t * first,xfs_agino_t * last)302 __xfs_agino_range(
303 struct xfs_mount *mp,
304 xfs_agblock_t eoag,
305 xfs_agino_t *first,
306 xfs_agino_t *last)
307 {
308 xfs_agblock_t bno;
309
310 /*
311 * Calculate the first inode, which will be in the first
312 * cluster-aligned block after the AGFL.
313 */
314 bno = round_up(XFS_AGFL_BLOCK(mp) + 1, M_IGEO(mp)->cluster_align);
315 *first = XFS_AGB_TO_AGINO(mp, bno);
316
317 /*
318 * Calculate the last inode, which will be at the end of the
319 * last (aligned) cluster that can be allocated in the AG.
320 */
321 bno = round_down(eoag, M_IGEO(mp)->cluster_align);
322 *last = XFS_AGB_TO_AGINO(mp, bno) - 1;
323 }
324
325 void
xfs_agino_range(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t * first,xfs_agino_t * last)326 xfs_agino_range(
327 struct xfs_mount *mp,
328 xfs_agnumber_t agno,
329 xfs_agino_t *first,
330 xfs_agino_t *last)
331 {
332 return __xfs_agino_range(mp, xfs_ag_block_count(mp, agno), first, last);
333 }
334
335 int
xfs_initialize_perag(struct xfs_mount * mp,xfs_agnumber_t agcount,xfs_rfsblock_t dblocks,xfs_agnumber_t * maxagi)336 xfs_initialize_perag(
337 struct xfs_mount *mp,
338 xfs_agnumber_t agcount,
339 xfs_rfsblock_t dblocks,
340 xfs_agnumber_t *maxagi)
341 {
342 struct xfs_perag *pag;
343 xfs_agnumber_t index;
344 xfs_agnumber_t first_initialised = NULLAGNUMBER;
345 int error;
346
347 /*
348 * Walk the current per-ag tree so we don't try to initialise AGs
349 * that already exist (growfs case). Allocate and insert all the
350 * AGs we don't find ready for initialisation.
351 */
352 for (index = 0; index < agcount; index++) {
353 pag = xfs_perag_get(mp, index);
354 if (pag) {
355 xfs_perag_put(pag);
356 continue;
357 }
358
359 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
360 if (!pag) {
361 error = -ENOMEM;
362 goto out_unwind_new_pags;
363 }
364 pag->pag_agno = index;
365 pag->pag_mount = mp;
366
367 error = radix_tree_preload(GFP_NOFS);
368 if (error)
369 goto out_free_pag;
370
371 spin_lock(&mp->m_perag_lock);
372 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
373 WARN_ON_ONCE(1);
374 spin_unlock(&mp->m_perag_lock);
375 radix_tree_preload_end();
376 error = -EEXIST;
377 goto out_free_pag;
378 }
379 spin_unlock(&mp->m_perag_lock);
380 radix_tree_preload_end();
381
382 #ifdef __KERNEL__
383 /* Place kernel structure only init below this point. */
384 spin_lock_init(&pag->pag_ici_lock);
385 spin_lock_init(&pag->pagb_lock);
386 spin_lock_init(&pag->pag_state_lock);
387 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
388 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
389 xfs_defer_drain_init(&pag->pag_intents_drain);
390 init_waitqueue_head(&pag->pagb_wait);
391 init_waitqueue_head(&pag->pag_active_wq);
392 pag->pagb_count = 0;
393 pag->pagb_tree = RB_ROOT;
394 #endif /* __KERNEL__ */
395
396 error = xfs_buf_hash_init(pag);
397 if (error)
398 goto out_remove_pag;
399
400 /* Active ref owned by mount indicates AG is online. */
401 atomic_set(&pag->pag_active_ref, 1);
402
403 /* first new pag is fully initialized */
404 if (first_initialised == NULLAGNUMBER)
405 first_initialised = index;
406
407 /*
408 * Pre-calculated geometry
409 */
410 pag->block_count = __xfs_ag_block_count(mp, index, agcount,
411 dblocks);
412 pag->min_block = XFS_AGFL_BLOCK(mp);
413 __xfs_agino_range(mp, pag->block_count, &pag->agino_min,
414 &pag->agino_max);
415 }
416
417 index = xfs_set_inode_alloc(mp, agcount);
418
419 if (maxagi)
420 *maxagi = index;
421
422 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
423 return 0;
424
425 out_remove_pag:
426 xfs_defer_drain_free(&pag->pag_intents_drain);
427 radix_tree_delete(&mp->m_perag_tree, index);
428 out_free_pag:
429 kmem_free(pag);
430 out_unwind_new_pags:
431 /* unwind any prior newly initialized pags */
432 for (index = first_initialised; index < agcount; index++) {
433 pag = radix_tree_delete(&mp->m_perag_tree, index);
434 if (!pag)
435 break;
436 xfs_buf_hash_destroy(pag);
437 xfs_defer_drain_free(&pag->pag_intents_drain);
438 kmem_free(pag);
439 }
440 return error;
441 }
442
443 static int
xfs_get_aghdr_buf(struct xfs_mount * mp,xfs_daddr_t blkno,size_t numblks,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)444 xfs_get_aghdr_buf(
445 struct xfs_mount *mp,
446 xfs_daddr_t blkno,
447 size_t numblks,
448 struct xfs_buf **bpp,
449 const struct xfs_buf_ops *ops)
450 {
451 struct xfs_buf *bp;
452 int error;
453
454 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
455 if (error)
456 return error;
457
458 bp->b_maps[0].bm_bn = blkno;
459 bp->b_ops = ops;
460
461 *bpp = bp;
462 return 0;
463 }
464
465 /*
466 * Generic btree root block init function
467 */
468 static void
xfs_btroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)469 xfs_btroot_init(
470 struct xfs_mount *mp,
471 struct xfs_buf *bp,
472 struct aghdr_init_data *id)
473 {
474 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
475 }
476
477 /* Finish initializing a free space btree. */
478 static void
xfs_freesp_init_recs(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)479 xfs_freesp_init_recs(
480 struct xfs_mount *mp,
481 struct xfs_buf *bp,
482 struct aghdr_init_data *id)
483 {
484 struct xfs_alloc_rec *arec;
485 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
486
487 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
488 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
489
490 if (xfs_ag_contains_log(mp, id->agno)) {
491 struct xfs_alloc_rec *nrec;
492 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
493 mp->m_sb.sb_logstart);
494
495 ASSERT(start >= mp->m_ag_prealloc_blocks);
496 if (start != mp->m_ag_prealloc_blocks) {
497 /*
498 * Modify first record to pad stripe align of log and
499 * bump the record count.
500 */
501 arec->ar_blockcount = cpu_to_be32(start -
502 mp->m_ag_prealloc_blocks);
503 be16_add_cpu(&block->bb_numrecs, 1);
504 nrec = arec + 1;
505
506 /*
507 * Insert second record at start of internal log
508 * which then gets trimmed.
509 */
510 nrec->ar_startblock = cpu_to_be32(
511 be32_to_cpu(arec->ar_startblock) +
512 be32_to_cpu(arec->ar_blockcount));
513 arec = nrec;
514 }
515 /*
516 * Change record start to after the internal log
517 */
518 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
519 }
520
521 /*
522 * Calculate the block count of this record; if it is nonzero,
523 * increment the record count.
524 */
525 arec->ar_blockcount = cpu_to_be32(id->agsize -
526 be32_to_cpu(arec->ar_startblock));
527 if (arec->ar_blockcount)
528 be16_add_cpu(&block->bb_numrecs, 1);
529 }
530
531 /*
532 * Alloc btree root block init functions
533 */
534 static void
xfs_bnoroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)535 xfs_bnoroot_init(
536 struct xfs_mount *mp,
537 struct xfs_buf *bp,
538 struct aghdr_init_data *id)
539 {
540 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 0, id->agno);
541 xfs_freesp_init_recs(mp, bp, id);
542 }
543
544 static void
xfs_cntroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)545 xfs_cntroot_init(
546 struct xfs_mount *mp,
547 struct xfs_buf *bp,
548 struct aghdr_init_data *id)
549 {
550 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 0, id->agno);
551 xfs_freesp_init_recs(mp, bp, id);
552 }
553
554 /*
555 * Reverse map root block init
556 */
557 static void
xfs_rmaproot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)558 xfs_rmaproot_init(
559 struct xfs_mount *mp,
560 struct xfs_buf *bp,
561 struct aghdr_init_data *id)
562 {
563 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
564 struct xfs_rmap_rec *rrec;
565
566 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
567
568 /*
569 * mark the AG header regions as static metadata The BNO
570 * btree block is the first block after the headers, so
571 * it's location defines the size of region the static
572 * metadata consumes.
573 *
574 * Note: unlike mkfs, we never have to account for log
575 * space when growing the data regions
576 */
577 rrec = XFS_RMAP_REC_ADDR(block, 1);
578 rrec->rm_startblock = 0;
579 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
580 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
581 rrec->rm_offset = 0;
582
583 /* account freespace btree root blocks */
584 rrec = XFS_RMAP_REC_ADDR(block, 2);
585 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
586 rrec->rm_blockcount = cpu_to_be32(2);
587 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
588 rrec->rm_offset = 0;
589
590 /* account inode btree root blocks */
591 rrec = XFS_RMAP_REC_ADDR(block, 3);
592 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
593 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
594 XFS_IBT_BLOCK(mp));
595 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
596 rrec->rm_offset = 0;
597
598 /* account for rmap btree root */
599 rrec = XFS_RMAP_REC_ADDR(block, 4);
600 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
601 rrec->rm_blockcount = cpu_to_be32(1);
602 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
603 rrec->rm_offset = 0;
604
605 /* account for refc btree root */
606 if (xfs_has_reflink(mp)) {
607 rrec = XFS_RMAP_REC_ADDR(block, 5);
608 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
609 rrec->rm_blockcount = cpu_to_be32(1);
610 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
611 rrec->rm_offset = 0;
612 be16_add_cpu(&block->bb_numrecs, 1);
613 }
614
615 /* account for the log space */
616 if (xfs_ag_contains_log(mp, id->agno)) {
617 rrec = XFS_RMAP_REC_ADDR(block,
618 be16_to_cpu(block->bb_numrecs) + 1);
619 rrec->rm_startblock = cpu_to_be32(
620 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
621 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
622 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
623 rrec->rm_offset = 0;
624 be16_add_cpu(&block->bb_numrecs, 1);
625 }
626 }
627
628 /*
629 * Initialise new secondary superblocks with the pre-grow geometry, but mark
630 * them as "in progress" so we know they haven't yet been activated. This will
631 * get cleared when the update with the new geometry information is done after
632 * changes to the primary are committed. This isn't strictly necessary, but we
633 * get it for free with the delayed buffer write lists and it means we can tell
634 * if a grow operation didn't complete properly after the fact.
635 */
636 static void
xfs_sbblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)637 xfs_sbblock_init(
638 struct xfs_mount *mp,
639 struct xfs_buf *bp,
640 struct aghdr_init_data *id)
641 {
642 struct xfs_dsb *dsb = bp->b_addr;
643
644 xfs_sb_to_disk(dsb, &mp->m_sb);
645 dsb->sb_inprogress = 1;
646 }
647
648 static void
xfs_agfblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)649 xfs_agfblock_init(
650 struct xfs_mount *mp,
651 struct xfs_buf *bp,
652 struct aghdr_init_data *id)
653 {
654 struct xfs_agf *agf = bp->b_addr;
655 xfs_extlen_t tmpsize;
656
657 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
658 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
659 agf->agf_seqno = cpu_to_be32(id->agno);
660 agf->agf_length = cpu_to_be32(id->agsize);
661 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
662 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
663 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
664 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
665 if (xfs_has_rmapbt(mp)) {
666 agf->agf_roots[XFS_BTNUM_RMAPi] =
667 cpu_to_be32(XFS_RMAP_BLOCK(mp));
668 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
669 agf->agf_rmap_blocks = cpu_to_be32(1);
670 }
671
672 agf->agf_flfirst = cpu_to_be32(1);
673 agf->agf_fllast = 0;
674 agf->agf_flcount = 0;
675 tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
676 agf->agf_freeblks = cpu_to_be32(tmpsize);
677 agf->agf_longest = cpu_to_be32(tmpsize);
678 if (xfs_has_crc(mp))
679 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
680 if (xfs_has_reflink(mp)) {
681 agf->agf_refcount_root = cpu_to_be32(
682 xfs_refc_block(mp));
683 agf->agf_refcount_level = cpu_to_be32(1);
684 agf->agf_refcount_blocks = cpu_to_be32(1);
685 }
686
687 if (xfs_ag_contains_log(mp, id->agno)) {
688 int64_t logblocks = mp->m_sb.sb_logblocks;
689
690 be32_add_cpu(&agf->agf_freeblks, -logblocks);
691 agf->agf_longest = cpu_to_be32(id->agsize -
692 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
693 }
694 }
695
696 static void
xfs_agflblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)697 xfs_agflblock_init(
698 struct xfs_mount *mp,
699 struct xfs_buf *bp,
700 struct aghdr_init_data *id)
701 {
702 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
703 __be32 *agfl_bno;
704 int bucket;
705
706 if (xfs_has_crc(mp)) {
707 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
708 agfl->agfl_seqno = cpu_to_be32(id->agno);
709 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
710 }
711
712 agfl_bno = xfs_buf_to_agfl_bno(bp);
713 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
714 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
715 }
716
717 static void
xfs_agiblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)718 xfs_agiblock_init(
719 struct xfs_mount *mp,
720 struct xfs_buf *bp,
721 struct aghdr_init_data *id)
722 {
723 struct xfs_agi *agi = bp->b_addr;
724 int bucket;
725
726 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
727 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
728 agi->agi_seqno = cpu_to_be32(id->agno);
729 agi->agi_length = cpu_to_be32(id->agsize);
730 agi->agi_count = 0;
731 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
732 agi->agi_level = cpu_to_be32(1);
733 agi->agi_freecount = 0;
734 agi->agi_newino = cpu_to_be32(NULLAGINO);
735 agi->agi_dirino = cpu_to_be32(NULLAGINO);
736 if (xfs_has_crc(mp))
737 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
738 if (xfs_has_finobt(mp)) {
739 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
740 agi->agi_free_level = cpu_to_be32(1);
741 }
742 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
743 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
744 if (xfs_has_inobtcounts(mp)) {
745 agi->agi_iblocks = cpu_to_be32(1);
746 if (xfs_has_finobt(mp))
747 agi->agi_fblocks = cpu_to_be32(1);
748 }
749 }
750
751 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
752 struct aghdr_init_data *id);
753 static int
xfs_ag_init_hdr(struct xfs_mount * mp,struct aghdr_init_data * id,aghdr_init_work_f work,const struct xfs_buf_ops * ops)754 xfs_ag_init_hdr(
755 struct xfs_mount *mp,
756 struct aghdr_init_data *id,
757 aghdr_init_work_f work,
758 const struct xfs_buf_ops *ops)
759 {
760 struct xfs_buf *bp;
761 int error;
762
763 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
764 if (error)
765 return error;
766
767 (*work)(mp, bp, id);
768
769 xfs_buf_delwri_queue(bp, &id->buffer_list);
770 xfs_buf_relse(bp);
771 return 0;
772 }
773
774 struct xfs_aghdr_grow_data {
775 xfs_daddr_t daddr;
776 size_t numblks;
777 const struct xfs_buf_ops *ops;
778 aghdr_init_work_f work;
779 xfs_btnum_t type;
780 bool need_init;
781 };
782
783 /*
784 * Prepare new AG headers to be written to disk. We use uncached buffers here,
785 * as it is assumed these new AG headers are currently beyond the currently
786 * valid filesystem address space. Using cached buffers would trip over EOFS
787 * corruption detection alogrithms in the buffer cache lookup routines.
788 *
789 * This is a non-transactional function, but the prepared buffers are added to a
790 * delayed write buffer list supplied by the caller so they can submit them to
791 * disk and wait on them as required.
792 */
793 int
xfs_ag_init_headers(struct xfs_mount * mp,struct aghdr_init_data * id)794 xfs_ag_init_headers(
795 struct xfs_mount *mp,
796 struct aghdr_init_data *id)
797
798 {
799 struct xfs_aghdr_grow_data aghdr_data[] = {
800 { /* SB */
801 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
802 .numblks = XFS_FSS_TO_BB(mp, 1),
803 .ops = &xfs_sb_buf_ops,
804 .work = &xfs_sbblock_init,
805 .need_init = true
806 },
807 { /* AGF */
808 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
809 .numblks = XFS_FSS_TO_BB(mp, 1),
810 .ops = &xfs_agf_buf_ops,
811 .work = &xfs_agfblock_init,
812 .need_init = true
813 },
814 { /* AGFL */
815 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
816 .numblks = XFS_FSS_TO_BB(mp, 1),
817 .ops = &xfs_agfl_buf_ops,
818 .work = &xfs_agflblock_init,
819 .need_init = true
820 },
821 { /* AGI */
822 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
823 .numblks = XFS_FSS_TO_BB(mp, 1),
824 .ops = &xfs_agi_buf_ops,
825 .work = &xfs_agiblock_init,
826 .need_init = true
827 },
828 { /* BNO root block */
829 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
830 .numblks = BTOBB(mp->m_sb.sb_blocksize),
831 .ops = &xfs_bnobt_buf_ops,
832 .work = &xfs_bnoroot_init,
833 .need_init = true
834 },
835 { /* CNT root block */
836 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
837 .numblks = BTOBB(mp->m_sb.sb_blocksize),
838 .ops = &xfs_cntbt_buf_ops,
839 .work = &xfs_cntroot_init,
840 .need_init = true
841 },
842 { /* INO root block */
843 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
844 .numblks = BTOBB(mp->m_sb.sb_blocksize),
845 .ops = &xfs_inobt_buf_ops,
846 .work = &xfs_btroot_init,
847 .type = XFS_BTNUM_INO,
848 .need_init = true
849 },
850 { /* FINO root block */
851 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
852 .numblks = BTOBB(mp->m_sb.sb_blocksize),
853 .ops = &xfs_finobt_buf_ops,
854 .work = &xfs_btroot_init,
855 .type = XFS_BTNUM_FINO,
856 .need_init = xfs_has_finobt(mp)
857 },
858 { /* RMAP root block */
859 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
860 .numblks = BTOBB(mp->m_sb.sb_blocksize),
861 .ops = &xfs_rmapbt_buf_ops,
862 .work = &xfs_rmaproot_init,
863 .need_init = xfs_has_rmapbt(mp)
864 },
865 { /* REFC root block */
866 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
867 .numblks = BTOBB(mp->m_sb.sb_blocksize),
868 .ops = &xfs_refcountbt_buf_ops,
869 .work = &xfs_btroot_init,
870 .type = XFS_BTNUM_REFC,
871 .need_init = xfs_has_reflink(mp)
872 },
873 { /* NULL terminating block */
874 .daddr = XFS_BUF_DADDR_NULL,
875 }
876 };
877 struct xfs_aghdr_grow_data *dp;
878 int error = 0;
879
880 /* Account for AG free space in new AG */
881 id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
882 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
883 if (!dp->need_init)
884 continue;
885
886 id->daddr = dp->daddr;
887 id->numblks = dp->numblks;
888 id->type = dp->type;
889 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
890 if (error)
891 break;
892 }
893 return error;
894 }
895
896 int
xfs_ag_shrink_space(struct xfs_perag * pag,struct xfs_trans ** tpp,xfs_extlen_t delta)897 xfs_ag_shrink_space(
898 struct xfs_perag *pag,
899 struct xfs_trans **tpp,
900 xfs_extlen_t delta)
901 {
902 struct xfs_mount *mp = pag->pag_mount;
903 struct xfs_alloc_arg args = {
904 .tp = *tpp,
905 .mp = mp,
906 .pag = pag,
907 .minlen = delta,
908 .maxlen = delta,
909 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
910 .resv = XFS_AG_RESV_NONE,
911 .prod = 1
912 };
913 struct xfs_buf *agibp, *agfbp;
914 struct xfs_agi *agi;
915 struct xfs_agf *agf;
916 xfs_agblock_t aglen;
917 int error, err2;
918
919 ASSERT(pag->pag_agno == mp->m_sb.sb_agcount - 1);
920 error = xfs_ialloc_read_agi(pag, *tpp, &agibp);
921 if (error)
922 return error;
923
924 agi = agibp->b_addr;
925
926 error = xfs_alloc_read_agf(pag, *tpp, 0, &agfbp);
927 if (error)
928 return error;
929
930 agf = agfbp->b_addr;
931 aglen = be32_to_cpu(agi->agi_length);
932 /* some extra paranoid checks before we shrink the ag */
933 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
934 return -EFSCORRUPTED;
935 if (delta >= aglen)
936 return -EINVAL;
937
938 /*
939 * Make sure that the last inode cluster cannot overlap with the new
940 * end of the AG, even if it's sparse.
941 */
942 error = xfs_ialloc_check_shrink(pag, *tpp, agibp, aglen - delta);
943 if (error)
944 return error;
945
946 /*
947 * Disable perag reservations so it doesn't cause the allocation request
948 * to fail. We'll reestablish reservation before we return.
949 */
950 error = xfs_ag_resv_free(pag);
951 if (error)
952 return error;
953
954 /* internal log shouldn't also show up in the free space btrees */
955 error = xfs_alloc_vextent_exact_bno(&args,
956 XFS_AGB_TO_FSB(mp, pag->pag_agno, aglen - delta));
957 if (!error && args.agbno == NULLAGBLOCK)
958 error = -ENOSPC;
959
960 if (error) {
961 /*
962 * if extent allocation fails, need to roll the transaction to
963 * ensure that the AGFL fixup has been committed anyway.
964 */
965 xfs_trans_bhold(*tpp, agfbp);
966 err2 = xfs_trans_roll(tpp);
967 if (err2)
968 return err2;
969 xfs_trans_bjoin(*tpp, agfbp);
970 goto resv_init_out;
971 }
972
973 /*
974 * if successfully deleted from freespace btrees, need to confirm
975 * per-AG reservation works as expected.
976 */
977 be32_add_cpu(&agi->agi_length, -delta);
978 be32_add_cpu(&agf->agf_length, -delta);
979
980 err2 = xfs_ag_resv_init(pag, *tpp);
981 if (err2) {
982 be32_add_cpu(&agi->agi_length, delta);
983 be32_add_cpu(&agf->agf_length, delta);
984 if (err2 != -ENOSPC)
985 goto resv_err;
986
987 err2 = __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL,
988 XFS_AG_RESV_NONE, true);
989 if (err2)
990 goto resv_err;
991
992 /*
993 * Roll the transaction before trying to re-init the per-ag
994 * reservation. The new transaction is clean so it will cancel
995 * without any side effects.
996 */
997 error = xfs_defer_finish(tpp);
998 if (error)
999 return error;
1000
1001 error = -ENOSPC;
1002 goto resv_init_out;
1003 }
1004
1005 /* Update perag geometry */
1006 pag->block_count -= delta;
1007 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1008 &pag->agino_max);
1009
1010 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
1011 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
1012 return 0;
1013
1014 resv_init_out:
1015 err2 = xfs_ag_resv_init(pag, *tpp);
1016 if (!err2)
1017 return error;
1018 resv_err:
1019 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
1020 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1021 return err2;
1022 }
1023
1024 /*
1025 * Extent the AG indicated by the @id by the length passed in
1026 */
1027 int
xfs_ag_extend_space(struct xfs_perag * pag,struct xfs_trans * tp,xfs_extlen_t len)1028 xfs_ag_extend_space(
1029 struct xfs_perag *pag,
1030 struct xfs_trans *tp,
1031 xfs_extlen_t len)
1032 {
1033 struct xfs_buf *bp;
1034 struct xfs_agi *agi;
1035 struct xfs_agf *agf;
1036 int error;
1037
1038 ASSERT(pag->pag_agno == pag->pag_mount->m_sb.sb_agcount - 1);
1039
1040 error = xfs_ialloc_read_agi(pag, tp, &bp);
1041 if (error)
1042 return error;
1043
1044 agi = bp->b_addr;
1045 be32_add_cpu(&agi->agi_length, len);
1046 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
1047
1048 /*
1049 * Change agf length.
1050 */
1051 error = xfs_alloc_read_agf(pag, tp, 0, &bp);
1052 if (error)
1053 return error;
1054
1055 agf = bp->b_addr;
1056 be32_add_cpu(&agf->agf_length, len);
1057 ASSERT(agf->agf_length == agi->agi_length);
1058 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
1059
1060 /*
1061 * Free the new space.
1062 *
1063 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
1064 * this doesn't actually exist in the rmap btree.
1065 */
1066 error = xfs_rmap_free(tp, bp, pag, be32_to_cpu(agf->agf_length) - len,
1067 len, &XFS_RMAP_OINFO_SKIP_UPDATE);
1068 if (error)
1069 return error;
1070
1071 error = xfs_free_extent(tp, pag, be32_to_cpu(agf->agf_length) - len,
1072 len, &XFS_RMAP_OINFO_SKIP_UPDATE, XFS_AG_RESV_NONE);
1073 if (error)
1074 return error;
1075
1076 /* Update perag geometry */
1077 pag->block_count = be32_to_cpu(agf->agf_length);
1078 __xfs_agino_range(pag->pag_mount, pag->block_count, &pag->agino_min,
1079 &pag->agino_max);
1080 return 0;
1081 }
1082
1083 /* Retrieve AG geometry. */
1084 int
xfs_ag_get_geometry(struct xfs_perag * pag,struct xfs_ag_geometry * ageo)1085 xfs_ag_get_geometry(
1086 struct xfs_perag *pag,
1087 struct xfs_ag_geometry *ageo)
1088 {
1089 struct xfs_buf *agi_bp;
1090 struct xfs_buf *agf_bp;
1091 struct xfs_agi *agi;
1092 struct xfs_agf *agf;
1093 unsigned int freeblks;
1094 int error;
1095
1096 /* Lock the AG headers. */
1097 error = xfs_ialloc_read_agi(pag, NULL, &agi_bp);
1098 if (error)
1099 return error;
1100 error = xfs_alloc_read_agf(pag, NULL, 0, &agf_bp);
1101 if (error)
1102 goto out_agi;
1103
1104 /* Fill out form. */
1105 memset(ageo, 0, sizeof(*ageo));
1106 ageo->ag_number = pag->pag_agno;
1107
1108 agi = agi_bp->b_addr;
1109 ageo->ag_icount = be32_to_cpu(agi->agi_count);
1110 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
1111
1112 agf = agf_bp->b_addr;
1113 ageo->ag_length = be32_to_cpu(agf->agf_length);
1114 freeblks = pag->pagf_freeblks +
1115 pag->pagf_flcount +
1116 pag->pagf_btreeblks -
1117 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
1118 ageo->ag_freeblks = freeblks;
1119 xfs_ag_geom_health(pag, ageo);
1120
1121 /* Release resources. */
1122 xfs_buf_relse(agf_bp);
1123 out_agi:
1124 xfs_buf_relse(agi_bp);
1125 return error;
1126 }
1127