1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2018 Red Hat, Inc.
5 * All rights reserved.
6 */
7
8 #include "xfs.h"
9 #include "xfs_fs.h"
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_sb.h"
15 #include "xfs_mount.h"
16 #include "xfs_btree.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_rmap_btree.h"
19 #include "xfs_alloc.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_rmap.h"
22 #include "xfs_ag.h"
23 #include "xfs_ag_resv.h"
24 #include "xfs_health.h"
25 #include "xfs_error.h"
26 #include "xfs_bmap.h"
27 #include "xfs_defer.h"
28 #include "xfs_log_format.h"
29 #include "xfs_trans.h"
30 #include "xfs_trace.h"
31 #include "xfs_inode.h"
32 #include "xfs_icache.h"
33
34
35 /*
36 * Passive reference counting access wrappers to the perag structures. If the
37 * per-ag structure is to be freed, the freeing code is responsible for cleaning
38 * up objects with passive references before freeing the structure. This is
39 * things like cached buffers.
40 */
41 struct xfs_perag *
xfs_perag_get(struct xfs_mount * mp,xfs_agnumber_t agno)42 xfs_perag_get(
43 struct xfs_mount *mp,
44 xfs_agnumber_t agno)
45 {
46 struct xfs_perag *pag;
47 int ref = 0;
48
49 rcu_read_lock();
50 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
51 if (pag) {
52 ASSERT(atomic_read(&pag->pag_ref) >= 0);
53 ref = atomic_inc_return(&pag->pag_ref);
54 }
55 rcu_read_unlock();
56 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
57 return pag;
58 }
59
60 /*
61 * search from @first to find the next perag with the given tag set.
62 */
63 struct xfs_perag *
xfs_perag_get_tag(struct xfs_mount * mp,xfs_agnumber_t first,unsigned int tag)64 xfs_perag_get_tag(
65 struct xfs_mount *mp,
66 xfs_agnumber_t first,
67 unsigned int tag)
68 {
69 struct xfs_perag *pag;
70 int found;
71 int ref;
72
73 rcu_read_lock();
74 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
75 (void **)&pag, first, 1, tag);
76 if (found <= 0) {
77 rcu_read_unlock();
78 return NULL;
79 }
80 ref = atomic_inc_return(&pag->pag_ref);
81 rcu_read_unlock();
82 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
83 return pag;
84 }
85
86 void
xfs_perag_put(struct xfs_perag * pag)87 xfs_perag_put(
88 struct xfs_perag *pag)
89 {
90 int ref;
91
92 ASSERT(atomic_read(&pag->pag_ref) > 0);
93 ref = atomic_dec_return(&pag->pag_ref);
94 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
95 }
96
97 /*
98 * xfs_initialize_perag_data
99 *
100 * Read in each per-ag structure so we can count up the number of
101 * allocated inodes, free inodes and used filesystem blocks as this
102 * information is no longer persistent in the superblock. Once we have
103 * this information, write it into the in-core superblock structure.
104 */
105 int
xfs_initialize_perag_data(struct xfs_mount * mp,xfs_agnumber_t agcount)106 xfs_initialize_perag_data(
107 struct xfs_mount *mp,
108 xfs_agnumber_t agcount)
109 {
110 xfs_agnumber_t index;
111 struct xfs_perag *pag;
112 struct xfs_sb *sbp = &mp->m_sb;
113 uint64_t ifree = 0;
114 uint64_t ialloc = 0;
115 uint64_t bfree = 0;
116 uint64_t bfreelst = 0;
117 uint64_t btree = 0;
118 uint64_t fdblocks;
119 int error = 0;
120
121 for (index = 0; index < agcount; index++) {
122 /*
123 * read the agf, then the agi. This gets us
124 * all the information we need and populates the
125 * per-ag structures for us.
126 */
127 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
128 if (error)
129 return error;
130
131 error = xfs_ialloc_pagi_init(mp, NULL, index);
132 if (error)
133 return error;
134 pag = xfs_perag_get(mp, index);
135 ifree += pag->pagi_freecount;
136 ialloc += pag->pagi_count;
137 bfree += pag->pagf_freeblks;
138 bfreelst += pag->pagf_flcount;
139 btree += pag->pagf_btreeblks;
140 xfs_perag_put(pag);
141 }
142 fdblocks = bfree + bfreelst + btree;
143
144 /*
145 * If the new summary counts are obviously incorrect, fail the
146 * mount operation because that implies the AGFs are also corrupt.
147 * Clear FS_COUNTERS so that we don't unmount with a dirty log, which
148 * will prevent xfs_repair from fixing anything.
149 */
150 if (fdblocks > sbp->sb_dblocks || ifree > ialloc) {
151 xfs_alert(mp, "AGF corruption. Please run xfs_repair.");
152 error = -EFSCORRUPTED;
153 goto out;
154 }
155
156 /* Overwrite incore superblock counters with just-read data */
157 spin_lock(&mp->m_sb_lock);
158 sbp->sb_ifree = ifree;
159 sbp->sb_icount = ialloc;
160 sbp->sb_fdblocks = fdblocks;
161 spin_unlock(&mp->m_sb_lock);
162
163 xfs_reinit_percpu_counters(mp);
164 out:
165 xfs_fs_mark_healthy(mp, XFS_SICK_FS_COUNTERS);
166 return error;
167 }
168
169 STATIC void
__xfs_free_perag(struct rcu_head * head)170 __xfs_free_perag(
171 struct rcu_head *head)
172 {
173 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
174
175 ASSERT(!delayed_work_pending(&pag->pag_blockgc_work));
176 kmem_free(pag);
177 }
178
179 /*
180 * Free up the per-ag resources associated with the mount structure.
181 */
182 void
xfs_free_perag(struct xfs_mount * mp)183 xfs_free_perag(
184 struct xfs_mount *mp)
185 {
186 struct xfs_perag *pag;
187 xfs_agnumber_t agno;
188
189 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
190 spin_lock(&mp->m_perag_lock);
191 pag = radix_tree_delete(&mp->m_perag_tree, agno);
192 spin_unlock(&mp->m_perag_lock);
193 ASSERT(pag);
194 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
195
196 cancel_delayed_work_sync(&pag->pag_blockgc_work);
197 xfs_iunlink_destroy(pag);
198 xfs_buf_hash_destroy(pag);
199
200 call_rcu(&pag->rcu_head, __xfs_free_perag);
201 }
202 }
203
204 int
xfs_initialize_perag(struct xfs_mount * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)205 xfs_initialize_perag(
206 struct xfs_mount *mp,
207 xfs_agnumber_t agcount,
208 xfs_agnumber_t *maxagi)
209 {
210 struct xfs_perag *pag;
211 xfs_agnumber_t index;
212 xfs_agnumber_t first_initialised = NULLAGNUMBER;
213 int error;
214
215 /*
216 * Walk the current per-ag tree so we don't try to initialise AGs
217 * that already exist (growfs case). Allocate and insert all the
218 * AGs we don't find ready for initialisation.
219 */
220 for (index = 0; index < agcount; index++) {
221 pag = xfs_perag_get(mp, index);
222 if (pag) {
223 xfs_perag_put(pag);
224 continue;
225 }
226
227 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
228 if (!pag) {
229 error = -ENOMEM;
230 goto out_unwind_new_pags;
231 }
232 pag->pag_agno = index;
233 pag->pag_mount = mp;
234
235 error = radix_tree_preload(GFP_NOFS);
236 if (error)
237 goto out_free_pag;
238
239 spin_lock(&mp->m_perag_lock);
240 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
241 WARN_ON_ONCE(1);
242 spin_unlock(&mp->m_perag_lock);
243 radix_tree_preload_end();
244 error = -EEXIST;
245 goto out_free_pag;
246 }
247 spin_unlock(&mp->m_perag_lock);
248 radix_tree_preload_end();
249
250 #ifdef __KERNEL__
251 /* Place kernel structure only init below this point. */
252 spin_lock_init(&pag->pag_ici_lock);
253 spin_lock_init(&pag->pagb_lock);
254 spin_lock_init(&pag->pag_state_lock);
255 INIT_DELAYED_WORK(&pag->pag_blockgc_work, xfs_blockgc_worker);
256 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
257 init_waitqueue_head(&pag->pagb_wait);
258 pag->pagb_count = 0;
259 pag->pagb_tree = RB_ROOT;
260 #endif /* __KERNEL__ */
261
262 error = xfs_buf_hash_init(pag);
263 if (error)
264 goto out_remove_pag;
265
266 error = xfs_iunlink_init(pag);
267 if (error)
268 goto out_hash_destroy;
269
270 /* first new pag is fully initialized */
271 if (first_initialised == NULLAGNUMBER)
272 first_initialised = index;
273 }
274
275 index = xfs_set_inode_alloc(mp, agcount);
276
277 if (maxagi)
278 *maxagi = index;
279
280 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
281 return 0;
282
283 out_hash_destroy:
284 xfs_buf_hash_destroy(pag);
285 out_remove_pag:
286 radix_tree_delete(&mp->m_perag_tree, index);
287 out_free_pag:
288 kmem_free(pag);
289 out_unwind_new_pags:
290 /* unwind any prior newly initialized pags */
291 for (index = first_initialised; index < agcount; index++) {
292 pag = radix_tree_delete(&mp->m_perag_tree, index);
293 if (!pag)
294 break;
295 xfs_buf_hash_destroy(pag);
296 xfs_iunlink_destroy(pag);
297 kmem_free(pag);
298 }
299 return error;
300 }
301
302 static int
xfs_get_aghdr_buf(struct xfs_mount * mp,xfs_daddr_t blkno,size_t numblks,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)303 xfs_get_aghdr_buf(
304 struct xfs_mount *mp,
305 xfs_daddr_t blkno,
306 size_t numblks,
307 struct xfs_buf **bpp,
308 const struct xfs_buf_ops *ops)
309 {
310 struct xfs_buf *bp;
311 int error;
312
313 error = xfs_buf_get_uncached(mp->m_ddev_targp, numblks, 0, &bp);
314 if (error)
315 return error;
316
317 bp->b_maps[0].bm_bn = blkno;
318 bp->b_ops = ops;
319
320 *bpp = bp;
321 return 0;
322 }
323
is_log_ag(struct xfs_mount * mp,struct aghdr_init_data * id)324 static inline bool is_log_ag(struct xfs_mount *mp, struct aghdr_init_data *id)
325 {
326 return mp->m_sb.sb_logstart > 0 &&
327 id->agno == XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart);
328 }
329
330 /*
331 * Generic btree root block init function
332 */
333 static void
xfs_btroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)334 xfs_btroot_init(
335 struct xfs_mount *mp,
336 struct xfs_buf *bp,
337 struct aghdr_init_data *id)
338 {
339 xfs_btree_init_block(mp, bp, id->type, 0, 0, id->agno);
340 }
341
342 /* Finish initializing a free space btree. */
343 static void
xfs_freesp_init_recs(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)344 xfs_freesp_init_recs(
345 struct xfs_mount *mp,
346 struct xfs_buf *bp,
347 struct aghdr_init_data *id)
348 {
349 struct xfs_alloc_rec *arec;
350 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
351
352 arec = XFS_ALLOC_REC_ADDR(mp, XFS_BUF_TO_BLOCK(bp), 1);
353 arec->ar_startblock = cpu_to_be32(mp->m_ag_prealloc_blocks);
354
355 if (is_log_ag(mp, id)) {
356 struct xfs_alloc_rec *nrec;
357 xfs_agblock_t start = XFS_FSB_TO_AGBNO(mp,
358 mp->m_sb.sb_logstart);
359
360 ASSERT(start >= mp->m_ag_prealloc_blocks);
361 if (start != mp->m_ag_prealloc_blocks) {
362 /*
363 * Modify first record to pad stripe align of log
364 */
365 arec->ar_blockcount = cpu_to_be32(start -
366 mp->m_ag_prealloc_blocks);
367 nrec = arec + 1;
368
369 /*
370 * Insert second record at start of internal log
371 * which then gets trimmed.
372 */
373 nrec->ar_startblock = cpu_to_be32(
374 be32_to_cpu(arec->ar_startblock) +
375 be32_to_cpu(arec->ar_blockcount));
376 arec = nrec;
377 be16_add_cpu(&block->bb_numrecs, 1);
378 }
379 /*
380 * Change record start to after the internal log
381 */
382 be32_add_cpu(&arec->ar_startblock, mp->m_sb.sb_logblocks);
383 }
384
385 /*
386 * Calculate the record block count and check for the case where
387 * the log might have consumed all available space in the AG. If
388 * so, reset the record count to 0 to avoid exposure of an invalid
389 * record start block.
390 */
391 arec->ar_blockcount = cpu_to_be32(id->agsize -
392 be32_to_cpu(arec->ar_startblock));
393 if (!arec->ar_blockcount)
394 block->bb_numrecs = 0;
395 }
396
397 /*
398 * Alloc btree root block init functions
399 */
400 static void
xfs_bnoroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)401 xfs_bnoroot_init(
402 struct xfs_mount *mp,
403 struct xfs_buf *bp,
404 struct aghdr_init_data *id)
405 {
406 xfs_btree_init_block(mp, bp, XFS_BTNUM_BNO, 0, 1, id->agno);
407 xfs_freesp_init_recs(mp, bp, id);
408 }
409
410 static void
xfs_cntroot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)411 xfs_cntroot_init(
412 struct xfs_mount *mp,
413 struct xfs_buf *bp,
414 struct aghdr_init_data *id)
415 {
416 xfs_btree_init_block(mp, bp, XFS_BTNUM_CNT, 0, 1, id->agno);
417 xfs_freesp_init_recs(mp, bp, id);
418 }
419
420 /*
421 * Reverse map root block init
422 */
423 static void
xfs_rmaproot_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)424 xfs_rmaproot_init(
425 struct xfs_mount *mp,
426 struct xfs_buf *bp,
427 struct aghdr_init_data *id)
428 {
429 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
430 struct xfs_rmap_rec *rrec;
431
432 xfs_btree_init_block(mp, bp, XFS_BTNUM_RMAP, 0, 4, id->agno);
433
434 /*
435 * mark the AG header regions as static metadata The BNO
436 * btree block is the first block after the headers, so
437 * it's location defines the size of region the static
438 * metadata consumes.
439 *
440 * Note: unlike mkfs, we never have to account for log
441 * space when growing the data regions
442 */
443 rrec = XFS_RMAP_REC_ADDR(block, 1);
444 rrec->rm_startblock = 0;
445 rrec->rm_blockcount = cpu_to_be32(XFS_BNO_BLOCK(mp));
446 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_FS);
447 rrec->rm_offset = 0;
448
449 /* account freespace btree root blocks */
450 rrec = XFS_RMAP_REC_ADDR(block, 2);
451 rrec->rm_startblock = cpu_to_be32(XFS_BNO_BLOCK(mp));
452 rrec->rm_blockcount = cpu_to_be32(2);
453 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
454 rrec->rm_offset = 0;
455
456 /* account inode btree root blocks */
457 rrec = XFS_RMAP_REC_ADDR(block, 3);
458 rrec->rm_startblock = cpu_to_be32(XFS_IBT_BLOCK(mp));
459 rrec->rm_blockcount = cpu_to_be32(XFS_RMAP_BLOCK(mp) -
460 XFS_IBT_BLOCK(mp));
461 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_INOBT);
462 rrec->rm_offset = 0;
463
464 /* account for rmap btree root */
465 rrec = XFS_RMAP_REC_ADDR(block, 4);
466 rrec->rm_startblock = cpu_to_be32(XFS_RMAP_BLOCK(mp));
467 rrec->rm_blockcount = cpu_to_be32(1);
468 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_AG);
469 rrec->rm_offset = 0;
470
471 /* account for refc btree root */
472 if (xfs_has_reflink(mp)) {
473 rrec = XFS_RMAP_REC_ADDR(block, 5);
474 rrec->rm_startblock = cpu_to_be32(xfs_refc_block(mp));
475 rrec->rm_blockcount = cpu_to_be32(1);
476 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_REFC);
477 rrec->rm_offset = 0;
478 be16_add_cpu(&block->bb_numrecs, 1);
479 }
480
481 /* account for the log space */
482 if (is_log_ag(mp, id)) {
483 rrec = XFS_RMAP_REC_ADDR(block,
484 be16_to_cpu(block->bb_numrecs) + 1);
485 rrec->rm_startblock = cpu_to_be32(
486 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart));
487 rrec->rm_blockcount = cpu_to_be32(mp->m_sb.sb_logblocks);
488 rrec->rm_owner = cpu_to_be64(XFS_RMAP_OWN_LOG);
489 rrec->rm_offset = 0;
490 be16_add_cpu(&block->bb_numrecs, 1);
491 }
492 }
493
494 /*
495 * Initialise new secondary superblocks with the pre-grow geometry, but mark
496 * them as "in progress" so we know they haven't yet been activated. This will
497 * get cleared when the update with the new geometry information is done after
498 * changes to the primary are committed. This isn't strictly necessary, but we
499 * get it for free with the delayed buffer write lists and it means we can tell
500 * if a grow operation didn't complete properly after the fact.
501 */
502 static void
xfs_sbblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)503 xfs_sbblock_init(
504 struct xfs_mount *mp,
505 struct xfs_buf *bp,
506 struct aghdr_init_data *id)
507 {
508 struct xfs_dsb *dsb = bp->b_addr;
509
510 xfs_sb_to_disk(dsb, &mp->m_sb);
511 dsb->sb_inprogress = 1;
512 }
513
514 static void
xfs_agfblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)515 xfs_agfblock_init(
516 struct xfs_mount *mp,
517 struct xfs_buf *bp,
518 struct aghdr_init_data *id)
519 {
520 struct xfs_agf *agf = bp->b_addr;
521 xfs_extlen_t tmpsize;
522
523 agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
524 agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
525 agf->agf_seqno = cpu_to_be32(id->agno);
526 agf->agf_length = cpu_to_be32(id->agsize);
527 agf->agf_roots[XFS_BTNUM_BNOi] = cpu_to_be32(XFS_BNO_BLOCK(mp));
528 agf->agf_roots[XFS_BTNUM_CNTi] = cpu_to_be32(XFS_CNT_BLOCK(mp));
529 agf->agf_levels[XFS_BTNUM_BNOi] = cpu_to_be32(1);
530 agf->agf_levels[XFS_BTNUM_CNTi] = cpu_to_be32(1);
531 if (xfs_has_rmapbt(mp)) {
532 agf->agf_roots[XFS_BTNUM_RMAPi] =
533 cpu_to_be32(XFS_RMAP_BLOCK(mp));
534 agf->agf_levels[XFS_BTNUM_RMAPi] = cpu_to_be32(1);
535 agf->agf_rmap_blocks = cpu_to_be32(1);
536 }
537
538 agf->agf_flfirst = cpu_to_be32(1);
539 agf->agf_fllast = 0;
540 agf->agf_flcount = 0;
541 tmpsize = id->agsize - mp->m_ag_prealloc_blocks;
542 agf->agf_freeblks = cpu_to_be32(tmpsize);
543 agf->agf_longest = cpu_to_be32(tmpsize);
544 if (xfs_has_crc(mp))
545 uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
546 if (xfs_has_reflink(mp)) {
547 agf->agf_refcount_root = cpu_to_be32(
548 xfs_refc_block(mp));
549 agf->agf_refcount_level = cpu_to_be32(1);
550 agf->agf_refcount_blocks = cpu_to_be32(1);
551 }
552
553 if (is_log_ag(mp, id)) {
554 int64_t logblocks = mp->m_sb.sb_logblocks;
555
556 be32_add_cpu(&agf->agf_freeblks, -logblocks);
557 agf->agf_longest = cpu_to_be32(id->agsize -
558 XFS_FSB_TO_AGBNO(mp, mp->m_sb.sb_logstart) - logblocks);
559 }
560 }
561
562 static void
xfs_agflblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)563 xfs_agflblock_init(
564 struct xfs_mount *mp,
565 struct xfs_buf *bp,
566 struct aghdr_init_data *id)
567 {
568 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
569 __be32 *agfl_bno;
570 int bucket;
571
572 if (xfs_has_crc(mp)) {
573 agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
574 agfl->agfl_seqno = cpu_to_be32(id->agno);
575 uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
576 }
577
578 agfl_bno = xfs_buf_to_agfl_bno(bp);
579 for (bucket = 0; bucket < xfs_agfl_size(mp); bucket++)
580 agfl_bno[bucket] = cpu_to_be32(NULLAGBLOCK);
581 }
582
583 static void
xfs_agiblock_init(struct xfs_mount * mp,struct xfs_buf * bp,struct aghdr_init_data * id)584 xfs_agiblock_init(
585 struct xfs_mount *mp,
586 struct xfs_buf *bp,
587 struct aghdr_init_data *id)
588 {
589 struct xfs_agi *agi = bp->b_addr;
590 int bucket;
591
592 agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
593 agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
594 agi->agi_seqno = cpu_to_be32(id->agno);
595 agi->agi_length = cpu_to_be32(id->agsize);
596 agi->agi_count = 0;
597 agi->agi_root = cpu_to_be32(XFS_IBT_BLOCK(mp));
598 agi->agi_level = cpu_to_be32(1);
599 agi->agi_freecount = 0;
600 agi->agi_newino = cpu_to_be32(NULLAGINO);
601 agi->agi_dirino = cpu_to_be32(NULLAGINO);
602 if (xfs_has_crc(mp))
603 uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
604 if (xfs_has_finobt(mp)) {
605 agi->agi_free_root = cpu_to_be32(XFS_FIBT_BLOCK(mp));
606 agi->agi_free_level = cpu_to_be32(1);
607 }
608 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
609 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
610 if (xfs_has_inobtcounts(mp)) {
611 agi->agi_iblocks = cpu_to_be32(1);
612 if (xfs_has_finobt(mp))
613 agi->agi_fblocks = cpu_to_be32(1);
614 }
615 }
616
617 typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,
618 struct aghdr_init_data *id);
619 static int
xfs_ag_init_hdr(struct xfs_mount * mp,struct aghdr_init_data * id,aghdr_init_work_f work,const struct xfs_buf_ops * ops)620 xfs_ag_init_hdr(
621 struct xfs_mount *mp,
622 struct aghdr_init_data *id,
623 aghdr_init_work_f work,
624 const struct xfs_buf_ops *ops)
625 {
626 struct xfs_buf *bp;
627 int error;
628
629 error = xfs_get_aghdr_buf(mp, id->daddr, id->numblks, &bp, ops);
630 if (error)
631 return error;
632
633 (*work)(mp, bp, id);
634
635 xfs_buf_delwri_queue(bp, &id->buffer_list);
636 xfs_buf_relse(bp);
637 return 0;
638 }
639
640 struct xfs_aghdr_grow_data {
641 xfs_daddr_t daddr;
642 size_t numblks;
643 const struct xfs_buf_ops *ops;
644 aghdr_init_work_f work;
645 xfs_btnum_t type;
646 bool need_init;
647 };
648
649 /*
650 * Prepare new AG headers to be written to disk. We use uncached buffers here,
651 * as it is assumed these new AG headers are currently beyond the currently
652 * valid filesystem address space. Using cached buffers would trip over EOFS
653 * corruption detection alogrithms in the buffer cache lookup routines.
654 *
655 * This is a non-transactional function, but the prepared buffers are added to a
656 * delayed write buffer list supplied by the caller so they can submit them to
657 * disk and wait on them as required.
658 */
659 int
xfs_ag_init_headers(struct xfs_mount * mp,struct aghdr_init_data * id)660 xfs_ag_init_headers(
661 struct xfs_mount *mp,
662 struct aghdr_init_data *id)
663
664 {
665 struct xfs_aghdr_grow_data aghdr_data[] = {
666 { /* SB */
667 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_SB_DADDR),
668 .numblks = XFS_FSS_TO_BB(mp, 1),
669 .ops = &xfs_sb_buf_ops,
670 .work = &xfs_sbblock_init,
671 .need_init = true
672 },
673 { /* AGF */
674 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGF_DADDR(mp)),
675 .numblks = XFS_FSS_TO_BB(mp, 1),
676 .ops = &xfs_agf_buf_ops,
677 .work = &xfs_agfblock_init,
678 .need_init = true
679 },
680 { /* AGFL */
681 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGFL_DADDR(mp)),
682 .numblks = XFS_FSS_TO_BB(mp, 1),
683 .ops = &xfs_agfl_buf_ops,
684 .work = &xfs_agflblock_init,
685 .need_init = true
686 },
687 { /* AGI */
688 .daddr = XFS_AG_DADDR(mp, id->agno, XFS_AGI_DADDR(mp)),
689 .numblks = XFS_FSS_TO_BB(mp, 1),
690 .ops = &xfs_agi_buf_ops,
691 .work = &xfs_agiblock_init,
692 .need_init = true
693 },
694 { /* BNO root block */
695 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_BNO_BLOCK(mp)),
696 .numblks = BTOBB(mp->m_sb.sb_blocksize),
697 .ops = &xfs_bnobt_buf_ops,
698 .work = &xfs_bnoroot_init,
699 .need_init = true
700 },
701 { /* CNT root block */
702 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_CNT_BLOCK(mp)),
703 .numblks = BTOBB(mp->m_sb.sb_blocksize),
704 .ops = &xfs_cntbt_buf_ops,
705 .work = &xfs_cntroot_init,
706 .need_init = true
707 },
708 { /* INO root block */
709 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_IBT_BLOCK(mp)),
710 .numblks = BTOBB(mp->m_sb.sb_blocksize),
711 .ops = &xfs_inobt_buf_ops,
712 .work = &xfs_btroot_init,
713 .type = XFS_BTNUM_INO,
714 .need_init = true
715 },
716 { /* FINO root block */
717 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_FIBT_BLOCK(mp)),
718 .numblks = BTOBB(mp->m_sb.sb_blocksize),
719 .ops = &xfs_finobt_buf_ops,
720 .work = &xfs_btroot_init,
721 .type = XFS_BTNUM_FINO,
722 .need_init = xfs_has_finobt(mp)
723 },
724 { /* RMAP root block */
725 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, XFS_RMAP_BLOCK(mp)),
726 .numblks = BTOBB(mp->m_sb.sb_blocksize),
727 .ops = &xfs_rmapbt_buf_ops,
728 .work = &xfs_rmaproot_init,
729 .need_init = xfs_has_rmapbt(mp)
730 },
731 { /* REFC root block */
732 .daddr = XFS_AGB_TO_DADDR(mp, id->agno, xfs_refc_block(mp)),
733 .numblks = BTOBB(mp->m_sb.sb_blocksize),
734 .ops = &xfs_refcountbt_buf_ops,
735 .work = &xfs_btroot_init,
736 .type = XFS_BTNUM_REFC,
737 .need_init = xfs_has_reflink(mp)
738 },
739 { /* NULL terminating block */
740 .daddr = XFS_BUF_DADDR_NULL,
741 }
742 };
743 struct xfs_aghdr_grow_data *dp;
744 int error = 0;
745
746 /* Account for AG free space in new AG */
747 id->nfree += id->agsize - mp->m_ag_prealloc_blocks;
748 for (dp = &aghdr_data[0]; dp->daddr != XFS_BUF_DADDR_NULL; dp++) {
749 if (!dp->need_init)
750 continue;
751
752 id->daddr = dp->daddr;
753 id->numblks = dp->numblks;
754 id->type = dp->type;
755 error = xfs_ag_init_hdr(mp, id, dp->work, dp->ops);
756 if (error)
757 break;
758 }
759 return error;
760 }
761
762 int
xfs_ag_shrink_space(struct xfs_mount * mp,struct xfs_trans ** tpp,xfs_agnumber_t agno,xfs_extlen_t delta)763 xfs_ag_shrink_space(
764 struct xfs_mount *mp,
765 struct xfs_trans **tpp,
766 xfs_agnumber_t agno,
767 xfs_extlen_t delta)
768 {
769 struct xfs_alloc_arg args = {
770 .tp = *tpp,
771 .mp = mp,
772 .type = XFS_ALLOCTYPE_THIS_BNO,
773 .minlen = delta,
774 .maxlen = delta,
775 .oinfo = XFS_RMAP_OINFO_SKIP_UPDATE,
776 .resv = XFS_AG_RESV_NONE,
777 .prod = 1
778 };
779 struct xfs_buf *agibp, *agfbp;
780 struct xfs_agi *agi;
781 struct xfs_agf *agf;
782 xfs_agblock_t aglen;
783 int error, err2;
784
785 ASSERT(agno == mp->m_sb.sb_agcount - 1);
786 error = xfs_ialloc_read_agi(mp, *tpp, agno, &agibp);
787 if (error)
788 return error;
789
790 agi = agibp->b_addr;
791
792 error = xfs_alloc_read_agf(mp, *tpp, agno, 0, &agfbp);
793 if (error)
794 return error;
795
796 agf = agfbp->b_addr;
797 aglen = be32_to_cpu(agi->agi_length);
798 /* some extra paranoid checks before we shrink the ag */
799 if (XFS_IS_CORRUPT(mp, agf->agf_length != agi->agi_length))
800 return -EFSCORRUPTED;
801 if (delta >= aglen)
802 return -EINVAL;
803
804 args.fsbno = XFS_AGB_TO_FSB(mp, agno, aglen - delta);
805
806 /*
807 * Make sure that the last inode cluster cannot overlap with the new
808 * end of the AG, even if it's sparse.
809 */
810 error = xfs_ialloc_check_shrink(*tpp, agno, agibp, aglen - delta);
811 if (error)
812 return error;
813
814 /*
815 * Disable perag reservations so it doesn't cause the allocation request
816 * to fail. We'll reestablish reservation before we return.
817 */
818 error = xfs_ag_resv_free(agibp->b_pag);
819 if (error)
820 return error;
821
822 /* internal log shouldn't also show up in the free space btrees */
823 error = xfs_alloc_vextent(&args);
824 if (!error && args.agbno == NULLAGBLOCK)
825 error = -ENOSPC;
826
827 if (error) {
828 /*
829 * if extent allocation fails, need to roll the transaction to
830 * ensure that the AGFL fixup has been committed anyway.
831 */
832 xfs_trans_bhold(*tpp, agfbp);
833 err2 = xfs_trans_roll(tpp);
834 if (err2)
835 return err2;
836 xfs_trans_bjoin(*tpp, agfbp);
837 goto resv_init_out;
838 }
839
840 /*
841 * if successfully deleted from freespace btrees, need to confirm
842 * per-AG reservation works as expected.
843 */
844 be32_add_cpu(&agi->agi_length, -delta);
845 be32_add_cpu(&agf->agf_length, -delta);
846
847 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp);
848 if (err2) {
849 be32_add_cpu(&agi->agi_length, delta);
850 be32_add_cpu(&agf->agf_length, delta);
851 if (err2 != -ENOSPC)
852 goto resv_err;
853
854 __xfs_free_extent_later(*tpp, args.fsbno, delta, NULL, true);
855
856 /*
857 * Roll the transaction before trying to re-init the per-ag
858 * reservation. The new transaction is clean so it will cancel
859 * without any side effects.
860 */
861 error = xfs_defer_finish(tpp);
862 if (error)
863 return error;
864
865 error = -ENOSPC;
866 goto resv_init_out;
867 }
868 xfs_ialloc_log_agi(*tpp, agibp, XFS_AGI_LENGTH);
869 xfs_alloc_log_agf(*tpp, agfbp, XFS_AGF_LENGTH);
870 return 0;
871 resv_init_out:
872 err2 = xfs_ag_resv_init(agibp->b_pag, *tpp);
873 if (!err2)
874 return error;
875 resv_err:
876 xfs_warn(mp, "Error %d reserving per-AG metadata reserve pool.", err2);
877 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
878 return err2;
879 }
880
881 /*
882 * Extent the AG indicated by the @id by the length passed in
883 */
884 int
xfs_ag_extend_space(struct xfs_mount * mp,struct xfs_trans * tp,struct aghdr_init_data * id,xfs_extlen_t len)885 xfs_ag_extend_space(
886 struct xfs_mount *mp,
887 struct xfs_trans *tp,
888 struct aghdr_init_data *id,
889 xfs_extlen_t len)
890 {
891 struct xfs_buf *bp;
892 struct xfs_agi *agi;
893 struct xfs_agf *agf;
894 int error;
895
896 /*
897 * Change the agi length.
898 */
899 error = xfs_ialloc_read_agi(mp, tp, id->agno, &bp);
900 if (error)
901 return error;
902
903 agi = bp->b_addr;
904 be32_add_cpu(&agi->agi_length, len);
905 ASSERT(id->agno == mp->m_sb.sb_agcount - 1 ||
906 be32_to_cpu(agi->agi_length) == mp->m_sb.sb_agblocks);
907 xfs_ialloc_log_agi(tp, bp, XFS_AGI_LENGTH);
908
909 /*
910 * Change agf length.
911 */
912 error = xfs_alloc_read_agf(mp, tp, id->agno, 0, &bp);
913 if (error)
914 return error;
915
916 agf = bp->b_addr;
917 be32_add_cpu(&agf->agf_length, len);
918 ASSERT(agf->agf_length == agi->agi_length);
919 xfs_alloc_log_agf(tp, bp, XFS_AGF_LENGTH);
920
921 /*
922 * Free the new space.
923 *
924 * XFS_RMAP_OINFO_SKIP_UPDATE is used here to tell the rmap btree that
925 * this doesn't actually exist in the rmap btree.
926 */
927 error = xfs_rmap_free(tp, bp, bp->b_pag,
928 be32_to_cpu(agf->agf_length) - len,
929 len, &XFS_RMAP_OINFO_SKIP_UPDATE);
930 if (error)
931 return error;
932
933 return xfs_free_extent(tp, XFS_AGB_TO_FSB(mp, id->agno,
934 be32_to_cpu(agf->agf_length) - len),
935 len, &XFS_RMAP_OINFO_SKIP_UPDATE,
936 XFS_AG_RESV_NONE);
937 }
938
939 /* Retrieve AG geometry. */
940 int
xfs_ag_get_geometry(struct xfs_mount * mp,xfs_agnumber_t agno,struct xfs_ag_geometry * ageo)941 xfs_ag_get_geometry(
942 struct xfs_mount *mp,
943 xfs_agnumber_t agno,
944 struct xfs_ag_geometry *ageo)
945 {
946 struct xfs_buf *agi_bp;
947 struct xfs_buf *agf_bp;
948 struct xfs_agi *agi;
949 struct xfs_agf *agf;
950 struct xfs_perag *pag;
951 unsigned int freeblks;
952 int error;
953
954 if (agno >= mp->m_sb.sb_agcount)
955 return -EINVAL;
956
957 /* Lock the AG headers. */
958 error = xfs_ialloc_read_agi(mp, NULL, agno, &agi_bp);
959 if (error)
960 return error;
961 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agf_bp);
962 if (error)
963 goto out_agi;
964
965 pag = agi_bp->b_pag;
966
967 /* Fill out form. */
968 memset(ageo, 0, sizeof(*ageo));
969 ageo->ag_number = agno;
970
971 agi = agi_bp->b_addr;
972 ageo->ag_icount = be32_to_cpu(agi->agi_count);
973 ageo->ag_ifree = be32_to_cpu(agi->agi_freecount);
974
975 agf = agf_bp->b_addr;
976 ageo->ag_length = be32_to_cpu(agf->agf_length);
977 freeblks = pag->pagf_freeblks +
978 pag->pagf_flcount +
979 pag->pagf_btreeblks -
980 xfs_ag_resv_needed(pag, XFS_AG_RESV_NONE);
981 ageo->ag_freeblks = freeblks;
982 xfs_ag_geom_health(pag, ageo);
983
984 /* Release resources. */
985 xfs_buf_relse(agf_bp);
986 out_agi:
987 xfs_buf_relse(agi_bp);
988 return error;
989 }
990