1 /*
2 * xfrm algorithm interface
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/pfkeyv2.h>
15 #include <linux/crypto.h>
16 #include <linux/scatterlist.h>
17 #include <net/xfrm.h>
18 #if defined(CONFIG_INET_AH) || defined(CONFIG_INET_AH_MODULE) || defined(CONFIG_INET6_AH) || defined(CONFIG_INET6_AH_MODULE)
19 #include <net/ah.h>
20 #endif
21 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
22 #include <net/esp.h>
23 #endif
24
25 /*
26 * Algorithms supported by IPsec. These entries contain properties which
27 * are used in key negotiation and xfrm processing, and are used to verify
28 * that instantiated crypto transforms have correct parameters for IPsec
29 * purposes.
30 */
31 static struct xfrm_algo_desc aead_list[] = {
32 {
33 .name = "rfc4106(gcm(aes))",
34
35 .uinfo = {
36 .aead = {
37 .icv_truncbits = 64,
38 }
39 },
40
41 .desc = {
42 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV8,
43 .sadb_alg_ivlen = 8,
44 .sadb_alg_minbits = 128,
45 .sadb_alg_maxbits = 256
46 }
47 },
48 {
49 .name = "rfc4106(gcm(aes))",
50
51 .uinfo = {
52 .aead = {
53 .icv_truncbits = 96,
54 }
55 },
56
57 .desc = {
58 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV12,
59 .sadb_alg_ivlen = 8,
60 .sadb_alg_minbits = 128,
61 .sadb_alg_maxbits = 256
62 }
63 },
64 {
65 .name = "rfc4106(gcm(aes))",
66
67 .uinfo = {
68 .aead = {
69 .icv_truncbits = 128,
70 }
71 },
72
73 .desc = {
74 .sadb_alg_id = SADB_X_EALG_AES_GCM_ICV16,
75 .sadb_alg_ivlen = 8,
76 .sadb_alg_minbits = 128,
77 .sadb_alg_maxbits = 256
78 }
79 },
80 {
81 .name = "rfc4309(ccm(aes))",
82
83 .uinfo = {
84 .aead = {
85 .icv_truncbits = 64,
86 }
87 },
88
89 .desc = {
90 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV8,
91 .sadb_alg_ivlen = 8,
92 .sadb_alg_minbits = 128,
93 .sadb_alg_maxbits = 256
94 }
95 },
96 {
97 .name = "rfc4309(ccm(aes))",
98
99 .uinfo = {
100 .aead = {
101 .icv_truncbits = 96,
102 }
103 },
104
105 .desc = {
106 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV12,
107 .sadb_alg_ivlen = 8,
108 .sadb_alg_minbits = 128,
109 .sadb_alg_maxbits = 256
110 }
111 },
112 {
113 .name = "rfc4309(ccm(aes))",
114
115 .uinfo = {
116 .aead = {
117 .icv_truncbits = 128,
118 }
119 },
120
121 .desc = {
122 .sadb_alg_id = SADB_X_EALG_AES_CCM_ICV16,
123 .sadb_alg_ivlen = 8,
124 .sadb_alg_minbits = 128,
125 .sadb_alg_maxbits = 256
126 }
127 },
128 {
129 .name = "rfc4543(gcm(aes))",
130
131 .uinfo = {
132 .aead = {
133 .icv_truncbits = 128,
134 }
135 },
136
137 .desc = {
138 .sadb_alg_id = SADB_X_EALG_NULL_AES_GMAC,
139 .sadb_alg_ivlen = 8,
140 .sadb_alg_minbits = 128,
141 .sadb_alg_maxbits = 256
142 }
143 },
144 };
145
146 static struct xfrm_algo_desc aalg_list[] = {
147 {
148 .name = "digest_null",
149
150 .uinfo = {
151 .auth = {
152 .icv_truncbits = 0,
153 .icv_fullbits = 0,
154 }
155 },
156
157 .desc = {
158 .sadb_alg_id = SADB_X_AALG_NULL,
159 .sadb_alg_ivlen = 0,
160 .sadb_alg_minbits = 0,
161 .sadb_alg_maxbits = 0
162 }
163 },
164 {
165 .name = "hmac(md5)",
166 .compat = "md5",
167
168 .uinfo = {
169 .auth = {
170 .icv_truncbits = 96,
171 .icv_fullbits = 128,
172 }
173 },
174
175 .desc = {
176 .sadb_alg_id = SADB_AALG_MD5HMAC,
177 .sadb_alg_ivlen = 0,
178 .sadb_alg_minbits = 128,
179 .sadb_alg_maxbits = 128
180 }
181 },
182 {
183 .name = "hmac(sha1)",
184 .compat = "sha1",
185
186 .uinfo = {
187 .auth = {
188 .icv_truncbits = 96,
189 .icv_fullbits = 160,
190 }
191 },
192
193 .desc = {
194 .sadb_alg_id = SADB_AALG_SHA1HMAC,
195 .sadb_alg_ivlen = 0,
196 .sadb_alg_minbits = 160,
197 .sadb_alg_maxbits = 160
198 }
199 },
200 {
201 .name = "hmac(sha256)",
202 .compat = "sha256",
203
204 .uinfo = {
205 .auth = {
206 .icv_truncbits = 96,
207 .icv_fullbits = 256,
208 }
209 },
210
211 .desc = {
212 .sadb_alg_id = SADB_X_AALG_SHA2_256HMAC,
213 .sadb_alg_ivlen = 0,
214 .sadb_alg_minbits = 256,
215 .sadb_alg_maxbits = 256
216 }
217 },
218 {
219 .name = "hmac(sha384)",
220
221 .uinfo = {
222 .auth = {
223 .icv_truncbits = 192,
224 .icv_fullbits = 384,
225 }
226 },
227
228 .desc = {
229 .sadb_alg_id = SADB_X_AALG_SHA2_384HMAC,
230 .sadb_alg_ivlen = 0,
231 .sadb_alg_minbits = 384,
232 .sadb_alg_maxbits = 384
233 }
234 },
235 {
236 .name = "hmac(sha512)",
237
238 .uinfo = {
239 .auth = {
240 .icv_truncbits = 256,
241 .icv_fullbits = 512,
242 }
243 },
244
245 .desc = {
246 .sadb_alg_id = SADB_X_AALG_SHA2_512HMAC,
247 .sadb_alg_ivlen = 0,
248 .sadb_alg_minbits = 512,
249 .sadb_alg_maxbits = 512
250 }
251 },
252 {
253 .name = "hmac(rmd160)",
254 .compat = "rmd160",
255
256 .uinfo = {
257 .auth = {
258 .icv_truncbits = 96,
259 .icv_fullbits = 160,
260 }
261 },
262
263 .desc = {
264 .sadb_alg_id = SADB_X_AALG_RIPEMD160HMAC,
265 .sadb_alg_ivlen = 0,
266 .sadb_alg_minbits = 160,
267 .sadb_alg_maxbits = 160
268 }
269 },
270 {
271 .name = "xcbc(aes)",
272
273 .uinfo = {
274 .auth = {
275 .icv_truncbits = 96,
276 .icv_fullbits = 128,
277 }
278 },
279
280 .desc = {
281 .sadb_alg_id = SADB_X_AALG_AES_XCBC_MAC,
282 .sadb_alg_ivlen = 0,
283 .sadb_alg_minbits = 128,
284 .sadb_alg_maxbits = 128
285 }
286 },
287 };
288
289 static struct xfrm_algo_desc ealg_list[] = {
290 {
291 .name = "ecb(cipher_null)",
292 .compat = "cipher_null",
293
294 .uinfo = {
295 .encr = {
296 .blockbits = 8,
297 .defkeybits = 0,
298 }
299 },
300
301 .desc = {
302 .sadb_alg_id = SADB_EALG_NULL,
303 .sadb_alg_ivlen = 0,
304 .sadb_alg_minbits = 0,
305 .sadb_alg_maxbits = 0
306 }
307 },
308 {
309 .name = "cbc(des)",
310 .compat = "des",
311
312 .uinfo = {
313 .encr = {
314 .blockbits = 64,
315 .defkeybits = 64,
316 }
317 },
318
319 .desc = {
320 .sadb_alg_id = SADB_EALG_DESCBC,
321 .sadb_alg_ivlen = 8,
322 .sadb_alg_minbits = 64,
323 .sadb_alg_maxbits = 64
324 }
325 },
326 {
327 .name = "cbc(des3_ede)",
328 .compat = "des3_ede",
329
330 .uinfo = {
331 .encr = {
332 .blockbits = 64,
333 .defkeybits = 192,
334 }
335 },
336
337 .desc = {
338 .sadb_alg_id = SADB_EALG_3DESCBC,
339 .sadb_alg_ivlen = 8,
340 .sadb_alg_minbits = 192,
341 .sadb_alg_maxbits = 192
342 }
343 },
344 {
345 .name = "cbc(cast5)",
346 .compat = "cast5",
347
348 .uinfo = {
349 .encr = {
350 .blockbits = 64,
351 .defkeybits = 128,
352 }
353 },
354
355 .desc = {
356 .sadb_alg_id = SADB_X_EALG_CASTCBC,
357 .sadb_alg_ivlen = 8,
358 .sadb_alg_minbits = 40,
359 .sadb_alg_maxbits = 128
360 }
361 },
362 {
363 .name = "cbc(blowfish)",
364 .compat = "blowfish",
365
366 .uinfo = {
367 .encr = {
368 .blockbits = 64,
369 .defkeybits = 128,
370 }
371 },
372
373 .desc = {
374 .sadb_alg_id = SADB_X_EALG_BLOWFISHCBC,
375 .sadb_alg_ivlen = 8,
376 .sadb_alg_minbits = 40,
377 .sadb_alg_maxbits = 448
378 }
379 },
380 {
381 .name = "cbc(aes)",
382 .compat = "aes",
383
384 .uinfo = {
385 .encr = {
386 .blockbits = 128,
387 .defkeybits = 128,
388 }
389 },
390
391 .desc = {
392 .sadb_alg_id = SADB_X_EALG_AESCBC,
393 .sadb_alg_ivlen = 8,
394 .sadb_alg_minbits = 128,
395 .sadb_alg_maxbits = 256
396 }
397 },
398 {
399 .name = "cbc(serpent)",
400 .compat = "serpent",
401
402 .uinfo = {
403 .encr = {
404 .blockbits = 128,
405 .defkeybits = 128,
406 }
407 },
408
409 .desc = {
410 .sadb_alg_id = SADB_X_EALG_SERPENTCBC,
411 .sadb_alg_ivlen = 8,
412 .sadb_alg_minbits = 128,
413 .sadb_alg_maxbits = 256,
414 }
415 },
416 {
417 .name = "cbc(camellia)",
418 .compat = "camellia",
419
420 .uinfo = {
421 .encr = {
422 .blockbits = 128,
423 .defkeybits = 128,
424 }
425 },
426
427 .desc = {
428 .sadb_alg_id = SADB_X_EALG_CAMELLIACBC,
429 .sadb_alg_ivlen = 8,
430 .sadb_alg_minbits = 128,
431 .sadb_alg_maxbits = 256
432 }
433 },
434 {
435 .name = "cbc(twofish)",
436 .compat = "twofish",
437
438 .uinfo = {
439 .encr = {
440 .blockbits = 128,
441 .defkeybits = 128,
442 }
443 },
444
445 .desc = {
446 .sadb_alg_id = SADB_X_EALG_TWOFISHCBC,
447 .sadb_alg_ivlen = 8,
448 .sadb_alg_minbits = 128,
449 .sadb_alg_maxbits = 256
450 }
451 },
452 {
453 .name = "rfc3686(ctr(aes))",
454
455 .uinfo = {
456 .encr = {
457 .blockbits = 128,
458 .defkeybits = 160, /* 128-bit key + 32-bit nonce */
459 }
460 },
461
462 .desc = {
463 .sadb_alg_id = SADB_X_EALG_AESCTR,
464 .sadb_alg_ivlen = 8,
465 .sadb_alg_minbits = 128,
466 .sadb_alg_maxbits = 256
467 }
468 },
469 };
470
471 static struct xfrm_algo_desc calg_list[] = {
472 {
473 .name = "deflate",
474 .uinfo = {
475 .comp = {
476 .threshold = 90,
477 }
478 },
479 .desc = { .sadb_alg_id = SADB_X_CALG_DEFLATE }
480 },
481 {
482 .name = "lzs",
483 .uinfo = {
484 .comp = {
485 .threshold = 90,
486 }
487 },
488 .desc = { .sadb_alg_id = SADB_X_CALG_LZS }
489 },
490 {
491 .name = "lzjh",
492 .uinfo = {
493 .comp = {
494 .threshold = 50,
495 }
496 },
497 .desc = { .sadb_alg_id = SADB_X_CALG_LZJH }
498 },
499 };
500
aead_entries(void)501 static inline int aead_entries(void)
502 {
503 return ARRAY_SIZE(aead_list);
504 }
505
aalg_entries(void)506 static inline int aalg_entries(void)
507 {
508 return ARRAY_SIZE(aalg_list);
509 }
510
ealg_entries(void)511 static inline int ealg_entries(void)
512 {
513 return ARRAY_SIZE(ealg_list);
514 }
515
calg_entries(void)516 static inline int calg_entries(void)
517 {
518 return ARRAY_SIZE(calg_list);
519 }
520
521 struct xfrm_algo_list {
522 struct xfrm_algo_desc *algs;
523 int entries;
524 u32 type;
525 u32 mask;
526 };
527
528 static const struct xfrm_algo_list xfrm_aead_list = {
529 .algs = aead_list,
530 .entries = ARRAY_SIZE(aead_list),
531 .type = CRYPTO_ALG_TYPE_AEAD,
532 .mask = CRYPTO_ALG_TYPE_MASK,
533 };
534
535 static const struct xfrm_algo_list xfrm_aalg_list = {
536 .algs = aalg_list,
537 .entries = ARRAY_SIZE(aalg_list),
538 .type = CRYPTO_ALG_TYPE_HASH,
539 .mask = CRYPTO_ALG_TYPE_HASH_MASK,
540 };
541
542 static const struct xfrm_algo_list xfrm_ealg_list = {
543 .algs = ealg_list,
544 .entries = ARRAY_SIZE(ealg_list),
545 .type = CRYPTO_ALG_TYPE_BLKCIPHER,
546 .mask = CRYPTO_ALG_TYPE_BLKCIPHER_MASK,
547 };
548
549 static const struct xfrm_algo_list xfrm_calg_list = {
550 .algs = calg_list,
551 .entries = ARRAY_SIZE(calg_list),
552 .type = CRYPTO_ALG_TYPE_COMPRESS,
553 .mask = CRYPTO_ALG_TYPE_MASK,
554 };
555
xfrm_find_algo(const struct xfrm_algo_list * algo_list,int match (const struct xfrm_algo_desc * entry,const void * data),const void * data,int probe)556 static struct xfrm_algo_desc *xfrm_find_algo(
557 const struct xfrm_algo_list *algo_list,
558 int match(const struct xfrm_algo_desc *entry, const void *data),
559 const void *data, int probe)
560 {
561 struct xfrm_algo_desc *list = algo_list->algs;
562 int i, status;
563
564 for (i = 0; i < algo_list->entries; i++) {
565 if (!match(list + i, data))
566 continue;
567
568 if (list[i].available)
569 return &list[i];
570
571 if (!probe)
572 break;
573
574 status = crypto_has_alg(list[i].name, algo_list->type,
575 algo_list->mask);
576 if (!status)
577 break;
578
579 list[i].available = status;
580 return &list[i];
581 }
582 return NULL;
583 }
584
xfrm_alg_id_match(const struct xfrm_algo_desc * entry,const void * data)585 static int xfrm_alg_id_match(const struct xfrm_algo_desc *entry,
586 const void *data)
587 {
588 return entry->desc.sadb_alg_id == (unsigned long)data;
589 }
590
xfrm_aalg_get_byid(int alg_id)591 struct xfrm_algo_desc *xfrm_aalg_get_byid(int alg_id)
592 {
593 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_id_match,
594 (void *)(unsigned long)alg_id, 1);
595 }
596 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byid);
597
xfrm_ealg_get_byid(int alg_id)598 struct xfrm_algo_desc *xfrm_ealg_get_byid(int alg_id)
599 {
600 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_id_match,
601 (void *)(unsigned long)alg_id, 1);
602 }
603 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byid);
604
xfrm_calg_get_byid(int alg_id)605 struct xfrm_algo_desc *xfrm_calg_get_byid(int alg_id)
606 {
607 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_id_match,
608 (void *)(unsigned long)alg_id, 1);
609 }
610 EXPORT_SYMBOL_GPL(xfrm_calg_get_byid);
611
xfrm_alg_name_match(const struct xfrm_algo_desc * entry,const void * data)612 static int xfrm_alg_name_match(const struct xfrm_algo_desc *entry,
613 const void *data)
614 {
615 const char *name = data;
616
617 return name && (!strcmp(name, entry->name) ||
618 (entry->compat && !strcmp(name, entry->compat)));
619 }
620
xfrm_aalg_get_byname(const char * name,int probe)621 struct xfrm_algo_desc *xfrm_aalg_get_byname(const char *name, int probe)
622 {
623 return xfrm_find_algo(&xfrm_aalg_list, xfrm_alg_name_match, name,
624 probe);
625 }
626 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byname);
627
xfrm_ealg_get_byname(const char * name,int probe)628 struct xfrm_algo_desc *xfrm_ealg_get_byname(const char *name, int probe)
629 {
630 return xfrm_find_algo(&xfrm_ealg_list, xfrm_alg_name_match, name,
631 probe);
632 }
633 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byname);
634
xfrm_calg_get_byname(const char * name,int probe)635 struct xfrm_algo_desc *xfrm_calg_get_byname(const char *name, int probe)
636 {
637 return xfrm_find_algo(&xfrm_calg_list, xfrm_alg_name_match, name,
638 probe);
639 }
640 EXPORT_SYMBOL_GPL(xfrm_calg_get_byname);
641
642 struct xfrm_aead_name {
643 const char *name;
644 int icvbits;
645 };
646
xfrm_aead_name_match(const struct xfrm_algo_desc * entry,const void * data)647 static int xfrm_aead_name_match(const struct xfrm_algo_desc *entry,
648 const void *data)
649 {
650 const struct xfrm_aead_name *aead = data;
651 const char *name = aead->name;
652
653 return aead->icvbits == entry->uinfo.aead.icv_truncbits && name &&
654 !strcmp(name, entry->name);
655 }
656
xfrm_aead_get_byname(const char * name,int icv_len,int probe)657 struct xfrm_algo_desc *xfrm_aead_get_byname(const char *name, int icv_len, int probe)
658 {
659 struct xfrm_aead_name data = {
660 .name = name,
661 .icvbits = icv_len,
662 };
663
664 return xfrm_find_algo(&xfrm_aead_list, xfrm_aead_name_match, &data,
665 probe);
666 }
667 EXPORT_SYMBOL_GPL(xfrm_aead_get_byname);
668
xfrm_aalg_get_byidx(unsigned int idx)669 struct xfrm_algo_desc *xfrm_aalg_get_byidx(unsigned int idx)
670 {
671 if (idx >= aalg_entries())
672 return NULL;
673
674 return &aalg_list[idx];
675 }
676 EXPORT_SYMBOL_GPL(xfrm_aalg_get_byidx);
677
xfrm_ealg_get_byidx(unsigned int idx)678 struct xfrm_algo_desc *xfrm_ealg_get_byidx(unsigned int idx)
679 {
680 if (idx >= ealg_entries())
681 return NULL;
682
683 return &ealg_list[idx];
684 }
685 EXPORT_SYMBOL_GPL(xfrm_ealg_get_byidx);
686
687 /*
688 * Probe for the availability of crypto algorithms, and set the available
689 * flag for any algorithms found on the system. This is typically called by
690 * pfkey during userspace SA add, update or register.
691 */
xfrm_probe_algs(void)692 void xfrm_probe_algs(void)
693 {
694 int i, status;
695
696 BUG_ON(in_softirq());
697
698 for (i = 0; i < aalg_entries(); i++) {
699 status = crypto_has_hash(aalg_list[i].name, 0,
700 CRYPTO_ALG_ASYNC);
701 if (aalg_list[i].available != status)
702 aalg_list[i].available = status;
703 }
704
705 for (i = 0; i < ealg_entries(); i++) {
706 status = crypto_has_blkcipher(ealg_list[i].name, 0,
707 CRYPTO_ALG_ASYNC);
708 if (ealg_list[i].available != status)
709 ealg_list[i].available = status;
710 }
711
712 for (i = 0; i < calg_entries(); i++) {
713 status = crypto_has_comp(calg_list[i].name, 0,
714 CRYPTO_ALG_ASYNC);
715 if (calg_list[i].available != status)
716 calg_list[i].available = status;
717 }
718 }
719 EXPORT_SYMBOL_GPL(xfrm_probe_algs);
720
xfrm_count_auth_supported(void)721 int xfrm_count_auth_supported(void)
722 {
723 int i, n;
724
725 for (i = 0, n = 0; i < aalg_entries(); i++)
726 if (aalg_list[i].available)
727 n++;
728 return n;
729 }
730 EXPORT_SYMBOL_GPL(xfrm_count_auth_supported);
731
xfrm_count_enc_supported(void)732 int xfrm_count_enc_supported(void)
733 {
734 int i, n;
735
736 for (i = 0, n = 0; i < ealg_entries(); i++)
737 if (ealg_list[i].available)
738 n++;
739 return n;
740 }
741 EXPORT_SYMBOL_GPL(xfrm_count_enc_supported);
742
743 #if defined(CONFIG_INET_ESP) || defined(CONFIG_INET_ESP_MODULE) || defined(CONFIG_INET6_ESP) || defined(CONFIG_INET6_ESP_MODULE)
744
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)745 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
746 {
747 if (tail != skb) {
748 skb->data_len += len;
749 skb->len += len;
750 }
751 return skb_put(tail, len);
752 }
753 EXPORT_SYMBOL_GPL(pskb_put);
754 #endif
755