1 /*
2 * Xen time implementation.
3 *
4 * This is implemented in terms of a clocksource driver which uses
5 * the hypervisor clock as a nanosecond timebase, and a clockevent
6 * driver which uses the hypervisor's timer mechanism.
7 *
8 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
9 */
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/clocksource.h>
13 #include <linux/clockchips.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/math64.h>
16 #include <linux/gfp.h>
17
18 #include <asm/pvclock.h>
19 #include <asm/xen/hypervisor.h>
20 #include <asm/xen/hypercall.h>
21
22 #include <xen/events.h>
23 #include <xen/features.h>
24 #include <xen/interface/xen.h>
25 #include <xen/interface/vcpu.h>
26
27 #include "xen-ops.h"
28
29 /* Xen may fire a timer up to this many ns early */
30 #define TIMER_SLOP 100000
31 #define NS_PER_TICK (1000000000LL / HZ)
32
33 /* runstate info updated by Xen */
34 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate);
35
36 /* snapshots of runstate info */
37 static DEFINE_PER_CPU(struct vcpu_runstate_info, xen_runstate_snapshot);
38
39 /* unused ns of stolen time */
40 static DEFINE_PER_CPU(u64, xen_residual_stolen);
41
42 /* return an consistent snapshot of 64-bit time/counter value */
get64(const u64 * p)43 static u64 get64(const u64 *p)
44 {
45 u64 ret;
46
47 if (BITS_PER_LONG < 64) {
48 u32 *p32 = (u32 *)p;
49 u32 h, l;
50
51 /*
52 * Read high then low, and then make sure high is
53 * still the same; this will only loop if low wraps
54 * and carries into high.
55 * XXX some clean way to make this endian-proof?
56 */
57 do {
58 h = p32[1];
59 barrier();
60 l = p32[0];
61 barrier();
62 } while (p32[1] != h);
63
64 ret = (((u64)h) << 32) | l;
65 } else
66 ret = *p;
67
68 return ret;
69 }
70
71 /*
72 * Runstate accounting
73 */
get_runstate_snapshot(struct vcpu_runstate_info * res)74 static void get_runstate_snapshot(struct vcpu_runstate_info *res)
75 {
76 u64 state_time;
77 struct vcpu_runstate_info *state;
78
79 BUG_ON(preemptible());
80
81 state = &__get_cpu_var(xen_runstate);
82
83 /*
84 * The runstate info is always updated by the hypervisor on
85 * the current CPU, so there's no need to use anything
86 * stronger than a compiler barrier when fetching it.
87 */
88 do {
89 state_time = get64(&state->state_entry_time);
90 barrier();
91 *res = *state;
92 barrier();
93 } while (get64(&state->state_entry_time) != state_time);
94 }
95
96 /* return true when a vcpu could run but has no real cpu to run on */
xen_vcpu_stolen(int vcpu)97 bool xen_vcpu_stolen(int vcpu)
98 {
99 return per_cpu(xen_runstate, vcpu).state == RUNSTATE_runnable;
100 }
101
xen_setup_runstate_info(int cpu)102 void xen_setup_runstate_info(int cpu)
103 {
104 struct vcpu_register_runstate_memory_area area;
105
106 area.addr.v = &per_cpu(xen_runstate, cpu);
107
108 if (HYPERVISOR_vcpu_op(VCPUOP_register_runstate_memory_area,
109 cpu, &area))
110 BUG();
111 }
112
do_stolen_accounting(void)113 static void do_stolen_accounting(void)
114 {
115 struct vcpu_runstate_info state;
116 struct vcpu_runstate_info *snap;
117 s64 runnable, offline, stolen;
118 cputime_t ticks;
119
120 get_runstate_snapshot(&state);
121
122 WARN_ON(state.state != RUNSTATE_running);
123
124 snap = &__get_cpu_var(xen_runstate_snapshot);
125
126 /* work out how much time the VCPU has not been runn*ing* */
127 runnable = state.time[RUNSTATE_runnable] - snap->time[RUNSTATE_runnable];
128 offline = state.time[RUNSTATE_offline] - snap->time[RUNSTATE_offline];
129
130 *snap = state;
131
132 /* Add the appropriate number of ticks of stolen time,
133 including any left-overs from last time. */
134 stolen = runnable + offline + __this_cpu_read(xen_residual_stolen);
135
136 if (stolen < 0)
137 stolen = 0;
138
139 ticks = iter_div_u64_rem(stolen, NS_PER_TICK, &stolen);
140 __this_cpu_write(xen_residual_stolen, stolen);
141 account_steal_ticks(ticks);
142 }
143
144 /* Get the TSC speed from Xen */
xen_tsc_khz(void)145 static unsigned long xen_tsc_khz(void)
146 {
147 struct pvclock_vcpu_time_info *info =
148 &HYPERVISOR_shared_info->vcpu_info[0].time;
149
150 return pvclock_tsc_khz(info);
151 }
152
xen_clocksource_read(void)153 cycle_t xen_clocksource_read(void)
154 {
155 struct pvclock_vcpu_time_info *src;
156 cycle_t ret;
157
158 preempt_disable_notrace();
159 src = &__get_cpu_var(xen_vcpu)->time;
160 ret = pvclock_clocksource_read(src);
161 preempt_enable_notrace();
162 return ret;
163 }
164
xen_clocksource_get_cycles(struct clocksource * cs)165 static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
166 {
167 return xen_clocksource_read();
168 }
169
xen_read_wallclock(struct timespec * ts)170 static void xen_read_wallclock(struct timespec *ts)
171 {
172 struct shared_info *s = HYPERVISOR_shared_info;
173 struct pvclock_wall_clock *wall_clock = &(s->wc);
174 struct pvclock_vcpu_time_info *vcpu_time;
175
176 vcpu_time = &get_cpu_var(xen_vcpu)->time;
177 pvclock_read_wallclock(wall_clock, vcpu_time, ts);
178 put_cpu_var(xen_vcpu);
179 }
180
xen_get_wallclock(void)181 static unsigned long xen_get_wallclock(void)
182 {
183 struct timespec ts;
184
185 xen_read_wallclock(&ts);
186 return ts.tv_sec;
187 }
188
xen_set_wallclock(unsigned long now)189 static int xen_set_wallclock(unsigned long now)
190 {
191 struct xen_platform_op op;
192 int rc;
193
194 /* do nothing for domU */
195 if (!xen_initial_domain())
196 return -1;
197
198 op.cmd = XENPF_settime;
199 op.u.settime.secs = now;
200 op.u.settime.nsecs = 0;
201 op.u.settime.system_time = xen_clocksource_read();
202
203 rc = HYPERVISOR_dom0_op(&op);
204 WARN(rc != 0, "XENPF_settime failed: now=%ld\n", now);
205
206 return rc;
207 }
208
209 static struct clocksource xen_clocksource __read_mostly = {
210 .name = "xen",
211 .rating = 400,
212 .read = xen_clocksource_get_cycles,
213 .mask = ~0,
214 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
215 };
216
217 /*
218 Xen clockevent implementation
219
220 Xen has two clockevent implementations:
221
222 The old timer_op one works with all released versions of Xen prior
223 to version 3.0.4. This version of the hypervisor provides a
224 single-shot timer with nanosecond resolution. However, sharing the
225 same event channel is a 100Hz tick which is delivered while the
226 vcpu is running. We don't care about or use this tick, but it will
227 cause the core time code to think the timer fired too soon, and
228 will end up resetting it each time. It could be filtered, but
229 doing so has complications when the ktime clocksource is not yet
230 the xen clocksource (ie, at boot time).
231
232 The new vcpu_op-based timer interface allows the tick timer period
233 to be changed or turned off. The tick timer is not useful as a
234 periodic timer because events are only delivered to running vcpus.
235 The one-shot timer can report when a timeout is in the past, so
236 set_next_event is capable of returning -ETIME when appropriate.
237 This interface is used when available.
238 */
239
240
241 /*
242 Get a hypervisor absolute time. In theory we could maintain an
243 offset between the kernel's time and the hypervisor's time, and
244 apply that to a kernel's absolute timeout. Unfortunately the
245 hypervisor and kernel times can drift even if the kernel is using
246 the Xen clocksource, because ntp can warp the kernel's clocksource.
247 */
get_abs_timeout(unsigned long delta)248 static s64 get_abs_timeout(unsigned long delta)
249 {
250 return xen_clocksource_read() + delta;
251 }
252
xen_timerop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)253 static void xen_timerop_set_mode(enum clock_event_mode mode,
254 struct clock_event_device *evt)
255 {
256 switch (mode) {
257 case CLOCK_EVT_MODE_PERIODIC:
258 /* unsupported */
259 WARN_ON(1);
260 break;
261
262 case CLOCK_EVT_MODE_ONESHOT:
263 case CLOCK_EVT_MODE_RESUME:
264 break;
265
266 case CLOCK_EVT_MODE_UNUSED:
267 case CLOCK_EVT_MODE_SHUTDOWN:
268 HYPERVISOR_set_timer_op(0); /* cancel timeout */
269 break;
270 }
271 }
272
xen_timerop_set_next_event(unsigned long delta,struct clock_event_device * evt)273 static int xen_timerop_set_next_event(unsigned long delta,
274 struct clock_event_device *evt)
275 {
276 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
277
278 if (HYPERVISOR_set_timer_op(get_abs_timeout(delta)) < 0)
279 BUG();
280
281 /* We may have missed the deadline, but there's no real way of
282 knowing for sure. If the event was in the past, then we'll
283 get an immediate interrupt. */
284
285 return 0;
286 }
287
288 static const struct clock_event_device xen_timerop_clockevent = {
289 .name = "xen",
290 .features = CLOCK_EVT_FEAT_ONESHOT,
291
292 .max_delta_ns = 0xffffffff,
293 .min_delta_ns = TIMER_SLOP,
294
295 .mult = 1,
296 .shift = 0,
297 .rating = 500,
298
299 .set_mode = xen_timerop_set_mode,
300 .set_next_event = xen_timerop_set_next_event,
301 };
302
303
304
xen_vcpuop_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)305 static void xen_vcpuop_set_mode(enum clock_event_mode mode,
306 struct clock_event_device *evt)
307 {
308 int cpu = smp_processor_id();
309
310 switch (mode) {
311 case CLOCK_EVT_MODE_PERIODIC:
312 WARN_ON(1); /* unsupported */
313 break;
314
315 case CLOCK_EVT_MODE_ONESHOT:
316 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
317 BUG();
318 break;
319
320 case CLOCK_EVT_MODE_UNUSED:
321 case CLOCK_EVT_MODE_SHUTDOWN:
322 if (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, cpu, NULL) ||
323 HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
324 BUG();
325 break;
326 case CLOCK_EVT_MODE_RESUME:
327 break;
328 }
329 }
330
xen_vcpuop_set_next_event(unsigned long delta,struct clock_event_device * evt)331 static int xen_vcpuop_set_next_event(unsigned long delta,
332 struct clock_event_device *evt)
333 {
334 int cpu = smp_processor_id();
335 struct vcpu_set_singleshot_timer single;
336 int ret;
337
338 WARN_ON(evt->mode != CLOCK_EVT_MODE_ONESHOT);
339
340 single.timeout_abs_ns = get_abs_timeout(delta);
341 single.flags = VCPU_SSHOTTMR_future;
342
343 ret = HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, cpu, &single);
344
345 BUG_ON(ret != 0 && ret != -ETIME);
346
347 return ret;
348 }
349
350 static const struct clock_event_device xen_vcpuop_clockevent = {
351 .name = "xen",
352 .features = CLOCK_EVT_FEAT_ONESHOT,
353
354 .max_delta_ns = 0xffffffff,
355 .min_delta_ns = TIMER_SLOP,
356
357 .mult = 1,
358 .shift = 0,
359 .rating = 500,
360
361 .set_mode = xen_vcpuop_set_mode,
362 .set_next_event = xen_vcpuop_set_next_event,
363 };
364
365 static const struct clock_event_device *xen_clockevent =
366 &xen_timerop_clockevent;
367 static DEFINE_PER_CPU(struct clock_event_device, xen_clock_events);
368
xen_timer_interrupt(int irq,void * dev_id)369 static irqreturn_t xen_timer_interrupt(int irq, void *dev_id)
370 {
371 struct clock_event_device *evt = &__get_cpu_var(xen_clock_events);
372 irqreturn_t ret;
373
374 ret = IRQ_NONE;
375 if (evt->event_handler) {
376 evt->event_handler(evt);
377 ret = IRQ_HANDLED;
378 }
379
380 do_stolen_accounting();
381
382 return ret;
383 }
384
xen_setup_timer(int cpu)385 void xen_setup_timer(int cpu)
386 {
387 const char *name;
388 struct clock_event_device *evt;
389 int irq;
390
391 printk(KERN_INFO "installing Xen timer for CPU %d\n", cpu);
392
393 name = kasprintf(GFP_KERNEL, "timer%d", cpu);
394 if (!name)
395 name = "<timer kasprintf failed>";
396
397 irq = bind_virq_to_irqhandler(VIRQ_TIMER, cpu, xen_timer_interrupt,
398 IRQF_DISABLED|IRQF_PERCPU|
399 IRQF_NOBALANCING|IRQF_TIMER|
400 IRQF_FORCE_RESUME,
401 name, NULL);
402
403 evt = &per_cpu(xen_clock_events, cpu);
404 memcpy(evt, xen_clockevent, sizeof(*evt));
405
406 evt->cpumask = cpumask_of(cpu);
407 evt->irq = irq;
408 }
409
xen_teardown_timer(int cpu)410 void xen_teardown_timer(int cpu)
411 {
412 struct clock_event_device *evt;
413 BUG_ON(cpu == 0);
414 evt = &per_cpu(xen_clock_events, cpu);
415 unbind_from_irqhandler(evt->irq, NULL);
416 }
417
xen_setup_cpu_clockevents(void)418 void xen_setup_cpu_clockevents(void)
419 {
420 BUG_ON(preemptible());
421
422 clockevents_register_device(&__get_cpu_var(xen_clock_events));
423 }
424
xen_timer_resume(void)425 void xen_timer_resume(void)
426 {
427 int cpu;
428
429 pvclock_resume();
430
431 if (xen_clockevent != &xen_vcpuop_clockevent)
432 return;
433
434 for_each_online_cpu(cpu) {
435 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL))
436 BUG();
437 }
438 }
439
440 static const struct pv_time_ops xen_time_ops __initconst = {
441 .sched_clock = xen_clocksource_read,
442 };
443
xen_time_init(void)444 static void __init xen_time_init(void)
445 {
446 int cpu = smp_processor_id();
447 struct timespec tp;
448
449 clocksource_register_hz(&xen_clocksource, NSEC_PER_SEC);
450
451 if (HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, cpu, NULL) == 0) {
452 /* Successfully turned off 100Hz tick, so we have the
453 vcpuop-based timer interface */
454 printk(KERN_DEBUG "Xen: using vcpuop timer interface\n");
455 xen_clockevent = &xen_vcpuop_clockevent;
456 }
457
458 /* Set initial system time with full resolution */
459 xen_read_wallclock(&tp);
460 do_settimeofday(&tp);
461
462 setup_force_cpu_cap(X86_FEATURE_TSC);
463
464 xen_setup_runstate_info(cpu);
465 xen_setup_timer(cpu);
466 xen_setup_cpu_clockevents();
467 }
468
xen_init_time_ops(void)469 void __init xen_init_time_ops(void)
470 {
471 pv_time_ops = xen_time_ops;
472
473 x86_init.timers.timer_init = xen_time_init;
474 x86_init.timers.setup_percpu_clockev = x86_init_noop;
475 x86_cpuinit.setup_percpu_clockev = x86_init_noop;
476
477 x86_platform.calibrate_tsc = xen_tsc_khz;
478 x86_platform.get_wallclock = xen_get_wallclock;
479 x86_platform.set_wallclock = xen_set_wallclock;
480 }
481
482 #ifdef CONFIG_XEN_PVHVM
xen_hvm_setup_cpu_clockevents(void)483 static void xen_hvm_setup_cpu_clockevents(void)
484 {
485 int cpu = smp_processor_id();
486 xen_setup_runstate_info(cpu);
487 /*
488 * xen_setup_timer(cpu) - snprintf is bad in atomic context. Hence
489 * doing it xen_hvm_cpu_notify (which gets called by smp_init during
490 * early bootup and also during CPU hotplug events).
491 */
492 xen_setup_cpu_clockevents();
493 }
494
xen_hvm_init_time_ops(void)495 void __init xen_hvm_init_time_ops(void)
496 {
497 /* vector callback is needed otherwise we cannot receive interrupts
498 * on cpu > 0 and at this point we don't know how many cpus are
499 * available */
500 if (!xen_have_vector_callback)
501 return;
502 if (!xen_feature(XENFEAT_hvm_safe_pvclock)) {
503 printk(KERN_INFO "Xen doesn't support pvclock on HVM,"
504 "disable pv timer\n");
505 return;
506 }
507
508 pv_time_ops = xen_time_ops;
509 x86_init.timers.setup_percpu_clockev = xen_time_init;
510 x86_cpuinit.setup_percpu_clockev = xen_hvm_setup_cpu_clockevents;
511
512 x86_platform.calibrate_tsc = xen_tsc_khz;
513 x86_platform.get_wallclock = xen_get_wallclock;
514 x86_platform.set_wallclock = xen_set_wallclock;
515 }
516 #endif
517