1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 
51 #include <asm/pgtable.h>
52 #include <asm/tlbflush.h>
53 #include <asm/fixmap.h>
54 #include <asm/mmu_context.h>
55 #include <asm/setup.h>
56 #include <asm/paravirt.h>
57 #include <asm/e820.h>
58 #include <asm/linkage.h>
59 #include <asm/page.h>
60 #include <asm/init.h>
61 #include <asm/pat.h>
62 
63 #include <asm/xen/hypercall.h>
64 #include <asm/xen/hypervisor.h>
65 
66 #include <xen/xen.h>
67 #include <xen/page.h>
68 #include <xen/interface/xen.h>
69 #include <xen/interface/hvm/hvm_op.h>
70 #include <xen/interface/version.h>
71 #include <xen/interface/memory.h>
72 #include <xen/hvc-console.h>
73 
74 #include "multicalls.h"
75 #include "mmu.h"
76 #include "debugfs.h"
77 
78 #define MMU_UPDATE_HISTO	30
79 
80 /*
81  * Protects atomic reservation decrease/increase against concurrent increases.
82  * Also protects non-atomic updates of current_pages and balloon lists.
83  */
84 DEFINE_SPINLOCK(xen_reservation_lock);
85 
86 #ifdef CONFIG_XEN_DEBUG_FS
87 
88 static struct {
89 	u32 pgd_update;
90 	u32 pgd_update_pinned;
91 	u32 pgd_update_batched;
92 
93 	u32 pud_update;
94 	u32 pud_update_pinned;
95 	u32 pud_update_batched;
96 
97 	u32 pmd_update;
98 	u32 pmd_update_pinned;
99 	u32 pmd_update_batched;
100 
101 	u32 pte_update;
102 	u32 pte_update_pinned;
103 	u32 pte_update_batched;
104 
105 	u32 mmu_update;
106 	u32 mmu_update_extended;
107 	u32 mmu_update_histo[MMU_UPDATE_HISTO];
108 
109 	u32 prot_commit;
110 	u32 prot_commit_batched;
111 
112 	u32 set_pte_at;
113 	u32 set_pte_at_batched;
114 	u32 set_pte_at_pinned;
115 	u32 set_pte_at_current;
116 	u32 set_pte_at_kernel;
117 } mmu_stats;
118 
119 static u8 zero_stats;
120 
check_zero(void)121 static inline void check_zero(void)
122 {
123 	if (unlikely(zero_stats)) {
124 		memset(&mmu_stats, 0, sizeof(mmu_stats));
125 		zero_stats = 0;
126 	}
127 }
128 
129 #define ADD_STATS(elem, val)			\
130 	do { check_zero(); mmu_stats.elem += (val); } while(0)
131 
132 #else  /* !CONFIG_XEN_DEBUG_FS */
133 
134 #define ADD_STATS(elem, val)	do { (void)(val); } while(0)
135 
136 #endif /* CONFIG_XEN_DEBUG_FS */
137 
138 
139 /*
140  * Identity map, in addition to plain kernel map.  This needs to be
141  * large enough to allocate page table pages to allocate the rest.
142  * Each page can map 2MB.
143  */
144 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
145 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
146 
147 #ifdef CONFIG_X86_64
148 /* l3 pud for userspace vsyscall mapping */
149 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
150 #endif /* CONFIG_X86_64 */
151 
152 /*
153  * Note about cr3 (pagetable base) values:
154  *
155  * xen_cr3 contains the current logical cr3 value; it contains the
156  * last set cr3.  This may not be the current effective cr3, because
157  * its update may be being lazily deferred.  However, a vcpu looking
158  * at its own cr3 can use this value knowing that it everything will
159  * be self-consistent.
160  *
161  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
162  * hypercall to set the vcpu cr3 is complete (so it may be a little
163  * out of date, but it will never be set early).  If one vcpu is
164  * looking at another vcpu's cr3 value, it should use this variable.
165  */
166 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
167 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
168 
169 
170 /*
171  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
172  * redzone above it, so round it up to a PGD boundary.
173  */
174 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
175 
arbitrary_virt_to_mfn(void * vaddr)176 unsigned long arbitrary_virt_to_mfn(void *vaddr)
177 {
178 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
179 
180 	return PFN_DOWN(maddr.maddr);
181 }
182 
arbitrary_virt_to_machine(void * vaddr)183 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
184 {
185 	unsigned long address = (unsigned long)vaddr;
186 	unsigned int level;
187 	pte_t *pte;
188 	unsigned offset;
189 
190 	/*
191 	 * if the PFN is in the linear mapped vaddr range, we can just use
192 	 * the (quick) virt_to_machine() p2m lookup
193 	 */
194 	if (virt_addr_valid(vaddr))
195 		return virt_to_machine(vaddr);
196 
197 	/* otherwise we have to do a (slower) full page-table walk */
198 
199 	pte = lookup_address(address, &level);
200 	BUG_ON(pte == NULL);
201 	offset = address & ~PAGE_MASK;
202 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
203 }
204 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
205 
make_lowmem_page_readonly(void * vaddr)206 void make_lowmem_page_readonly(void *vaddr)
207 {
208 	pte_t *pte, ptev;
209 	unsigned long address = (unsigned long)vaddr;
210 	unsigned int level;
211 
212 	pte = lookup_address(address, &level);
213 	if (pte == NULL)
214 		return;		/* vaddr missing */
215 
216 	ptev = pte_wrprotect(*pte);
217 
218 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
219 		BUG();
220 }
221 
make_lowmem_page_readwrite(void * vaddr)222 void make_lowmem_page_readwrite(void *vaddr)
223 {
224 	pte_t *pte, ptev;
225 	unsigned long address = (unsigned long)vaddr;
226 	unsigned int level;
227 
228 	pte = lookup_address(address, &level);
229 	if (pte == NULL)
230 		return;		/* vaddr missing */
231 
232 	ptev = pte_mkwrite(*pte);
233 
234 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
235 		BUG();
236 }
237 
238 
xen_page_pinned(void * ptr)239 static bool xen_page_pinned(void *ptr)
240 {
241 	struct page *page = virt_to_page(ptr);
242 
243 	return PagePinned(page);
244 }
245 
xen_iomap_pte(pte_t pte)246 static bool xen_iomap_pte(pte_t pte)
247 {
248 	return pte_flags(pte) & _PAGE_IOMAP;
249 }
250 
xen_set_domain_pte(pte_t * ptep,pte_t pteval,unsigned domid)251 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
252 {
253 	struct multicall_space mcs;
254 	struct mmu_update *u;
255 
256 	mcs = xen_mc_entry(sizeof(*u));
257 	u = mcs.args;
258 
259 	/* ptep might be kmapped when using 32-bit HIGHPTE */
260 	u->ptr = arbitrary_virt_to_machine(ptep).maddr;
261 	u->val = pte_val_ma(pteval);
262 
263 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
264 
265 	xen_mc_issue(PARAVIRT_LAZY_MMU);
266 }
267 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
268 
xen_set_iomap_pte(pte_t * ptep,pte_t pteval)269 static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
270 {
271 	xen_set_domain_pte(ptep, pteval, DOMID_IO);
272 }
273 
xen_extend_mmu_update(const struct mmu_update * update)274 static void xen_extend_mmu_update(const struct mmu_update *update)
275 {
276 	struct multicall_space mcs;
277 	struct mmu_update *u;
278 
279 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
280 
281 	if (mcs.mc != NULL) {
282 		ADD_STATS(mmu_update_extended, 1);
283 		ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
284 
285 		mcs.mc->args[1]++;
286 
287 		if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
288 			ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
289 		else
290 			ADD_STATS(mmu_update_histo[0], 1);
291 	} else {
292 		ADD_STATS(mmu_update, 1);
293 		mcs = __xen_mc_entry(sizeof(*u));
294 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
295 		ADD_STATS(mmu_update_histo[1], 1);
296 	}
297 
298 	u = mcs.args;
299 	*u = *update;
300 }
301 
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)302 void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
303 {
304 	struct mmu_update u;
305 
306 	preempt_disable();
307 
308 	xen_mc_batch();
309 
310 	/* ptr may be ioremapped for 64-bit pagetable setup */
311 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
312 	u.val = pmd_val_ma(val);
313 	xen_extend_mmu_update(&u);
314 
315 	ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
316 
317 	xen_mc_issue(PARAVIRT_LAZY_MMU);
318 
319 	preempt_enable();
320 }
321 
xen_set_pmd(pmd_t * ptr,pmd_t val)322 void xen_set_pmd(pmd_t *ptr, pmd_t val)
323 {
324 	ADD_STATS(pmd_update, 1);
325 
326 	/* If page is not pinned, we can just update the entry
327 	   directly */
328 	if (!xen_page_pinned(ptr)) {
329 		*ptr = val;
330 		return;
331 	}
332 
333 	ADD_STATS(pmd_update_pinned, 1);
334 
335 	xen_set_pmd_hyper(ptr, val);
336 }
337 
338 /*
339  * Associate a virtual page frame with a given physical page frame
340  * and protection flags for that frame.
341  */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)342 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
343 {
344 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
345 }
346 
xen_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)347 void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
348 		    pte_t *ptep, pte_t pteval)
349 {
350 	if (xen_iomap_pte(pteval)) {
351 		xen_set_iomap_pte(ptep, pteval);
352 		goto out;
353 	}
354 
355 	ADD_STATS(set_pte_at, 1);
356 //	ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
357 	ADD_STATS(set_pte_at_current, mm == current->mm);
358 	ADD_STATS(set_pte_at_kernel, mm == &init_mm);
359 
360 	if (mm == current->mm || mm == &init_mm) {
361 		if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
362 			struct multicall_space mcs;
363 			mcs = xen_mc_entry(0);
364 
365 			MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
366 			ADD_STATS(set_pte_at_batched, 1);
367 			xen_mc_issue(PARAVIRT_LAZY_MMU);
368 			goto out;
369 		} else
370 			if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
371 				goto out;
372 	}
373 	xen_set_pte(ptep, pteval);
374 
375 out:	return;
376 }
377 
xen_ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)378 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
379 				 unsigned long addr, pte_t *ptep)
380 {
381 	/* Just return the pte as-is.  We preserve the bits on commit */
382 	return *ptep;
383 }
384 
xen_ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)385 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
386 				 pte_t *ptep, pte_t pte)
387 {
388 	struct mmu_update u;
389 
390 	xen_mc_batch();
391 
392 	u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
393 	u.val = pte_val_ma(pte);
394 	xen_extend_mmu_update(&u);
395 
396 	ADD_STATS(prot_commit, 1);
397 	ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
398 
399 	xen_mc_issue(PARAVIRT_LAZY_MMU);
400 }
401 
402 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)403 static pteval_t pte_mfn_to_pfn(pteval_t val)
404 {
405 	if (val & _PAGE_PRESENT) {
406 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
407 		pteval_t flags = val & PTE_FLAGS_MASK;
408 		val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
409 	}
410 
411 	return val;
412 }
413 
pte_pfn_to_mfn(pteval_t val)414 static pteval_t pte_pfn_to_mfn(pteval_t val)
415 {
416 	if (val & _PAGE_PRESENT) {
417 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
418 		pteval_t flags = val & PTE_FLAGS_MASK;
419 		unsigned long mfn;
420 
421 		if (!xen_feature(XENFEAT_auto_translated_physmap))
422 			mfn = get_phys_to_machine(pfn);
423 		else
424 			mfn = pfn;
425 		/*
426 		 * If there's no mfn for the pfn, then just create an
427 		 * empty non-present pte.  Unfortunately this loses
428 		 * information about the original pfn, so
429 		 * pte_mfn_to_pfn is asymmetric.
430 		 */
431 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
432 			mfn = 0;
433 			flags = 0;
434 		} else {
435 			/*
436 			 * Paramount to do this test _after_ the
437 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
438 			 * IDENTITY_FRAME_BIT resolves to true.
439 			 */
440 			mfn &= ~FOREIGN_FRAME_BIT;
441 			if (mfn & IDENTITY_FRAME_BIT) {
442 				mfn &= ~IDENTITY_FRAME_BIT;
443 				flags |= _PAGE_IOMAP;
444 			}
445 		}
446 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
447 	}
448 
449 	return val;
450 }
451 
iomap_pte(pteval_t val)452 static pteval_t iomap_pte(pteval_t val)
453 {
454 	if (val & _PAGE_PRESENT) {
455 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
456 		pteval_t flags = val & PTE_FLAGS_MASK;
457 
458 		/* We assume the pte frame number is a MFN, so
459 		   just use it as-is. */
460 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
461 	}
462 
463 	return val;
464 }
465 
xen_pte_val(pte_t pte)466 pteval_t xen_pte_val(pte_t pte)
467 {
468 	pteval_t pteval = pte.pte;
469 
470 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
471 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
472 		WARN_ON(!pat_enabled);
473 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
474 	}
475 
476 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
477 		return pteval;
478 
479 	return pte_mfn_to_pfn(pteval);
480 }
481 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
482 
xen_pgd_val(pgd_t pgd)483 pgdval_t xen_pgd_val(pgd_t pgd)
484 {
485 	return pte_mfn_to_pfn(pgd.pgd);
486 }
487 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
488 
489 /*
490  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
491  * are reserved for now, to correspond to the Intel-reserved PAT
492  * types.
493  *
494  * We expect Linux's PAT set as follows:
495  *
496  * Idx  PTE flags        Linux    Xen    Default
497  * 0                     WB       WB     WB
498  * 1            PWT      WC       WT     WT
499  * 2        PCD          UC-      UC-    UC-
500  * 3        PCD PWT      UC       UC     UC
501  * 4    PAT              WB       WC     WB
502  * 5    PAT     PWT      WC       WP     WT
503  * 6    PAT PCD          UC-      UC     UC-
504  * 7    PAT PCD PWT      UC       UC     UC
505  */
506 
xen_set_pat(u64 pat)507 void xen_set_pat(u64 pat)
508 {
509 	/* We expect Linux to use a PAT setting of
510 	 * UC UC- WC WB (ignoring the PAT flag) */
511 	WARN_ON(pat != 0x0007010600070106ull);
512 }
513 
xen_make_pte(pteval_t pte)514 pte_t xen_make_pte(pteval_t pte)
515 {
516 	phys_addr_t addr = (pte & PTE_PFN_MASK);
517 
518 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
519 	 * If _PAGE_PAT is set, then it probably means it is really
520 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
521 	 * things work out OK...
522 	 *
523 	 * (We should never see kernel mappings with _PAGE_PSE set,
524 	 * but we could see hugetlbfs mappings, I think.).
525 	 */
526 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
527 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
528 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
529 	}
530 
531 	/*
532 	 * Unprivileged domains are allowed to do IOMAPpings for
533 	 * PCI passthrough, but not map ISA space.  The ISA
534 	 * mappings are just dummy local mappings to keep other
535 	 * parts of the kernel happy.
536 	 */
537 	if (unlikely(pte & _PAGE_IOMAP) &&
538 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
539 		pte = iomap_pte(pte);
540 	} else {
541 		pte &= ~_PAGE_IOMAP;
542 		pte = pte_pfn_to_mfn(pte);
543 	}
544 
545 	return native_make_pte(pte);
546 }
547 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
548 
549 #ifdef CONFIG_XEN_DEBUG
xen_make_pte_debug(pteval_t pte)550 pte_t xen_make_pte_debug(pteval_t pte)
551 {
552 	phys_addr_t addr = (pte & PTE_PFN_MASK);
553 	phys_addr_t other_addr;
554 	bool io_page = false;
555 	pte_t _pte;
556 
557 	if (pte & _PAGE_IOMAP)
558 		io_page = true;
559 
560 	_pte = xen_make_pte(pte);
561 
562 	if (!addr)
563 		return _pte;
564 
565 	if (io_page &&
566 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
567 		other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
568 		WARN_ONCE(addr != other_addr,
569 			"0x%lx is using VM_IO, but it is 0x%lx!\n",
570 			(unsigned long)addr, (unsigned long)other_addr);
571 	} else {
572 		pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
573 		other_addr = (_pte.pte & PTE_PFN_MASK);
574 		WARN_ONCE((addr == other_addr) && (!io_page) && (!iomap_set),
575 			"0x%lx is missing VM_IO (and wasn't fixed)!\n",
576 			(unsigned long)addr);
577 	}
578 
579 	return _pte;
580 }
581 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
582 #endif
583 
xen_make_pgd(pgdval_t pgd)584 pgd_t xen_make_pgd(pgdval_t pgd)
585 {
586 	pgd = pte_pfn_to_mfn(pgd);
587 	return native_make_pgd(pgd);
588 }
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
590 
xen_pmd_val(pmd_t pmd)591 pmdval_t xen_pmd_val(pmd_t pmd)
592 {
593 	return pte_mfn_to_pfn(pmd.pmd);
594 }
595 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
596 
xen_set_pud_hyper(pud_t * ptr,pud_t val)597 void xen_set_pud_hyper(pud_t *ptr, pud_t val)
598 {
599 	struct mmu_update u;
600 
601 	preempt_disable();
602 
603 	xen_mc_batch();
604 
605 	/* ptr may be ioremapped for 64-bit pagetable setup */
606 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
607 	u.val = pud_val_ma(val);
608 	xen_extend_mmu_update(&u);
609 
610 	ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
611 
612 	xen_mc_issue(PARAVIRT_LAZY_MMU);
613 
614 	preempt_enable();
615 }
616 
xen_set_pud(pud_t * ptr,pud_t val)617 void xen_set_pud(pud_t *ptr, pud_t val)
618 {
619 	ADD_STATS(pud_update, 1);
620 
621 	/* If page is not pinned, we can just update the entry
622 	   directly */
623 	if (!xen_page_pinned(ptr)) {
624 		*ptr = val;
625 		return;
626 	}
627 
628 	ADD_STATS(pud_update_pinned, 1);
629 
630 	xen_set_pud_hyper(ptr, val);
631 }
632 
xen_set_pte(pte_t * ptep,pte_t pte)633 void xen_set_pte(pte_t *ptep, pte_t pte)
634 {
635 	if (xen_iomap_pte(pte)) {
636 		xen_set_iomap_pte(ptep, pte);
637 		return;
638 	}
639 
640 	ADD_STATS(pte_update, 1);
641 //	ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
642 	ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
643 
644 #ifdef CONFIG_X86_PAE
645 	ptep->pte_high = pte.pte_high;
646 	smp_wmb();
647 	ptep->pte_low = pte.pte_low;
648 #else
649 	*ptep = pte;
650 #endif
651 }
652 
653 #ifdef CONFIG_X86_PAE
xen_set_pte_atomic(pte_t * ptep,pte_t pte)654 void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
655 {
656 	if (xen_iomap_pte(pte)) {
657 		xen_set_iomap_pte(ptep, pte);
658 		return;
659 	}
660 
661 	set_64bit((u64 *)ptep, native_pte_val(pte));
662 }
663 
xen_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)664 void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
665 {
666 	ptep->pte_low = 0;
667 	smp_wmb();		/* make sure low gets written first */
668 	ptep->pte_high = 0;
669 }
670 
xen_pmd_clear(pmd_t * pmdp)671 void xen_pmd_clear(pmd_t *pmdp)
672 {
673 	set_pmd(pmdp, __pmd(0));
674 }
675 #endif	/* CONFIG_X86_PAE */
676 
xen_make_pmd(pmdval_t pmd)677 pmd_t xen_make_pmd(pmdval_t pmd)
678 {
679 	pmd = pte_pfn_to_mfn(pmd);
680 	return native_make_pmd(pmd);
681 }
682 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
683 
684 #if PAGETABLE_LEVELS == 4
xen_pud_val(pud_t pud)685 pudval_t xen_pud_val(pud_t pud)
686 {
687 	return pte_mfn_to_pfn(pud.pud);
688 }
689 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
690 
xen_make_pud(pudval_t pud)691 pud_t xen_make_pud(pudval_t pud)
692 {
693 	pud = pte_pfn_to_mfn(pud);
694 
695 	return native_make_pud(pud);
696 }
697 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
698 
xen_get_user_pgd(pgd_t * pgd)699 pgd_t *xen_get_user_pgd(pgd_t *pgd)
700 {
701 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
702 	unsigned offset = pgd - pgd_page;
703 	pgd_t *user_ptr = NULL;
704 
705 	if (offset < pgd_index(USER_LIMIT)) {
706 		struct page *page = virt_to_page(pgd_page);
707 		user_ptr = (pgd_t *)page->private;
708 		if (user_ptr)
709 			user_ptr += offset;
710 	}
711 
712 	return user_ptr;
713 }
714 
__xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)715 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
716 {
717 	struct mmu_update u;
718 
719 	u.ptr = virt_to_machine(ptr).maddr;
720 	u.val = pgd_val_ma(val);
721 	xen_extend_mmu_update(&u);
722 }
723 
724 /*
725  * Raw hypercall-based set_pgd, intended for in early boot before
726  * there's a page structure.  This implies:
727  *  1. The only existing pagetable is the kernel's
728  *  2. It is always pinned
729  *  3. It has no user pagetable attached to it
730  */
xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)731 void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
732 {
733 	preempt_disable();
734 
735 	xen_mc_batch();
736 
737 	__xen_set_pgd_hyper(ptr, val);
738 
739 	xen_mc_issue(PARAVIRT_LAZY_MMU);
740 
741 	preempt_enable();
742 }
743 
xen_set_pgd(pgd_t * ptr,pgd_t val)744 void xen_set_pgd(pgd_t *ptr, pgd_t val)
745 {
746 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
747 
748 	ADD_STATS(pgd_update, 1);
749 
750 	/* If page is not pinned, we can just update the entry
751 	   directly */
752 	if (!xen_page_pinned(ptr)) {
753 		*ptr = val;
754 		if (user_ptr) {
755 			WARN_ON(xen_page_pinned(user_ptr));
756 			*user_ptr = val;
757 		}
758 		return;
759 	}
760 
761 	ADD_STATS(pgd_update_pinned, 1);
762 	ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
763 
764 	/* If it's pinned, then we can at least batch the kernel and
765 	   user updates together. */
766 	xen_mc_batch();
767 
768 	__xen_set_pgd_hyper(ptr, val);
769 	if (user_ptr)
770 		__xen_set_pgd_hyper(user_ptr, val);
771 
772 	xen_mc_issue(PARAVIRT_LAZY_MMU);
773 }
774 #endif	/* PAGETABLE_LEVELS == 4 */
775 
776 /*
777  * (Yet another) pagetable walker.  This one is intended for pinning a
778  * pagetable.  This means that it walks a pagetable and calls the
779  * callback function on each page it finds making up the page table,
780  * at every level.  It walks the entire pagetable, but it only bothers
781  * pinning pte pages which are below limit.  In the normal case this
782  * will be STACK_TOP_MAX, but at boot we need to pin up to
783  * FIXADDR_TOP.
784  *
785  * For 32-bit the important bit is that we don't pin beyond there,
786  * because then we start getting into Xen's ptes.
787  *
788  * For 64-bit, we must skip the Xen hole in the middle of the address
789  * space, just after the big x86-64 virtual hole.
790  */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)791 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
792 			  int (*func)(struct mm_struct *mm, struct page *,
793 				      enum pt_level),
794 			  unsigned long limit)
795 {
796 	int flush = 0;
797 	unsigned hole_low, hole_high;
798 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
799 	unsigned pgdidx, pudidx, pmdidx;
800 
801 	/* The limit is the last byte to be touched */
802 	limit--;
803 	BUG_ON(limit >= FIXADDR_TOP);
804 
805 	if (xen_feature(XENFEAT_auto_translated_physmap))
806 		return 0;
807 
808 	/*
809 	 * 64-bit has a great big hole in the middle of the address
810 	 * space, which contains the Xen mappings.  On 32-bit these
811 	 * will end up making a zero-sized hole and so is a no-op.
812 	 */
813 	hole_low = pgd_index(USER_LIMIT);
814 	hole_high = pgd_index(PAGE_OFFSET);
815 
816 	pgdidx_limit = pgd_index(limit);
817 #if PTRS_PER_PUD > 1
818 	pudidx_limit = pud_index(limit);
819 #else
820 	pudidx_limit = 0;
821 #endif
822 #if PTRS_PER_PMD > 1
823 	pmdidx_limit = pmd_index(limit);
824 #else
825 	pmdidx_limit = 0;
826 #endif
827 
828 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
829 		pud_t *pud;
830 
831 		if (pgdidx >= hole_low && pgdidx < hole_high)
832 			continue;
833 
834 		if (!pgd_val(pgd[pgdidx]))
835 			continue;
836 
837 		pud = pud_offset(&pgd[pgdidx], 0);
838 
839 		if (PTRS_PER_PUD > 1) /* not folded */
840 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
841 
842 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
843 			pmd_t *pmd;
844 
845 			if (pgdidx == pgdidx_limit &&
846 			    pudidx > pudidx_limit)
847 				goto out;
848 
849 			if (pud_none(pud[pudidx]))
850 				continue;
851 
852 			pmd = pmd_offset(&pud[pudidx], 0);
853 
854 			if (PTRS_PER_PMD > 1) /* not folded */
855 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
856 
857 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
858 				struct page *pte;
859 
860 				if (pgdidx == pgdidx_limit &&
861 				    pudidx == pudidx_limit &&
862 				    pmdidx > pmdidx_limit)
863 					goto out;
864 
865 				if (pmd_none(pmd[pmdidx]))
866 					continue;
867 
868 				pte = pmd_page(pmd[pmdidx]);
869 				flush |= (*func)(mm, pte, PT_PTE);
870 			}
871 		}
872 	}
873 
874 out:
875 	/* Do the top level last, so that the callbacks can use it as
876 	   a cue to do final things like tlb flushes. */
877 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
878 
879 	return flush;
880 }
881 
xen_pgd_walk(struct mm_struct * mm,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)882 static int xen_pgd_walk(struct mm_struct *mm,
883 			int (*func)(struct mm_struct *mm, struct page *,
884 				    enum pt_level),
885 			unsigned long limit)
886 {
887 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
888 }
889 
890 /* If we're using split pte locks, then take the page's lock and
891    return a pointer to it.  Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)892 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
893 {
894 	spinlock_t *ptl = NULL;
895 
896 #if USE_SPLIT_PTLOCKS
897 	ptl = __pte_lockptr(page);
898 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
899 #endif
900 
901 	return ptl;
902 }
903 
xen_pte_unlock(void * v)904 static void xen_pte_unlock(void *v)
905 {
906 	spinlock_t *ptl = v;
907 	spin_unlock(ptl);
908 }
909 
xen_do_pin(unsigned level,unsigned long pfn)910 static void xen_do_pin(unsigned level, unsigned long pfn)
911 {
912 	struct mmuext_op *op;
913 	struct multicall_space mcs;
914 
915 	mcs = __xen_mc_entry(sizeof(*op));
916 	op = mcs.args;
917 	op->cmd = level;
918 	op->arg1.mfn = pfn_to_mfn(pfn);
919 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
920 }
921 
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)922 static int xen_pin_page(struct mm_struct *mm, struct page *page,
923 			enum pt_level level)
924 {
925 	unsigned pgfl = TestSetPagePinned(page);
926 	int flush;
927 
928 	if (pgfl)
929 		flush = 0;		/* already pinned */
930 	else if (PageHighMem(page))
931 		/* kmaps need flushing if we found an unpinned
932 		   highpage */
933 		flush = 1;
934 	else {
935 		void *pt = lowmem_page_address(page);
936 		unsigned long pfn = page_to_pfn(page);
937 		struct multicall_space mcs = __xen_mc_entry(0);
938 		spinlock_t *ptl;
939 
940 		flush = 0;
941 
942 		/*
943 		 * We need to hold the pagetable lock between the time
944 		 * we make the pagetable RO and when we actually pin
945 		 * it.  If we don't, then other users may come in and
946 		 * attempt to update the pagetable by writing it,
947 		 * which will fail because the memory is RO but not
948 		 * pinned, so Xen won't do the trap'n'emulate.
949 		 *
950 		 * If we're using split pte locks, we can't hold the
951 		 * entire pagetable's worth of locks during the
952 		 * traverse, because we may wrap the preempt count (8
953 		 * bits).  The solution is to mark RO and pin each PTE
954 		 * page while holding the lock.  This means the number
955 		 * of locks we end up holding is never more than a
956 		 * batch size (~32 entries, at present).
957 		 *
958 		 * If we're not using split pte locks, we needn't pin
959 		 * the PTE pages independently, because we're
960 		 * protected by the overall pagetable lock.
961 		 */
962 		ptl = NULL;
963 		if (level == PT_PTE)
964 			ptl = xen_pte_lock(page, mm);
965 
966 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
967 					pfn_pte(pfn, PAGE_KERNEL_RO),
968 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
969 
970 		if (ptl) {
971 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
972 
973 			/* Queue a deferred unlock for when this batch
974 			   is completed. */
975 			xen_mc_callback(xen_pte_unlock, ptl);
976 		}
977 	}
978 
979 	return flush;
980 }
981 
982 /* This is called just after a mm has been created, but it has not
983    been used yet.  We need to make sure that its pagetable is all
984    read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)985 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
986 {
987 	xen_mc_batch();
988 
989 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
990 		/* re-enable interrupts for flushing */
991 		xen_mc_issue(0);
992 
993 		kmap_flush_unused();
994 
995 		xen_mc_batch();
996 	}
997 
998 #ifdef CONFIG_X86_64
999 	{
1000 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1001 
1002 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1003 
1004 		if (user_pgd) {
1005 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
1006 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
1007 				   PFN_DOWN(__pa(user_pgd)));
1008 		}
1009 	}
1010 #else /* CONFIG_X86_32 */
1011 #ifdef CONFIG_X86_PAE
1012 	/* Need to make sure unshared kernel PMD is pinnable */
1013 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1014 		     PT_PMD);
1015 #endif
1016 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
1017 #endif /* CONFIG_X86_64 */
1018 	xen_mc_issue(0);
1019 }
1020 
xen_pgd_pin(struct mm_struct * mm)1021 static void xen_pgd_pin(struct mm_struct *mm)
1022 {
1023 	__xen_pgd_pin(mm, mm->pgd);
1024 }
1025 
1026 /*
1027  * On save, we need to pin all pagetables to make sure they get their
1028  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
1029  * them (unpinned pgds are not currently in use, probably because the
1030  * process is under construction or destruction).
1031  *
1032  * Expected to be called in stop_machine() ("equivalent to taking
1033  * every spinlock in the system"), so the locking doesn't really
1034  * matter all that much.
1035  */
xen_mm_pin_all(void)1036 void xen_mm_pin_all(void)
1037 {
1038 	struct page *page;
1039 
1040 	spin_lock(&pgd_lock);
1041 
1042 	list_for_each_entry(page, &pgd_list, lru) {
1043 		if (!PagePinned(page)) {
1044 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
1045 			SetPageSavePinned(page);
1046 		}
1047 	}
1048 
1049 	spin_unlock(&pgd_lock);
1050 }
1051 
1052 /*
1053  * The init_mm pagetable is really pinned as soon as its created, but
1054  * that's before we have page structures to store the bits.  So do all
1055  * the book-keeping now.
1056  */
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)1057 static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1058 				  enum pt_level level)
1059 {
1060 	SetPagePinned(page);
1061 	return 0;
1062 }
1063 
xen_mark_init_mm_pinned(void)1064 static void __init xen_mark_init_mm_pinned(void)
1065 {
1066 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
1067 }
1068 
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)1069 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1070 			  enum pt_level level)
1071 {
1072 	unsigned pgfl = TestClearPagePinned(page);
1073 
1074 	if (pgfl && !PageHighMem(page)) {
1075 		void *pt = lowmem_page_address(page);
1076 		unsigned long pfn = page_to_pfn(page);
1077 		spinlock_t *ptl = NULL;
1078 		struct multicall_space mcs;
1079 
1080 		/*
1081 		 * Do the converse to pin_page.  If we're using split
1082 		 * pte locks, we must be holding the lock for while
1083 		 * the pte page is unpinned but still RO to prevent
1084 		 * concurrent updates from seeing it in this
1085 		 * partially-pinned state.
1086 		 */
1087 		if (level == PT_PTE) {
1088 			ptl = xen_pte_lock(page, mm);
1089 
1090 			if (ptl)
1091 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
1092 		}
1093 
1094 		mcs = __xen_mc_entry(0);
1095 
1096 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1097 					pfn_pte(pfn, PAGE_KERNEL),
1098 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1099 
1100 		if (ptl) {
1101 			/* unlock when batch completed */
1102 			xen_mc_callback(xen_pte_unlock, ptl);
1103 		}
1104 	}
1105 
1106 	return 0;		/* never need to flush on unpin */
1107 }
1108 
1109 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)1110 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1111 {
1112 	xen_mc_batch();
1113 
1114 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1115 
1116 #ifdef CONFIG_X86_64
1117 	{
1118 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1119 
1120 		if (user_pgd) {
1121 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1122 				   PFN_DOWN(__pa(user_pgd)));
1123 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1124 		}
1125 	}
1126 #endif
1127 
1128 #ifdef CONFIG_X86_PAE
1129 	/* Need to make sure unshared kernel PMD is unpinned */
1130 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1131 		       PT_PMD);
1132 #endif
1133 
1134 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1135 
1136 	xen_mc_issue(0);
1137 }
1138 
xen_pgd_unpin(struct mm_struct * mm)1139 static void xen_pgd_unpin(struct mm_struct *mm)
1140 {
1141 	__xen_pgd_unpin(mm, mm->pgd);
1142 }
1143 
1144 /*
1145  * On resume, undo any pinning done at save, so that the rest of the
1146  * kernel doesn't see any unexpected pinned pagetables.
1147  */
xen_mm_unpin_all(void)1148 void xen_mm_unpin_all(void)
1149 {
1150 	struct page *page;
1151 
1152 	spin_lock(&pgd_lock);
1153 
1154 	list_for_each_entry(page, &pgd_list, lru) {
1155 		if (PageSavePinned(page)) {
1156 			BUG_ON(!PagePinned(page));
1157 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1158 			ClearPageSavePinned(page);
1159 		}
1160 	}
1161 
1162 	spin_unlock(&pgd_lock);
1163 }
1164 
xen_activate_mm(struct mm_struct * prev,struct mm_struct * next)1165 void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1166 {
1167 	spin_lock(&next->page_table_lock);
1168 	xen_pgd_pin(next);
1169 	spin_unlock(&next->page_table_lock);
1170 }
1171 
xen_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)1172 void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1173 {
1174 	spin_lock(&mm->page_table_lock);
1175 	xen_pgd_pin(mm);
1176 	spin_unlock(&mm->page_table_lock);
1177 }
1178 
1179 
1180 #ifdef CONFIG_SMP
1181 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1182    we need to repoint it somewhere else before we can unpin it. */
drop_other_mm_ref(void * info)1183 static void drop_other_mm_ref(void *info)
1184 {
1185 	struct mm_struct *mm = info;
1186 	struct mm_struct *active_mm;
1187 
1188 	active_mm = percpu_read(cpu_tlbstate.active_mm);
1189 
1190 	if (active_mm == mm)
1191 		leave_mm(smp_processor_id());
1192 
1193 	/* If this cpu still has a stale cr3 reference, then make sure
1194 	   it has been flushed. */
1195 	if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
1196 		load_cr3(swapper_pg_dir);
1197 }
1198 
xen_drop_mm_ref(struct mm_struct * mm)1199 static void xen_drop_mm_ref(struct mm_struct *mm)
1200 {
1201 	cpumask_var_t mask;
1202 	unsigned cpu;
1203 
1204 	if (current->active_mm == mm) {
1205 		if (current->mm == mm)
1206 			load_cr3(swapper_pg_dir);
1207 		else
1208 			leave_mm(smp_processor_id());
1209 	}
1210 
1211 	/* Get the "official" set of cpus referring to our pagetable. */
1212 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1213 		for_each_online_cpu(cpu) {
1214 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1215 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1216 				continue;
1217 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1218 		}
1219 		return;
1220 	}
1221 	cpumask_copy(mask, mm_cpumask(mm));
1222 
1223 	/* It's possible that a vcpu may have a stale reference to our
1224 	   cr3, because its in lazy mode, and it hasn't yet flushed
1225 	   its set of pending hypercalls yet.  In this case, we can
1226 	   look at its actual current cr3 value, and force it to flush
1227 	   if needed. */
1228 	for_each_online_cpu(cpu) {
1229 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1230 			cpumask_set_cpu(cpu, mask);
1231 	}
1232 
1233 	if (!cpumask_empty(mask))
1234 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1235 	free_cpumask_var(mask);
1236 }
1237 #else
xen_drop_mm_ref(struct mm_struct * mm)1238 static void xen_drop_mm_ref(struct mm_struct *mm)
1239 {
1240 	if (current->active_mm == mm)
1241 		load_cr3(swapper_pg_dir);
1242 }
1243 #endif
1244 
1245 /*
1246  * While a process runs, Xen pins its pagetables, which means that the
1247  * hypervisor forces it to be read-only, and it controls all updates
1248  * to it.  This means that all pagetable updates have to go via the
1249  * hypervisor, which is moderately expensive.
1250  *
1251  * Since we're pulling the pagetable down, we switch to use init_mm,
1252  * unpin old process pagetable and mark it all read-write, which
1253  * allows further operations on it to be simple memory accesses.
1254  *
1255  * The only subtle point is that another CPU may be still using the
1256  * pagetable because of lazy tlb flushing.  This means we need need to
1257  * switch all CPUs off this pagetable before we can unpin it.
1258  */
xen_exit_mmap(struct mm_struct * mm)1259 void xen_exit_mmap(struct mm_struct *mm)
1260 {
1261 	get_cpu();		/* make sure we don't move around */
1262 	xen_drop_mm_ref(mm);
1263 	put_cpu();
1264 
1265 	spin_lock(&mm->page_table_lock);
1266 
1267 	/* pgd may not be pinned in the error exit path of execve */
1268 	if (xen_page_pinned(mm->pgd))
1269 		xen_pgd_unpin(mm);
1270 
1271 	spin_unlock(&mm->page_table_lock);
1272 }
1273 
xen_pagetable_setup_start(pgd_t * base)1274 static __init void xen_pagetable_setup_start(pgd_t *base)
1275 {
1276 }
1277 
xen_mapping_pagetable_reserve(u64 start,u64 end)1278 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1279 {
1280 	/* reserve the range used */
1281 	native_pagetable_reserve(start, end);
1282 
1283 	/* set as RW the rest */
1284 	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1285 			PFN_PHYS(pgt_buf_top));
1286 	while (end < PFN_PHYS(pgt_buf_top)) {
1287 		make_lowmem_page_readwrite(__va(end));
1288 		end += PAGE_SIZE;
1289 	}
1290 }
1291 
1292 static void xen_post_allocator_init(void);
1293 
xen_pagetable_setup_done(pgd_t * base)1294 static __init void xen_pagetable_setup_done(pgd_t *base)
1295 {
1296 	xen_setup_shared_info();
1297 	xen_post_allocator_init();
1298 }
1299 
xen_write_cr2(unsigned long cr2)1300 static void xen_write_cr2(unsigned long cr2)
1301 {
1302 	percpu_read(xen_vcpu)->arch.cr2 = cr2;
1303 }
1304 
xen_read_cr2(void)1305 static unsigned long xen_read_cr2(void)
1306 {
1307 	return percpu_read(xen_vcpu)->arch.cr2;
1308 }
1309 
xen_read_cr2_direct(void)1310 unsigned long xen_read_cr2_direct(void)
1311 {
1312 	return percpu_read(xen_vcpu_info.arch.cr2);
1313 }
1314 
xen_flush_tlb(void)1315 static void xen_flush_tlb(void)
1316 {
1317 	struct mmuext_op *op;
1318 	struct multicall_space mcs;
1319 
1320 	preempt_disable();
1321 
1322 	mcs = xen_mc_entry(sizeof(*op));
1323 
1324 	op = mcs.args;
1325 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1326 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1327 
1328 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1329 
1330 	preempt_enable();
1331 }
1332 
xen_flush_tlb_single(unsigned long addr)1333 static void xen_flush_tlb_single(unsigned long addr)
1334 {
1335 	struct mmuext_op *op;
1336 	struct multicall_space mcs;
1337 
1338 	preempt_disable();
1339 
1340 	mcs = xen_mc_entry(sizeof(*op));
1341 	op = mcs.args;
1342 	op->cmd = MMUEXT_INVLPG_LOCAL;
1343 	op->arg1.linear_addr = addr & PAGE_MASK;
1344 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1345 
1346 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1347 
1348 	preempt_enable();
1349 }
1350 
xen_flush_tlb_others(const struct cpumask * cpus,struct mm_struct * mm,unsigned long va)1351 static void xen_flush_tlb_others(const struct cpumask *cpus,
1352 				 struct mm_struct *mm, unsigned long va)
1353 {
1354 	struct {
1355 		struct mmuext_op op;
1356 		DECLARE_BITMAP(mask, NR_CPUS);
1357 	} *args;
1358 	struct multicall_space mcs;
1359 
1360 	if (cpumask_empty(cpus))
1361 		return;		/* nothing to do */
1362 
1363 	mcs = xen_mc_entry(sizeof(*args));
1364 	args = mcs.args;
1365 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1366 
1367 	/* Remove us, and any offline CPUS. */
1368 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1369 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1370 
1371 	if (va == TLB_FLUSH_ALL) {
1372 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1373 	} else {
1374 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1375 		args->op.arg1.linear_addr = va;
1376 	}
1377 
1378 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1379 
1380 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1381 }
1382 
xen_read_cr3(void)1383 static unsigned long xen_read_cr3(void)
1384 {
1385 	return percpu_read(xen_cr3);
1386 }
1387 
set_current_cr3(void * v)1388 static void set_current_cr3(void *v)
1389 {
1390 	percpu_write(xen_current_cr3, (unsigned long)v);
1391 }
1392 
__xen_write_cr3(bool kernel,unsigned long cr3)1393 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1394 {
1395 	struct mmuext_op *op;
1396 	struct multicall_space mcs;
1397 	unsigned long mfn;
1398 
1399 	if (cr3)
1400 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1401 	else
1402 		mfn = 0;
1403 
1404 	WARN_ON(mfn == 0 && kernel);
1405 
1406 	mcs = __xen_mc_entry(sizeof(*op));
1407 
1408 	op = mcs.args;
1409 	op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1410 	op->arg1.mfn = mfn;
1411 
1412 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1413 
1414 	if (kernel) {
1415 		percpu_write(xen_cr3, cr3);
1416 
1417 		/* Update xen_current_cr3 once the batch has actually
1418 		   been submitted. */
1419 		xen_mc_callback(set_current_cr3, (void *)cr3);
1420 	}
1421 }
1422 
xen_write_cr3(unsigned long cr3)1423 static void xen_write_cr3(unsigned long cr3)
1424 {
1425 	BUG_ON(preemptible());
1426 
1427 	xen_mc_batch();  /* disables interrupts */
1428 
1429 	/* Update while interrupts are disabled, so its atomic with
1430 	   respect to ipis */
1431 	percpu_write(xen_cr3, cr3);
1432 
1433 	__xen_write_cr3(true, cr3);
1434 
1435 #ifdef CONFIG_X86_64
1436 	{
1437 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1438 		if (user_pgd)
1439 			__xen_write_cr3(false, __pa(user_pgd));
1440 		else
1441 			__xen_write_cr3(false, 0);
1442 	}
1443 #endif
1444 
1445 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1446 }
1447 
xen_pgd_alloc(struct mm_struct * mm)1448 static int xen_pgd_alloc(struct mm_struct *mm)
1449 {
1450 	pgd_t *pgd = mm->pgd;
1451 	int ret = 0;
1452 
1453 	BUG_ON(PagePinned(virt_to_page(pgd)));
1454 
1455 #ifdef CONFIG_X86_64
1456 	{
1457 		struct page *page = virt_to_page(pgd);
1458 		pgd_t *user_pgd;
1459 
1460 		BUG_ON(page->private != 0);
1461 
1462 		ret = -ENOMEM;
1463 
1464 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1465 		page->private = (unsigned long)user_pgd;
1466 
1467 		if (user_pgd != NULL) {
1468 			user_pgd[pgd_index(VSYSCALL_START)] =
1469 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1470 			ret = 0;
1471 		}
1472 
1473 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1474 	}
1475 #endif
1476 
1477 	return ret;
1478 }
1479 
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1480 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1481 {
1482 #ifdef CONFIG_X86_64
1483 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1484 
1485 	if (user_pgd)
1486 		free_page((unsigned long)user_pgd);
1487 #endif
1488 }
1489 
1490 #ifdef CONFIG_X86_32
mask_rw_pte(pte_t * ptep,pte_t pte)1491 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1492 {
1493 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1494 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1495 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1496 			       pte_val_ma(pte));
1497 
1498 	return pte;
1499 }
1500 #else /* CONFIG_X86_64 */
mask_rw_pte(pte_t * ptep,pte_t pte)1501 static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1502 {
1503 	unsigned long pfn = pte_pfn(pte);
1504 
1505 	/*
1506 	 * If the new pfn is within the range of the newly allocated
1507 	 * kernel pagetable, and it isn't being mapped into an
1508 	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1509 	 * it is RO.
1510 	 */
1511 	if (((!is_early_ioremap_ptep(ptep) &&
1512 			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1513 			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1514 		pte = pte_wrprotect(pte);
1515 
1516 	return pte;
1517 }
1518 #endif /* CONFIG_X86_64 */
1519 
1520 /* Init-time set_pte while constructing initial pagetables, which
1521    doesn't allow RO pagetable pages to be remapped RW */
xen_set_pte_init(pte_t * ptep,pte_t pte)1522 static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1523 {
1524 	pte = mask_rw_pte(ptep, pte);
1525 
1526 	xen_set_pte(ptep, pte);
1527 }
1528 
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1529 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1530 {
1531 	struct mmuext_op op;
1532 	op.cmd = cmd;
1533 	op.arg1.mfn = pfn_to_mfn(pfn);
1534 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1535 		BUG();
1536 }
1537 
1538 /* Early in boot, while setting up the initial pagetable, assume
1539    everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1540 static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1541 {
1542 #ifdef CONFIG_FLATMEM
1543 	BUG_ON(mem_map);	/* should only be used early */
1544 #endif
1545 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1546 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1547 }
1548 
1549 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1550 static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1551 {
1552 #ifdef CONFIG_FLATMEM
1553 	BUG_ON(mem_map);	/* should only be used early */
1554 #endif
1555 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1556 }
1557 
1558 /* Early release_pte assumes that all pts are pinned, since there's
1559    only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1560 static __init void xen_release_pte_init(unsigned long pfn)
1561 {
1562 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1563 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1564 }
1565 
xen_release_pmd_init(unsigned long pfn)1566 static __init void xen_release_pmd_init(unsigned long pfn)
1567 {
1568 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1569 }
1570 
1571 /* This needs to make sure the new pte page is pinned iff its being
1572    attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1573 static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1574 {
1575 	struct page *page = pfn_to_page(pfn);
1576 
1577 	if (PagePinned(virt_to_page(mm->pgd))) {
1578 		SetPagePinned(page);
1579 
1580 		if (!PageHighMem(page)) {
1581 			make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1582 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1583 				pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1584 		} else {
1585 			/* make sure there are no stray mappings of
1586 			   this page */
1587 			kmap_flush_unused();
1588 		}
1589 	}
1590 }
1591 
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1592 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1593 {
1594 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1595 }
1596 
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1597 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1598 {
1599 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1600 }
1601 
1602 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1603 static void xen_release_ptpage(unsigned long pfn, unsigned level)
1604 {
1605 	struct page *page = pfn_to_page(pfn);
1606 
1607 	if (PagePinned(page)) {
1608 		if (!PageHighMem(page)) {
1609 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1610 				pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1611 			make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1612 		}
1613 		ClearPagePinned(page);
1614 	}
1615 }
1616 
xen_release_pte(unsigned long pfn)1617 static void xen_release_pte(unsigned long pfn)
1618 {
1619 	xen_release_ptpage(pfn, PT_PTE);
1620 }
1621 
xen_release_pmd(unsigned long pfn)1622 static void xen_release_pmd(unsigned long pfn)
1623 {
1624 	xen_release_ptpage(pfn, PT_PMD);
1625 }
1626 
1627 #if PAGETABLE_LEVELS == 4
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1628 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1629 {
1630 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1631 }
1632 
xen_release_pud(unsigned long pfn)1633 static void xen_release_pud(unsigned long pfn)
1634 {
1635 	xen_release_ptpage(pfn, PT_PUD);
1636 }
1637 #endif
1638 
xen_reserve_top(void)1639 void __init xen_reserve_top(void)
1640 {
1641 #ifdef CONFIG_X86_32
1642 	unsigned long top = HYPERVISOR_VIRT_START;
1643 	struct xen_platform_parameters pp;
1644 
1645 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1646 		top = pp.virt_start;
1647 
1648 	reserve_top_address(-top);
1649 #endif	/* CONFIG_X86_32 */
1650 }
1651 
1652 /*
1653  * Like __va(), but returns address in the kernel mapping (which is
1654  * all we have until the physical memory mapping has been set up.
1655  */
__ka(phys_addr_t paddr)1656 static void *__ka(phys_addr_t paddr)
1657 {
1658 #ifdef CONFIG_X86_64
1659 	return (void *)(paddr + __START_KERNEL_map);
1660 #else
1661 	return __va(paddr);
1662 #endif
1663 }
1664 
1665 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1666 static unsigned long m2p(phys_addr_t maddr)
1667 {
1668 	phys_addr_t paddr;
1669 
1670 	maddr &= PTE_PFN_MASK;
1671 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1672 
1673 	return paddr;
1674 }
1675 
1676 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1677 static void *m2v(phys_addr_t maddr)
1678 {
1679 	return __ka(m2p(maddr));
1680 }
1681 
1682 /* Set the page permissions on an identity-mapped pages */
set_page_prot(void * addr,pgprot_t prot)1683 static void set_page_prot(void *addr, pgprot_t prot)
1684 {
1685 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1686 	pte_t pte = pfn_pte(pfn, prot);
1687 
1688 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1689 		BUG();
1690 }
1691 
xen_map_identity_early(pmd_t * pmd,unsigned long max_pfn)1692 static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1693 {
1694 	unsigned pmdidx, pteidx;
1695 	unsigned ident_pte;
1696 	unsigned long pfn;
1697 
1698 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1699 				      PAGE_SIZE);
1700 
1701 	ident_pte = 0;
1702 	pfn = 0;
1703 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1704 		pte_t *pte_page;
1705 
1706 		/* Reuse or allocate a page of ptes */
1707 		if (pmd_present(pmd[pmdidx]))
1708 			pte_page = m2v(pmd[pmdidx].pmd);
1709 		else {
1710 			/* Check for free pte pages */
1711 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1712 				break;
1713 
1714 			pte_page = &level1_ident_pgt[ident_pte];
1715 			ident_pte += PTRS_PER_PTE;
1716 
1717 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1718 		}
1719 
1720 		/* Install mappings */
1721 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1722 			pte_t pte;
1723 
1724 			if (!pte_none(pte_page[pteidx]))
1725 				continue;
1726 
1727 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1728 			pte_page[pteidx] = pte;
1729 		}
1730 	}
1731 
1732 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1733 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1734 
1735 	set_page_prot(pmd, PAGE_KERNEL_RO);
1736 }
1737 
xen_setup_machphys_mapping(void)1738 void __init xen_setup_machphys_mapping(void)
1739 {
1740 	struct xen_machphys_mapping mapping;
1741 	unsigned long machine_to_phys_nr_ents;
1742 
1743 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1744 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1745 		machine_to_phys_nr_ents = mapping.max_mfn + 1;
1746 	} else {
1747 		machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1748 	}
1749 	machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1750 }
1751 
1752 #ifdef CONFIG_X86_64
convert_pfn_mfn(void * v)1753 static void convert_pfn_mfn(void *v)
1754 {
1755 	pte_t *pte = v;
1756 	int i;
1757 
1758 	/* All levels are converted the same way, so just treat them
1759 	   as ptes. */
1760 	for (i = 0; i < PTRS_PER_PTE; i++)
1761 		pte[i] = xen_make_pte(pte[i].pte);
1762 }
1763 
1764 /*
1765  * Set up the initial kernel pagetable.
1766  *
1767  * We can construct this by grafting the Xen provided pagetable into
1768  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1769  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1770  * means that only the kernel has a physical mapping to start with -
1771  * but that's enough to get __va working.  We need to fill in the rest
1772  * of the physical mapping once some sort of allocator has been set
1773  * up.
1774  */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1775 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1776 					 unsigned long max_pfn)
1777 {
1778 	pud_t *l3;
1779 	pmd_t *l2;
1780 
1781 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1782 	 * mappings. Considering that on Xen after the kernel mappings we
1783 	 * have the mappings of some pages that don't exist in pfn space, we
1784 	 * set max_pfn_mapped to the last real pfn mapped. */
1785 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1786 
1787 	/* Zap identity mapping */
1788 	init_level4_pgt[0] = __pgd(0);
1789 
1790 	/* Pre-constructed entries are in pfn, so convert to mfn */
1791 	convert_pfn_mfn(init_level4_pgt);
1792 	convert_pfn_mfn(level3_ident_pgt);
1793 	convert_pfn_mfn(level3_kernel_pgt);
1794 
1795 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1796 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1797 
1798 	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1799 	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1800 
1801 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1802 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1803 	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1804 
1805 	/* Set up identity map */
1806 	xen_map_identity_early(level2_ident_pgt, max_pfn);
1807 
1808 	/* Make pagetable pieces RO */
1809 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1810 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1811 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1812 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1813 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1814 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1815 
1816 	/* Pin down new L4 */
1817 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1818 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1819 
1820 	/* Unpin Xen-provided one */
1821 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1822 
1823 	/* Switch over */
1824 	pgd = init_level4_pgt;
1825 
1826 	/*
1827 	 * At this stage there can be no user pgd, and no page
1828 	 * structure to attach it to, so make sure we just set kernel
1829 	 * pgd.
1830 	 */
1831 	xen_mc_batch();
1832 	__xen_write_cr3(true, __pa(pgd));
1833 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1834 
1835 	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1836 		      __pa(xen_start_info->pt_base +
1837 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1838 		      "XEN PAGETABLES");
1839 
1840 	return pgd;
1841 }
1842 #else	/* !CONFIG_X86_64 */
1843 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1844 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1845 
xen_write_cr3_init(unsigned long cr3)1846 static __init void xen_write_cr3_init(unsigned long cr3)
1847 {
1848 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1849 
1850 	BUG_ON(read_cr3() != __pa(initial_page_table));
1851 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1852 
1853 	/*
1854 	 * We are switching to swapper_pg_dir for the first time (from
1855 	 * initial_page_table) and therefore need to mark that page
1856 	 * read-only and then pin it.
1857 	 *
1858 	 * Xen disallows sharing of kernel PMDs for PAE
1859 	 * guests. Therefore we must copy the kernel PMD from
1860 	 * initial_page_table into a new kernel PMD to be used in
1861 	 * swapper_pg_dir.
1862 	 */
1863 	swapper_kernel_pmd =
1864 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1865 	memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1866 	       sizeof(pmd_t) * PTRS_PER_PMD);
1867 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1868 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1869 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1870 
1871 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1872 	xen_write_cr3(cr3);
1873 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1874 
1875 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1876 			  PFN_DOWN(__pa(initial_page_table)));
1877 	set_page_prot(initial_page_table, PAGE_KERNEL);
1878 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1879 
1880 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1881 }
1882 
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1883 __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1884 					 unsigned long max_pfn)
1885 {
1886 	pmd_t *kernel_pmd;
1887 
1888 	initial_kernel_pmd =
1889 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1890 
1891 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1892 
1893 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1894 	memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1895 
1896 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1897 
1898 	memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1899 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1900 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1901 
1902 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1903 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1904 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1905 
1906 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1907 
1908 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1909 			  PFN_DOWN(__pa(initial_page_table)));
1910 	xen_write_cr3(__pa(initial_page_table));
1911 
1912 	memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
1913 		      __pa(xen_start_info->pt_base +
1914 			   xen_start_info->nr_pt_frames * PAGE_SIZE),
1915 		      "XEN PAGETABLES");
1916 
1917 	return initial_page_table;
1918 }
1919 #endif	/* CONFIG_X86_64 */
1920 
1921 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1922 
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)1923 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1924 {
1925 	pte_t pte;
1926 
1927 	phys >>= PAGE_SHIFT;
1928 
1929 	switch (idx) {
1930 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1931 #ifdef CONFIG_X86_F00F_BUG
1932 	case FIX_F00F_IDT:
1933 #endif
1934 #ifdef CONFIG_X86_32
1935 	case FIX_WP_TEST:
1936 	case FIX_VDSO:
1937 # ifdef CONFIG_HIGHMEM
1938 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1939 # endif
1940 #else
1941 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1942 #endif
1943 	case FIX_TEXT_POKE0:
1944 	case FIX_TEXT_POKE1:
1945 		/* All local page mappings */
1946 		pte = pfn_pte(phys, prot);
1947 		break;
1948 
1949 #ifdef CONFIG_X86_LOCAL_APIC
1950 	case FIX_APIC_BASE:	/* maps dummy local APIC */
1951 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1952 		break;
1953 #endif
1954 
1955 #ifdef CONFIG_X86_IO_APIC
1956 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1957 		/*
1958 		 * We just don't map the IO APIC - all access is via
1959 		 * hypercalls.  Keep the address in the pte for reference.
1960 		 */
1961 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1962 		break;
1963 #endif
1964 
1965 	case FIX_PARAVIRT_BOOTMAP:
1966 		/* This is an MFN, but it isn't an IO mapping from the
1967 		   IO domain */
1968 		pte = mfn_pte(phys, prot);
1969 		break;
1970 
1971 	default:
1972 		/* By default, set_fixmap is used for hardware mappings */
1973 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1974 		break;
1975 	}
1976 
1977 	__native_set_fixmap(idx, pte);
1978 
1979 #ifdef CONFIG_X86_64
1980 	/* Replicate changes to map the vsyscall page into the user
1981 	   pagetable vsyscall mapping. */
1982 	if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1983 		unsigned long vaddr = __fix_to_virt(idx);
1984 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1985 	}
1986 #endif
1987 }
1988 
xen_ident_map_ISA(void)1989 __init void xen_ident_map_ISA(void)
1990 {
1991 	unsigned long pa;
1992 
1993 	/*
1994 	 * If we're dom0, then linear map the ISA machine addresses into
1995 	 * the kernel's address space.
1996 	 */
1997 	if (!xen_initial_domain())
1998 		return;
1999 
2000 	xen_raw_printk("Xen: setup ISA identity maps\n");
2001 
2002 	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
2003 		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
2004 
2005 		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
2006 			BUG();
2007 	}
2008 
2009 	xen_flush_tlb();
2010 }
2011 
xen_post_allocator_init(void)2012 static __init void xen_post_allocator_init(void)
2013 {
2014 #ifdef CONFIG_XEN_DEBUG
2015 	pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
2016 #endif
2017 	pv_mmu_ops.set_pte = xen_set_pte;
2018 	pv_mmu_ops.set_pmd = xen_set_pmd;
2019 	pv_mmu_ops.set_pud = xen_set_pud;
2020 #if PAGETABLE_LEVELS == 4
2021 	pv_mmu_ops.set_pgd = xen_set_pgd;
2022 #endif
2023 
2024 	/* This will work as long as patching hasn't happened yet
2025 	   (which it hasn't) */
2026 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
2027 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2028 	pv_mmu_ops.release_pte = xen_release_pte;
2029 	pv_mmu_ops.release_pmd = xen_release_pmd;
2030 #if PAGETABLE_LEVELS == 4
2031 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
2032 	pv_mmu_ops.release_pud = xen_release_pud;
2033 #endif
2034 
2035 #ifdef CONFIG_X86_64
2036 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2037 #endif
2038 	xen_mark_init_mm_pinned();
2039 }
2040 
xen_leave_lazy_mmu(void)2041 static void xen_leave_lazy_mmu(void)
2042 {
2043 	preempt_disable();
2044 	xen_mc_flush();
2045 	paravirt_leave_lazy_mmu();
2046 	preempt_enable();
2047 }
2048 
2049 static const struct pv_mmu_ops xen_mmu_ops __initdata = {
2050 	.read_cr2 = xen_read_cr2,
2051 	.write_cr2 = xen_write_cr2,
2052 
2053 	.read_cr3 = xen_read_cr3,
2054 #ifdef CONFIG_X86_32
2055 	.write_cr3 = xen_write_cr3_init,
2056 #else
2057 	.write_cr3 = xen_write_cr3,
2058 #endif
2059 
2060 	.flush_tlb_user = xen_flush_tlb,
2061 	.flush_tlb_kernel = xen_flush_tlb,
2062 	.flush_tlb_single = xen_flush_tlb_single,
2063 	.flush_tlb_others = xen_flush_tlb_others,
2064 
2065 	.pte_update = paravirt_nop,
2066 	.pte_update_defer = paravirt_nop,
2067 
2068 	.pgd_alloc = xen_pgd_alloc,
2069 	.pgd_free = xen_pgd_free,
2070 
2071 	.alloc_pte = xen_alloc_pte_init,
2072 	.release_pte = xen_release_pte_init,
2073 	.alloc_pmd = xen_alloc_pmd_init,
2074 	.release_pmd = xen_release_pmd_init,
2075 
2076 	.set_pte = xen_set_pte_init,
2077 	.set_pte_at = xen_set_pte_at,
2078 	.set_pmd = xen_set_pmd_hyper,
2079 
2080 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2081 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2082 
2083 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2084 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2085 
2086 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2087 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2088 
2089 #ifdef CONFIG_X86_PAE
2090 	.set_pte_atomic = xen_set_pte_atomic,
2091 	.pte_clear = xen_pte_clear,
2092 	.pmd_clear = xen_pmd_clear,
2093 #endif	/* CONFIG_X86_PAE */
2094 	.set_pud = xen_set_pud_hyper,
2095 
2096 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2097 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2098 
2099 #if PAGETABLE_LEVELS == 4
2100 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2101 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2102 	.set_pgd = xen_set_pgd_hyper,
2103 
2104 	.alloc_pud = xen_alloc_pmd_init,
2105 	.release_pud = xen_release_pmd_init,
2106 #endif	/* PAGETABLE_LEVELS == 4 */
2107 
2108 	.activate_mm = xen_activate_mm,
2109 	.dup_mmap = xen_dup_mmap,
2110 	.exit_mmap = xen_exit_mmap,
2111 
2112 	.lazy_mode = {
2113 		.enter = paravirt_enter_lazy_mmu,
2114 		.leave = xen_leave_lazy_mmu,
2115 	},
2116 
2117 	.set_fixmap = xen_set_fixmap,
2118 };
2119 
xen_init_mmu_ops(void)2120 void __init xen_init_mmu_ops(void)
2121 {
2122 	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2123 	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2124 	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2125 	pv_mmu_ops = xen_mmu_ops;
2126 
2127 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2128 }
2129 
2130 /* Protected by xen_reservation_lock. */
2131 #define MAX_CONTIG_ORDER 9 /* 2MB */
2132 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2133 
2134 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2135 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2136 				unsigned long *in_frames,
2137 				unsigned long *out_frames)
2138 {
2139 	int i;
2140 	struct multicall_space mcs;
2141 
2142 	xen_mc_batch();
2143 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2144 		mcs = __xen_mc_entry(0);
2145 
2146 		if (in_frames)
2147 			in_frames[i] = virt_to_mfn(vaddr);
2148 
2149 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2150 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2151 
2152 		if (out_frames)
2153 			out_frames[i] = virt_to_pfn(vaddr);
2154 	}
2155 	xen_mc_issue(0);
2156 }
2157 
2158 /*
2159  * Update the pfn-to-mfn mappings for a virtual address range, either to
2160  * point to an array of mfns, or contiguously from a single starting
2161  * mfn.
2162  */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2163 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2164 				     unsigned long *mfns,
2165 				     unsigned long first_mfn)
2166 {
2167 	unsigned i, limit;
2168 	unsigned long mfn;
2169 
2170 	xen_mc_batch();
2171 
2172 	limit = 1u << order;
2173 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2174 		struct multicall_space mcs;
2175 		unsigned flags;
2176 
2177 		mcs = __xen_mc_entry(0);
2178 		if (mfns)
2179 			mfn = mfns[i];
2180 		else
2181 			mfn = first_mfn + i;
2182 
2183 		if (i < (limit - 1))
2184 			flags = 0;
2185 		else {
2186 			if (order == 0)
2187 				flags = UVMF_INVLPG | UVMF_ALL;
2188 			else
2189 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2190 		}
2191 
2192 		MULTI_update_va_mapping(mcs.mc, vaddr,
2193 				mfn_pte(mfn, PAGE_KERNEL), flags);
2194 
2195 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2196 	}
2197 
2198 	xen_mc_issue(0);
2199 }
2200 
2201 /*
2202  * Perform the hypercall to exchange a region of our pfns to point to
2203  * memory with the required contiguous alignment.  Takes the pfns as
2204  * input, and populates mfns as output.
2205  *
2206  * Returns a success code indicating whether the hypervisor was able to
2207  * satisfy the request or not.
2208  */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2209 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2210 			       unsigned long *pfns_in,
2211 			       unsigned long extents_out,
2212 			       unsigned int order_out,
2213 			       unsigned long *mfns_out,
2214 			       unsigned int address_bits)
2215 {
2216 	long rc;
2217 	int success;
2218 
2219 	struct xen_memory_exchange exchange = {
2220 		.in = {
2221 			.nr_extents   = extents_in,
2222 			.extent_order = order_in,
2223 			.extent_start = pfns_in,
2224 			.domid        = DOMID_SELF
2225 		},
2226 		.out = {
2227 			.nr_extents   = extents_out,
2228 			.extent_order = order_out,
2229 			.extent_start = mfns_out,
2230 			.address_bits = address_bits,
2231 			.domid        = DOMID_SELF
2232 		}
2233 	};
2234 
2235 	BUG_ON(extents_in << order_in != extents_out << order_out);
2236 
2237 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2238 	success = (exchange.nr_exchanged == extents_in);
2239 
2240 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2241 	BUG_ON(success && (rc != 0));
2242 
2243 	return success;
2244 }
2245 
xen_create_contiguous_region(unsigned long vstart,unsigned int order,unsigned int address_bits)2246 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2247 				 unsigned int address_bits)
2248 {
2249 	unsigned long *in_frames = discontig_frames, out_frame;
2250 	unsigned long  flags;
2251 	int            success;
2252 
2253 	/*
2254 	 * Currently an auto-translated guest will not perform I/O, nor will
2255 	 * it require PAE page directories below 4GB. Therefore any calls to
2256 	 * this function are redundant and can be ignored.
2257 	 */
2258 
2259 	if (xen_feature(XENFEAT_auto_translated_physmap))
2260 		return 0;
2261 
2262 	if (unlikely(order > MAX_CONTIG_ORDER))
2263 		return -ENOMEM;
2264 
2265 	memset((void *) vstart, 0, PAGE_SIZE << order);
2266 
2267 	spin_lock_irqsave(&xen_reservation_lock, flags);
2268 
2269 	/* 1. Zap current PTEs, remembering MFNs. */
2270 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2271 
2272 	/* 2. Get a new contiguous memory extent. */
2273 	out_frame = virt_to_pfn(vstart);
2274 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2275 				      1, order, &out_frame,
2276 				      address_bits);
2277 
2278 	/* 3. Map the new extent in place of old pages. */
2279 	if (success)
2280 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2281 	else
2282 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2283 
2284 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2285 
2286 	return success ? 0 : -ENOMEM;
2287 }
2288 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2289 
xen_destroy_contiguous_region(unsigned long vstart,unsigned int order)2290 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2291 {
2292 	unsigned long *out_frames = discontig_frames, in_frame;
2293 	unsigned long  flags;
2294 	int success;
2295 
2296 	if (xen_feature(XENFEAT_auto_translated_physmap))
2297 		return;
2298 
2299 	if (unlikely(order > MAX_CONTIG_ORDER))
2300 		return;
2301 
2302 	memset((void *) vstart, 0, PAGE_SIZE << order);
2303 
2304 	spin_lock_irqsave(&xen_reservation_lock, flags);
2305 
2306 	/* 1. Find start MFN of contiguous extent. */
2307 	in_frame = virt_to_mfn(vstart);
2308 
2309 	/* 2. Zap current PTEs. */
2310 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2311 
2312 	/* 3. Do the exchange for non-contiguous MFNs. */
2313 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2314 					0, out_frames, 0);
2315 
2316 	/* 4. Map new pages in place of old pages. */
2317 	if (success)
2318 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2319 	else
2320 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2321 
2322 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2323 }
2324 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2325 
2326 #ifdef CONFIG_XEN_PVHVM
xen_hvm_exit_mmap(struct mm_struct * mm)2327 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2328 {
2329 	struct xen_hvm_pagetable_dying a;
2330 	int rc;
2331 
2332 	a.domid = DOMID_SELF;
2333 	a.gpa = __pa(mm->pgd);
2334 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2335 	WARN_ON_ONCE(rc < 0);
2336 }
2337 
is_pagetable_dying_supported(void)2338 static int is_pagetable_dying_supported(void)
2339 {
2340 	struct xen_hvm_pagetable_dying a;
2341 	int rc = 0;
2342 
2343 	a.domid = DOMID_SELF;
2344 	a.gpa = 0x00;
2345 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2346 	if (rc < 0) {
2347 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2348 		return 0;
2349 	}
2350 	return 1;
2351 }
2352 
xen_hvm_init_mmu_ops(void)2353 void __init xen_hvm_init_mmu_ops(void)
2354 {
2355 	if (is_pagetable_dying_supported())
2356 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2357 }
2358 #endif
2359 
2360 #define REMAP_BATCH_SIZE 16
2361 
2362 struct remap_data {
2363 	unsigned long mfn;
2364 	pgprot_t prot;
2365 	struct mmu_update *mmu_update;
2366 };
2367 
remap_area_mfn_pte_fn(pte_t * ptep,pgtable_t token,unsigned long addr,void * data)2368 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2369 				 unsigned long addr, void *data)
2370 {
2371 	struct remap_data *rmd = data;
2372 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2373 
2374 	rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2375 	rmd->mmu_update->val = pte_val_ma(pte);
2376 	rmd->mmu_update++;
2377 
2378 	return 0;
2379 }
2380 
xen_remap_domain_mfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long mfn,int nr,pgprot_t prot,unsigned domid)2381 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2382 			       unsigned long addr,
2383 			       unsigned long mfn, int nr,
2384 			       pgprot_t prot, unsigned domid)
2385 {
2386 	struct remap_data rmd;
2387 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2388 	int batch;
2389 	unsigned long range;
2390 	int err = 0;
2391 
2392 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2393 
2394 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2395 				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2396 
2397 	rmd.mfn = mfn;
2398 	rmd.prot = prot;
2399 
2400 	while (nr) {
2401 		batch = min(REMAP_BATCH_SIZE, nr);
2402 		range = (unsigned long)batch << PAGE_SHIFT;
2403 
2404 		rmd.mmu_update = mmu_update;
2405 		err = apply_to_page_range(vma->vm_mm, addr, range,
2406 					  remap_area_mfn_pte_fn, &rmd);
2407 		if (err)
2408 			goto out;
2409 
2410 		err = -EFAULT;
2411 		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2412 			goto out;
2413 
2414 		nr -= batch;
2415 		addr += range;
2416 	}
2417 
2418 	err = 0;
2419 out:
2420 
2421 	flush_tlb_all();
2422 
2423 	return err;
2424 }
2425 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2426 
2427 #ifdef CONFIG_XEN_DEBUG_FS
2428 
p2m_dump_open(struct inode * inode,struct file * filp)2429 static int p2m_dump_open(struct inode *inode, struct file *filp)
2430 {
2431 	return single_open(filp, p2m_dump_show, NULL);
2432 }
2433 
2434 static const struct file_operations p2m_dump_fops = {
2435 	.open		= p2m_dump_open,
2436 	.read		= seq_read,
2437 	.llseek		= seq_lseek,
2438 	.release	= single_release,
2439 };
2440 
2441 static struct dentry *d_mmu_debug;
2442 
xen_mmu_debugfs(void)2443 static int __init xen_mmu_debugfs(void)
2444 {
2445 	struct dentry *d_xen = xen_init_debugfs();
2446 
2447 	if (d_xen == NULL)
2448 		return -ENOMEM;
2449 
2450 	d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2451 
2452 	debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2453 
2454 	debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2455 	debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2456 			   &mmu_stats.pgd_update_pinned);
2457 	debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2458 			   &mmu_stats.pgd_update_pinned);
2459 
2460 	debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2461 	debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2462 			   &mmu_stats.pud_update_pinned);
2463 	debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2464 			   &mmu_stats.pud_update_pinned);
2465 
2466 	debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2467 	debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2468 			   &mmu_stats.pmd_update_pinned);
2469 	debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2470 			   &mmu_stats.pmd_update_pinned);
2471 
2472 	debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2473 //	debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2474 //			   &mmu_stats.pte_update_pinned);
2475 	debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2476 			   &mmu_stats.pte_update_pinned);
2477 
2478 	debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2479 	debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2480 			   &mmu_stats.mmu_update_extended);
2481 	xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2482 				     mmu_stats.mmu_update_histo, 20);
2483 
2484 	debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2485 	debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2486 			   &mmu_stats.set_pte_at_batched);
2487 	debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2488 			   &mmu_stats.set_pte_at_current);
2489 	debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2490 			   &mmu_stats.set_pte_at_kernel);
2491 
2492 	debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2493 	debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2494 			   &mmu_stats.prot_commit_batched);
2495 
2496 	debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
2497 	return 0;
2498 }
2499 fs_initcall(xen_mmu_debugfs);
2500 
2501 #endif	/* CONFIG_XEN_DEBUG_FS */
2502