1 /*
2  * Xen hypercall batching.
3  *
4  * Xen allows multiple hypercalls to be issued at once, using the
5  * multicall interface.  This allows the cost of trapping into the
6  * hypervisor to be amortized over several calls.
7  *
8  * This file implements a simple interface for multicalls.  There's a
9  * per-cpu buffer of outstanding multicalls.  When you want to queue a
10  * multicall for issuing, you can allocate a multicall slot for the
11  * call and its arguments, along with storage for space which is
12  * pointed to by the arguments (for passing pointers to structures,
13  * etc).  When the multicall is actually issued, all the space for the
14  * commands and allocated memory is freed for reuse.
15  *
16  * Multicalls are flushed whenever any of the buffers get full, or
17  * when explicitly requested.  There's no way to get per-multicall
18  * return results back.  It will BUG if any of the multicalls fail.
19  *
20  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
21  */
22 #include <linux/percpu.h>
23 #include <linux/hardirq.h>
24 #include <linux/debugfs.h>
25 
26 #include <asm/xen/hypercall.h>
27 
28 #include "multicalls.h"
29 #include "debugfs.h"
30 
31 #define MC_BATCH	32
32 
33 #define MC_DEBUG	1
34 
35 #define MC_ARGS		(MC_BATCH * 16)
36 
37 
38 struct mc_buffer {
39 	struct multicall_entry entries[MC_BATCH];
40 #if MC_DEBUG
41 	struct multicall_entry debug[MC_BATCH];
42 	void *caller[MC_BATCH];
43 #endif
44 	unsigned char args[MC_ARGS];
45 	struct callback {
46 		void (*fn)(void *);
47 		void *data;
48 	} callbacks[MC_BATCH];
49 	unsigned mcidx, argidx, cbidx;
50 };
51 
52 static DEFINE_PER_CPU(struct mc_buffer, mc_buffer);
53 DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags);
54 
55 /* flush reasons 0- slots, 1- args, 2- callbacks */
56 enum flush_reasons
57 {
58 	FL_SLOTS,
59 	FL_ARGS,
60 	FL_CALLBACKS,
61 
62 	FL_N_REASONS
63 };
64 
65 #ifdef CONFIG_XEN_DEBUG_FS
66 #define NHYPERCALLS	40		/* not really */
67 
68 static struct {
69 	unsigned histo[MC_BATCH+1];
70 
71 	unsigned issued;
72 	unsigned arg_total;
73 	unsigned hypercalls;
74 	unsigned histo_hypercalls[NHYPERCALLS];
75 
76 	unsigned flush[FL_N_REASONS];
77 } mc_stats;
78 
79 static u8 zero_stats;
80 
check_zero(void)81 static inline void check_zero(void)
82 {
83 	if (unlikely(zero_stats)) {
84 		memset(&mc_stats, 0, sizeof(mc_stats));
85 		zero_stats = 0;
86 	}
87 }
88 
mc_add_stats(const struct mc_buffer * mc)89 static void mc_add_stats(const struct mc_buffer *mc)
90 {
91 	int i;
92 
93 	check_zero();
94 
95 	mc_stats.issued++;
96 	mc_stats.hypercalls += mc->mcidx;
97 	mc_stats.arg_total += mc->argidx;
98 
99 	mc_stats.histo[mc->mcidx]++;
100 	for(i = 0; i < mc->mcidx; i++) {
101 		unsigned op = mc->entries[i].op;
102 		if (op < NHYPERCALLS)
103 			mc_stats.histo_hypercalls[op]++;
104 	}
105 }
106 
mc_stats_flush(enum flush_reasons idx)107 static void mc_stats_flush(enum flush_reasons idx)
108 {
109 	check_zero();
110 
111 	mc_stats.flush[idx]++;
112 }
113 
114 #else  /* !CONFIG_XEN_DEBUG_FS */
115 
mc_add_stats(const struct mc_buffer * mc)116 static inline void mc_add_stats(const struct mc_buffer *mc)
117 {
118 }
119 
mc_stats_flush(enum flush_reasons idx)120 static inline void mc_stats_flush(enum flush_reasons idx)
121 {
122 }
123 #endif	/* CONFIG_XEN_DEBUG_FS */
124 
xen_mc_flush(void)125 void xen_mc_flush(void)
126 {
127 	struct mc_buffer *b = &__get_cpu_var(mc_buffer);
128 	int ret = 0;
129 	unsigned long flags;
130 	int i;
131 
132 	BUG_ON(preemptible());
133 
134 	/* Disable interrupts in case someone comes in and queues
135 	   something in the middle */
136 	local_irq_save(flags);
137 
138 	mc_add_stats(b);
139 
140 	if (b->mcidx) {
141 #if MC_DEBUG
142 		memcpy(b->debug, b->entries,
143 		       b->mcidx * sizeof(struct multicall_entry));
144 #endif
145 
146 		if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
147 			BUG();
148 		for (i = 0; i < b->mcidx; i++)
149 			if (b->entries[i].result < 0)
150 				ret++;
151 
152 #if MC_DEBUG
153 		if (ret) {
154 			printk(KERN_ERR "%d multicall(s) failed: cpu %d\n",
155 			       ret, smp_processor_id());
156 			dump_stack();
157 			for (i = 0; i < b->mcidx; i++) {
158 				printk(KERN_DEBUG "  call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n",
159 				       i+1, b->mcidx,
160 				       b->debug[i].op,
161 				       b->debug[i].args[0],
162 				       b->entries[i].result,
163 				       b->caller[i]);
164 			}
165 		}
166 #endif
167 
168 		b->mcidx = 0;
169 		b->argidx = 0;
170 	} else
171 		BUG_ON(b->argidx != 0);
172 
173 	for (i = 0; i < b->cbidx; i++) {
174 		struct callback *cb = &b->callbacks[i];
175 
176 		(*cb->fn)(cb->data);
177 	}
178 	b->cbidx = 0;
179 
180 	local_irq_restore(flags);
181 
182 	WARN_ON(ret);
183 }
184 
__xen_mc_entry(size_t args)185 struct multicall_space __xen_mc_entry(size_t args)
186 {
187 	struct mc_buffer *b = &__get_cpu_var(mc_buffer);
188 	struct multicall_space ret;
189 	unsigned argidx = roundup(b->argidx, sizeof(u64));
190 
191 	BUG_ON(preemptible());
192 	BUG_ON(b->argidx > MC_ARGS);
193 
194 	if (b->mcidx == MC_BATCH ||
195 	    (argidx + args) > MC_ARGS) {
196 		mc_stats_flush(b->mcidx == MC_BATCH ? FL_SLOTS : FL_ARGS);
197 		xen_mc_flush();
198 		argidx = roundup(b->argidx, sizeof(u64));
199 	}
200 
201 	ret.mc = &b->entries[b->mcidx];
202 #ifdef MC_DEBUG
203 	b->caller[b->mcidx] = __builtin_return_address(0);
204 #endif
205 	b->mcidx++;
206 	ret.args = &b->args[argidx];
207 	b->argidx = argidx + args;
208 
209 	BUG_ON(b->argidx > MC_ARGS);
210 	return ret;
211 }
212 
xen_mc_extend_args(unsigned long op,size_t size)213 struct multicall_space xen_mc_extend_args(unsigned long op, size_t size)
214 {
215 	struct mc_buffer *b = &__get_cpu_var(mc_buffer);
216 	struct multicall_space ret = { NULL, NULL };
217 
218 	BUG_ON(preemptible());
219 	BUG_ON(b->argidx > MC_ARGS);
220 
221 	if (b->mcidx == 0)
222 		return ret;
223 
224 	if (b->entries[b->mcidx - 1].op != op)
225 		return ret;
226 
227 	if ((b->argidx + size) > MC_ARGS)
228 		return ret;
229 
230 	ret.mc = &b->entries[b->mcidx - 1];
231 	ret.args = &b->args[b->argidx];
232 	b->argidx += size;
233 
234 	BUG_ON(b->argidx > MC_ARGS);
235 	return ret;
236 }
237 
xen_mc_callback(void (* fn)(void *),void * data)238 void xen_mc_callback(void (*fn)(void *), void *data)
239 {
240 	struct mc_buffer *b = &__get_cpu_var(mc_buffer);
241 	struct callback *cb;
242 
243 	if (b->cbidx == MC_BATCH) {
244 		mc_stats_flush(FL_CALLBACKS);
245 		xen_mc_flush();
246 	}
247 
248 	cb = &b->callbacks[b->cbidx++];
249 	cb->fn = fn;
250 	cb->data = data;
251 }
252 
253 #ifdef CONFIG_XEN_DEBUG_FS
254 
255 static struct dentry *d_mc_debug;
256 
xen_mc_debugfs(void)257 static int __init xen_mc_debugfs(void)
258 {
259 	struct dentry *d_xen = xen_init_debugfs();
260 
261 	if (d_xen == NULL)
262 		return -ENOMEM;
263 
264 	d_mc_debug = debugfs_create_dir("multicalls", d_xen);
265 
266 	debugfs_create_u8("zero_stats", 0644, d_mc_debug, &zero_stats);
267 
268 	debugfs_create_u32("batches", 0444, d_mc_debug, &mc_stats.issued);
269 	debugfs_create_u32("hypercalls", 0444, d_mc_debug, &mc_stats.hypercalls);
270 	debugfs_create_u32("arg_total", 0444, d_mc_debug, &mc_stats.arg_total);
271 
272 	xen_debugfs_create_u32_array("batch_histo", 0444, d_mc_debug,
273 				     mc_stats.histo, MC_BATCH);
274 	xen_debugfs_create_u32_array("hypercall_histo", 0444, d_mc_debug,
275 				     mc_stats.histo_hypercalls, NHYPERCALLS);
276 	xen_debugfs_create_u32_array("flush_reasons", 0444, d_mc_debug,
277 				     mc_stats.flush, FL_N_REASONS);
278 
279 	return 0;
280 }
281 fs_initcall(xen_mc_debugfs);
282 
283 #endif	/* CONFIG_XEN_DEBUG_FS */
284