1 /*
2  * Xen mmu operations
3  *
4  * This file contains the various mmu fetch and update operations.
5  * The most important job they must perform is the mapping between the
6  * domain's pfn and the overall machine mfns.
7  *
8  * Xen allows guests to directly update the pagetable, in a controlled
9  * fashion.  In other words, the guest modifies the same pagetable
10  * that the CPU actually uses, which eliminates the overhead of having
11  * a separate shadow pagetable.
12  *
13  * In order to allow this, it falls on the guest domain to map its
14  * notion of a "physical" pfn - which is just a domain-local linear
15  * address - into a real "machine address" which the CPU's MMU can
16  * use.
17  *
18  * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19  * inserted directly into the pagetable.  When creating a new
20  * pte/pmd/pgd, it converts the passed pfn into an mfn.  Conversely,
21  * when reading the content back with __(pgd|pmd|pte)_val, it converts
22  * the mfn back into a pfn.
23  *
24  * The other constraint is that all pages which make up a pagetable
25  * must be mapped read-only in the guest.  This prevents uncontrolled
26  * guest updates to the pagetable.  Xen strictly enforces this, and
27  * will disallow any pagetable update which will end up mapping a
28  * pagetable page RW, and will disallow using any writable page as a
29  * pagetable.
30  *
31  * Naively, when loading %cr3 with the base of a new pagetable, Xen
32  * would need to validate the whole pagetable before going on.
33  * Naturally, this is quite slow.  The solution is to "pin" a
34  * pagetable, which enforces all the constraints on the pagetable even
35  * when it is not actively in use.  This menas that Xen can be assured
36  * that it is still valid when you do load it into %cr3, and doesn't
37  * need to revalidate it.
38  *
39  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40  */
41 #include <linux/sched.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/module.h>
47 #include <linux/gfp.h>
48 #include <linux/memblock.h>
49 #include <linux/seq_file.h>
50 
51 #include <trace/events/xen.h>
52 
53 #include <asm/pgtable.h>
54 #include <asm/tlbflush.h>
55 #include <asm/fixmap.h>
56 #include <asm/mmu_context.h>
57 #include <asm/setup.h>
58 #include <asm/paravirt.h>
59 #include <asm/e820.h>
60 #include <asm/linkage.h>
61 #include <asm/page.h>
62 #include <asm/init.h>
63 #include <asm/pat.h>
64 #include <asm/smp.h>
65 
66 #include <asm/xen/hypercall.h>
67 #include <asm/xen/hypervisor.h>
68 
69 #include <xen/xen.h>
70 #include <xen/page.h>
71 #include <xen/interface/xen.h>
72 #include <xen/interface/hvm/hvm_op.h>
73 #include <xen/interface/version.h>
74 #include <xen/interface/memory.h>
75 #include <xen/hvc-console.h>
76 
77 #include "multicalls.h"
78 #include "mmu.h"
79 #include "debugfs.h"
80 
81 /*
82  * Protects atomic reservation decrease/increase against concurrent increases.
83  * Also protects non-atomic updates of current_pages and balloon lists.
84  */
85 DEFINE_SPINLOCK(xen_reservation_lock);
86 
87 /*
88  * Identity map, in addition to plain kernel map.  This needs to be
89  * large enough to allocate page table pages to allocate the rest.
90  * Each page can map 2MB.
91  */
92 #define LEVEL1_IDENT_ENTRIES	(PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
99 
100 /*
101  * Note about cr3 (pagetable base) values:
102  *
103  * xen_cr3 contains the current logical cr3 value; it contains the
104  * last set cr3.  This may not be the current effective cr3, because
105  * its update may be being lazily deferred.  However, a vcpu looking
106  * at its own cr3 can use this value knowing that it everything will
107  * be self-consistent.
108  *
109  * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110  * hypercall to set the vcpu cr3 is complete (so it may be a little
111  * out of date, but it will never be set early).  If one vcpu is
112  * looking at another vcpu's cr3 value, it should use this variable.
113  */
114 DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */
116 
117 
118 /*
119  * Just beyond the highest usermode address.  STACK_TOP_MAX has a
120  * redzone above it, so round it up to a PGD boundary.
121  */
122 #define USER_LIMIT	((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
123 
arbitrary_virt_to_mfn(void * vaddr)124 unsigned long arbitrary_virt_to_mfn(void *vaddr)
125 {
126 	xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
127 
128 	return PFN_DOWN(maddr.maddr);
129 }
130 
arbitrary_virt_to_machine(void * vaddr)131 xmaddr_t arbitrary_virt_to_machine(void *vaddr)
132 {
133 	unsigned long address = (unsigned long)vaddr;
134 	unsigned int level;
135 	pte_t *pte;
136 	unsigned offset;
137 
138 	/*
139 	 * if the PFN is in the linear mapped vaddr range, we can just use
140 	 * the (quick) virt_to_machine() p2m lookup
141 	 */
142 	if (virt_addr_valid(vaddr))
143 		return virt_to_machine(vaddr);
144 
145 	/* otherwise we have to do a (slower) full page-table walk */
146 
147 	pte = lookup_address(address, &level);
148 	BUG_ON(pte == NULL);
149 	offset = address & ~PAGE_MASK;
150 	return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
151 }
152 EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
153 
make_lowmem_page_readonly(void * vaddr)154 void make_lowmem_page_readonly(void *vaddr)
155 {
156 	pte_t *pte, ptev;
157 	unsigned long address = (unsigned long)vaddr;
158 	unsigned int level;
159 
160 	pte = lookup_address(address, &level);
161 	if (pte == NULL)
162 		return;		/* vaddr missing */
163 
164 	ptev = pte_wrprotect(*pte);
165 
166 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
167 		BUG();
168 }
169 
make_lowmem_page_readwrite(void * vaddr)170 void make_lowmem_page_readwrite(void *vaddr)
171 {
172 	pte_t *pte, ptev;
173 	unsigned long address = (unsigned long)vaddr;
174 	unsigned int level;
175 
176 	pte = lookup_address(address, &level);
177 	if (pte == NULL)
178 		return;		/* vaddr missing */
179 
180 	ptev = pte_mkwrite(*pte);
181 
182 	if (HYPERVISOR_update_va_mapping(address, ptev, 0))
183 		BUG();
184 }
185 
186 
xen_page_pinned(void * ptr)187 static bool xen_page_pinned(void *ptr)
188 {
189 	struct page *page = virt_to_page(ptr);
190 
191 	return PagePinned(page);
192 }
193 
xen_set_domain_pte(pte_t * ptep,pte_t pteval,unsigned domid)194 void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
195 {
196 	struct multicall_space mcs;
197 	struct mmu_update *u;
198 
199 	trace_xen_mmu_set_domain_pte(ptep, pteval, domid);
200 
201 	mcs = xen_mc_entry(sizeof(*u));
202 	u = mcs.args;
203 
204 	/* ptep might be kmapped when using 32-bit HIGHPTE */
205 	u->ptr = virt_to_machine(ptep).maddr;
206 	u->val = pte_val_ma(pteval);
207 
208 	MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
209 
210 	xen_mc_issue(PARAVIRT_LAZY_MMU);
211 }
212 EXPORT_SYMBOL_GPL(xen_set_domain_pte);
213 
xen_extend_mmu_update(const struct mmu_update * update)214 static void xen_extend_mmu_update(const struct mmu_update *update)
215 {
216 	struct multicall_space mcs;
217 	struct mmu_update *u;
218 
219 	mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
220 
221 	if (mcs.mc != NULL) {
222 		mcs.mc->args[1]++;
223 	} else {
224 		mcs = __xen_mc_entry(sizeof(*u));
225 		MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
226 	}
227 
228 	u = mcs.args;
229 	*u = *update;
230 }
231 
xen_extend_mmuext_op(const struct mmuext_op * op)232 static void xen_extend_mmuext_op(const struct mmuext_op *op)
233 {
234 	struct multicall_space mcs;
235 	struct mmuext_op *u;
236 
237 	mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
238 
239 	if (mcs.mc != NULL) {
240 		mcs.mc->args[1]++;
241 	} else {
242 		mcs = __xen_mc_entry(sizeof(*u));
243 		MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
244 	}
245 
246 	u = mcs.args;
247 	*u = *op;
248 }
249 
xen_set_pmd_hyper(pmd_t * ptr,pmd_t val)250 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
251 {
252 	struct mmu_update u;
253 
254 	preempt_disable();
255 
256 	xen_mc_batch();
257 
258 	/* ptr may be ioremapped for 64-bit pagetable setup */
259 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
260 	u.val = pmd_val_ma(val);
261 	xen_extend_mmu_update(&u);
262 
263 	xen_mc_issue(PARAVIRT_LAZY_MMU);
264 
265 	preempt_enable();
266 }
267 
xen_set_pmd(pmd_t * ptr,pmd_t val)268 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
269 {
270 	trace_xen_mmu_set_pmd(ptr, val);
271 
272 	/* If page is not pinned, we can just update the entry
273 	   directly */
274 	if (!xen_page_pinned(ptr)) {
275 		*ptr = val;
276 		return;
277 	}
278 
279 	xen_set_pmd_hyper(ptr, val);
280 }
281 
282 /*
283  * Associate a virtual page frame with a given physical page frame
284  * and protection flags for that frame.
285  */
set_pte_mfn(unsigned long vaddr,unsigned long mfn,pgprot_t flags)286 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
287 {
288 	set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
289 }
290 
xen_batched_set_pte(pte_t * ptep,pte_t pteval)291 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
292 {
293 	struct mmu_update u;
294 
295 	if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
296 		return false;
297 
298 	xen_mc_batch();
299 
300 	u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
301 	u.val = pte_val_ma(pteval);
302 	xen_extend_mmu_update(&u);
303 
304 	xen_mc_issue(PARAVIRT_LAZY_MMU);
305 
306 	return true;
307 }
308 
__xen_set_pte(pte_t * ptep,pte_t pteval)309 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
310 {
311 	if (!xen_batched_set_pte(ptep, pteval))
312 		native_set_pte(ptep, pteval);
313 }
314 
xen_set_pte(pte_t * ptep,pte_t pteval)315 static void xen_set_pte(pte_t *ptep, pte_t pteval)
316 {
317 	trace_xen_mmu_set_pte(ptep, pteval);
318 	__xen_set_pte(ptep, pteval);
319 }
320 
xen_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)321 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
322 		    pte_t *ptep, pte_t pteval)
323 {
324 	trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
325 	__xen_set_pte(ptep, pteval);
326 }
327 
xen_ptep_modify_prot_start(struct mm_struct * mm,unsigned long addr,pte_t * ptep)328 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
329 				 unsigned long addr, pte_t *ptep)
330 {
331 	/* Just return the pte as-is.  We preserve the bits on commit */
332 	trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
333 	return *ptep;
334 }
335 
xen_ptep_modify_prot_commit(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte)336 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
337 				 pte_t *ptep, pte_t pte)
338 {
339 	struct mmu_update u;
340 
341 	trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
342 	xen_mc_batch();
343 
344 	u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
345 	u.val = pte_val_ma(pte);
346 	xen_extend_mmu_update(&u);
347 
348 	xen_mc_issue(PARAVIRT_LAZY_MMU);
349 }
350 
351 /* Assume pteval_t is equivalent to all the other *val_t types. */
pte_mfn_to_pfn(pteval_t val)352 static pteval_t pte_mfn_to_pfn(pteval_t val)
353 {
354 	if (val & _PAGE_PRESENT) {
355 		unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
356 		unsigned long pfn = mfn_to_pfn(mfn);
357 
358 		pteval_t flags = val & PTE_FLAGS_MASK;
359 		if (unlikely(pfn == ~0))
360 			val = flags & ~_PAGE_PRESENT;
361 		else
362 			val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
363 	}
364 
365 	return val;
366 }
367 
pte_pfn_to_mfn(pteval_t val)368 static pteval_t pte_pfn_to_mfn(pteval_t val)
369 {
370 	if (val & _PAGE_PRESENT) {
371 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
372 		pteval_t flags = val & PTE_FLAGS_MASK;
373 		unsigned long mfn;
374 
375 		if (!xen_feature(XENFEAT_auto_translated_physmap))
376 			mfn = get_phys_to_machine(pfn);
377 		else
378 			mfn = pfn;
379 		/*
380 		 * If there's no mfn for the pfn, then just create an
381 		 * empty non-present pte.  Unfortunately this loses
382 		 * information about the original pfn, so
383 		 * pte_mfn_to_pfn is asymmetric.
384 		 */
385 		if (unlikely(mfn == INVALID_P2M_ENTRY)) {
386 			mfn = 0;
387 			flags = 0;
388 		} else {
389 			/*
390 			 * Paramount to do this test _after_ the
391 			 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
392 			 * IDENTITY_FRAME_BIT resolves to true.
393 			 */
394 			mfn &= ~FOREIGN_FRAME_BIT;
395 			if (mfn & IDENTITY_FRAME_BIT) {
396 				mfn &= ~IDENTITY_FRAME_BIT;
397 				flags |= _PAGE_IOMAP;
398 			}
399 		}
400 		val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
401 	}
402 
403 	return val;
404 }
405 
iomap_pte(pteval_t val)406 static pteval_t iomap_pte(pteval_t val)
407 {
408 	if (val & _PAGE_PRESENT) {
409 		unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
410 		pteval_t flags = val & PTE_FLAGS_MASK;
411 
412 		/* We assume the pte frame number is a MFN, so
413 		   just use it as-is. */
414 		val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
415 	}
416 
417 	return val;
418 }
419 
xen_pte_val(pte_t pte)420 static pteval_t xen_pte_val(pte_t pte)
421 {
422 	pteval_t pteval = pte.pte;
423 #if 0
424 	/* If this is a WC pte, convert back from Xen WC to Linux WC */
425 	if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
426 		WARN_ON(!pat_enabled);
427 		pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
428 	}
429 #endif
430 	if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
431 		return pteval;
432 
433 	return pte_mfn_to_pfn(pteval);
434 }
435 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
436 
xen_pgd_val(pgd_t pgd)437 static pgdval_t xen_pgd_val(pgd_t pgd)
438 {
439 	return pte_mfn_to_pfn(pgd.pgd);
440 }
441 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
442 
443 /*
444  * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
445  * are reserved for now, to correspond to the Intel-reserved PAT
446  * types.
447  *
448  * We expect Linux's PAT set as follows:
449  *
450  * Idx  PTE flags        Linux    Xen    Default
451  * 0                     WB       WB     WB
452  * 1            PWT      WC       WT     WT
453  * 2        PCD          UC-      UC-    UC-
454  * 3        PCD PWT      UC       UC     UC
455  * 4    PAT              WB       WC     WB
456  * 5    PAT     PWT      WC       WP     WT
457  * 6    PAT PCD          UC-      UC     UC-
458  * 7    PAT PCD PWT      UC       UC     UC
459  */
460 
xen_set_pat(u64 pat)461 void xen_set_pat(u64 pat)
462 {
463 	/* We expect Linux to use a PAT setting of
464 	 * UC UC- WC WB (ignoring the PAT flag) */
465 	WARN_ON(pat != 0x0007010600070106ull);
466 }
467 
xen_make_pte(pteval_t pte)468 static pte_t xen_make_pte(pteval_t pte)
469 {
470 	phys_addr_t addr = (pte & PTE_PFN_MASK);
471 #if 0
472 	/* If Linux is trying to set a WC pte, then map to the Xen WC.
473 	 * If _PAGE_PAT is set, then it probably means it is really
474 	 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
475 	 * things work out OK...
476 	 *
477 	 * (We should never see kernel mappings with _PAGE_PSE set,
478 	 * but we could see hugetlbfs mappings, I think.).
479 	 */
480 	if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
481 		if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
482 			pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
483 	}
484 #endif
485 	/*
486 	 * Unprivileged domains are allowed to do IOMAPpings for
487 	 * PCI passthrough, but not map ISA space.  The ISA
488 	 * mappings are just dummy local mappings to keep other
489 	 * parts of the kernel happy.
490 	 */
491 	if (unlikely(pte & _PAGE_IOMAP) &&
492 	    (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
493 		pte = iomap_pte(pte);
494 	} else {
495 		pte &= ~_PAGE_IOMAP;
496 		pte = pte_pfn_to_mfn(pte);
497 	}
498 
499 	return native_make_pte(pte);
500 }
501 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
502 
xen_make_pgd(pgdval_t pgd)503 static pgd_t xen_make_pgd(pgdval_t pgd)
504 {
505 	pgd = pte_pfn_to_mfn(pgd);
506 	return native_make_pgd(pgd);
507 }
508 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
509 
xen_pmd_val(pmd_t pmd)510 static pmdval_t xen_pmd_val(pmd_t pmd)
511 {
512 	return pte_mfn_to_pfn(pmd.pmd);
513 }
514 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
515 
xen_set_pud_hyper(pud_t * ptr,pud_t val)516 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
517 {
518 	struct mmu_update u;
519 
520 	preempt_disable();
521 
522 	xen_mc_batch();
523 
524 	/* ptr may be ioremapped for 64-bit pagetable setup */
525 	u.ptr = arbitrary_virt_to_machine(ptr).maddr;
526 	u.val = pud_val_ma(val);
527 	xen_extend_mmu_update(&u);
528 
529 	xen_mc_issue(PARAVIRT_LAZY_MMU);
530 
531 	preempt_enable();
532 }
533 
xen_set_pud(pud_t * ptr,pud_t val)534 static void xen_set_pud(pud_t *ptr, pud_t val)
535 {
536 	trace_xen_mmu_set_pud(ptr, val);
537 
538 	/* If page is not pinned, we can just update the entry
539 	   directly */
540 	if (!xen_page_pinned(ptr)) {
541 		*ptr = val;
542 		return;
543 	}
544 
545 	xen_set_pud_hyper(ptr, val);
546 }
547 
548 #ifdef CONFIG_X86_PAE
xen_set_pte_atomic(pte_t * ptep,pte_t pte)549 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
550 {
551 	trace_xen_mmu_set_pte_atomic(ptep, pte);
552 	set_64bit((u64 *)ptep, native_pte_val(pte));
553 }
554 
xen_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)555 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
556 {
557 	trace_xen_mmu_pte_clear(mm, addr, ptep);
558 	if (!xen_batched_set_pte(ptep, native_make_pte(0)))
559 		native_pte_clear(mm, addr, ptep);
560 }
561 
xen_pmd_clear(pmd_t * pmdp)562 static void xen_pmd_clear(pmd_t *pmdp)
563 {
564 	trace_xen_mmu_pmd_clear(pmdp);
565 	set_pmd(pmdp, __pmd(0));
566 }
567 #endif	/* CONFIG_X86_PAE */
568 
xen_make_pmd(pmdval_t pmd)569 static pmd_t xen_make_pmd(pmdval_t pmd)
570 {
571 	pmd = pte_pfn_to_mfn(pmd);
572 	return native_make_pmd(pmd);
573 }
574 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
575 
576 #if PAGETABLE_LEVELS == 4
xen_pud_val(pud_t pud)577 static pudval_t xen_pud_val(pud_t pud)
578 {
579 	return pte_mfn_to_pfn(pud.pud);
580 }
581 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
582 
xen_make_pud(pudval_t pud)583 static pud_t xen_make_pud(pudval_t pud)
584 {
585 	pud = pte_pfn_to_mfn(pud);
586 
587 	return native_make_pud(pud);
588 }
589 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
590 
xen_get_user_pgd(pgd_t * pgd)591 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
592 {
593 	pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
594 	unsigned offset = pgd - pgd_page;
595 	pgd_t *user_ptr = NULL;
596 
597 	if (offset < pgd_index(USER_LIMIT)) {
598 		struct page *page = virt_to_page(pgd_page);
599 		user_ptr = (pgd_t *)page->private;
600 		if (user_ptr)
601 			user_ptr += offset;
602 	}
603 
604 	return user_ptr;
605 }
606 
__xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)607 static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
608 {
609 	struct mmu_update u;
610 
611 	u.ptr = virt_to_machine(ptr).maddr;
612 	u.val = pgd_val_ma(val);
613 	xen_extend_mmu_update(&u);
614 }
615 
616 /*
617  * Raw hypercall-based set_pgd, intended for in early boot before
618  * there's a page structure.  This implies:
619  *  1. The only existing pagetable is the kernel's
620  *  2. It is always pinned
621  *  3. It has no user pagetable attached to it
622  */
xen_set_pgd_hyper(pgd_t * ptr,pgd_t val)623 static void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
624 {
625 	preempt_disable();
626 
627 	xen_mc_batch();
628 
629 	__xen_set_pgd_hyper(ptr, val);
630 
631 	xen_mc_issue(PARAVIRT_LAZY_MMU);
632 
633 	preempt_enable();
634 }
635 
xen_set_pgd(pgd_t * ptr,pgd_t val)636 static void xen_set_pgd(pgd_t *ptr, pgd_t val)
637 {
638 	pgd_t *user_ptr = xen_get_user_pgd(ptr);
639 
640 	trace_xen_mmu_set_pgd(ptr, user_ptr, val);
641 
642 	/* If page is not pinned, we can just update the entry
643 	   directly */
644 	if (!xen_page_pinned(ptr)) {
645 		*ptr = val;
646 		if (user_ptr) {
647 			WARN_ON(xen_page_pinned(user_ptr));
648 			*user_ptr = val;
649 		}
650 		return;
651 	}
652 
653 	/* If it's pinned, then we can at least batch the kernel and
654 	   user updates together. */
655 	xen_mc_batch();
656 
657 	__xen_set_pgd_hyper(ptr, val);
658 	if (user_ptr)
659 		__xen_set_pgd_hyper(user_ptr, val);
660 
661 	xen_mc_issue(PARAVIRT_LAZY_MMU);
662 }
663 #endif	/* PAGETABLE_LEVELS == 4 */
664 
665 /*
666  * (Yet another) pagetable walker.  This one is intended for pinning a
667  * pagetable.  This means that it walks a pagetable and calls the
668  * callback function on each page it finds making up the page table,
669  * at every level.  It walks the entire pagetable, but it only bothers
670  * pinning pte pages which are below limit.  In the normal case this
671  * will be STACK_TOP_MAX, but at boot we need to pin up to
672  * FIXADDR_TOP.
673  *
674  * For 32-bit the important bit is that we don't pin beyond there,
675  * because then we start getting into Xen's ptes.
676  *
677  * For 64-bit, we must skip the Xen hole in the middle of the address
678  * space, just after the big x86-64 virtual hole.
679  */
__xen_pgd_walk(struct mm_struct * mm,pgd_t * pgd,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)680 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
681 			  int (*func)(struct mm_struct *mm, struct page *,
682 				      enum pt_level),
683 			  unsigned long limit)
684 {
685 	int flush = 0;
686 	unsigned hole_low, hole_high;
687 	unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
688 	unsigned pgdidx, pudidx, pmdidx;
689 
690 	/* The limit is the last byte to be touched */
691 	limit--;
692 	BUG_ON(limit >= FIXADDR_TOP);
693 
694 	if (xen_feature(XENFEAT_auto_translated_physmap))
695 		return 0;
696 
697 	/*
698 	 * 64-bit has a great big hole in the middle of the address
699 	 * space, which contains the Xen mappings.  On 32-bit these
700 	 * will end up making a zero-sized hole and so is a no-op.
701 	 */
702 	hole_low = pgd_index(USER_LIMIT);
703 	hole_high = pgd_index(PAGE_OFFSET);
704 
705 	pgdidx_limit = pgd_index(limit);
706 #if PTRS_PER_PUD > 1
707 	pudidx_limit = pud_index(limit);
708 #else
709 	pudidx_limit = 0;
710 #endif
711 #if PTRS_PER_PMD > 1
712 	pmdidx_limit = pmd_index(limit);
713 #else
714 	pmdidx_limit = 0;
715 #endif
716 
717 	for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
718 		pud_t *pud;
719 
720 		if (pgdidx >= hole_low && pgdidx < hole_high)
721 			continue;
722 
723 		if (!pgd_val(pgd[pgdidx]))
724 			continue;
725 
726 		pud = pud_offset(&pgd[pgdidx], 0);
727 
728 		if (PTRS_PER_PUD > 1) /* not folded */
729 			flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
730 
731 		for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
732 			pmd_t *pmd;
733 
734 			if (pgdidx == pgdidx_limit &&
735 			    pudidx > pudidx_limit)
736 				goto out;
737 
738 			if (pud_none(pud[pudidx]))
739 				continue;
740 
741 			pmd = pmd_offset(&pud[pudidx], 0);
742 
743 			if (PTRS_PER_PMD > 1) /* not folded */
744 				flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
745 
746 			for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
747 				struct page *pte;
748 
749 				if (pgdidx == pgdidx_limit &&
750 				    pudidx == pudidx_limit &&
751 				    pmdidx > pmdidx_limit)
752 					goto out;
753 
754 				if (pmd_none(pmd[pmdidx]))
755 					continue;
756 
757 				pte = pmd_page(pmd[pmdidx]);
758 				flush |= (*func)(mm, pte, PT_PTE);
759 			}
760 		}
761 	}
762 
763 out:
764 	/* Do the top level last, so that the callbacks can use it as
765 	   a cue to do final things like tlb flushes. */
766 	flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
767 
768 	return flush;
769 }
770 
xen_pgd_walk(struct mm_struct * mm,int (* func)(struct mm_struct * mm,struct page *,enum pt_level),unsigned long limit)771 static int xen_pgd_walk(struct mm_struct *mm,
772 			int (*func)(struct mm_struct *mm, struct page *,
773 				    enum pt_level),
774 			unsigned long limit)
775 {
776 	return __xen_pgd_walk(mm, mm->pgd, func, limit);
777 }
778 
779 /* If we're using split pte locks, then take the page's lock and
780    return a pointer to it.  Otherwise return NULL. */
xen_pte_lock(struct page * page,struct mm_struct * mm)781 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
782 {
783 	spinlock_t *ptl = NULL;
784 
785 #if USE_SPLIT_PTLOCKS
786 	ptl = __pte_lockptr(page);
787 	spin_lock_nest_lock(ptl, &mm->page_table_lock);
788 #endif
789 
790 	return ptl;
791 }
792 
xen_pte_unlock(void * v)793 static void xen_pte_unlock(void *v)
794 {
795 	spinlock_t *ptl = v;
796 	spin_unlock(ptl);
797 }
798 
xen_do_pin(unsigned level,unsigned long pfn)799 static void xen_do_pin(unsigned level, unsigned long pfn)
800 {
801 	struct mmuext_op op;
802 
803 	op.cmd = level;
804 	op.arg1.mfn = pfn_to_mfn(pfn);
805 
806 	xen_extend_mmuext_op(&op);
807 }
808 
xen_pin_page(struct mm_struct * mm,struct page * page,enum pt_level level)809 static int xen_pin_page(struct mm_struct *mm, struct page *page,
810 			enum pt_level level)
811 {
812 	unsigned pgfl = TestSetPagePinned(page);
813 	int flush;
814 
815 	if (pgfl)
816 		flush = 0;		/* already pinned */
817 	else if (PageHighMem(page))
818 		/* kmaps need flushing if we found an unpinned
819 		   highpage */
820 		flush = 1;
821 	else {
822 		void *pt = lowmem_page_address(page);
823 		unsigned long pfn = page_to_pfn(page);
824 		struct multicall_space mcs = __xen_mc_entry(0);
825 		spinlock_t *ptl;
826 
827 		flush = 0;
828 
829 		/*
830 		 * We need to hold the pagetable lock between the time
831 		 * we make the pagetable RO and when we actually pin
832 		 * it.  If we don't, then other users may come in and
833 		 * attempt to update the pagetable by writing it,
834 		 * which will fail because the memory is RO but not
835 		 * pinned, so Xen won't do the trap'n'emulate.
836 		 *
837 		 * If we're using split pte locks, we can't hold the
838 		 * entire pagetable's worth of locks during the
839 		 * traverse, because we may wrap the preempt count (8
840 		 * bits).  The solution is to mark RO and pin each PTE
841 		 * page while holding the lock.  This means the number
842 		 * of locks we end up holding is never more than a
843 		 * batch size (~32 entries, at present).
844 		 *
845 		 * If we're not using split pte locks, we needn't pin
846 		 * the PTE pages independently, because we're
847 		 * protected by the overall pagetable lock.
848 		 */
849 		ptl = NULL;
850 		if (level == PT_PTE)
851 			ptl = xen_pte_lock(page, mm);
852 
853 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
854 					pfn_pte(pfn, PAGE_KERNEL_RO),
855 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
856 
857 		if (ptl) {
858 			xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
859 
860 			/* Queue a deferred unlock for when this batch
861 			   is completed. */
862 			xen_mc_callback(xen_pte_unlock, ptl);
863 		}
864 	}
865 
866 	return flush;
867 }
868 
869 /* This is called just after a mm has been created, but it has not
870    been used yet.  We need to make sure that its pagetable is all
871    read-only, and can be pinned. */
__xen_pgd_pin(struct mm_struct * mm,pgd_t * pgd)872 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
873 {
874 	trace_xen_mmu_pgd_pin(mm, pgd);
875 
876 	xen_mc_batch();
877 
878 	if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
879 		/* re-enable interrupts for flushing */
880 		xen_mc_issue(0);
881 
882 		kmap_flush_unused();
883 
884 		xen_mc_batch();
885 	}
886 
887 #ifdef CONFIG_X86_64
888 	{
889 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
890 
891 		xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
892 
893 		if (user_pgd) {
894 			xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
895 			xen_do_pin(MMUEXT_PIN_L4_TABLE,
896 				   PFN_DOWN(__pa(user_pgd)));
897 		}
898 	}
899 #else /* CONFIG_X86_32 */
900 #ifdef CONFIG_X86_PAE
901 	/* Need to make sure unshared kernel PMD is pinnable */
902 	xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
903 		     PT_PMD);
904 #endif
905 	xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
906 #endif /* CONFIG_X86_64 */
907 	xen_mc_issue(0);
908 }
909 
xen_pgd_pin(struct mm_struct * mm)910 static void xen_pgd_pin(struct mm_struct *mm)
911 {
912 	__xen_pgd_pin(mm, mm->pgd);
913 }
914 
915 /*
916  * On save, we need to pin all pagetables to make sure they get their
917  * mfns turned into pfns.  Search the list for any unpinned pgds and pin
918  * them (unpinned pgds are not currently in use, probably because the
919  * process is under construction or destruction).
920  *
921  * Expected to be called in stop_machine() ("equivalent to taking
922  * every spinlock in the system"), so the locking doesn't really
923  * matter all that much.
924  */
xen_mm_pin_all(void)925 void xen_mm_pin_all(void)
926 {
927 	struct page *page;
928 
929 	spin_lock(&pgd_lock);
930 
931 	list_for_each_entry(page, &pgd_list, lru) {
932 		if (!PagePinned(page)) {
933 			__xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
934 			SetPageSavePinned(page);
935 		}
936 	}
937 
938 	spin_unlock(&pgd_lock);
939 }
940 
941 /*
942  * The init_mm pagetable is really pinned as soon as its created, but
943  * that's before we have page structures to store the bits.  So do all
944  * the book-keeping now.
945  */
xen_mark_pinned(struct mm_struct * mm,struct page * page,enum pt_level level)946 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
947 				  enum pt_level level)
948 {
949 	SetPagePinned(page);
950 	return 0;
951 }
952 
xen_mark_init_mm_pinned(void)953 static void __init xen_mark_init_mm_pinned(void)
954 {
955 	xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
956 }
957 
xen_unpin_page(struct mm_struct * mm,struct page * page,enum pt_level level)958 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
959 			  enum pt_level level)
960 {
961 	unsigned pgfl = TestClearPagePinned(page);
962 
963 	if (pgfl && !PageHighMem(page)) {
964 		void *pt = lowmem_page_address(page);
965 		unsigned long pfn = page_to_pfn(page);
966 		spinlock_t *ptl = NULL;
967 		struct multicall_space mcs;
968 
969 		/*
970 		 * Do the converse to pin_page.  If we're using split
971 		 * pte locks, we must be holding the lock for while
972 		 * the pte page is unpinned but still RO to prevent
973 		 * concurrent updates from seeing it in this
974 		 * partially-pinned state.
975 		 */
976 		if (level == PT_PTE) {
977 			ptl = xen_pte_lock(page, mm);
978 
979 			if (ptl)
980 				xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
981 		}
982 
983 		mcs = __xen_mc_entry(0);
984 
985 		MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
986 					pfn_pte(pfn, PAGE_KERNEL),
987 					level == PT_PGD ? UVMF_TLB_FLUSH : 0);
988 
989 		if (ptl) {
990 			/* unlock when batch completed */
991 			xen_mc_callback(xen_pte_unlock, ptl);
992 		}
993 	}
994 
995 	return 0;		/* never need to flush on unpin */
996 }
997 
998 /* Release a pagetables pages back as normal RW */
__xen_pgd_unpin(struct mm_struct * mm,pgd_t * pgd)999 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
1000 {
1001 	trace_xen_mmu_pgd_unpin(mm, pgd);
1002 
1003 	xen_mc_batch();
1004 
1005 	xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1006 
1007 #ifdef CONFIG_X86_64
1008 	{
1009 		pgd_t *user_pgd = xen_get_user_pgd(pgd);
1010 
1011 		if (user_pgd) {
1012 			xen_do_pin(MMUEXT_UNPIN_TABLE,
1013 				   PFN_DOWN(__pa(user_pgd)));
1014 			xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
1015 		}
1016 	}
1017 #endif
1018 
1019 #ifdef CONFIG_X86_PAE
1020 	/* Need to make sure unshared kernel PMD is unpinned */
1021 	xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
1022 		       PT_PMD);
1023 #endif
1024 
1025 	__xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
1026 
1027 	xen_mc_issue(0);
1028 }
1029 
xen_pgd_unpin(struct mm_struct * mm)1030 static void xen_pgd_unpin(struct mm_struct *mm)
1031 {
1032 	__xen_pgd_unpin(mm, mm->pgd);
1033 }
1034 
1035 /*
1036  * On resume, undo any pinning done at save, so that the rest of the
1037  * kernel doesn't see any unexpected pinned pagetables.
1038  */
xen_mm_unpin_all(void)1039 void xen_mm_unpin_all(void)
1040 {
1041 	struct page *page;
1042 
1043 	spin_lock(&pgd_lock);
1044 
1045 	list_for_each_entry(page, &pgd_list, lru) {
1046 		if (PageSavePinned(page)) {
1047 			BUG_ON(!PagePinned(page));
1048 			__xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
1049 			ClearPageSavePinned(page);
1050 		}
1051 	}
1052 
1053 	spin_unlock(&pgd_lock);
1054 }
1055 
xen_activate_mm(struct mm_struct * prev,struct mm_struct * next)1056 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1057 {
1058 	spin_lock(&next->page_table_lock);
1059 	xen_pgd_pin(next);
1060 	spin_unlock(&next->page_table_lock);
1061 }
1062 
xen_dup_mmap(struct mm_struct * oldmm,struct mm_struct * mm)1063 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1064 {
1065 	spin_lock(&mm->page_table_lock);
1066 	xen_pgd_pin(mm);
1067 	spin_unlock(&mm->page_table_lock);
1068 }
1069 
1070 
1071 #ifdef CONFIG_SMP
1072 /* Another cpu may still have their %cr3 pointing at the pagetable, so
1073    we need to repoint it somewhere else before we can unpin it. */
drop_other_mm_ref(void * info)1074 static void drop_other_mm_ref(void *info)
1075 {
1076 	struct mm_struct *mm = info;
1077 	struct mm_struct *active_mm;
1078 
1079 	active_mm = this_cpu_read(cpu_tlbstate.active_mm);
1080 
1081 	if (active_mm == mm && this_cpu_read(cpu_tlbstate.state) != TLBSTATE_OK)
1082 		leave_mm(smp_processor_id());
1083 
1084 	/* If this cpu still has a stale cr3 reference, then make sure
1085 	   it has been flushed. */
1086 	if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
1087 		load_cr3(swapper_pg_dir);
1088 }
1089 
xen_drop_mm_ref(struct mm_struct * mm)1090 static void xen_drop_mm_ref(struct mm_struct *mm)
1091 {
1092 	cpumask_var_t mask;
1093 	unsigned cpu;
1094 
1095 	if (current->active_mm == mm) {
1096 		if (current->mm == mm)
1097 			load_cr3(swapper_pg_dir);
1098 		else
1099 			leave_mm(smp_processor_id());
1100 	}
1101 
1102 	/* Get the "official" set of cpus referring to our pagetable. */
1103 	if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1104 		for_each_online_cpu(cpu) {
1105 			if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
1106 			    && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1107 				continue;
1108 			smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1109 		}
1110 		return;
1111 	}
1112 	cpumask_copy(mask, mm_cpumask(mm));
1113 
1114 	/* It's possible that a vcpu may have a stale reference to our
1115 	   cr3, because its in lazy mode, and it hasn't yet flushed
1116 	   its set of pending hypercalls yet.  In this case, we can
1117 	   look at its actual current cr3 value, and force it to flush
1118 	   if needed. */
1119 	for_each_online_cpu(cpu) {
1120 		if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1121 			cpumask_set_cpu(cpu, mask);
1122 	}
1123 
1124 	if (!cpumask_empty(mask))
1125 		smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1126 	free_cpumask_var(mask);
1127 }
1128 #else
xen_drop_mm_ref(struct mm_struct * mm)1129 static void xen_drop_mm_ref(struct mm_struct *mm)
1130 {
1131 	if (current->active_mm == mm)
1132 		load_cr3(swapper_pg_dir);
1133 }
1134 #endif
1135 
1136 /*
1137  * While a process runs, Xen pins its pagetables, which means that the
1138  * hypervisor forces it to be read-only, and it controls all updates
1139  * to it.  This means that all pagetable updates have to go via the
1140  * hypervisor, which is moderately expensive.
1141  *
1142  * Since we're pulling the pagetable down, we switch to use init_mm,
1143  * unpin old process pagetable and mark it all read-write, which
1144  * allows further operations on it to be simple memory accesses.
1145  *
1146  * The only subtle point is that another CPU may be still using the
1147  * pagetable because of lazy tlb flushing.  This means we need need to
1148  * switch all CPUs off this pagetable before we can unpin it.
1149  */
xen_exit_mmap(struct mm_struct * mm)1150 static void xen_exit_mmap(struct mm_struct *mm)
1151 {
1152 	get_cpu();		/* make sure we don't move around */
1153 	xen_drop_mm_ref(mm);
1154 	put_cpu();
1155 
1156 	spin_lock(&mm->page_table_lock);
1157 
1158 	/* pgd may not be pinned in the error exit path of execve */
1159 	if (xen_page_pinned(mm->pgd))
1160 		xen_pgd_unpin(mm);
1161 
1162 	spin_unlock(&mm->page_table_lock);
1163 }
1164 
xen_pagetable_setup_start(pgd_t * base)1165 static void __init xen_pagetable_setup_start(pgd_t *base)
1166 {
1167 }
1168 
xen_mapping_pagetable_reserve(u64 start,u64 end)1169 static __init void xen_mapping_pagetable_reserve(u64 start, u64 end)
1170 {
1171 	/* reserve the range used */
1172 	native_pagetable_reserve(start, end);
1173 
1174 	/* set as RW the rest */
1175 	printk(KERN_DEBUG "xen: setting RW the range %llx - %llx\n", end,
1176 			PFN_PHYS(pgt_buf_top));
1177 	while (end < PFN_PHYS(pgt_buf_top)) {
1178 		make_lowmem_page_readwrite(__va(end));
1179 		end += PAGE_SIZE;
1180 	}
1181 }
1182 
1183 static void xen_post_allocator_init(void);
1184 
xen_pagetable_setup_done(pgd_t * base)1185 static void __init xen_pagetable_setup_done(pgd_t *base)
1186 {
1187 	xen_setup_shared_info();
1188 	xen_post_allocator_init();
1189 }
1190 
xen_write_cr2(unsigned long cr2)1191 static void xen_write_cr2(unsigned long cr2)
1192 {
1193 	this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1194 }
1195 
xen_read_cr2(void)1196 static unsigned long xen_read_cr2(void)
1197 {
1198 	return this_cpu_read(xen_vcpu)->arch.cr2;
1199 }
1200 
xen_read_cr2_direct(void)1201 unsigned long xen_read_cr2_direct(void)
1202 {
1203 	return this_cpu_read(xen_vcpu_info.arch.cr2);
1204 }
1205 
xen_flush_tlb_all(void)1206 void xen_flush_tlb_all(void)
1207 {
1208 	struct mmuext_op *op;
1209 	struct multicall_space mcs;
1210 
1211 	trace_xen_mmu_flush_tlb_all(0);
1212 
1213 	preempt_disable();
1214 
1215 	mcs = xen_mc_entry(sizeof(*op));
1216 
1217 	op = mcs.args;
1218 	op->cmd = MMUEXT_TLB_FLUSH_ALL;
1219 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1220 
1221 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1222 
1223 	preempt_enable();
1224 }
xen_flush_tlb(void)1225 static void xen_flush_tlb(void)
1226 {
1227 	struct mmuext_op *op;
1228 	struct multicall_space mcs;
1229 
1230 	trace_xen_mmu_flush_tlb(0);
1231 
1232 	preempt_disable();
1233 
1234 	mcs = xen_mc_entry(sizeof(*op));
1235 
1236 	op = mcs.args;
1237 	op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1238 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1239 
1240 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1241 
1242 	preempt_enable();
1243 }
1244 
xen_flush_tlb_single(unsigned long addr)1245 static void xen_flush_tlb_single(unsigned long addr)
1246 {
1247 	struct mmuext_op *op;
1248 	struct multicall_space mcs;
1249 
1250 	trace_xen_mmu_flush_tlb_single(addr);
1251 
1252 	preempt_disable();
1253 
1254 	mcs = xen_mc_entry(sizeof(*op));
1255 	op = mcs.args;
1256 	op->cmd = MMUEXT_INVLPG_LOCAL;
1257 	op->arg1.linear_addr = addr & PAGE_MASK;
1258 	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1259 
1260 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1261 
1262 	preempt_enable();
1263 }
1264 
xen_flush_tlb_others(const struct cpumask * cpus,struct mm_struct * mm,unsigned long va)1265 static void xen_flush_tlb_others(const struct cpumask *cpus,
1266 				 struct mm_struct *mm, unsigned long va)
1267 {
1268 	struct {
1269 		struct mmuext_op op;
1270 #ifdef CONFIG_SMP
1271 		DECLARE_BITMAP(mask, num_processors);
1272 #else
1273 		DECLARE_BITMAP(mask, NR_CPUS);
1274 #endif
1275 	} *args;
1276 	struct multicall_space mcs;
1277 
1278 	trace_xen_mmu_flush_tlb_others(cpus, mm, va);
1279 
1280 	if (cpumask_empty(cpus))
1281 		return;		/* nothing to do */
1282 
1283 	mcs = xen_mc_entry(sizeof(*args));
1284 	args = mcs.args;
1285 	args->op.arg2.vcpumask = to_cpumask(args->mask);
1286 
1287 	/* Remove us, and any offline CPUS. */
1288 	cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1289 	cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1290 
1291 	if (va == TLB_FLUSH_ALL) {
1292 		args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1293 	} else {
1294 		args->op.cmd = MMUEXT_INVLPG_MULTI;
1295 		args->op.arg1.linear_addr = va;
1296 	}
1297 
1298 	MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1299 
1300 	xen_mc_issue(PARAVIRT_LAZY_MMU);
1301 }
1302 
xen_read_cr3(void)1303 static unsigned long xen_read_cr3(void)
1304 {
1305 	return this_cpu_read(xen_cr3);
1306 }
1307 
set_current_cr3(void * v)1308 static void set_current_cr3(void *v)
1309 {
1310 	this_cpu_write(xen_current_cr3, (unsigned long)v);
1311 }
1312 
__xen_write_cr3(bool kernel,unsigned long cr3)1313 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1314 {
1315 	struct mmuext_op op;
1316 	unsigned long mfn;
1317 
1318 	trace_xen_mmu_write_cr3(kernel, cr3);
1319 
1320 	if (cr3)
1321 		mfn = pfn_to_mfn(PFN_DOWN(cr3));
1322 	else
1323 		mfn = 0;
1324 
1325 	WARN_ON(mfn == 0 && kernel);
1326 
1327 	op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1328 	op.arg1.mfn = mfn;
1329 
1330 	xen_extend_mmuext_op(&op);
1331 
1332 	if (kernel) {
1333 		this_cpu_write(xen_cr3, cr3);
1334 
1335 		/* Update xen_current_cr3 once the batch has actually
1336 		   been submitted. */
1337 		xen_mc_callback(set_current_cr3, (void *)cr3);
1338 	}
1339 }
1340 
xen_write_cr3(unsigned long cr3)1341 static void xen_write_cr3(unsigned long cr3)
1342 {
1343 	BUG_ON(preemptible());
1344 
1345 	xen_mc_batch();  /* disables interrupts */
1346 
1347 	/* Update while interrupts are disabled, so its atomic with
1348 	   respect to ipis */
1349 	this_cpu_write(xen_cr3, cr3);
1350 
1351 	__xen_write_cr3(true, cr3);
1352 
1353 #ifdef CONFIG_X86_64
1354 	{
1355 		pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1356 		if (user_pgd)
1357 			__xen_write_cr3(false, __pa(user_pgd));
1358 		else
1359 			__xen_write_cr3(false, 0);
1360 	}
1361 #endif
1362 
1363 	xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */
1364 }
1365 
xen_pgd_alloc(struct mm_struct * mm)1366 static int xen_pgd_alloc(struct mm_struct *mm)
1367 {
1368 	pgd_t *pgd = mm->pgd;
1369 	int ret = 0;
1370 
1371 	BUG_ON(PagePinned(virt_to_page(pgd)));
1372 
1373 #ifdef CONFIG_X86_64
1374 	{
1375 		struct page *page = virt_to_page(pgd);
1376 		pgd_t *user_pgd;
1377 
1378 		BUG_ON(page->private != 0);
1379 
1380 		ret = -ENOMEM;
1381 
1382 		user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1383 		page->private = (unsigned long)user_pgd;
1384 
1385 		if (user_pgd != NULL) {
1386 			user_pgd[pgd_index(VSYSCALL_START)] =
1387 				__pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1388 			ret = 0;
1389 		}
1390 
1391 		BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1392 	}
1393 #endif
1394 
1395 	return ret;
1396 }
1397 
xen_pgd_free(struct mm_struct * mm,pgd_t * pgd)1398 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1399 {
1400 #ifdef CONFIG_X86_64
1401 	pgd_t *user_pgd = xen_get_user_pgd(pgd);
1402 
1403 	if (user_pgd)
1404 		free_page((unsigned long)user_pgd);
1405 #endif
1406 }
1407 
1408 #ifdef CONFIG_X86_32
mask_rw_pte(pte_t * ptep,pte_t pte)1409 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1410 {
1411 	/* If there's an existing pte, then don't allow _PAGE_RW to be set */
1412 	if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1413 		pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1414 			       pte_val_ma(pte));
1415 
1416 	return pte;
1417 }
1418 #else /* CONFIG_X86_64 */
mask_rw_pte(pte_t * ptep,pte_t pte)1419 static pte_t __init mask_rw_pte(pte_t *ptep, pte_t pte)
1420 {
1421 	unsigned long pfn = pte_pfn(pte);
1422 
1423 	/*
1424 	 * If the new pfn is within the range of the newly allocated
1425 	 * kernel pagetable, and it isn't being mapped into an
1426 	 * early_ioremap fixmap slot as a freshly allocated page, make sure
1427 	 * it is RO.
1428 	 */
1429 	if (((!is_early_ioremap_ptep(ptep) &&
1430 			pfn >= pgt_buf_start && pfn < pgt_buf_top)) ||
1431 			(is_early_ioremap_ptep(ptep) && pfn != (pgt_buf_end - 1)))
1432 		pte = pte_wrprotect(pte);
1433 
1434 	return pte;
1435 }
1436 #endif /* CONFIG_X86_64 */
1437 
1438 /* Init-time set_pte while constructing initial pagetables, which
1439    doesn't allow RO pagetable pages to be remapped RW */
xen_set_pte_init(pte_t * ptep,pte_t pte)1440 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1441 {
1442 	pte = mask_rw_pte(ptep, pte);
1443 
1444 	xen_set_pte(ptep, pte);
1445 }
1446 
pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1447 static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1448 {
1449 	struct mmuext_op op;
1450 	op.cmd = cmd;
1451 	op.arg1.mfn = pfn_to_mfn(pfn);
1452 	if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1453 		BUG();
1454 }
1455 
1456 /* Early in boot, while setting up the initial pagetable, assume
1457    everything is pinned. */
xen_alloc_pte_init(struct mm_struct * mm,unsigned long pfn)1458 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1459 {
1460 #ifdef CONFIG_FLATMEM
1461 	BUG_ON(mem_map);	/* should only be used early */
1462 #endif
1463 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1464 	pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1465 }
1466 
1467 /* Used for pmd and pud */
xen_alloc_pmd_init(struct mm_struct * mm,unsigned long pfn)1468 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1469 {
1470 #ifdef CONFIG_FLATMEM
1471 	BUG_ON(mem_map);	/* should only be used early */
1472 #endif
1473 	make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1474 }
1475 
1476 /* Early release_pte assumes that all pts are pinned, since there's
1477    only init_mm and anything attached to that is pinned. */
xen_release_pte_init(unsigned long pfn)1478 static void __init xen_release_pte_init(unsigned long pfn)
1479 {
1480 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1481 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1482 }
1483 
xen_release_pmd_init(unsigned long pfn)1484 static void __init xen_release_pmd_init(unsigned long pfn)
1485 {
1486 	make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1487 }
1488 
__pin_pagetable_pfn(unsigned cmd,unsigned long pfn)1489 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1490 {
1491 	struct multicall_space mcs;
1492 	struct mmuext_op *op;
1493 
1494 	mcs = __xen_mc_entry(sizeof(*op));
1495 	op = mcs.args;
1496 	op->cmd = cmd;
1497 	op->arg1.mfn = pfn_to_mfn(pfn);
1498 
1499 	MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1500 }
1501 
__set_pfn_prot(unsigned long pfn,pgprot_t prot)1502 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1503 {
1504 	struct multicall_space mcs;
1505 	unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1506 
1507 	mcs = __xen_mc_entry(0);
1508 	MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1509 				pfn_pte(pfn, prot), 0);
1510 }
1511 
1512 /* This needs to make sure the new pte page is pinned iff its being
1513    attached to a pinned pagetable. */
xen_alloc_ptpage(struct mm_struct * mm,unsigned long pfn,unsigned level)1514 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1515 				    unsigned level)
1516 {
1517 	bool pinned = PagePinned(virt_to_page(mm->pgd));
1518 
1519 	trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1520 
1521 	if (pinned) {
1522 		struct page *page = pfn_to_page(pfn);
1523 
1524 		SetPagePinned(page);
1525 
1526 		if (!PageHighMem(page)) {
1527 			xen_mc_batch();
1528 
1529 			__set_pfn_prot(pfn, PAGE_KERNEL_RO);
1530 
1531 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1532 				__pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1533 
1534 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1535 		} else {
1536 			/* make sure there are no stray mappings of
1537 			   this page */
1538 			kmap_flush_unused();
1539 		}
1540 	}
1541 }
1542 
xen_alloc_pte(struct mm_struct * mm,unsigned long pfn)1543 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1544 {
1545 	xen_alloc_ptpage(mm, pfn, PT_PTE);
1546 }
1547 
xen_alloc_pmd(struct mm_struct * mm,unsigned long pfn)1548 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1549 {
1550 	xen_alloc_ptpage(mm, pfn, PT_PMD);
1551 }
1552 
1553 /* This should never happen until we're OK to use struct page */
xen_release_ptpage(unsigned long pfn,unsigned level)1554 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1555 {
1556 	struct page *page = pfn_to_page(pfn);
1557 	bool pinned = PagePinned(page);
1558 
1559 	trace_xen_mmu_release_ptpage(pfn, level, pinned);
1560 
1561 	if (pinned) {
1562 		if (!PageHighMem(page)) {
1563 			xen_mc_batch();
1564 
1565 			if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1566 				__pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1567 
1568 			__set_pfn_prot(pfn, PAGE_KERNEL);
1569 
1570 			xen_mc_issue(PARAVIRT_LAZY_MMU);
1571 		}
1572 		ClearPagePinned(page);
1573 	}
1574 }
1575 
xen_release_pte(unsigned long pfn)1576 static void xen_release_pte(unsigned long pfn)
1577 {
1578 	xen_release_ptpage(pfn, PT_PTE);
1579 }
1580 
xen_release_pmd(unsigned long pfn)1581 static void xen_release_pmd(unsigned long pfn)
1582 {
1583 	xen_release_ptpage(pfn, PT_PMD);
1584 }
1585 
1586 #if PAGETABLE_LEVELS == 4
xen_alloc_pud(struct mm_struct * mm,unsigned long pfn)1587 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1588 {
1589 	xen_alloc_ptpage(mm, pfn, PT_PUD);
1590 }
1591 
xen_release_pud(unsigned long pfn)1592 static void xen_release_pud(unsigned long pfn)
1593 {
1594 	xen_release_ptpage(pfn, PT_PUD);
1595 }
1596 #endif
1597 
xen_reserve_top(void)1598 void __init xen_reserve_top(void)
1599 {
1600 #ifdef CONFIG_X86_32
1601 	unsigned long top = HYPERVISOR_VIRT_START;
1602 	struct xen_platform_parameters pp;
1603 
1604 	if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1605 		top = pp.virt_start;
1606 
1607 	reserve_top_address(-top);
1608 #endif	/* CONFIG_X86_32 */
1609 }
1610 
1611 /*
1612  * Like __va(), but returns address in the kernel mapping (which is
1613  * all we have until the physical memory mapping has been set up.
1614  */
__ka(phys_addr_t paddr)1615 static void *__ka(phys_addr_t paddr)
1616 {
1617 #ifdef CONFIG_X86_64
1618 	return (void *)(paddr + __START_KERNEL_map);
1619 #else
1620 	return __va(paddr);
1621 #endif
1622 }
1623 
1624 /* Convert a machine address to physical address */
m2p(phys_addr_t maddr)1625 static unsigned long m2p(phys_addr_t maddr)
1626 {
1627 	phys_addr_t paddr;
1628 
1629 	maddr &= PTE_PFN_MASK;
1630 	paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1631 
1632 	return paddr;
1633 }
1634 
1635 /* Convert a machine address to kernel virtual */
m2v(phys_addr_t maddr)1636 static void *m2v(phys_addr_t maddr)
1637 {
1638 	return __ka(m2p(maddr));
1639 }
1640 
1641 /* Set the page permissions on an identity-mapped pages */
set_page_prot(void * addr,pgprot_t prot)1642 static void set_page_prot(void *addr, pgprot_t prot)
1643 {
1644 	unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1645 	pte_t pte = pfn_pte(pfn, prot);
1646 
1647 	if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1648 		BUG();
1649 }
1650 
xen_map_identity_early(pmd_t * pmd,unsigned long max_pfn)1651 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1652 {
1653 	unsigned pmdidx, pteidx;
1654 	unsigned ident_pte;
1655 	unsigned long pfn;
1656 
1657 	level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1658 				      PAGE_SIZE);
1659 
1660 	ident_pte = 0;
1661 	pfn = 0;
1662 	for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1663 		pte_t *pte_page;
1664 
1665 		/* Reuse or allocate a page of ptes */
1666 		if (pmd_present(pmd[pmdidx]))
1667 			pte_page = m2v(pmd[pmdidx].pmd);
1668 		else {
1669 			/* Check for free pte pages */
1670 			if (ident_pte == LEVEL1_IDENT_ENTRIES)
1671 				break;
1672 
1673 			pte_page = &level1_ident_pgt[ident_pte];
1674 			ident_pte += PTRS_PER_PTE;
1675 
1676 			pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1677 		}
1678 
1679 		/* Install mappings */
1680 		for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1681 			pte_t pte;
1682 
1683 #ifdef CONFIG_X86_32
1684 			if (pfn > max_pfn_mapped)
1685 				max_pfn_mapped = pfn;
1686 #endif
1687 
1688 			if (!pte_none(pte_page[pteidx]))
1689 				continue;
1690 
1691 			pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1692 			pte_page[pteidx] = pte;
1693 		}
1694 	}
1695 
1696 	for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1697 		set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1698 
1699 	set_page_prot(pmd, PAGE_KERNEL_RO);
1700 }
1701 
xen_setup_machphys_mapping(void)1702 void __init xen_setup_machphys_mapping(void)
1703 {
1704 	struct xen_machphys_mapping mapping;
1705 
1706 	if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1707 		machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1708 		machine_to_phys_nr = mapping.max_mfn + 1;
1709 	} else {
1710 		machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1711 	}
1712 #ifdef CONFIG_X86_32
1713 	WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1714 		< machine_to_phys_mapping);
1715 #endif
1716 }
1717 
1718 #ifdef CONFIG_X86_64
convert_pfn_mfn(void * v)1719 static void convert_pfn_mfn(void *v)
1720 {
1721 	pte_t *pte = v;
1722 	int i;
1723 
1724 	/* All levels are converted the same way, so just treat them
1725 	   as ptes. */
1726 	for (i = 0; i < PTRS_PER_PTE; i++)
1727 		pte[i] = xen_make_pte(pte[i].pte);
1728 }
1729 
1730 /*
1731  * Set up the initial kernel pagetable.
1732  *
1733  * We can construct this by grafting the Xen provided pagetable into
1734  * head_64.S's preconstructed pagetables.  We copy the Xen L2's into
1735  * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This
1736  * means that only the kernel has a physical mapping to start with -
1737  * but that's enough to get __va working.  We need to fill in the rest
1738  * of the physical mapping once some sort of allocator has been set
1739  * up.
1740  */
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1741 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1742 					 unsigned long max_pfn)
1743 {
1744 	pud_t *l3;
1745 	pmd_t *l2;
1746 
1747 	/* max_pfn_mapped is the last pfn mapped in the initial memory
1748 	 * mappings. Considering that on Xen after the kernel mappings we
1749 	 * have the mappings of some pages that don't exist in pfn space, we
1750 	 * set max_pfn_mapped to the last real pfn mapped. */
1751 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1752 
1753 	/* Zap identity mapping */
1754 	init_level4_pgt[0] = __pgd(0);
1755 
1756 	/* Pre-constructed entries are in pfn, so convert to mfn */
1757 	convert_pfn_mfn(init_level4_pgt);
1758 	convert_pfn_mfn(level3_ident_pgt);
1759 	convert_pfn_mfn(level3_kernel_pgt);
1760 
1761 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1762 	l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1763 
1764 	memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1765 	memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1766 
1767 	l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1768 	l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1769 	memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1770 
1771 	/* Set up identity map */
1772 	xen_map_identity_early(level2_ident_pgt, max_pfn);
1773 
1774 	/* Make pagetable pieces RO */
1775 	set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1776 	set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1777 	set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1778 	set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1779 	set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1780 	set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1781 
1782 	/* Pin down new L4 */
1783 	pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1784 			  PFN_DOWN(__pa_symbol(init_level4_pgt)));
1785 
1786 	/* Unpin Xen-provided one */
1787 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1788 
1789 	/* Switch over */
1790 	pgd = init_level4_pgt;
1791 
1792 	/*
1793 	 * At this stage there can be no user pgd, and no page
1794 	 * structure to attach it to, so make sure we just set kernel
1795 	 * pgd.
1796 	 */
1797 	xen_mc_batch();
1798 	__xen_write_cr3(true, __pa(pgd));
1799 	xen_mc_issue(PARAVIRT_LAZY_CPU);
1800 
1801 	memblock_reserve(__pa(xen_start_info->pt_base),
1802 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1803 
1804 	return pgd;
1805 }
1806 #else	/* !CONFIG_X86_64 */
1807 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1808 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1809 
xen_write_cr3_init(unsigned long cr3)1810 static void __init xen_write_cr3_init(unsigned long cr3)
1811 {
1812 	unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1813 
1814 	BUG_ON(read_cr3() != __pa(initial_page_table));
1815 	BUG_ON(cr3 != __pa(swapper_pg_dir));
1816 
1817 	/*
1818 	 * We are switching to swapper_pg_dir for the first time (from
1819 	 * initial_page_table) and therefore need to mark that page
1820 	 * read-only and then pin it.
1821 	 *
1822 	 * Xen disallows sharing of kernel PMDs for PAE
1823 	 * guests. Therefore we must copy the kernel PMD from
1824 	 * initial_page_table into a new kernel PMD to be used in
1825 	 * swapper_pg_dir.
1826 	 */
1827 	swapper_kernel_pmd =
1828 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1829 	memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1830 	       sizeof(pmd_t) * PTRS_PER_PMD);
1831 	swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1832 		__pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1833 	set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1834 
1835 	set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1836 	xen_write_cr3(cr3);
1837 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1838 
1839 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1840 			  PFN_DOWN(__pa(initial_page_table)));
1841 	set_page_prot(initial_page_table, PAGE_KERNEL);
1842 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1843 
1844 	pv_mmu_ops.write_cr3 = &xen_write_cr3;
1845 }
1846 
xen_setup_kernel_pagetable(pgd_t * pgd,unsigned long max_pfn)1847 pgd_t * __init xen_setup_kernel_pagetable(pgd_t *pgd,
1848 					 unsigned long max_pfn)
1849 {
1850 	pmd_t *kernel_pmd;
1851 
1852 	initial_kernel_pmd =
1853 		extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1854 
1855 	max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1856 				  xen_start_info->nr_pt_frames * PAGE_SIZE +
1857 				  512*1024);
1858 
1859 	kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
1860 	memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
1861 
1862 	xen_map_identity_early(initial_kernel_pmd, max_pfn);
1863 
1864 	memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1865 	initial_page_table[KERNEL_PGD_BOUNDARY] =
1866 		__pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
1867 
1868 	set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1869 	set_page_prot(initial_page_table, PAGE_KERNEL_RO);
1870 	set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1871 
1872 	pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1873 
1874 	pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1875 			  PFN_DOWN(__pa(initial_page_table)));
1876 	xen_write_cr3(__pa(initial_page_table));
1877 
1878 	memblock_reserve(__pa(xen_start_info->pt_base),
1879 			 xen_start_info->nr_pt_frames * PAGE_SIZE);
1880 
1881 	return initial_page_table;
1882 }
1883 #endif	/* CONFIG_X86_64 */
1884 
1885 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1886 static unsigned char fake_ioapic_mapping[PAGE_SIZE] __page_aligned_bss;
1887 
xen_set_fixmap(unsigned idx,phys_addr_t phys,pgprot_t prot)1888 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
1889 {
1890 	pte_t pte;
1891 
1892 	phys >>= PAGE_SHIFT;
1893 
1894 	switch (idx) {
1895 	case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1896 #ifdef CONFIG_X86_F00F_BUG
1897 	case FIX_F00F_IDT:
1898 #endif
1899 #ifdef CONFIG_X86_32
1900 	case FIX_WP_TEST:
1901 	case FIX_VDSO:
1902 # ifdef CONFIG_HIGHMEM
1903 	case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1904 # endif
1905 #else
1906 	case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
1907 	case VVAR_PAGE:
1908 #endif
1909 	case FIX_TEXT_POKE0:
1910 	case FIX_TEXT_POKE1:
1911 		/* All local page mappings */
1912 		pte = pfn_pte(phys, prot);
1913 		break;
1914 
1915 #ifdef CONFIG_X86_LOCAL_APIC
1916 	case FIX_APIC_BASE:	/* maps dummy local APIC */
1917 		pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1918 		break;
1919 #endif
1920 
1921 #ifdef CONFIG_X86_IO_APIC
1922 	case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1923 		/*
1924 		 * We just don't map the IO APIC - all access is via
1925 		 * hypercalls.  Keep the address in the pte for reference.
1926 		 */
1927 		pte = pfn_pte(PFN_DOWN(__pa(fake_ioapic_mapping)), PAGE_KERNEL);
1928 		break;
1929 #endif
1930 
1931 	case FIX_PARAVIRT_BOOTMAP:
1932 		/* This is an MFN, but it isn't an IO mapping from the
1933 		   IO domain */
1934 		pte = mfn_pte(phys, prot);
1935 		break;
1936 
1937 	default:
1938 		/* By default, set_fixmap is used for hardware mappings */
1939 		pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1940 		break;
1941 	}
1942 
1943 	__native_set_fixmap(idx, pte);
1944 
1945 #ifdef CONFIG_X86_64
1946 	/* Replicate changes to map the vsyscall page into the user
1947 	   pagetable vsyscall mapping. */
1948 	if ((idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) ||
1949 	    idx == VVAR_PAGE) {
1950 		unsigned long vaddr = __fix_to_virt(idx);
1951 		set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1952 	}
1953 #endif
1954 }
1955 
xen_ident_map_ISA(void)1956 void __init xen_ident_map_ISA(void)
1957 {
1958 	unsigned long pa;
1959 
1960 	/*
1961 	 * If we're dom0, then linear map the ISA machine addresses into
1962 	 * the kernel's address space.
1963 	 */
1964 	if (!xen_initial_domain())
1965 		return;
1966 
1967 	xen_raw_printk("Xen: setup ISA identity maps\n");
1968 
1969 	for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1970 		pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1971 
1972 		if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1973 			BUG();
1974 	}
1975 
1976 	xen_flush_tlb();
1977 }
1978 
xen_post_allocator_init(void)1979 static void __init xen_post_allocator_init(void)
1980 {
1981 	pv_mmu_ops.set_pte = xen_set_pte;
1982 	pv_mmu_ops.set_pmd = xen_set_pmd;
1983 	pv_mmu_ops.set_pud = xen_set_pud;
1984 #if PAGETABLE_LEVELS == 4
1985 	pv_mmu_ops.set_pgd = xen_set_pgd;
1986 #endif
1987 
1988 	/* This will work as long as patching hasn't happened yet
1989 	   (which it hasn't) */
1990 	pv_mmu_ops.alloc_pte = xen_alloc_pte;
1991 	pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
1992 	pv_mmu_ops.release_pte = xen_release_pte;
1993 	pv_mmu_ops.release_pmd = xen_release_pmd;
1994 #if PAGETABLE_LEVELS == 4
1995 	pv_mmu_ops.alloc_pud = xen_alloc_pud;
1996 	pv_mmu_ops.release_pud = xen_release_pud;
1997 #endif
1998 
1999 #ifdef CONFIG_X86_64
2000 	SetPagePinned(virt_to_page(level3_user_vsyscall));
2001 #endif
2002 	xen_mark_init_mm_pinned();
2003 }
2004 
xen_leave_lazy_mmu(void)2005 static void xen_leave_lazy_mmu(void)
2006 {
2007 	preempt_disable();
2008 	xen_mc_flush();
2009 	paravirt_leave_lazy_mmu();
2010 	preempt_enable();
2011 }
2012 
2013 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2014 	.read_cr2 = xen_read_cr2,
2015 	.write_cr2 = xen_write_cr2,
2016 
2017 	.read_cr3 = xen_read_cr3,
2018 #ifdef CONFIG_X86_32
2019 	.write_cr3 = xen_write_cr3_init,
2020 #else
2021 	.write_cr3 = xen_write_cr3,
2022 #endif
2023 
2024 	.flush_tlb_user = xen_flush_tlb,
2025 	.flush_tlb_kernel = xen_flush_tlb,
2026 	.flush_tlb_single = xen_flush_tlb_single,
2027 	.flush_tlb_others = xen_flush_tlb_others,
2028 
2029 	.pte_update = paravirt_nop,
2030 	.pte_update_defer = paravirt_nop,
2031 
2032 	.pgd_alloc = xen_pgd_alloc,
2033 	.pgd_free = xen_pgd_free,
2034 
2035 	.alloc_pte = xen_alloc_pte_init,
2036 	.release_pte = xen_release_pte_init,
2037 	.alloc_pmd = xen_alloc_pmd_init,
2038 	.release_pmd = xen_release_pmd_init,
2039 
2040 	.set_pte = xen_set_pte_init,
2041 	.set_pte_at = xen_set_pte_at,
2042 	.set_pmd = xen_set_pmd_hyper,
2043 
2044 	.ptep_modify_prot_start = __ptep_modify_prot_start,
2045 	.ptep_modify_prot_commit = __ptep_modify_prot_commit,
2046 
2047 	.pte_val = PV_CALLEE_SAVE(xen_pte_val),
2048 	.pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2049 
2050 	.make_pte = PV_CALLEE_SAVE(xen_make_pte),
2051 	.make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2052 
2053 #ifdef CONFIG_X86_PAE
2054 	.set_pte_atomic = xen_set_pte_atomic,
2055 	.pte_clear = xen_pte_clear,
2056 	.pmd_clear = xen_pmd_clear,
2057 #endif	/* CONFIG_X86_PAE */
2058 	.set_pud = xen_set_pud_hyper,
2059 
2060 	.make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2061 	.pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2062 
2063 #if PAGETABLE_LEVELS == 4
2064 	.pud_val = PV_CALLEE_SAVE(xen_pud_val),
2065 	.make_pud = PV_CALLEE_SAVE(xen_make_pud),
2066 	.set_pgd = xen_set_pgd_hyper,
2067 
2068 	.alloc_pud = xen_alloc_pmd_init,
2069 	.release_pud = xen_release_pmd_init,
2070 #endif	/* PAGETABLE_LEVELS == 4 */
2071 
2072 	.activate_mm = xen_activate_mm,
2073 	.dup_mmap = xen_dup_mmap,
2074 	.exit_mmap = xen_exit_mmap,
2075 
2076 	.lazy_mode = {
2077 		.enter = paravirt_enter_lazy_mmu,
2078 		.leave = xen_leave_lazy_mmu,
2079 		.flush = paravirt_flush_lazy_mmu,
2080 	},
2081 
2082 	.set_fixmap = xen_set_fixmap,
2083 };
2084 
xen_init_mmu_ops(void)2085 void __init xen_init_mmu_ops(void)
2086 {
2087 	x86_init.mapping.pagetable_reserve = xen_mapping_pagetable_reserve;
2088 	x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2089 	x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2090 	pv_mmu_ops = xen_mmu_ops;
2091 
2092 	memset(dummy_mapping, 0xff, PAGE_SIZE);
2093 	memset(fake_ioapic_mapping, 0xfd, PAGE_SIZE);
2094 }
2095 
2096 /* Protected by xen_reservation_lock. */
2097 #define MAX_CONTIG_ORDER 9 /* 2MB */
2098 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2099 
2100 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
xen_zap_pfn_range(unsigned long vaddr,unsigned int order,unsigned long * in_frames,unsigned long * out_frames)2101 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2102 				unsigned long *in_frames,
2103 				unsigned long *out_frames)
2104 {
2105 	int i;
2106 	struct multicall_space mcs;
2107 
2108 	xen_mc_batch();
2109 	for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2110 		mcs = __xen_mc_entry(0);
2111 
2112 		if (in_frames)
2113 			in_frames[i] = virt_to_mfn(vaddr);
2114 
2115 		MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2116 		__set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2117 
2118 		if (out_frames)
2119 			out_frames[i] = virt_to_pfn(vaddr);
2120 	}
2121 	xen_mc_issue(0);
2122 }
2123 
2124 /*
2125  * Update the pfn-to-mfn mappings for a virtual address range, either to
2126  * point to an array of mfns, or contiguously from a single starting
2127  * mfn.
2128  */
xen_remap_exchanged_ptes(unsigned long vaddr,int order,unsigned long * mfns,unsigned long first_mfn)2129 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2130 				     unsigned long *mfns,
2131 				     unsigned long first_mfn)
2132 {
2133 	unsigned i, limit;
2134 	unsigned long mfn;
2135 
2136 	xen_mc_batch();
2137 
2138 	limit = 1u << order;
2139 	for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2140 		struct multicall_space mcs;
2141 		unsigned flags;
2142 
2143 		mcs = __xen_mc_entry(0);
2144 		if (mfns)
2145 			mfn = mfns[i];
2146 		else
2147 			mfn = first_mfn + i;
2148 
2149 		if (i < (limit - 1))
2150 			flags = 0;
2151 		else {
2152 			if (order == 0)
2153 				flags = UVMF_INVLPG | UVMF_ALL;
2154 			else
2155 				flags = UVMF_TLB_FLUSH | UVMF_ALL;
2156 		}
2157 
2158 		MULTI_update_va_mapping(mcs.mc, vaddr,
2159 				mfn_pte(mfn, PAGE_KERNEL), flags);
2160 
2161 		set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2162 	}
2163 
2164 	xen_mc_issue(0);
2165 }
2166 
2167 /*
2168  * Perform the hypercall to exchange a region of our pfns to point to
2169  * memory with the required contiguous alignment.  Takes the pfns as
2170  * input, and populates mfns as output.
2171  *
2172  * Returns a success code indicating whether the hypervisor was able to
2173  * satisfy the request or not.
2174  */
xen_exchange_memory(unsigned long extents_in,unsigned int order_in,unsigned long * pfns_in,unsigned long extents_out,unsigned int order_out,unsigned long * mfns_out,unsigned int address_bits)2175 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2176 			       unsigned long *pfns_in,
2177 			       unsigned long extents_out,
2178 			       unsigned int order_out,
2179 			       unsigned long *mfns_out,
2180 			       unsigned int address_bits)
2181 {
2182 	long rc;
2183 	int success;
2184 
2185 	struct xen_memory_exchange exchange = {
2186 		.in = {
2187 			.nr_extents   = extents_in,
2188 			.extent_order = order_in,
2189 			.extent_start = pfns_in,
2190 			.domid        = DOMID_SELF
2191 		},
2192 		.out = {
2193 			.nr_extents   = extents_out,
2194 			.extent_order = order_out,
2195 			.extent_start = mfns_out,
2196 			.address_bits = address_bits,
2197 			.domid        = DOMID_SELF
2198 		}
2199 	};
2200 
2201 	BUG_ON(extents_in << order_in != extents_out << order_out);
2202 
2203 	rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2204 	success = (exchange.nr_exchanged == extents_in);
2205 
2206 	BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2207 	BUG_ON(success && (rc != 0));
2208 
2209 	return success;
2210 }
2211 
xen_create_contiguous_region(unsigned long vstart,unsigned int order,unsigned int address_bits)2212 int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2213 				 unsigned int address_bits)
2214 {
2215 	unsigned long *in_frames = discontig_frames, out_frame;
2216 	unsigned long  flags;
2217 	int            success;
2218 
2219 	/*
2220 	 * Currently an auto-translated guest will not perform I/O, nor will
2221 	 * it require PAE page directories below 4GB. Therefore any calls to
2222 	 * this function are redundant and can be ignored.
2223 	 */
2224 
2225 	if (xen_feature(XENFEAT_auto_translated_physmap))
2226 		return 0;
2227 
2228 	if (unlikely(order > MAX_CONTIG_ORDER))
2229 		return -ENOMEM;
2230 
2231 	memset((void *) vstart, 0, PAGE_SIZE << order);
2232 
2233 	spin_lock_irqsave(&xen_reservation_lock, flags);
2234 
2235 	/* 1. Zap current PTEs, remembering MFNs. */
2236 	xen_zap_pfn_range(vstart, order, in_frames, NULL);
2237 
2238 	/* 2. Get a new contiguous memory extent. */
2239 	out_frame = virt_to_pfn(vstart);
2240 	success = xen_exchange_memory(1UL << order, 0, in_frames,
2241 				      1, order, &out_frame,
2242 				      address_bits);
2243 
2244 	/* 3. Map the new extent in place of old pages. */
2245 	if (success)
2246 		xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2247 	else
2248 		xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2249 
2250 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2251 
2252 	return success ? 0 : -ENOMEM;
2253 }
2254 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2255 
xen_destroy_contiguous_region(unsigned long vstart,unsigned int order)2256 void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2257 {
2258 	unsigned long *out_frames = discontig_frames, in_frame;
2259 	unsigned long  flags;
2260 	int success;
2261 
2262 	if (xen_feature(XENFEAT_auto_translated_physmap))
2263 		return;
2264 
2265 	if (unlikely(order > MAX_CONTIG_ORDER))
2266 		return;
2267 
2268 	memset((void *) vstart, 0, PAGE_SIZE << order);
2269 
2270 	spin_lock_irqsave(&xen_reservation_lock, flags);
2271 
2272 	/* 1. Find start MFN of contiguous extent. */
2273 	in_frame = virt_to_mfn(vstart);
2274 
2275 	/* 2. Zap current PTEs. */
2276 	xen_zap_pfn_range(vstart, order, NULL, out_frames);
2277 
2278 	/* 3. Do the exchange for non-contiguous MFNs. */
2279 	success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2280 					0, out_frames, 0);
2281 
2282 	/* 4. Map new pages in place of old pages. */
2283 	if (success)
2284 		xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2285 	else
2286 		xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2287 
2288 	spin_unlock_irqrestore(&xen_reservation_lock, flags);
2289 }
2290 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2291 
2292 #ifdef CONFIG_XEN_PVHVM
xen_hvm_exit_mmap(struct mm_struct * mm)2293 static void xen_hvm_exit_mmap(struct mm_struct *mm)
2294 {
2295 	struct xen_hvm_pagetable_dying a;
2296 	int rc;
2297 
2298 	a.domid = DOMID_SELF;
2299 	a.gpa = __pa(mm->pgd);
2300 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2301 	WARN_ON_ONCE(rc < 0);
2302 }
2303 
is_pagetable_dying_supported(void)2304 static int is_pagetable_dying_supported(void)
2305 {
2306 	struct xen_hvm_pagetable_dying a;
2307 	int rc = 0;
2308 
2309 	a.domid = DOMID_SELF;
2310 	a.gpa = 0x00;
2311 	rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2312 	if (rc < 0) {
2313 		printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2314 		return 0;
2315 	}
2316 	return 1;
2317 }
2318 
xen_hvm_init_mmu_ops(void)2319 void __init xen_hvm_init_mmu_ops(void)
2320 {
2321 	if (is_pagetable_dying_supported())
2322 		pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2323 }
2324 #endif
2325 
2326 #define REMAP_BATCH_SIZE 16
2327 
2328 struct remap_data {
2329 	unsigned long mfn;
2330 	pgprot_t prot;
2331 	struct mmu_update *mmu_update;
2332 };
2333 
remap_area_mfn_pte_fn(pte_t * ptep,pgtable_t token,unsigned long addr,void * data)2334 static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2335 				 unsigned long addr, void *data)
2336 {
2337 	struct remap_data *rmd = data;
2338 	pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2339 
2340 	rmd->mmu_update->ptr = virt_to_machine(ptep).maddr;
2341 	rmd->mmu_update->val = pte_val_ma(pte);
2342 	rmd->mmu_update++;
2343 
2344 	return 0;
2345 }
2346 
xen_remap_domain_mfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long mfn,int nr,pgprot_t prot,unsigned domid)2347 int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2348 			       unsigned long addr,
2349 			       unsigned long mfn, int nr,
2350 			       pgprot_t prot, unsigned domid)
2351 {
2352 	struct remap_data rmd;
2353 	struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2354 	int batch;
2355 	unsigned long range;
2356 	int err = 0;
2357 
2358 	prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2359 
2360 	BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2361 				(VM_PFNMAP | VM_RESERVED | VM_IO)));
2362 
2363 	rmd.mfn = mfn;
2364 	rmd.prot = prot;
2365 
2366 	while (nr) {
2367 		batch = min(REMAP_BATCH_SIZE, nr);
2368 		range = (unsigned long)batch << PAGE_SHIFT;
2369 
2370 		rmd.mmu_update = mmu_update;
2371 		err = apply_to_page_range(vma->vm_mm, addr, range,
2372 					  remap_area_mfn_pte_fn, &rmd);
2373 		if (err)
2374 			goto out;
2375 
2376 		err = -EFAULT;
2377 		if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2378 			goto out;
2379 
2380 		nr -= batch;
2381 		addr += range;
2382 	}
2383 
2384 	err = 0;
2385 out:
2386 
2387 	xen_flush_tlb_all();
2388 
2389 	return err;
2390 }
2391 EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2392