1 /* SPDX-License-Identifier: GPL-2.0+ */
2 #ifndef _LINUX_XARRAY_H
3 #define _LINUX_XARRAY_H
4 /*
5 * eXtensible Arrays
6 * Copyright (c) 2017 Microsoft Corporation
7 * Author: Matthew Wilcox <willy@infradead.org>
8 *
9 * See Documentation/core-api/xarray.rst for how to use the XArray.
10 */
11
12 #include <linux/bitmap.h>
13 #include <linux/bug.h>
14 #include <linux/compiler.h>
15 #include <linux/gfp.h>
16 #include <linux/kconfig.h>
17 #include <linux/kernel.h>
18 #include <linux/rcupdate.h>
19 #include <linux/spinlock.h>
20 #include <linux/types.h>
21
22 /*
23 * The bottom two bits of the entry determine how the XArray interprets
24 * the contents:
25 *
26 * 00: Pointer entry
27 * 10: Internal entry
28 * x1: Value entry or tagged pointer
29 *
30 * Attempting to store internal entries in the XArray is a bug.
31 *
32 * Most internal entries are pointers to the next node in the tree.
33 * The following internal entries have a special meaning:
34 *
35 * 0-62: Sibling entries
36 * 256: Retry entry
37 * 257: Zero entry
38 *
39 * Errors are also represented as internal entries, but use the negative
40 * space (-4094 to -2). They're never stored in the slots array; only
41 * returned by the normal API.
42 */
43
44 #define BITS_PER_XA_VALUE (BITS_PER_LONG - 1)
45
46 /**
47 * xa_mk_value() - Create an XArray entry from an integer.
48 * @v: Value to store in XArray.
49 *
50 * Context: Any context.
51 * Return: An entry suitable for storing in the XArray.
52 */
xa_mk_value(unsigned long v)53 static inline void *xa_mk_value(unsigned long v)
54 {
55 WARN_ON((long)v < 0);
56 return (void *)((v << 1) | 1);
57 }
58
59 /**
60 * xa_to_value() - Get value stored in an XArray entry.
61 * @entry: XArray entry.
62 *
63 * Context: Any context.
64 * Return: The value stored in the XArray entry.
65 */
xa_to_value(const void * entry)66 static inline unsigned long xa_to_value(const void *entry)
67 {
68 return (unsigned long)entry >> 1;
69 }
70
71 /**
72 * xa_is_value() - Determine if an entry is a value.
73 * @entry: XArray entry.
74 *
75 * Context: Any context.
76 * Return: True if the entry is a value, false if it is a pointer.
77 */
xa_is_value(const void * entry)78 static inline bool xa_is_value(const void *entry)
79 {
80 return (unsigned long)entry & 1;
81 }
82
83 /**
84 * xa_tag_pointer() - Create an XArray entry for a tagged pointer.
85 * @p: Plain pointer.
86 * @tag: Tag value (0, 1 or 3).
87 *
88 * If the user of the XArray prefers, they can tag their pointers instead
89 * of storing value entries. Three tags are available (0, 1 and 3).
90 * These are distinct from the xa_mark_t as they are not replicated up
91 * through the array and cannot be searched for.
92 *
93 * Context: Any context.
94 * Return: An XArray entry.
95 */
xa_tag_pointer(void * p,unsigned long tag)96 static inline void *xa_tag_pointer(void *p, unsigned long tag)
97 {
98 return (void *)((unsigned long)p | tag);
99 }
100
101 /**
102 * xa_untag_pointer() - Turn an XArray entry into a plain pointer.
103 * @entry: XArray entry.
104 *
105 * If you have stored a tagged pointer in the XArray, call this function
106 * to get the untagged version of the pointer.
107 *
108 * Context: Any context.
109 * Return: A pointer.
110 */
xa_untag_pointer(void * entry)111 static inline void *xa_untag_pointer(void *entry)
112 {
113 return (void *)((unsigned long)entry & ~3UL);
114 }
115
116 /**
117 * xa_pointer_tag() - Get the tag stored in an XArray entry.
118 * @entry: XArray entry.
119 *
120 * If you have stored a tagged pointer in the XArray, call this function
121 * to get the tag of that pointer.
122 *
123 * Context: Any context.
124 * Return: A tag.
125 */
xa_pointer_tag(void * entry)126 static inline unsigned int xa_pointer_tag(void *entry)
127 {
128 return (unsigned long)entry & 3UL;
129 }
130
131 /*
132 * xa_mk_internal() - Create an internal entry.
133 * @v: Value to turn into an internal entry.
134 *
135 * Internal entries are used for a number of purposes. Entries 0-255 are
136 * used for sibling entries (only 0-62 are used by the current code). 256
137 * is used for the retry entry. 257 is used for the reserved / zero entry.
138 * Negative internal entries are used to represent errnos. Node pointers
139 * are also tagged as internal entries in some situations.
140 *
141 * Context: Any context.
142 * Return: An XArray internal entry corresponding to this value.
143 */
xa_mk_internal(unsigned long v)144 static inline void *xa_mk_internal(unsigned long v)
145 {
146 return (void *)((v << 2) | 2);
147 }
148
149 /*
150 * xa_to_internal() - Extract the value from an internal entry.
151 * @entry: XArray entry.
152 *
153 * Context: Any context.
154 * Return: The value which was stored in the internal entry.
155 */
xa_to_internal(const void * entry)156 static inline unsigned long xa_to_internal(const void *entry)
157 {
158 return (unsigned long)entry >> 2;
159 }
160
161 /*
162 * xa_is_internal() - Is the entry an internal entry?
163 * @entry: XArray entry.
164 *
165 * Context: Any context.
166 * Return: %true if the entry is an internal entry.
167 */
xa_is_internal(const void * entry)168 static inline bool xa_is_internal(const void *entry)
169 {
170 return ((unsigned long)entry & 3) == 2;
171 }
172
173 #define XA_ZERO_ENTRY xa_mk_internal(257)
174
175 /**
176 * xa_is_zero() - Is the entry a zero entry?
177 * @entry: Entry retrieved from the XArray
178 *
179 * The normal API will return NULL as the contents of a slot containing
180 * a zero entry. You can only see zero entries by using the advanced API.
181 *
182 * Return: %true if the entry is a zero entry.
183 */
xa_is_zero(const void * entry)184 static inline bool xa_is_zero(const void *entry)
185 {
186 return unlikely(entry == XA_ZERO_ENTRY);
187 }
188
189 /**
190 * xa_is_err() - Report whether an XArray operation returned an error
191 * @entry: Result from calling an XArray function
192 *
193 * If an XArray operation cannot complete an operation, it will return
194 * a special value indicating an error. This function tells you
195 * whether an error occurred; xa_err() tells you which error occurred.
196 *
197 * Context: Any context.
198 * Return: %true if the entry indicates an error.
199 */
xa_is_err(const void * entry)200 static inline bool xa_is_err(const void *entry)
201 {
202 return unlikely(xa_is_internal(entry) &&
203 entry >= xa_mk_internal(-MAX_ERRNO));
204 }
205
206 /**
207 * xa_err() - Turn an XArray result into an errno.
208 * @entry: Result from calling an XArray function.
209 *
210 * If an XArray operation cannot complete an operation, it will return
211 * a special pointer value which encodes an errno. This function extracts
212 * the errno from the pointer value, or returns 0 if the pointer does not
213 * represent an errno.
214 *
215 * Context: Any context.
216 * Return: A negative errno or 0.
217 */
xa_err(void * entry)218 static inline int xa_err(void *entry)
219 {
220 /* xa_to_internal() would not do sign extension. */
221 if (xa_is_err(entry))
222 return (long)entry >> 2;
223 return 0;
224 }
225
226 /**
227 * struct xa_limit - Represents a range of IDs.
228 * @min: The lowest ID to allocate (inclusive).
229 * @max: The maximum ID to allocate (inclusive).
230 *
231 * This structure is used either directly or via the XA_LIMIT() macro
232 * to communicate the range of IDs that are valid for allocation.
233 * Three common ranges are predefined for you:
234 * * xa_limit_32b - [0 - UINT_MAX]
235 * * xa_limit_31b - [0 - INT_MAX]
236 * * xa_limit_16b - [0 - USHRT_MAX]
237 */
238 struct xa_limit {
239 u32 max;
240 u32 min;
241 };
242
243 #define XA_LIMIT(_min, _max) (struct xa_limit) { .min = _min, .max = _max }
244
245 #define xa_limit_32b XA_LIMIT(0, UINT_MAX)
246 #define xa_limit_31b XA_LIMIT(0, INT_MAX)
247 #define xa_limit_16b XA_LIMIT(0, USHRT_MAX)
248
249 typedef unsigned __bitwise xa_mark_t;
250 #define XA_MARK_0 ((__force xa_mark_t)0U)
251 #define XA_MARK_1 ((__force xa_mark_t)1U)
252 #define XA_MARK_2 ((__force xa_mark_t)2U)
253 #define XA_PRESENT ((__force xa_mark_t)8U)
254 #define XA_MARK_MAX XA_MARK_2
255 #define XA_FREE_MARK XA_MARK_0
256
257 enum xa_lock_type {
258 XA_LOCK_IRQ = 1,
259 XA_LOCK_BH = 2,
260 };
261
262 /*
263 * Values for xa_flags. The radix tree stores its GFP flags in the xa_flags,
264 * and we remain compatible with that.
265 */
266 #define XA_FLAGS_LOCK_IRQ ((__force gfp_t)XA_LOCK_IRQ)
267 #define XA_FLAGS_LOCK_BH ((__force gfp_t)XA_LOCK_BH)
268 #define XA_FLAGS_TRACK_FREE ((__force gfp_t)4U)
269 #define XA_FLAGS_ZERO_BUSY ((__force gfp_t)8U)
270 #define XA_FLAGS_ALLOC_WRAPPED ((__force gfp_t)16U)
271 #define XA_FLAGS_ACCOUNT ((__force gfp_t)32U)
272 #define XA_FLAGS_MARK(mark) ((__force gfp_t)((1U << __GFP_BITS_SHIFT) << \
273 (__force unsigned)(mark)))
274
275 /* ALLOC is for a normal 0-based alloc. ALLOC1 is for an 1-based alloc */
276 #define XA_FLAGS_ALLOC (XA_FLAGS_TRACK_FREE | XA_FLAGS_MARK(XA_FREE_MARK))
277 #define XA_FLAGS_ALLOC1 (XA_FLAGS_TRACK_FREE | XA_FLAGS_ZERO_BUSY)
278
279 /**
280 * struct xarray - The anchor of the XArray.
281 * @xa_lock: Lock that protects the contents of the XArray.
282 *
283 * To use the xarray, define it statically or embed it in your data structure.
284 * It is a very small data structure, so it does not usually make sense to
285 * allocate it separately and keep a pointer to it in your data structure.
286 *
287 * You may use the xa_lock to protect your own data structures as well.
288 */
289 /*
290 * If all of the entries in the array are NULL, @xa_head is a NULL pointer.
291 * If the only non-NULL entry in the array is at index 0, @xa_head is that
292 * entry. If any other entry in the array is non-NULL, @xa_head points
293 * to an @xa_node.
294 */
295 struct xarray {
296 spinlock_t xa_lock;
297 /* private: The rest of the data structure is not to be used directly. */
298 gfp_t xa_flags;
299 void __rcu * xa_head;
300 };
301
302 #define XARRAY_INIT(name, flags) { \
303 .xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock), \
304 .xa_flags = flags, \
305 .xa_head = NULL, \
306 }
307
308 /**
309 * DEFINE_XARRAY_FLAGS() - Define an XArray with custom flags.
310 * @name: A string that names your XArray.
311 * @flags: XA_FLAG values.
312 *
313 * This is intended for file scope definitions of XArrays. It declares
314 * and initialises an empty XArray with the chosen name and flags. It is
315 * equivalent to calling xa_init_flags() on the array, but it does the
316 * initialisation at compiletime instead of runtime.
317 */
318 #define DEFINE_XARRAY_FLAGS(name, flags) \
319 struct xarray name = XARRAY_INIT(name, flags)
320
321 /**
322 * DEFINE_XARRAY() - Define an XArray.
323 * @name: A string that names your XArray.
324 *
325 * This is intended for file scope definitions of XArrays. It declares
326 * and initialises an empty XArray with the chosen name. It is equivalent
327 * to calling xa_init() on the array, but it does the initialisation at
328 * compiletime instead of runtime.
329 */
330 #define DEFINE_XARRAY(name) DEFINE_XARRAY_FLAGS(name, 0)
331
332 /**
333 * DEFINE_XARRAY_ALLOC() - Define an XArray which allocates IDs starting at 0.
334 * @name: A string that names your XArray.
335 *
336 * This is intended for file scope definitions of allocating XArrays.
337 * See also DEFINE_XARRAY().
338 */
339 #define DEFINE_XARRAY_ALLOC(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC)
340
341 /**
342 * DEFINE_XARRAY_ALLOC1() - Define an XArray which allocates IDs starting at 1.
343 * @name: A string that names your XArray.
344 *
345 * This is intended for file scope definitions of allocating XArrays.
346 * See also DEFINE_XARRAY().
347 */
348 #define DEFINE_XARRAY_ALLOC1(name) DEFINE_XARRAY_FLAGS(name, XA_FLAGS_ALLOC1)
349
350 void *xa_load(struct xarray *, unsigned long index);
351 void *xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
352 void *xa_erase(struct xarray *, unsigned long index);
353 void *xa_store_range(struct xarray *, unsigned long first, unsigned long last,
354 void *entry, gfp_t);
355 bool xa_get_mark(struct xarray *, unsigned long index, xa_mark_t);
356 void xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
357 void xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
358 void *xa_find(struct xarray *xa, unsigned long *index,
359 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
360 void *xa_find_after(struct xarray *xa, unsigned long *index,
361 unsigned long max, xa_mark_t) __attribute__((nonnull(2)));
362 unsigned int xa_extract(struct xarray *, void **dst, unsigned long start,
363 unsigned long max, unsigned int n, xa_mark_t);
364 void xa_destroy(struct xarray *);
365
366 /**
367 * xa_init_flags() - Initialise an empty XArray with flags.
368 * @xa: XArray.
369 * @flags: XA_FLAG values.
370 *
371 * If you need to initialise an XArray with special flags (eg you need
372 * to take the lock from interrupt context), use this function instead
373 * of xa_init().
374 *
375 * Context: Any context.
376 */
xa_init_flags(struct xarray * xa,gfp_t flags)377 static inline void xa_init_flags(struct xarray *xa, gfp_t flags)
378 {
379 spin_lock_init(&xa->xa_lock);
380 xa->xa_flags = flags;
381 xa->xa_head = NULL;
382 }
383
384 /**
385 * xa_init() - Initialise an empty XArray.
386 * @xa: XArray.
387 *
388 * An empty XArray is full of NULL entries.
389 *
390 * Context: Any context.
391 */
xa_init(struct xarray * xa)392 static inline void xa_init(struct xarray *xa)
393 {
394 xa_init_flags(xa, 0);
395 }
396
397 /**
398 * xa_empty() - Determine if an array has any present entries.
399 * @xa: XArray.
400 *
401 * Context: Any context.
402 * Return: %true if the array contains only NULL pointers.
403 */
xa_empty(const struct xarray * xa)404 static inline bool xa_empty(const struct xarray *xa)
405 {
406 return xa->xa_head == NULL;
407 }
408
409 /**
410 * xa_marked() - Inquire whether any entry in this array has a mark set
411 * @xa: Array
412 * @mark: Mark value
413 *
414 * Context: Any context.
415 * Return: %true if any entry has this mark set.
416 */
xa_marked(const struct xarray * xa,xa_mark_t mark)417 static inline bool xa_marked(const struct xarray *xa, xa_mark_t mark)
418 {
419 return xa->xa_flags & XA_FLAGS_MARK(mark);
420 }
421
422 /**
423 * xa_for_each_range() - Iterate over a portion of an XArray.
424 * @xa: XArray.
425 * @index: Index of @entry.
426 * @entry: Entry retrieved from array.
427 * @start: First index to retrieve from array.
428 * @last: Last index to retrieve from array.
429 *
430 * During the iteration, @entry will have the value of the entry stored
431 * in @xa at @index. You may modify @index during the iteration if you
432 * want to skip or reprocess indices. It is safe to modify the array
433 * during the iteration. At the end of the iteration, @entry will be set
434 * to NULL and @index will have a value less than or equal to max.
435 *
436 * xa_for_each_range() is O(n.log(n)) while xas_for_each() is O(n). You have
437 * to handle your own locking with xas_for_each(), and if you have to unlock
438 * after each iteration, it will also end up being O(n.log(n)).
439 * xa_for_each_range() will spin if it hits a retry entry; if you intend to
440 * see retry entries, you should use the xas_for_each() iterator instead.
441 * The xas_for_each() iterator will expand into more inline code than
442 * xa_for_each_range().
443 *
444 * Context: Any context. Takes and releases the RCU lock.
445 */
446 #define xa_for_each_range(xa, index, entry, start, last) \
447 for (index = start, \
448 entry = xa_find(xa, &index, last, XA_PRESENT); \
449 entry; \
450 entry = xa_find_after(xa, &index, last, XA_PRESENT))
451
452 /**
453 * xa_for_each_start() - Iterate over a portion of an XArray.
454 * @xa: XArray.
455 * @index: Index of @entry.
456 * @entry: Entry retrieved from array.
457 * @start: First index to retrieve from array.
458 *
459 * During the iteration, @entry will have the value of the entry stored
460 * in @xa at @index. You may modify @index during the iteration if you
461 * want to skip or reprocess indices. It is safe to modify the array
462 * during the iteration. At the end of the iteration, @entry will be set
463 * to NULL and @index will have a value less than or equal to max.
464 *
465 * xa_for_each_start() is O(n.log(n)) while xas_for_each() is O(n). You have
466 * to handle your own locking with xas_for_each(), and if you have to unlock
467 * after each iteration, it will also end up being O(n.log(n)).
468 * xa_for_each_start() will spin if it hits a retry entry; if you intend to
469 * see retry entries, you should use the xas_for_each() iterator instead.
470 * The xas_for_each() iterator will expand into more inline code than
471 * xa_for_each_start().
472 *
473 * Context: Any context. Takes and releases the RCU lock.
474 */
475 #define xa_for_each_start(xa, index, entry, start) \
476 xa_for_each_range(xa, index, entry, start, ULONG_MAX)
477
478 /**
479 * xa_for_each() - Iterate over present entries in an XArray.
480 * @xa: XArray.
481 * @index: Index of @entry.
482 * @entry: Entry retrieved from array.
483 *
484 * During the iteration, @entry will have the value of the entry stored
485 * in @xa at @index. You may modify @index during the iteration if you want
486 * to skip or reprocess indices. It is safe to modify the array during the
487 * iteration. At the end of the iteration, @entry will be set to NULL and
488 * @index will have a value less than or equal to max.
489 *
490 * xa_for_each() is O(n.log(n)) while xas_for_each() is O(n). You have
491 * to handle your own locking with xas_for_each(), and if you have to unlock
492 * after each iteration, it will also end up being O(n.log(n)). xa_for_each()
493 * will spin if it hits a retry entry; if you intend to see retry entries,
494 * you should use the xas_for_each() iterator instead. The xas_for_each()
495 * iterator will expand into more inline code than xa_for_each().
496 *
497 * Context: Any context. Takes and releases the RCU lock.
498 */
499 #define xa_for_each(xa, index, entry) \
500 xa_for_each_start(xa, index, entry, 0)
501
502 /**
503 * xa_for_each_marked() - Iterate over marked entries in an XArray.
504 * @xa: XArray.
505 * @index: Index of @entry.
506 * @entry: Entry retrieved from array.
507 * @filter: Selection criterion.
508 *
509 * During the iteration, @entry will have the value of the entry stored
510 * in @xa at @index. The iteration will skip all entries in the array
511 * which do not match @filter. You may modify @index during the iteration
512 * if you want to skip or reprocess indices. It is safe to modify the array
513 * during the iteration. At the end of the iteration, @entry will be set to
514 * NULL and @index will have a value less than or equal to max.
515 *
516 * xa_for_each_marked() is O(n.log(n)) while xas_for_each_marked() is O(n).
517 * You have to handle your own locking with xas_for_each(), and if you have
518 * to unlock after each iteration, it will also end up being O(n.log(n)).
519 * xa_for_each_marked() will spin if it hits a retry entry; if you intend to
520 * see retry entries, you should use the xas_for_each_marked() iterator
521 * instead. The xas_for_each_marked() iterator will expand into more inline
522 * code than xa_for_each_marked().
523 *
524 * Context: Any context. Takes and releases the RCU lock.
525 */
526 #define xa_for_each_marked(xa, index, entry, filter) \
527 for (index = 0, entry = xa_find(xa, &index, ULONG_MAX, filter); \
528 entry; entry = xa_find_after(xa, &index, ULONG_MAX, filter))
529
530 #define xa_trylock(xa) spin_trylock(&(xa)->xa_lock)
531 #define xa_lock(xa) spin_lock(&(xa)->xa_lock)
532 #define xa_unlock(xa) spin_unlock(&(xa)->xa_lock)
533 #define xa_lock_bh(xa) spin_lock_bh(&(xa)->xa_lock)
534 #define xa_unlock_bh(xa) spin_unlock_bh(&(xa)->xa_lock)
535 #define xa_lock_irq(xa) spin_lock_irq(&(xa)->xa_lock)
536 #define xa_unlock_irq(xa) spin_unlock_irq(&(xa)->xa_lock)
537 #define xa_lock_irqsave(xa, flags) \
538 spin_lock_irqsave(&(xa)->xa_lock, flags)
539 #define xa_unlock_irqrestore(xa, flags) \
540 spin_unlock_irqrestore(&(xa)->xa_lock, flags)
541 #define xa_lock_nested(xa, subclass) \
542 spin_lock_nested(&(xa)->xa_lock, subclass)
543 #define xa_lock_bh_nested(xa, subclass) \
544 spin_lock_bh_nested(&(xa)->xa_lock, subclass)
545 #define xa_lock_irq_nested(xa, subclass) \
546 spin_lock_irq_nested(&(xa)->xa_lock, subclass)
547 #define xa_lock_irqsave_nested(xa, flags, subclass) \
548 spin_lock_irqsave_nested(&(xa)->xa_lock, flags, subclass)
549
550 /*
551 * Versions of the normal API which require the caller to hold the
552 * xa_lock. If the GFP flags allow it, they will drop the lock to
553 * allocate memory, then reacquire it afterwards. These functions
554 * may also re-enable interrupts if the XArray flags indicate the
555 * locking should be interrupt safe.
556 */
557 void *__xa_erase(struct xarray *, unsigned long index);
558 void *__xa_store(struct xarray *, unsigned long index, void *entry, gfp_t);
559 void *__xa_cmpxchg(struct xarray *, unsigned long index, void *old,
560 void *entry, gfp_t);
561 int __must_check __xa_insert(struct xarray *, unsigned long index,
562 void *entry, gfp_t);
563 int __must_check __xa_alloc(struct xarray *, u32 *id, void *entry,
564 struct xa_limit, gfp_t);
565 int __must_check __xa_alloc_cyclic(struct xarray *, u32 *id, void *entry,
566 struct xa_limit, u32 *next, gfp_t);
567 void __xa_set_mark(struct xarray *, unsigned long index, xa_mark_t);
568 void __xa_clear_mark(struct xarray *, unsigned long index, xa_mark_t);
569
570 /**
571 * xa_store_bh() - Store this entry in the XArray.
572 * @xa: XArray.
573 * @index: Index into array.
574 * @entry: New entry.
575 * @gfp: Memory allocation flags.
576 *
577 * This function is like calling xa_store() except it disables softirqs
578 * while holding the array lock.
579 *
580 * Context: Any context. Takes and releases the xa_lock while
581 * disabling softirqs.
582 * Return: The old entry at this index or xa_err() if an error happened.
583 */
xa_store_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)584 static inline void *xa_store_bh(struct xarray *xa, unsigned long index,
585 void *entry, gfp_t gfp)
586 {
587 void *curr;
588
589 xa_lock_bh(xa);
590 curr = __xa_store(xa, index, entry, gfp);
591 xa_unlock_bh(xa);
592
593 return curr;
594 }
595
596 /**
597 * xa_store_irq() - Store this entry in the XArray.
598 * @xa: XArray.
599 * @index: Index into array.
600 * @entry: New entry.
601 * @gfp: Memory allocation flags.
602 *
603 * This function is like calling xa_store() except it disables interrupts
604 * while holding the array lock.
605 *
606 * Context: Process context. Takes and releases the xa_lock while
607 * disabling interrupts.
608 * Return: The old entry at this index or xa_err() if an error happened.
609 */
xa_store_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)610 static inline void *xa_store_irq(struct xarray *xa, unsigned long index,
611 void *entry, gfp_t gfp)
612 {
613 void *curr;
614
615 xa_lock_irq(xa);
616 curr = __xa_store(xa, index, entry, gfp);
617 xa_unlock_irq(xa);
618
619 return curr;
620 }
621
622 /**
623 * xa_erase_bh() - Erase this entry from the XArray.
624 * @xa: XArray.
625 * @index: Index of entry.
626 *
627 * After this function returns, loading from @index will return %NULL.
628 * If the index is part of a multi-index entry, all indices will be erased
629 * and none of the entries will be part of a multi-index entry.
630 *
631 * Context: Any context. Takes and releases the xa_lock while
632 * disabling softirqs.
633 * Return: The entry which used to be at this index.
634 */
xa_erase_bh(struct xarray * xa,unsigned long index)635 static inline void *xa_erase_bh(struct xarray *xa, unsigned long index)
636 {
637 void *entry;
638
639 xa_lock_bh(xa);
640 entry = __xa_erase(xa, index);
641 xa_unlock_bh(xa);
642
643 return entry;
644 }
645
646 /**
647 * xa_erase_irq() - Erase this entry from the XArray.
648 * @xa: XArray.
649 * @index: Index of entry.
650 *
651 * After this function returns, loading from @index will return %NULL.
652 * If the index is part of a multi-index entry, all indices will be erased
653 * and none of the entries will be part of a multi-index entry.
654 *
655 * Context: Process context. Takes and releases the xa_lock while
656 * disabling interrupts.
657 * Return: The entry which used to be at this index.
658 */
xa_erase_irq(struct xarray * xa,unsigned long index)659 static inline void *xa_erase_irq(struct xarray *xa, unsigned long index)
660 {
661 void *entry;
662
663 xa_lock_irq(xa);
664 entry = __xa_erase(xa, index);
665 xa_unlock_irq(xa);
666
667 return entry;
668 }
669
670 /**
671 * xa_cmpxchg() - Conditionally replace an entry in the XArray.
672 * @xa: XArray.
673 * @index: Index into array.
674 * @old: Old value to test against.
675 * @entry: New value to place in array.
676 * @gfp: Memory allocation flags.
677 *
678 * If the entry at @index is the same as @old, replace it with @entry.
679 * If the return value is equal to @old, then the exchange was successful.
680 *
681 * Context: Any context. Takes and releases the xa_lock. May sleep
682 * if the @gfp flags permit.
683 * Return: The old value at this index or xa_err() if an error happened.
684 */
xa_cmpxchg(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)685 static inline void *xa_cmpxchg(struct xarray *xa, unsigned long index,
686 void *old, void *entry, gfp_t gfp)
687 {
688 void *curr;
689
690 xa_lock(xa);
691 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
692 xa_unlock(xa);
693
694 return curr;
695 }
696
697 /**
698 * xa_cmpxchg_bh() - Conditionally replace an entry in the XArray.
699 * @xa: XArray.
700 * @index: Index into array.
701 * @old: Old value to test against.
702 * @entry: New value to place in array.
703 * @gfp: Memory allocation flags.
704 *
705 * This function is like calling xa_cmpxchg() except it disables softirqs
706 * while holding the array lock.
707 *
708 * Context: Any context. Takes and releases the xa_lock while
709 * disabling softirqs. May sleep if the @gfp flags permit.
710 * Return: The old value at this index or xa_err() if an error happened.
711 */
xa_cmpxchg_bh(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)712 static inline void *xa_cmpxchg_bh(struct xarray *xa, unsigned long index,
713 void *old, void *entry, gfp_t gfp)
714 {
715 void *curr;
716
717 xa_lock_bh(xa);
718 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
719 xa_unlock_bh(xa);
720
721 return curr;
722 }
723
724 /**
725 * xa_cmpxchg_irq() - Conditionally replace an entry in the XArray.
726 * @xa: XArray.
727 * @index: Index into array.
728 * @old: Old value to test against.
729 * @entry: New value to place in array.
730 * @gfp: Memory allocation flags.
731 *
732 * This function is like calling xa_cmpxchg() except it disables interrupts
733 * while holding the array lock.
734 *
735 * Context: Process context. Takes and releases the xa_lock while
736 * disabling interrupts. May sleep if the @gfp flags permit.
737 * Return: The old value at this index or xa_err() if an error happened.
738 */
xa_cmpxchg_irq(struct xarray * xa,unsigned long index,void * old,void * entry,gfp_t gfp)739 static inline void *xa_cmpxchg_irq(struct xarray *xa, unsigned long index,
740 void *old, void *entry, gfp_t gfp)
741 {
742 void *curr;
743
744 xa_lock_irq(xa);
745 curr = __xa_cmpxchg(xa, index, old, entry, gfp);
746 xa_unlock_irq(xa);
747
748 return curr;
749 }
750
751 /**
752 * xa_insert() - Store this entry in the XArray unless another entry is
753 * already present.
754 * @xa: XArray.
755 * @index: Index into array.
756 * @entry: New entry.
757 * @gfp: Memory allocation flags.
758 *
759 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
760 * if no entry is present. Inserting will fail if a reserved entry is
761 * present, even though loading from this index will return NULL.
762 *
763 * Context: Any context. Takes and releases the xa_lock. May sleep if
764 * the @gfp flags permit.
765 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
766 * -ENOMEM if memory could not be allocated.
767 */
xa_insert(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)768 static inline int __must_check xa_insert(struct xarray *xa,
769 unsigned long index, void *entry, gfp_t gfp)
770 {
771 int err;
772
773 xa_lock(xa);
774 err = __xa_insert(xa, index, entry, gfp);
775 xa_unlock(xa);
776
777 return err;
778 }
779
780 /**
781 * xa_insert_bh() - Store this entry in the XArray unless another entry is
782 * already present.
783 * @xa: XArray.
784 * @index: Index into array.
785 * @entry: New entry.
786 * @gfp: Memory allocation flags.
787 *
788 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
789 * if no entry is present. Inserting will fail if a reserved entry is
790 * present, even though loading from this index will return NULL.
791 *
792 * Context: Any context. Takes and releases the xa_lock while
793 * disabling softirqs. May sleep if the @gfp flags permit.
794 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
795 * -ENOMEM if memory could not be allocated.
796 */
xa_insert_bh(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)797 static inline int __must_check xa_insert_bh(struct xarray *xa,
798 unsigned long index, void *entry, gfp_t gfp)
799 {
800 int err;
801
802 xa_lock_bh(xa);
803 err = __xa_insert(xa, index, entry, gfp);
804 xa_unlock_bh(xa);
805
806 return err;
807 }
808
809 /**
810 * xa_insert_irq() - Store this entry in the XArray unless another entry is
811 * already present.
812 * @xa: XArray.
813 * @index: Index into array.
814 * @entry: New entry.
815 * @gfp: Memory allocation flags.
816 *
817 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
818 * if no entry is present. Inserting will fail if a reserved entry is
819 * present, even though loading from this index will return NULL.
820 *
821 * Context: Process context. Takes and releases the xa_lock while
822 * disabling interrupts. May sleep if the @gfp flags permit.
823 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
824 * -ENOMEM if memory could not be allocated.
825 */
xa_insert_irq(struct xarray * xa,unsigned long index,void * entry,gfp_t gfp)826 static inline int __must_check xa_insert_irq(struct xarray *xa,
827 unsigned long index, void *entry, gfp_t gfp)
828 {
829 int err;
830
831 xa_lock_irq(xa);
832 err = __xa_insert(xa, index, entry, gfp);
833 xa_unlock_irq(xa);
834
835 return err;
836 }
837
838 /**
839 * xa_alloc() - Find somewhere to store this entry in the XArray.
840 * @xa: XArray.
841 * @id: Pointer to ID.
842 * @entry: New entry.
843 * @limit: Range of ID to allocate.
844 * @gfp: Memory allocation flags.
845 *
846 * Finds an empty entry in @xa between @limit.min and @limit.max,
847 * stores the index into the @id pointer, then stores the entry at
848 * that index. A concurrent lookup will not see an uninitialised @id.
849 *
850 * Context: Any context. Takes and releases the xa_lock. May sleep if
851 * the @gfp flags permit.
852 * Return: 0 on success, -ENOMEM if memory could not be allocated or
853 * -EBUSY if there are no free entries in @limit.
854 */
xa_alloc(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)855 static inline __must_check int xa_alloc(struct xarray *xa, u32 *id,
856 void *entry, struct xa_limit limit, gfp_t gfp)
857 {
858 int err;
859
860 xa_lock(xa);
861 err = __xa_alloc(xa, id, entry, limit, gfp);
862 xa_unlock(xa);
863
864 return err;
865 }
866
867 /**
868 * xa_alloc_bh() - Find somewhere to store this entry in the XArray.
869 * @xa: XArray.
870 * @id: Pointer to ID.
871 * @entry: New entry.
872 * @limit: Range of ID to allocate.
873 * @gfp: Memory allocation flags.
874 *
875 * Finds an empty entry in @xa between @limit.min and @limit.max,
876 * stores the index into the @id pointer, then stores the entry at
877 * that index. A concurrent lookup will not see an uninitialised @id.
878 *
879 * Context: Any context. Takes and releases the xa_lock while
880 * disabling softirqs. May sleep if the @gfp flags permit.
881 * Return: 0 on success, -ENOMEM if memory could not be allocated or
882 * -EBUSY if there are no free entries in @limit.
883 */
xa_alloc_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)884 static inline int __must_check xa_alloc_bh(struct xarray *xa, u32 *id,
885 void *entry, struct xa_limit limit, gfp_t gfp)
886 {
887 int err;
888
889 xa_lock_bh(xa);
890 err = __xa_alloc(xa, id, entry, limit, gfp);
891 xa_unlock_bh(xa);
892
893 return err;
894 }
895
896 /**
897 * xa_alloc_irq() - Find somewhere to store this entry in the XArray.
898 * @xa: XArray.
899 * @id: Pointer to ID.
900 * @entry: New entry.
901 * @limit: Range of ID to allocate.
902 * @gfp: Memory allocation flags.
903 *
904 * Finds an empty entry in @xa between @limit.min and @limit.max,
905 * stores the index into the @id pointer, then stores the entry at
906 * that index. A concurrent lookup will not see an uninitialised @id.
907 *
908 * Context: Process context. Takes and releases the xa_lock while
909 * disabling interrupts. May sleep if the @gfp flags permit.
910 * Return: 0 on success, -ENOMEM if memory could not be allocated or
911 * -EBUSY if there are no free entries in @limit.
912 */
xa_alloc_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,gfp_t gfp)913 static inline int __must_check xa_alloc_irq(struct xarray *xa, u32 *id,
914 void *entry, struct xa_limit limit, gfp_t gfp)
915 {
916 int err;
917
918 xa_lock_irq(xa);
919 err = __xa_alloc(xa, id, entry, limit, gfp);
920 xa_unlock_irq(xa);
921
922 return err;
923 }
924
925 /**
926 * xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
927 * @xa: XArray.
928 * @id: Pointer to ID.
929 * @entry: New entry.
930 * @limit: Range of allocated ID.
931 * @next: Pointer to next ID to allocate.
932 * @gfp: Memory allocation flags.
933 *
934 * Finds an empty entry in @xa between @limit.min and @limit.max,
935 * stores the index into the @id pointer, then stores the entry at
936 * that index. A concurrent lookup will not see an uninitialised @id.
937 * The search for an empty entry will start at @next and will wrap
938 * around if necessary.
939 *
940 * Context: Any context. Takes and releases the xa_lock. May sleep if
941 * the @gfp flags permit.
942 * Return: 0 if the allocation succeeded without wrapping. 1 if the
943 * allocation succeeded after wrapping, -ENOMEM if memory could not be
944 * allocated or -EBUSY if there are no free entries in @limit.
945 */
xa_alloc_cyclic(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)946 static inline int xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
947 struct xa_limit limit, u32 *next, gfp_t gfp)
948 {
949 int err;
950
951 xa_lock(xa);
952 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
953 xa_unlock(xa);
954
955 return err;
956 }
957
958 /**
959 * xa_alloc_cyclic_bh() - Find somewhere to store this entry in the XArray.
960 * @xa: XArray.
961 * @id: Pointer to ID.
962 * @entry: New entry.
963 * @limit: Range of allocated ID.
964 * @next: Pointer to next ID to allocate.
965 * @gfp: Memory allocation flags.
966 *
967 * Finds an empty entry in @xa between @limit.min and @limit.max,
968 * stores the index into the @id pointer, then stores the entry at
969 * that index. A concurrent lookup will not see an uninitialised @id.
970 * The search for an empty entry will start at @next and will wrap
971 * around if necessary.
972 *
973 * Context: Any context. Takes and releases the xa_lock while
974 * disabling softirqs. May sleep if the @gfp flags permit.
975 * Return: 0 if the allocation succeeded without wrapping. 1 if the
976 * allocation succeeded after wrapping, -ENOMEM if memory could not be
977 * allocated or -EBUSY if there are no free entries in @limit.
978 */
xa_alloc_cyclic_bh(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)979 static inline int xa_alloc_cyclic_bh(struct xarray *xa, u32 *id, void *entry,
980 struct xa_limit limit, u32 *next, gfp_t gfp)
981 {
982 int err;
983
984 xa_lock_bh(xa);
985 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
986 xa_unlock_bh(xa);
987
988 return err;
989 }
990
991 /**
992 * xa_alloc_cyclic_irq() - Find somewhere to store this entry in the XArray.
993 * @xa: XArray.
994 * @id: Pointer to ID.
995 * @entry: New entry.
996 * @limit: Range of allocated ID.
997 * @next: Pointer to next ID to allocate.
998 * @gfp: Memory allocation flags.
999 *
1000 * Finds an empty entry in @xa between @limit.min and @limit.max,
1001 * stores the index into the @id pointer, then stores the entry at
1002 * that index. A concurrent lookup will not see an uninitialised @id.
1003 * The search for an empty entry will start at @next and will wrap
1004 * around if necessary.
1005 *
1006 * Context: Process context. Takes and releases the xa_lock while
1007 * disabling interrupts. May sleep if the @gfp flags permit.
1008 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1009 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1010 * allocated or -EBUSY if there are no free entries in @limit.
1011 */
xa_alloc_cyclic_irq(struct xarray * xa,u32 * id,void * entry,struct xa_limit limit,u32 * next,gfp_t gfp)1012 static inline int xa_alloc_cyclic_irq(struct xarray *xa, u32 *id, void *entry,
1013 struct xa_limit limit, u32 *next, gfp_t gfp)
1014 {
1015 int err;
1016
1017 xa_lock_irq(xa);
1018 err = __xa_alloc_cyclic(xa, id, entry, limit, next, gfp);
1019 xa_unlock_irq(xa);
1020
1021 return err;
1022 }
1023
1024 /**
1025 * xa_reserve() - Reserve this index in the XArray.
1026 * @xa: XArray.
1027 * @index: Index into array.
1028 * @gfp: Memory allocation flags.
1029 *
1030 * Ensures there is somewhere to store an entry at @index in the array.
1031 * If there is already something stored at @index, this function does
1032 * nothing. If there was nothing there, the entry is marked as reserved.
1033 * Loading from a reserved entry returns a %NULL pointer.
1034 *
1035 * If you do not use the entry that you have reserved, call xa_release()
1036 * or xa_erase() to free any unnecessary memory.
1037 *
1038 * Context: Any context. Takes and releases the xa_lock.
1039 * May sleep if the @gfp flags permit.
1040 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1041 */
1042 static inline __must_check
xa_reserve(struct xarray * xa,unsigned long index,gfp_t gfp)1043 int xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1044 {
1045 return xa_err(xa_cmpxchg(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1046 }
1047
1048 /**
1049 * xa_reserve_bh() - Reserve this index in the XArray.
1050 * @xa: XArray.
1051 * @index: Index into array.
1052 * @gfp: Memory allocation flags.
1053 *
1054 * A softirq-disabling version of xa_reserve().
1055 *
1056 * Context: Any context. Takes and releases the xa_lock while
1057 * disabling softirqs.
1058 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1059 */
1060 static inline __must_check
xa_reserve_bh(struct xarray * xa,unsigned long index,gfp_t gfp)1061 int xa_reserve_bh(struct xarray *xa, unsigned long index, gfp_t gfp)
1062 {
1063 return xa_err(xa_cmpxchg_bh(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1064 }
1065
1066 /**
1067 * xa_reserve_irq() - Reserve this index in the XArray.
1068 * @xa: XArray.
1069 * @index: Index into array.
1070 * @gfp: Memory allocation flags.
1071 *
1072 * An interrupt-disabling version of xa_reserve().
1073 *
1074 * Context: Process context. Takes and releases the xa_lock while
1075 * disabling interrupts.
1076 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1077 */
1078 static inline __must_check
xa_reserve_irq(struct xarray * xa,unsigned long index,gfp_t gfp)1079 int xa_reserve_irq(struct xarray *xa, unsigned long index, gfp_t gfp)
1080 {
1081 return xa_err(xa_cmpxchg_irq(xa, index, NULL, XA_ZERO_ENTRY, gfp));
1082 }
1083
1084 /**
1085 * xa_release() - Release a reserved entry.
1086 * @xa: XArray.
1087 * @index: Index of entry.
1088 *
1089 * After calling xa_reserve(), you can call this function to release the
1090 * reservation. If the entry at @index has been stored to, this function
1091 * will do nothing.
1092 */
xa_release(struct xarray * xa,unsigned long index)1093 static inline void xa_release(struct xarray *xa, unsigned long index)
1094 {
1095 xa_cmpxchg(xa, index, XA_ZERO_ENTRY, NULL, 0);
1096 }
1097
1098 /* Everything below here is the Advanced API. Proceed with caution. */
1099
1100 /*
1101 * The xarray is constructed out of a set of 'chunks' of pointers. Choosing
1102 * the best chunk size requires some tradeoffs. A power of two recommends
1103 * itself so that we can walk the tree based purely on shifts and masks.
1104 * Generally, the larger the better; as the number of slots per level of the
1105 * tree increases, the less tall the tree needs to be. But that needs to be
1106 * balanced against the memory consumption of each node. On a 64-bit system,
1107 * xa_node is currently 576 bytes, and we get 7 of them per 4kB page. If we
1108 * doubled the number of slots per node, we'd get only 3 nodes per 4kB page.
1109 */
1110 #ifndef XA_CHUNK_SHIFT
1111 #define XA_CHUNK_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
1112 #endif
1113 #define XA_CHUNK_SIZE (1UL << XA_CHUNK_SHIFT)
1114 #define XA_CHUNK_MASK (XA_CHUNK_SIZE - 1)
1115 #define XA_MAX_MARKS 3
1116 #define XA_MARK_LONGS DIV_ROUND_UP(XA_CHUNK_SIZE, BITS_PER_LONG)
1117
1118 /*
1119 * @count is the count of every non-NULL element in the ->slots array
1120 * whether that is a value entry, a retry entry, a user pointer,
1121 * a sibling entry or a pointer to the next level of the tree.
1122 * @nr_values is the count of every element in ->slots which is
1123 * either a value entry or a sibling of a value entry.
1124 */
1125 struct xa_node {
1126 unsigned char shift; /* Bits remaining in each slot */
1127 unsigned char offset; /* Slot offset in parent */
1128 unsigned char count; /* Total entry count */
1129 unsigned char nr_values; /* Value entry count */
1130 struct xa_node __rcu *parent; /* NULL at top of tree */
1131 struct xarray *array; /* The array we belong to */
1132 union {
1133 struct list_head private_list; /* For tree user */
1134 struct rcu_head rcu_head; /* Used when freeing node */
1135 };
1136 void __rcu *slots[XA_CHUNK_SIZE];
1137 union {
1138 unsigned long tags[XA_MAX_MARKS][XA_MARK_LONGS];
1139 unsigned long marks[XA_MAX_MARKS][XA_MARK_LONGS];
1140 };
1141 };
1142
1143 void xa_dump(const struct xarray *);
1144 void xa_dump_node(const struct xa_node *);
1145
1146 #ifdef XA_DEBUG
1147 #define XA_BUG_ON(xa, x) do { \
1148 if (x) { \
1149 xa_dump(xa); \
1150 BUG(); \
1151 } \
1152 } while (0)
1153 #define XA_NODE_BUG_ON(node, x) do { \
1154 if (x) { \
1155 if (node) xa_dump_node(node); \
1156 BUG(); \
1157 } \
1158 } while (0)
1159 #else
1160 #define XA_BUG_ON(xa, x) do { } while (0)
1161 #define XA_NODE_BUG_ON(node, x) do { } while (0)
1162 #endif
1163
1164 /* Private */
xa_head(const struct xarray * xa)1165 static inline void *xa_head(const struct xarray *xa)
1166 {
1167 return rcu_dereference_check(xa->xa_head,
1168 lockdep_is_held(&xa->xa_lock));
1169 }
1170
1171 /* Private */
xa_head_locked(const struct xarray * xa)1172 static inline void *xa_head_locked(const struct xarray *xa)
1173 {
1174 return rcu_dereference_protected(xa->xa_head,
1175 lockdep_is_held(&xa->xa_lock));
1176 }
1177
1178 /* Private */
xa_entry(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1179 static inline void *xa_entry(const struct xarray *xa,
1180 const struct xa_node *node, unsigned int offset)
1181 {
1182 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1183 return rcu_dereference_check(node->slots[offset],
1184 lockdep_is_held(&xa->xa_lock));
1185 }
1186
1187 /* Private */
xa_entry_locked(const struct xarray * xa,const struct xa_node * node,unsigned int offset)1188 static inline void *xa_entry_locked(const struct xarray *xa,
1189 const struct xa_node *node, unsigned int offset)
1190 {
1191 XA_NODE_BUG_ON(node, offset >= XA_CHUNK_SIZE);
1192 return rcu_dereference_protected(node->slots[offset],
1193 lockdep_is_held(&xa->xa_lock));
1194 }
1195
1196 /* Private */
xa_parent(const struct xarray * xa,const struct xa_node * node)1197 static inline struct xa_node *xa_parent(const struct xarray *xa,
1198 const struct xa_node *node)
1199 {
1200 return rcu_dereference_check(node->parent,
1201 lockdep_is_held(&xa->xa_lock));
1202 }
1203
1204 /* Private */
xa_parent_locked(const struct xarray * xa,const struct xa_node * node)1205 static inline struct xa_node *xa_parent_locked(const struct xarray *xa,
1206 const struct xa_node *node)
1207 {
1208 return rcu_dereference_protected(node->parent,
1209 lockdep_is_held(&xa->xa_lock));
1210 }
1211
1212 /* Private */
xa_mk_node(const struct xa_node * node)1213 static inline void *xa_mk_node(const struct xa_node *node)
1214 {
1215 return (void *)((unsigned long)node | 2);
1216 }
1217
1218 /* Private */
xa_to_node(const void * entry)1219 static inline struct xa_node *xa_to_node(const void *entry)
1220 {
1221 return (struct xa_node *)((unsigned long)entry - 2);
1222 }
1223
1224 /* Private */
xa_is_node(const void * entry)1225 static inline bool xa_is_node(const void *entry)
1226 {
1227 return xa_is_internal(entry) && (unsigned long)entry > 4096;
1228 }
1229
1230 /* Private */
xa_mk_sibling(unsigned int offset)1231 static inline void *xa_mk_sibling(unsigned int offset)
1232 {
1233 return xa_mk_internal(offset);
1234 }
1235
1236 /* Private */
xa_to_sibling(const void * entry)1237 static inline unsigned long xa_to_sibling(const void *entry)
1238 {
1239 return xa_to_internal(entry);
1240 }
1241
1242 /**
1243 * xa_is_sibling() - Is the entry a sibling entry?
1244 * @entry: Entry retrieved from the XArray
1245 *
1246 * Return: %true if the entry is a sibling entry.
1247 */
xa_is_sibling(const void * entry)1248 static inline bool xa_is_sibling(const void *entry)
1249 {
1250 return IS_ENABLED(CONFIG_XARRAY_MULTI) && xa_is_internal(entry) &&
1251 (entry < xa_mk_sibling(XA_CHUNK_SIZE - 1));
1252 }
1253
1254 #define XA_RETRY_ENTRY xa_mk_internal(256)
1255
1256 /**
1257 * xa_is_retry() - Is the entry a retry entry?
1258 * @entry: Entry retrieved from the XArray
1259 *
1260 * Return: %true if the entry is a retry entry.
1261 */
xa_is_retry(const void * entry)1262 static inline bool xa_is_retry(const void *entry)
1263 {
1264 return unlikely(entry == XA_RETRY_ENTRY);
1265 }
1266
1267 /**
1268 * xa_is_advanced() - Is the entry only permitted for the advanced API?
1269 * @entry: Entry to be stored in the XArray.
1270 *
1271 * Return: %true if the entry cannot be stored by the normal API.
1272 */
xa_is_advanced(const void * entry)1273 static inline bool xa_is_advanced(const void *entry)
1274 {
1275 return xa_is_internal(entry) && (entry <= XA_RETRY_ENTRY);
1276 }
1277
1278 /**
1279 * typedef xa_update_node_t - A callback function from the XArray.
1280 * @node: The node which is being processed
1281 *
1282 * This function is called every time the XArray updates the count of
1283 * present and value entries in a node. It allows advanced users to
1284 * maintain the private_list in the node.
1285 *
1286 * Context: The xa_lock is held and interrupts may be disabled.
1287 * Implementations should not drop the xa_lock, nor re-enable
1288 * interrupts.
1289 */
1290 typedef void (*xa_update_node_t)(struct xa_node *node);
1291
1292 void xa_delete_node(struct xa_node *, xa_update_node_t);
1293
1294 /*
1295 * The xa_state is opaque to its users. It contains various different pieces
1296 * of state involved in the current operation on the XArray. It should be
1297 * declared on the stack and passed between the various internal routines.
1298 * The various elements in it should not be accessed directly, but only
1299 * through the provided accessor functions. The below documentation is for
1300 * the benefit of those working on the code, not for users of the XArray.
1301 *
1302 * @xa_node usually points to the xa_node containing the slot we're operating
1303 * on (and @xa_offset is the offset in the slots array). If there is a
1304 * single entry in the array at index 0, there are no allocated xa_nodes to
1305 * point to, and so we store %NULL in @xa_node. @xa_node is set to
1306 * the value %XAS_RESTART if the xa_state is not walked to the correct
1307 * position in the tree of nodes for this operation. If an error occurs
1308 * during an operation, it is set to an %XAS_ERROR value. If we run off the
1309 * end of the allocated nodes, it is set to %XAS_BOUNDS.
1310 */
1311 struct xa_state {
1312 struct xarray *xa;
1313 unsigned long xa_index;
1314 unsigned char xa_shift;
1315 unsigned char xa_sibs;
1316 unsigned char xa_offset;
1317 unsigned char xa_pad; /* Helps gcc generate better code */
1318 struct xa_node *xa_node;
1319 struct xa_node *xa_alloc;
1320 xa_update_node_t xa_update;
1321 struct list_lru *xa_lru;
1322 };
1323
1324 /*
1325 * We encode errnos in the xas->xa_node. If an error has happened, we need to
1326 * drop the lock to fix it, and once we've done so the xa_state is invalid.
1327 */
1328 #define XA_ERROR(errno) ((struct xa_node *)(((unsigned long)errno << 2) | 2UL))
1329 #define XAS_BOUNDS ((struct xa_node *)1UL)
1330 #define XAS_RESTART ((struct xa_node *)3UL)
1331
1332 #define __XA_STATE(array, index, shift, sibs) { \
1333 .xa = array, \
1334 .xa_index = index, \
1335 .xa_shift = shift, \
1336 .xa_sibs = sibs, \
1337 .xa_offset = 0, \
1338 .xa_pad = 0, \
1339 .xa_node = XAS_RESTART, \
1340 .xa_alloc = NULL, \
1341 .xa_update = NULL, \
1342 .xa_lru = NULL, \
1343 }
1344
1345 /**
1346 * XA_STATE() - Declare an XArray operation state.
1347 * @name: Name of this operation state (usually xas).
1348 * @array: Array to operate on.
1349 * @index: Initial index of interest.
1350 *
1351 * Declare and initialise an xa_state on the stack.
1352 */
1353 #define XA_STATE(name, array, index) \
1354 struct xa_state name = __XA_STATE(array, index, 0, 0)
1355
1356 /**
1357 * XA_STATE_ORDER() - Declare an XArray operation state.
1358 * @name: Name of this operation state (usually xas).
1359 * @array: Array to operate on.
1360 * @index: Initial index of interest.
1361 * @order: Order of entry.
1362 *
1363 * Declare and initialise an xa_state on the stack. This variant of
1364 * XA_STATE() allows you to specify the 'order' of the element you
1365 * want to operate on.`
1366 */
1367 #define XA_STATE_ORDER(name, array, index, order) \
1368 struct xa_state name = __XA_STATE(array, \
1369 (index >> order) << order, \
1370 order - (order % XA_CHUNK_SHIFT), \
1371 (1U << (order % XA_CHUNK_SHIFT)) - 1)
1372
1373 #define xas_marked(xas, mark) xa_marked((xas)->xa, (mark))
1374 #define xas_trylock(xas) xa_trylock((xas)->xa)
1375 #define xas_lock(xas) xa_lock((xas)->xa)
1376 #define xas_unlock(xas) xa_unlock((xas)->xa)
1377 #define xas_lock_bh(xas) xa_lock_bh((xas)->xa)
1378 #define xas_unlock_bh(xas) xa_unlock_bh((xas)->xa)
1379 #define xas_lock_irq(xas) xa_lock_irq((xas)->xa)
1380 #define xas_unlock_irq(xas) xa_unlock_irq((xas)->xa)
1381 #define xas_lock_irqsave(xas, flags) \
1382 xa_lock_irqsave((xas)->xa, flags)
1383 #define xas_unlock_irqrestore(xas, flags) \
1384 xa_unlock_irqrestore((xas)->xa, flags)
1385
1386 /**
1387 * xas_error() - Return an errno stored in the xa_state.
1388 * @xas: XArray operation state.
1389 *
1390 * Return: 0 if no error has been noted. A negative errno if one has.
1391 */
xas_error(const struct xa_state * xas)1392 static inline int xas_error(const struct xa_state *xas)
1393 {
1394 return xa_err(xas->xa_node);
1395 }
1396
1397 /**
1398 * xas_set_err() - Note an error in the xa_state.
1399 * @xas: XArray operation state.
1400 * @err: Negative error number.
1401 *
1402 * Only call this function with a negative @err; zero or positive errors
1403 * will probably not behave the way you think they should. If you want
1404 * to clear the error from an xa_state, use xas_reset().
1405 */
xas_set_err(struct xa_state * xas,long err)1406 static inline void xas_set_err(struct xa_state *xas, long err)
1407 {
1408 xas->xa_node = XA_ERROR(err);
1409 }
1410
1411 /**
1412 * xas_invalid() - Is the xas in a retry or error state?
1413 * @xas: XArray operation state.
1414 *
1415 * Return: %true if the xas cannot be used for operations.
1416 */
xas_invalid(const struct xa_state * xas)1417 static inline bool xas_invalid(const struct xa_state *xas)
1418 {
1419 return (unsigned long)xas->xa_node & 3;
1420 }
1421
1422 /**
1423 * xas_valid() - Is the xas a valid cursor into the array?
1424 * @xas: XArray operation state.
1425 *
1426 * Return: %true if the xas can be used for operations.
1427 */
xas_valid(const struct xa_state * xas)1428 static inline bool xas_valid(const struct xa_state *xas)
1429 {
1430 return !xas_invalid(xas);
1431 }
1432
1433 /**
1434 * xas_is_node() - Does the xas point to a node?
1435 * @xas: XArray operation state.
1436 *
1437 * Return: %true if the xas currently references a node.
1438 */
xas_is_node(const struct xa_state * xas)1439 static inline bool xas_is_node(const struct xa_state *xas)
1440 {
1441 return xas_valid(xas) && xas->xa_node;
1442 }
1443
1444 /* True if the pointer is something other than a node */
xas_not_node(struct xa_node * node)1445 static inline bool xas_not_node(struct xa_node *node)
1446 {
1447 return ((unsigned long)node & 3) || !node;
1448 }
1449
1450 /* True if the node represents RESTART or an error */
xas_frozen(struct xa_node * node)1451 static inline bool xas_frozen(struct xa_node *node)
1452 {
1453 return (unsigned long)node & 2;
1454 }
1455
1456 /* True if the node represents head-of-tree, RESTART or BOUNDS */
xas_top(struct xa_node * node)1457 static inline bool xas_top(struct xa_node *node)
1458 {
1459 return node <= XAS_RESTART;
1460 }
1461
1462 /**
1463 * xas_reset() - Reset an XArray operation state.
1464 * @xas: XArray operation state.
1465 *
1466 * Resets the error or walk state of the @xas so future walks of the
1467 * array will start from the root. Use this if you have dropped the
1468 * xarray lock and want to reuse the xa_state.
1469 *
1470 * Context: Any context.
1471 */
xas_reset(struct xa_state * xas)1472 static inline void xas_reset(struct xa_state *xas)
1473 {
1474 xas->xa_node = XAS_RESTART;
1475 }
1476
1477 /**
1478 * xas_retry() - Retry the operation if appropriate.
1479 * @xas: XArray operation state.
1480 * @entry: Entry from xarray.
1481 *
1482 * The advanced functions may sometimes return an internal entry, such as
1483 * a retry entry or a zero entry. This function sets up the @xas to restart
1484 * the walk from the head of the array if needed.
1485 *
1486 * Context: Any context.
1487 * Return: true if the operation needs to be retried.
1488 */
xas_retry(struct xa_state * xas,const void * entry)1489 static inline bool xas_retry(struct xa_state *xas, const void *entry)
1490 {
1491 if (xa_is_zero(entry))
1492 return true;
1493 if (!xa_is_retry(entry))
1494 return false;
1495 xas_reset(xas);
1496 return true;
1497 }
1498
1499 void *xas_load(struct xa_state *);
1500 void *xas_store(struct xa_state *, void *entry);
1501 void *xas_find(struct xa_state *, unsigned long max);
1502 void *xas_find_conflict(struct xa_state *);
1503
1504 bool xas_get_mark(const struct xa_state *, xa_mark_t);
1505 void xas_set_mark(const struct xa_state *, xa_mark_t);
1506 void xas_clear_mark(const struct xa_state *, xa_mark_t);
1507 void *xas_find_marked(struct xa_state *, unsigned long max, xa_mark_t);
1508 void xas_init_marks(const struct xa_state *);
1509
1510 bool xas_nomem(struct xa_state *, gfp_t);
1511 void xas_destroy(struct xa_state *);
1512 void xas_pause(struct xa_state *);
1513
1514 void xas_create_range(struct xa_state *);
1515
1516 #ifdef CONFIG_XARRAY_MULTI
1517 int xa_get_order(struct xarray *, unsigned long index);
1518 void xas_split(struct xa_state *, void *entry, unsigned int order);
1519 void xas_split_alloc(struct xa_state *, void *entry, unsigned int order, gfp_t);
1520 #else
xa_get_order(struct xarray * xa,unsigned long index)1521 static inline int xa_get_order(struct xarray *xa, unsigned long index)
1522 {
1523 return 0;
1524 }
1525
xas_split(struct xa_state * xas,void * entry,unsigned int order)1526 static inline void xas_split(struct xa_state *xas, void *entry,
1527 unsigned int order)
1528 {
1529 xas_store(xas, entry);
1530 }
1531
xas_split_alloc(struct xa_state * xas,void * entry,unsigned int order,gfp_t gfp)1532 static inline void xas_split_alloc(struct xa_state *xas, void *entry,
1533 unsigned int order, gfp_t gfp)
1534 {
1535 }
1536 #endif
1537
1538 /**
1539 * xas_reload() - Refetch an entry from the xarray.
1540 * @xas: XArray operation state.
1541 *
1542 * Use this function to check that a previously loaded entry still has
1543 * the same value. This is useful for the lockless pagecache lookup where
1544 * we walk the array with only the RCU lock to protect us, lock the page,
1545 * then check that the page hasn't moved since we looked it up.
1546 *
1547 * The caller guarantees that @xas is still valid. If it may be in an
1548 * error or restart state, call xas_load() instead.
1549 *
1550 * Return: The entry at this location in the xarray.
1551 */
xas_reload(struct xa_state * xas)1552 static inline void *xas_reload(struct xa_state *xas)
1553 {
1554 struct xa_node *node = xas->xa_node;
1555 void *entry;
1556 char offset;
1557
1558 if (!node)
1559 return xa_head(xas->xa);
1560 if (IS_ENABLED(CONFIG_XARRAY_MULTI)) {
1561 offset = (xas->xa_index >> node->shift) & XA_CHUNK_MASK;
1562 entry = xa_entry(xas->xa, node, offset);
1563 if (!xa_is_sibling(entry))
1564 return entry;
1565 offset = xa_to_sibling(entry);
1566 } else {
1567 offset = xas->xa_offset;
1568 }
1569 return xa_entry(xas->xa, node, offset);
1570 }
1571
1572 /**
1573 * xas_set() - Set up XArray operation state for a different index.
1574 * @xas: XArray operation state.
1575 * @index: New index into the XArray.
1576 *
1577 * Move the operation state to refer to a different index. This will
1578 * have the effect of starting a walk from the top; see xas_next()
1579 * to move to an adjacent index.
1580 */
xas_set(struct xa_state * xas,unsigned long index)1581 static inline void xas_set(struct xa_state *xas, unsigned long index)
1582 {
1583 xas->xa_index = index;
1584 xas->xa_node = XAS_RESTART;
1585 }
1586
1587 /**
1588 * xas_advance() - Skip over sibling entries.
1589 * @xas: XArray operation state.
1590 * @index: Index of last sibling entry.
1591 *
1592 * Move the operation state to refer to the last sibling entry.
1593 * This is useful for loops that normally want to see sibling
1594 * entries but sometimes want to skip them. Use xas_set() if you
1595 * want to move to an index which is not part of this entry.
1596 */
xas_advance(struct xa_state * xas,unsigned long index)1597 static inline void xas_advance(struct xa_state *xas, unsigned long index)
1598 {
1599 unsigned char shift = xas_is_node(xas) ? xas->xa_node->shift : 0;
1600
1601 xas->xa_index = index;
1602 xas->xa_offset = (index >> shift) & XA_CHUNK_MASK;
1603 }
1604
1605 /**
1606 * xas_set_order() - Set up XArray operation state for a multislot entry.
1607 * @xas: XArray operation state.
1608 * @index: Target of the operation.
1609 * @order: Entry occupies 2^@order indices.
1610 */
xas_set_order(struct xa_state * xas,unsigned long index,unsigned int order)1611 static inline void xas_set_order(struct xa_state *xas, unsigned long index,
1612 unsigned int order)
1613 {
1614 #ifdef CONFIG_XARRAY_MULTI
1615 xas->xa_index = order < BITS_PER_LONG ? (index >> order) << order : 0;
1616 xas->xa_shift = order - (order % XA_CHUNK_SHIFT);
1617 xas->xa_sibs = (1 << (order % XA_CHUNK_SHIFT)) - 1;
1618 xas->xa_node = XAS_RESTART;
1619 #else
1620 BUG_ON(order > 0);
1621 xas_set(xas, index);
1622 #endif
1623 }
1624
1625 /**
1626 * xas_set_update() - Set up XArray operation state for a callback.
1627 * @xas: XArray operation state.
1628 * @update: Function to call when updating a node.
1629 *
1630 * The XArray can notify a caller after it has updated an xa_node.
1631 * This is advanced functionality and is only needed by the page cache.
1632 */
xas_set_update(struct xa_state * xas,xa_update_node_t update)1633 static inline void xas_set_update(struct xa_state *xas, xa_update_node_t update)
1634 {
1635 xas->xa_update = update;
1636 }
1637
xas_set_lru(struct xa_state * xas,struct list_lru * lru)1638 static inline void xas_set_lru(struct xa_state *xas, struct list_lru *lru)
1639 {
1640 xas->xa_lru = lru;
1641 }
1642
1643 /**
1644 * xas_next_entry() - Advance iterator to next present entry.
1645 * @xas: XArray operation state.
1646 * @max: Highest index to return.
1647 *
1648 * xas_next_entry() is an inline function to optimise xarray traversal for
1649 * speed. It is equivalent to calling xas_find(), and will call xas_find()
1650 * for all the hard cases.
1651 *
1652 * Return: The next present entry after the one currently referred to by @xas.
1653 */
xas_next_entry(struct xa_state * xas,unsigned long max)1654 static inline void *xas_next_entry(struct xa_state *xas, unsigned long max)
1655 {
1656 struct xa_node *node = xas->xa_node;
1657 void *entry;
1658
1659 if (unlikely(xas_not_node(node) || node->shift ||
1660 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)))
1661 return xas_find(xas, max);
1662
1663 do {
1664 if (unlikely(xas->xa_index >= max))
1665 return xas_find(xas, max);
1666 if (unlikely(xas->xa_offset == XA_CHUNK_MASK))
1667 return xas_find(xas, max);
1668 entry = xa_entry(xas->xa, node, xas->xa_offset + 1);
1669 if (unlikely(xa_is_internal(entry)))
1670 return xas_find(xas, max);
1671 xas->xa_offset++;
1672 xas->xa_index++;
1673 } while (!entry);
1674
1675 return entry;
1676 }
1677
1678 /* Private */
xas_find_chunk(struct xa_state * xas,bool advance,xa_mark_t mark)1679 static inline unsigned int xas_find_chunk(struct xa_state *xas, bool advance,
1680 xa_mark_t mark)
1681 {
1682 unsigned long *addr = xas->xa_node->marks[(__force unsigned)mark];
1683 unsigned int offset = xas->xa_offset;
1684
1685 if (advance)
1686 offset++;
1687 if (XA_CHUNK_SIZE == BITS_PER_LONG) {
1688 if (offset < XA_CHUNK_SIZE) {
1689 unsigned long data = *addr & (~0UL << offset);
1690 if (data)
1691 return __ffs(data);
1692 }
1693 return XA_CHUNK_SIZE;
1694 }
1695
1696 return find_next_bit(addr, XA_CHUNK_SIZE, offset);
1697 }
1698
1699 /**
1700 * xas_next_marked() - Advance iterator to next marked entry.
1701 * @xas: XArray operation state.
1702 * @max: Highest index to return.
1703 * @mark: Mark to search for.
1704 *
1705 * xas_next_marked() is an inline function to optimise xarray traversal for
1706 * speed. It is equivalent to calling xas_find_marked(), and will call
1707 * xas_find_marked() for all the hard cases.
1708 *
1709 * Return: The next marked entry after the one currently referred to by @xas.
1710 */
xas_next_marked(struct xa_state * xas,unsigned long max,xa_mark_t mark)1711 static inline void *xas_next_marked(struct xa_state *xas, unsigned long max,
1712 xa_mark_t mark)
1713 {
1714 struct xa_node *node = xas->xa_node;
1715 void *entry;
1716 unsigned int offset;
1717
1718 if (unlikely(xas_not_node(node) || node->shift))
1719 return xas_find_marked(xas, max, mark);
1720 offset = xas_find_chunk(xas, true, mark);
1721 xas->xa_offset = offset;
1722 xas->xa_index = (xas->xa_index & ~XA_CHUNK_MASK) + offset;
1723 if (xas->xa_index > max)
1724 return NULL;
1725 if (offset == XA_CHUNK_SIZE)
1726 return xas_find_marked(xas, max, mark);
1727 entry = xa_entry(xas->xa, node, offset);
1728 if (!entry)
1729 return xas_find_marked(xas, max, mark);
1730 return entry;
1731 }
1732
1733 /*
1734 * If iterating while holding a lock, drop the lock and reschedule
1735 * every %XA_CHECK_SCHED loops.
1736 */
1737 enum {
1738 XA_CHECK_SCHED = 4096,
1739 };
1740
1741 /**
1742 * xas_for_each() - Iterate over a range of an XArray.
1743 * @xas: XArray operation state.
1744 * @entry: Entry retrieved from the array.
1745 * @max: Maximum index to retrieve from array.
1746 *
1747 * The loop body will be executed for each entry present in the xarray
1748 * between the current xas position and @max. @entry will be set to
1749 * the entry retrieved from the xarray. It is safe to delete entries
1750 * from the array in the loop body. You should hold either the RCU lock
1751 * or the xa_lock while iterating. If you need to drop the lock, call
1752 * xas_pause() first.
1753 */
1754 #define xas_for_each(xas, entry, max) \
1755 for (entry = xas_find(xas, max); entry; \
1756 entry = xas_next_entry(xas, max))
1757
1758 /**
1759 * xas_for_each_marked() - Iterate over a range of an XArray.
1760 * @xas: XArray operation state.
1761 * @entry: Entry retrieved from the array.
1762 * @max: Maximum index to retrieve from array.
1763 * @mark: Mark to search for.
1764 *
1765 * The loop body will be executed for each marked entry in the xarray
1766 * between the current xas position and @max. @entry will be set to
1767 * the entry retrieved from the xarray. It is safe to delete entries
1768 * from the array in the loop body. You should hold either the RCU lock
1769 * or the xa_lock while iterating. If you need to drop the lock, call
1770 * xas_pause() first.
1771 */
1772 #define xas_for_each_marked(xas, entry, max, mark) \
1773 for (entry = xas_find_marked(xas, max, mark); entry; \
1774 entry = xas_next_marked(xas, max, mark))
1775
1776 /**
1777 * xas_for_each_conflict() - Iterate over a range of an XArray.
1778 * @xas: XArray operation state.
1779 * @entry: Entry retrieved from the array.
1780 *
1781 * The loop body will be executed for each entry in the XArray that
1782 * lies within the range specified by @xas. If the loop terminates
1783 * normally, @entry will be %NULL. The user may break out of the loop,
1784 * which will leave @entry set to the conflicting entry. The caller
1785 * may also call xa_set_err() to exit the loop while setting an error
1786 * to record the reason.
1787 */
1788 #define xas_for_each_conflict(xas, entry) \
1789 while ((entry = xas_find_conflict(xas)))
1790
1791 void *__xas_next(struct xa_state *);
1792 void *__xas_prev(struct xa_state *);
1793
1794 /**
1795 * xas_prev() - Move iterator to previous index.
1796 * @xas: XArray operation state.
1797 *
1798 * If the @xas was in an error state, it will remain in an error state
1799 * and this function will return %NULL. If the @xas has never been walked,
1800 * it will have the effect of calling xas_load(). Otherwise one will be
1801 * subtracted from the index and the state will be walked to the correct
1802 * location in the array for the next operation.
1803 *
1804 * If the iterator was referencing index 0, this function wraps
1805 * around to %ULONG_MAX.
1806 *
1807 * Return: The entry at the new index. This may be %NULL or an internal
1808 * entry.
1809 */
xas_prev(struct xa_state * xas)1810 static inline void *xas_prev(struct xa_state *xas)
1811 {
1812 struct xa_node *node = xas->xa_node;
1813
1814 if (unlikely(xas_not_node(node) || node->shift ||
1815 xas->xa_offset == 0))
1816 return __xas_prev(xas);
1817
1818 xas->xa_index--;
1819 xas->xa_offset--;
1820 return xa_entry(xas->xa, node, xas->xa_offset);
1821 }
1822
1823 /**
1824 * xas_next() - Move state to next index.
1825 * @xas: XArray operation state.
1826 *
1827 * If the @xas was in an error state, it will remain in an error state
1828 * and this function will return %NULL. If the @xas has never been walked,
1829 * it will have the effect of calling xas_load(). Otherwise one will be
1830 * added to the index and the state will be walked to the correct
1831 * location in the array for the next operation.
1832 *
1833 * If the iterator was referencing index %ULONG_MAX, this function wraps
1834 * around to 0.
1835 *
1836 * Return: The entry at the new index. This may be %NULL or an internal
1837 * entry.
1838 */
xas_next(struct xa_state * xas)1839 static inline void *xas_next(struct xa_state *xas)
1840 {
1841 struct xa_node *node = xas->xa_node;
1842
1843 if (unlikely(xas_not_node(node) || node->shift ||
1844 xas->xa_offset == XA_CHUNK_MASK))
1845 return __xas_next(xas);
1846
1847 xas->xa_index++;
1848 xas->xa_offset++;
1849 return xa_entry(xas->xa, node, xas->xa_offset);
1850 }
1851
1852 #endif /* _LINUX_XARRAY_H */
1853