1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 .enabled = 1,
52 .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61 * from just a typename, as opposed to an actual function.
62 */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75 DEFINE_STATIC_CALL_NULL(x86_pmu_set_period, *x86_pmu.set_period);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_update, *x86_pmu.update);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
78
79 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
82
83 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
85 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
86
87 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
88 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
89
90 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
91 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
92
93 /*
94 * This one is magic, it will get called even when PMU init fails (because
95 * there is no PMU), in which case it should simply return NULL.
96 */
97 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
98
99 u64 __read_mostly hw_cache_event_ids
100 [PERF_COUNT_HW_CACHE_MAX]
101 [PERF_COUNT_HW_CACHE_OP_MAX]
102 [PERF_COUNT_HW_CACHE_RESULT_MAX];
103 u64 __read_mostly hw_cache_extra_regs
104 [PERF_COUNT_HW_CACHE_MAX]
105 [PERF_COUNT_HW_CACHE_OP_MAX]
106 [PERF_COUNT_HW_CACHE_RESULT_MAX];
107
108 /*
109 * Propagate event elapsed time into the generic event.
110 * Can only be executed on the CPU where the event is active.
111 * Returns the delta events processed.
112 */
x86_perf_event_update(struct perf_event * event)113 u64 x86_perf_event_update(struct perf_event *event)
114 {
115 struct hw_perf_event *hwc = &event->hw;
116 int shift = 64 - x86_pmu.cntval_bits;
117 u64 prev_raw_count, new_raw_count;
118 u64 delta;
119
120 if (unlikely(!hwc->event_base))
121 return 0;
122
123 /*
124 * Careful: an NMI might modify the previous event value.
125 *
126 * Our tactic to handle this is to first atomically read and
127 * exchange a new raw count - then add that new-prev delta
128 * count to the generic event atomically:
129 */
130 again:
131 prev_raw_count = local64_read(&hwc->prev_count);
132 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
133
134 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
135 new_raw_count) != prev_raw_count)
136 goto again;
137
138 /*
139 * Now we have the new raw value and have updated the prev
140 * timestamp already. We can now calculate the elapsed delta
141 * (event-)time and add that to the generic event.
142 *
143 * Careful, not all hw sign-extends above the physical width
144 * of the count.
145 */
146 delta = (new_raw_count << shift) - (prev_raw_count << shift);
147 delta >>= shift;
148
149 local64_add(delta, &event->count);
150 local64_sub(delta, &hwc->period_left);
151
152 return new_raw_count;
153 }
154
155 /*
156 * Find and validate any extra registers to set up.
157 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)158 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
159 {
160 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
161 struct hw_perf_event_extra *reg;
162 struct extra_reg *er;
163
164 reg = &event->hw.extra_reg;
165
166 if (!extra_regs)
167 return 0;
168
169 for (er = extra_regs; er->msr; er++) {
170 if (er->event != (config & er->config_mask))
171 continue;
172 if (event->attr.config1 & ~er->valid_mask)
173 return -EINVAL;
174 /* Check if the extra msrs can be safely accessed*/
175 if (!er->extra_msr_access)
176 return -ENXIO;
177
178 reg->idx = er->idx;
179 reg->config = event->attr.config1;
180 reg->reg = er->msr;
181 break;
182 }
183 return 0;
184 }
185
186 static atomic_t active_events;
187 static atomic_t pmc_refcount;
188 static DEFINE_MUTEX(pmc_reserve_mutex);
189
190 #ifdef CONFIG_X86_LOCAL_APIC
191
get_possible_num_counters(void)192 static inline int get_possible_num_counters(void)
193 {
194 int i, num_counters = x86_pmu.num_counters;
195
196 if (!is_hybrid())
197 return num_counters;
198
199 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
200 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
201
202 return num_counters;
203 }
204
reserve_pmc_hardware(void)205 static bool reserve_pmc_hardware(void)
206 {
207 int i, num_counters = get_possible_num_counters();
208
209 for (i = 0; i < num_counters; i++) {
210 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
211 goto perfctr_fail;
212 }
213
214 for (i = 0; i < num_counters; i++) {
215 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
216 goto eventsel_fail;
217 }
218
219 return true;
220
221 eventsel_fail:
222 for (i--; i >= 0; i--)
223 release_evntsel_nmi(x86_pmu_config_addr(i));
224
225 i = num_counters;
226
227 perfctr_fail:
228 for (i--; i >= 0; i--)
229 release_perfctr_nmi(x86_pmu_event_addr(i));
230
231 return false;
232 }
233
release_pmc_hardware(void)234 static void release_pmc_hardware(void)
235 {
236 int i, num_counters = get_possible_num_counters();
237
238 for (i = 0; i < num_counters; i++) {
239 release_perfctr_nmi(x86_pmu_event_addr(i));
240 release_evntsel_nmi(x86_pmu_config_addr(i));
241 }
242 }
243
244 #else
245
reserve_pmc_hardware(void)246 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)247 static void release_pmc_hardware(void) {}
248
249 #endif
250
check_hw_exists(struct pmu * pmu,int num_counters,int num_counters_fixed)251 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
252 {
253 u64 val, val_fail = -1, val_new= ~0;
254 int i, reg, reg_fail = -1, ret = 0;
255 int bios_fail = 0;
256 int reg_safe = -1;
257
258 /*
259 * Check to see if the BIOS enabled any of the counters, if so
260 * complain and bail.
261 */
262 for (i = 0; i < num_counters; i++) {
263 reg = x86_pmu_config_addr(i);
264 ret = rdmsrl_safe(reg, &val);
265 if (ret)
266 goto msr_fail;
267 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
268 bios_fail = 1;
269 val_fail = val;
270 reg_fail = reg;
271 } else {
272 reg_safe = i;
273 }
274 }
275
276 if (num_counters_fixed) {
277 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
278 ret = rdmsrl_safe(reg, &val);
279 if (ret)
280 goto msr_fail;
281 for (i = 0; i < num_counters_fixed; i++) {
282 if (fixed_counter_disabled(i, pmu))
283 continue;
284 if (val & (0x03ULL << i*4)) {
285 bios_fail = 1;
286 val_fail = val;
287 reg_fail = reg;
288 }
289 }
290 }
291
292 /*
293 * If all the counters are enabled, the below test will always
294 * fail. The tools will also become useless in this scenario.
295 * Just fail and disable the hardware counters.
296 */
297
298 if (reg_safe == -1) {
299 reg = reg_safe;
300 goto msr_fail;
301 }
302
303 /*
304 * Read the current value, change it and read it back to see if it
305 * matches, this is needed to detect certain hardware emulators
306 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
307 */
308 reg = x86_pmu_event_addr(reg_safe);
309 if (rdmsrl_safe(reg, &val))
310 goto msr_fail;
311 val ^= 0xffffUL;
312 ret = wrmsrl_safe(reg, val);
313 ret |= rdmsrl_safe(reg, &val_new);
314 if (ret || val != val_new)
315 goto msr_fail;
316
317 /*
318 * We still allow the PMU driver to operate:
319 */
320 if (bios_fail) {
321 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
322 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
323 reg_fail, val_fail);
324 }
325
326 return true;
327
328 msr_fail:
329 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
330 pr_cont("PMU not available due to virtualization, using software events only.\n");
331 } else {
332 pr_cont("Broken PMU hardware detected, using software events only.\n");
333 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
334 reg, val_new);
335 }
336
337 return false;
338 }
339
hw_perf_event_destroy(struct perf_event * event)340 static void hw_perf_event_destroy(struct perf_event *event)
341 {
342 x86_release_hardware();
343 atomic_dec(&active_events);
344 }
345
hw_perf_lbr_event_destroy(struct perf_event * event)346 void hw_perf_lbr_event_destroy(struct perf_event *event)
347 {
348 hw_perf_event_destroy(event);
349
350 /* undo the lbr/bts event accounting */
351 x86_del_exclusive(x86_lbr_exclusive_lbr);
352 }
353
x86_pmu_initialized(void)354 static inline int x86_pmu_initialized(void)
355 {
356 return x86_pmu.handle_irq != NULL;
357 }
358
359 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)360 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
361 {
362 struct perf_event_attr *attr = &event->attr;
363 unsigned int cache_type, cache_op, cache_result;
364 u64 config, val;
365
366 config = attr->config;
367
368 cache_type = (config >> 0) & 0xff;
369 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
370 return -EINVAL;
371 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
372
373 cache_op = (config >> 8) & 0xff;
374 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
375 return -EINVAL;
376 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
377
378 cache_result = (config >> 16) & 0xff;
379 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
380 return -EINVAL;
381 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
382
383 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
384 if (val == 0)
385 return -ENOENT;
386
387 if (val == -1)
388 return -EINVAL;
389
390 hwc->config |= val;
391 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
392 return x86_pmu_extra_regs(val, event);
393 }
394
x86_reserve_hardware(void)395 int x86_reserve_hardware(void)
396 {
397 int err = 0;
398
399 if (!atomic_inc_not_zero(&pmc_refcount)) {
400 mutex_lock(&pmc_reserve_mutex);
401 if (atomic_read(&pmc_refcount) == 0) {
402 if (!reserve_pmc_hardware()) {
403 err = -EBUSY;
404 } else {
405 reserve_ds_buffers();
406 reserve_lbr_buffers();
407 }
408 }
409 if (!err)
410 atomic_inc(&pmc_refcount);
411 mutex_unlock(&pmc_reserve_mutex);
412 }
413
414 return err;
415 }
416
x86_release_hardware(void)417 void x86_release_hardware(void)
418 {
419 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
420 release_pmc_hardware();
421 release_ds_buffers();
422 release_lbr_buffers();
423 mutex_unlock(&pmc_reserve_mutex);
424 }
425 }
426
427 /*
428 * Check if we can create event of a certain type (that no conflicting events
429 * are present).
430 */
x86_add_exclusive(unsigned int what)431 int x86_add_exclusive(unsigned int what)
432 {
433 int i;
434
435 /*
436 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
437 * LBR and BTS are still mutually exclusive.
438 */
439 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
440 goto out;
441
442 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
443 mutex_lock(&pmc_reserve_mutex);
444 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
445 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
446 goto fail_unlock;
447 }
448 atomic_inc(&x86_pmu.lbr_exclusive[what]);
449 mutex_unlock(&pmc_reserve_mutex);
450 }
451
452 out:
453 atomic_inc(&active_events);
454 return 0;
455
456 fail_unlock:
457 mutex_unlock(&pmc_reserve_mutex);
458 return -EBUSY;
459 }
460
x86_del_exclusive(unsigned int what)461 void x86_del_exclusive(unsigned int what)
462 {
463 atomic_dec(&active_events);
464
465 /*
466 * See the comment in x86_add_exclusive().
467 */
468 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
469 return;
470
471 atomic_dec(&x86_pmu.lbr_exclusive[what]);
472 }
473
x86_setup_perfctr(struct perf_event * event)474 int x86_setup_perfctr(struct perf_event *event)
475 {
476 struct perf_event_attr *attr = &event->attr;
477 struct hw_perf_event *hwc = &event->hw;
478 u64 config;
479
480 if (!is_sampling_event(event)) {
481 hwc->sample_period = x86_pmu.max_period;
482 hwc->last_period = hwc->sample_period;
483 local64_set(&hwc->period_left, hwc->sample_period);
484 }
485
486 if (attr->type == event->pmu->type)
487 return x86_pmu_extra_regs(event->attr.config, event);
488
489 if (attr->type == PERF_TYPE_HW_CACHE)
490 return set_ext_hw_attr(hwc, event);
491
492 if (attr->config >= x86_pmu.max_events)
493 return -EINVAL;
494
495 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
496
497 /*
498 * The generic map:
499 */
500 config = x86_pmu.event_map(attr->config);
501
502 if (config == 0)
503 return -ENOENT;
504
505 if (config == -1LL)
506 return -EINVAL;
507
508 hwc->config |= config;
509
510 return 0;
511 }
512
513 /*
514 * check that branch_sample_type is compatible with
515 * settings needed for precise_ip > 1 which implies
516 * using the LBR to capture ALL taken branches at the
517 * priv levels of the measurement
518 */
precise_br_compat(struct perf_event * event)519 static inline int precise_br_compat(struct perf_event *event)
520 {
521 u64 m = event->attr.branch_sample_type;
522 u64 b = 0;
523
524 /* must capture all branches */
525 if (!(m & PERF_SAMPLE_BRANCH_ANY))
526 return 0;
527
528 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
529
530 if (!event->attr.exclude_user)
531 b |= PERF_SAMPLE_BRANCH_USER;
532
533 if (!event->attr.exclude_kernel)
534 b |= PERF_SAMPLE_BRANCH_KERNEL;
535
536 /*
537 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
538 */
539
540 return m == b;
541 }
542
x86_pmu_max_precise(void)543 int x86_pmu_max_precise(void)
544 {
545 int precise = 0;
546
547 /* Support for constant skid */
548 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
549 precise++;
550
551 /* Support for IP fixup */
552 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
553 precise++;
554
555 if (x86_pmu.pebs_prec_dist)
556 precise++;
557 }
558 return precise;
559 }
560
x86_pmu_hw_config(struct perf_event * event)561 int x86_pmu_hw_config(struct perf_event *event)
562 {
563 if (event->attr.precise_ip) {
564 int precise = x86_pmu_max_precise();
565
566 if (event->attr.precise_ip > precise)
567 return -EOPNOTSUPP;
568
569 /* There's no sense in having PEBS for non sampling events: */
570 if (!is_sampling_event(event))
571 return -EINVAL;
572 }
573 /*
574 * check that PEBS LBR correction does not conflict with
575 * whatever the user is asking with attr->branch_sample_type
576 */
577 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
578 u64 *br_type = &event->attr.branch_sample_type;
579
580 if (has_branch_stack(event)) {
581 if (!precise_br_compat(event))
582 return -EOPNOTSUPP;
583
584 /* branch_sample_type is compatible */
585
586 } else {
587 /*
588 * user did not specify branch_sample_type
589 *
590 * For PEBS fixups, we capture all
591 * the branches at the priv level of the
592 * event.
593 */
594 *br_type = PERF_SAMPLE_BRANCH_ANY;
595
596 if (!event->attr.exclude_user)
597 *br_type |= PERF_SAMPLE_BRANCH_USER;
598
599 if (!event->attr.exclude_kernel)
600 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
601 }
602 }
603
604 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
605 event->attach_state |= PERF_ATTACH_TASK_DATA;
606
607 /*
608 * Generate PMC IRQs:
609 * (keep 'enabled' bit clear for now)
610 */
611 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
612
613 /*
614 * Count user and OS events unless requested not to
615 */
616 if (!event->attr.exclude_user)
617 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
618 if (!event->attr.exclude_kernel)
619 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
620
621 if (event->attr.type == event->pmu->type)
622 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
623
624 if (event->attr.sample_period && x86_pmu.limit_period) {
625 s64 left = event->attr.sample_period;
626 x86_pmu.limit_period(event, &left);
627 if (left > event->attr.sample_period)
628 return -EINVAL;
629 }
630
631 /* sample_regs_user never support XMM registers */
632 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
633 return -EINVAL;
634 /*
635 * Besides the general purpose registers, XMM registers may
636 * be collected in PEBS on some platforms, e.g. Icelake
637 */
638 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
639 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
640 return -EINVAL;
641
642 if (!event->attr.precise_ip)
643 return -EINVAL;
644 }
645
646 return x86_setup_perfctr(event);
647 }
648
649 /*
650 * Setup the hardware configuration for a given attr_type
651 */
__x86_pmu_event_init(struct perf_event * event)652 static int __x86_pmu_event_init(struct perf_event *event)
653 {
654 int err;
655
656 if (!x86_pmu_initialized())
657 return -ENODEV;
658
659 err = x86_reserve_hardware();
660 if (err)
661 return err;
662
663 atomic_inc(&active_events);
664 event->destroy = hw_perf_event_destroy;
665
666 event->hw.idx = -1;
667 event->hw.last_cpu = -1;
668 event->hw.last_tag = ~0ULL;
669
670 /* mark unused */
671 event->hw.extra_reg.idx = EXTRA_REG_NONE;
672 event->hw.branch_reg.idx = EXTRA_REG_NONE;
673
674 return x86_pmu.hw_config(event);
675 }
676
x86_pmu_disable_all(void)677 void x86_pmu_disable_all(void)
678 {
679 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
680 int idx;
681
682 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
683 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
684 u64 val;
685
686 if (!test_bit(idx, cpuc->active_mask))
687 continue;
688 rdmsrl(x86_pmu_config_addr(idx), val);
689 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
690 continue;
691 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
692 wrmsrl(x86_pmu_config_addr(idx), val);
693 if (is_counter_pair(hwc))
694 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
695 }
696 }
697
perf_guest_get_msrs(int * nr,void * data)698 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
699 {
700 return static_call(x86_pmu_guest_get_msrs)(nr, data);
701 }
702 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
703
704 /*
705 * There may be PMI landing after enabled=0. The PMI hitting could be before or
706 * after disable_all.
707 *
708 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
709 * It will not be re-enabled in the NMI handler again, because enabled=0. After
710 * handling the NMI, disable_all will be called, which will not change the
711 * state either. If PMI hits after disable_all, the PMU is already disabled
712 * before entering NMI handler. The NMI handler will not change the state
713 * either.
714 *
715 * So either situation is harmless.
716 */
x86_pmu_disable(struct pmu * pmu)717 static void x86_pmu_disable(struct pmu *pmu)
718 {
719 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
720
721 if (!x86_pmu_initialized())
722 return;
723
724 if (!cpuc->enabled)
725 return;
726
727 cpuc->n_added = 0;
728 cpuc->enabled = 0;
729 barrier();
730
731 static_call(x86_pmu_disable_all)();
732 }
733
x86_pmu_enable_all(int added)734 void x86_pmu_enable_all(int added)
735 {
736 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
737 int idx;
738
739 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
740 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
741
742 if (!test_bit(idx, cpuc->active_mask))
743 continue;
744
745 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
746 }
747 }
748
is_x86_event(struct perf_event * event)749 static inline int is_x86_event(struct perf_event *event)
750 {
751 int i;
752
753 if (!is_hybrid())
754 return event->pmu == &pmu;
755
756 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
757 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
758 return true;
759 }
760
761 return false;
762 }
763
x86_get_pmu(unsigned int cpu)764 struct pmu *x86_get_pmu(unsigned int cpu)
765 {
766 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
767
768 /*
769 * All CPUs of the hybrid type have been offline.
770 * The x86_get_pmu() should not be invoked.
771 */
772 if (WARN_ON_ONCE(!cpuc->pmu))
773 return &pmu;
774
775 return cpuc->pmu;
776 }
777 /*
778 * Event scheduler state:
779 *
780 * Assign events iterating over all events and counters, beginning
781 * with events with least weights first. Keep the current iterator
782 * state in struct sched_state.
783 */
784 struct sched_state {
785 int weight;
786 int event; /* event index */
787 int counter; /* counter index */
788 int unassigned; /* number of events to be assigned left */
789 int nr_gp; /* number of GP counters used */
790 u64 used;
791 };
792
793 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
794 #define SCHED_STATES_MAX 2
795
796 struct perf_sched {
797 int max_weight;
798 int max_events;
799 int max_gp;
800 int saved_states;
801 struct event_constraint **constraints;
802 struct sched_state state;
803 struct sched_state saved[SCHED_STATES_MAX];
804 };
805
806 /*
807 * Initialize iterator that runs through all events and counters.
808 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)809 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
810 int num, int wmin, int wmax, int gpmax)
811 {
812 int idx;
813
814 memset(sched, 0, sizeof(*sched));
815 sched->max_events = num;
816 sched->max_weight = wmax;
817 sched->max_gp = gpmax;
818 sched->constraints = constraints;
819
820 for (idx = 0; idx < num; idx++) {
821 if (constraints[idx]->weight == wmin)
822 break;
823 }
824
825 sched->state.event = idx; /* start with min weight */
826 sched->state.weight = wmin;
827 sched->state.unassigned = num;
828 }
829
perf_sched_save_state(struct perf_sched * sched)830 static void perf_sched_save_state(struct perf_sched *sched)
831 {
832 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
833 return;
834
835 sched->saved[sched->saved_states] = sched->state;
836 sched->saved_states++;
837 }
838
perf_sched_restore_state(struct perf_sched * sched)839 static bool perf_sched_restore_state(struct perf_sched *sched)
840 {
841 if (!sched->saved_states)
842 return false;
843
844 sched->saved_states--;
845 sched->state = sched->saved[sched->saved_states];
846
847 /* this assignment didn't work out */
848 /* XXX broken vs EVENT_PAIR */
849 sched->state.used &= ~BIT_ULL(sched->state.counter);
850
851 /* try the next one */
852 sched->state.counter++;
853
854 return true;
855 }
856
857 /*
858 * Select a counter for the current event to schedule. Return true on
859 * success.
860 */
__perf_sched_find_counter(struct perf_sched * sched)861 static bool __perf_sched_find_counter(struct perf_sched *sched)
862 {
863 struct event_constraint *c;
864 int idx;
865
866 if (!sched->state.unassigned)
867 return false;
868
869 if (sched->state.event >= sched->max_events)
870 return false;
871
872 c = sched->constraints[sched->state.event];
873 /* Prefer fixed purpose counters */
874 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
875 idx = INTEL_PMC_IDX_FIXED;
876 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
877 u64 mask = BIT_ULL(idx);
878
879 if (sched->state.used & mask)
880 continue;
881
882 sched->state.used |= mask;
883 goto done;
884 }
885 }
886
887 /* Grab the first unused counter starting with idx */
888 idx = sched->state.counter;
889 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
890 u64 mask = BIT_ULL(idx);
891
892 if (c->flags & PERF_X86_EVENT_PAIR)
893 mask |= mask << 1;
894
895 if (sched->state.used & mask)
896 continue;
897
898 if (sched->state.nr_gp++ >= sched->max_gp)
899 return false;
900
901 sched->state.used |= mask;
902 goto done;
903 }
904
905 return false;
906
907 done:
908 sched->state.counter = idx;
909
910 if (c->overlap)
911 perf_sched_save_state(sched);
912
913 return true;
914 }
915
perf_sched_find_counter(struct perf_sched * sched)916 static bool perf_sched_find_counter(struct perf_sched *sched)
917 {
918 while (!__perf_sched_find_counter(sched)) {
919 if (!perf_sched_restore_state(sched))
920 return false;
921 }
922
923 return true;
924 }
925
926 /*
927 * Go through all unassigned events and find the next one to schedule.
928 * Take events with the least weight first. Return true on success.
929 */
perf_sched_next_event(struct perf_sched * sched)930 static bool perf_sched_next_event(struct perf_sched *sched)
931 {
932 struct event_constraint *c;
933
934 if (!sched->state.unassigned || !--sched->state.unassigned)
935 return false;
936
937 do {
938 /* next event */
939 sched->state.event++;
940 if (sched->state.event >= sched->max_events) {
941 /* next weight */
942 sched->state.event = 0;
943 sched->state.weight++;
944 if (sched->state.weight > sched->max_weight)
945 return false;
946 }
947 c = sched->constraints[sched->state.event];
948 } while (c->weight != sched->state.weight);
949
950 sched->state.counter = 0; /* start with first counter */
951
952 return true;
953 }
954
955 /*
956 * Assign a counter for each event.
957 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)958 int perf_assign_events(struct event_constraint **constraints, int n,
959 int wmin, int wmax, int gpmax, int *assign)
960 {
961 struct perf_sched sched;
962
963 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
964
965 do {
966 if (!perf_sched_find_counter(&sched))
967 break; /* failed */
968 if (assign)
969 assign[sched.state.event] = sched.state.counter;
970 } while (perf_sched_next_event(&sched));
971
972 return sched.state.unassigned;
973 }
974 EXPORT_SYMBOL_GPL(perf_assign_events);
975
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)976 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
977 {
978 int num_counters = hybrid(cpuc->pmu, num_counters);
979 struct event_constraint *c;
980 struct perf_event *e;
981 int n0, i, wmin, wmax, unsched = 0;
982 struct hw_perf_event *hwc;
983 u64 used_mask = 0;
984
985 /*
986 * Compute the number of events already present; see x86_pmu_add(),
987 * validate_group() and x86_pmu_commit_txn(). For the former two
988 * cpuc->n_events hasn't been updated yet, while for the latter
989 * cpuc->n_txn contains the number of events added in the current
990 * transaction.
991 */
992 n0 = cpuc->n_events;
993 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
994 n0 -= cpuc->n_txn;
995
996 static_call_cond(x86_pmu_start_scheduling)(cpuc);
997
998 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
999 c = cpuc->event_constraint[i];
1000
1001 /*
1002 * Previously scheduled events should have a cached constraint,
1003 * while new events should not have one.
1004 */
1005 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1006
1007 /*
1008 * Request constraints for new events; or for those events that
1009 * have a dynamic constraint -- for those the constraint can
1010 * change due to external factors (sibling state, allow_tfa).
1011 */
1012 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1013 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1014 cpuc->event_constraint[i] = c;
1015 }
1016
1017 wmin = min(wmin, c->weight);
1018 wmax = max(wmax, c->weight);
1019 }
1020
1021 /*
1022 * fastpath, try to reuse previous register
1023 */
1024 for (i = 0; i < n; i++) {
1025 u64 mask;
1026
1027 hwc = &cpuc->event_list[i]->hw;
1028 c = cpuc->event_constraint[i];
1029
1030 /* never assigned */
1031 if (hwc->idx == -1)
1032 break;
1033
1034 /* constraint still honored */
1035 if (!test_bit(hwc->idx, c->idxmsk))
1036 break;
1037
1038 mask = BIT_ULL(hwc->idx);
1039 if (is_counter_pair(hwc))
1040 mask |= mask << 1;
1041
1042 /* not already used */
1043 if (used_mask & mask)
1044 break;
1045
1046 used_mask |= mask;
1047
1048 if (assign)
1049 assign[i] = hwc->idx;
1050 }
1051
1052 /* slow path */
1053 if (i != n) {
1054 int gpmax = num_counters;
1055
1056 /*
1057 * Do not allow scheduling of more than half the available
1058 * generic counters.
1059 *
1060 * This helps avoid counter starvation of sibling thread by
1061 * ensuring at most half the counters cannot be in exclusive
1062 * mode. There is no designated counters for the limits. Any
1063 * N/2 counters can be used. This helps with events with
1064 * specific counter constraints.
1065 */
1066 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1067 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1068 gpmax /= 2;
1069
1070 /*
1071 * Reduce the amount of available counters to allow fitting
1072 * the extra Merge events needed by large increment events.
1073 */
1074 if (x86_pmu.flags & PMU_FL_PAIR) {
1075 gpmax = num_counters - cpuc->n_pair;
1076 WARN_ON(gpmax <= 0);
1077 }
1078
1079 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1080 wmax, gpmax, assign);
1081 }
1082
1083 /*
1084 * In case of success (unsched = 0), mark events as committed,
1085 * so we do not put_constraint() in case new events are added
1086 * and fail to be scheduled
1087 *
1088 * We invoke the lower level commit callback to lock the resource
1089 *
1090 * We do not need to do all of this in case we are called to
1091 * validate an event group (assign == NULL)
1092 */
1093 if (!unsched && assign) {
1094 for (i = 0; i < n; i++)
1095 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1096 } else {
1097 for (i = n0; i < n; i++) {
1098 e = cpuc->event_list[i];
1099
1100 /*
1101 * release events that failed scheduling
1102 */
1103 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1104
1105 cpuc->event_constraint[i] = NULL;
1106 }
1107 }
1108
1109 static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1110
1111 return unsched ? -EINVAL : 0;
1112 }
1113
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1114 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1115 struct perf_event *event)
1116 {
1117 if (is_metric_event(event)) {
1118 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1119 return -EINVAL;
1120 cpuc->n_metric++;
1121 cpuc->n_txn_metric++;
1122 }
1123
1124 return 0;
1125 }
1126
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1127 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1128 struct perf_event *event)
1129 {
1130 if (is_metric_event(event))
1131 cpuc->n_metric--;
1132 }
1133
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1134 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1135 int max_count, int n)
1136 {
1137 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1138
1139 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1140 return -EINVAL;
1141
1142 if (n >= max_count + cpuc->n_metric)
1143 return -EINVAL;
1144
1145 cpuc->event_list[n] = event;
1146 if (is_counter_pair(&event->hw)) {
1147 cpuc->n_pair++;
1148 cpuc->n_txn_pair++;
1149 }
1150
1151 return 0;
1152 }
1153
1154 /*
1155 * dogrp: true if must collect siblings events (group)
1156 * returns total number of events and error code
1157 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1158 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1159 {
1160 int num_counters = hybrid(cpuc->pmu, num_counters);
1161 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1162 struct perf_event *event;
1163 int n, max_count;
1164
1165 max_count = num_counters + num_counters_fixed;
1166
1167 /* current number of events already accepted */
1168 n = cpuc->n_events;
1169 if (!cpuc->n_events)
1170 cpuc->pebs_output = 0;
1171
1172 if (!cpuc->is_fake && leader->attr.precise_ip) {
1173 /*
1174 * For PEBS->PT, if !aux_event, the group leader (PT) went
1175 * away, the group was broken down and this singleton event
1176 * can't schedule any more.
1177 */
1178 if (is_pebs_pt(leader) && !leader->aux_event)
1179 return -EINVAL;
1180
1181 /*
1182 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1183 */
1184 if (cpuc->pebs_output &&
1185 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1186 return -EINVAL;
1187
1188 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1189 }
1190
1191 if (is_x86_event(leader)) {
1192 if (collect_event(cpuc, leader, max_count, n))
1193 return -EINVAL;
1194 n++;
1195 }
1196
1197 if (!dogrp)
1198 return n;
1199
1200 for_each_sibling_event(event, leader) {
1201 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1202 continue;
1203
1204 if (collect_event(cpuc, event, max_count, n))
1205 return -EINVAL;
1206
1207 n++;
1208 }
1209 return n;
1210 }
1211
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1212 static inline void x86_assign_hw_event(struct perf_event *event,
1213 struct cpu_hw_events *cpuc, int i)
1214 {
1215 struct hw_perf_event *hwc = &event->hw;
1216 int idx;
1217
1218 idx = hwc->idx = cpuc->assign[i];
1219 hwc->last_cpu = smp_processor_id();
1220 hwc->last_tag = ++cpuc->tags[i];
1221
1222 static_call_cond(x86_pmu_assign)(event, idx);
1223
1224 switch (hwc->idx) {
1225 case INTEL_PMC_IDX_FIXED_BTS:
1226 case INTEL_PMC_IDX_FIXED_VLBR:
1227 hwc->config_base = 0;
1228 hwc->event_base = 0;
1229 break;
1230
1231 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1232 /* All the metric events are mapped onto the fixed counter 3. */
1233 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1234 fallthrough;
1235 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1236 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1237 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1238 (idx - INTEL_PMC_IDX_FIXED);
1239 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1240 INTEL_PMC_FIXED_RDPMC_BASE;
1241 break;
1242
1243 default:
1244 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1245 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1246 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1247 break;
1248 }
1249 }
1250
1251 /**
1252 * x86_perf_rdpmc_index - Return PMC counter used for event
1253 * @event: the perf_event to which the PMC counter was assigned
1254 *
1255 * The counter assigned to this performance event may change if interrupts
1256 * are enabled. This counter should thus never be used while interrupts are
1257 * enabled. Before this function is used to obtain the assigned counter the
1258 * event should be checked for validity using, for example,
1259 * perf_event_read_local(), within the same interrupt disabled section in
1260 * which this counter is planned to be used.
1261 *
1262 * Return: The index of the performance monitoring counter assigned to
1263 * @perf_event.
1264 */
x86_perf_rdpmc_index(struct perf_event * event)1265 int x86_perf_rdpmc_index(struct perf_event *event)
1266 {
1267 lockdep_assert_irqs_disabled();
1268
1269 return event->hw.event_base_rdpmc;
1270 }
1271
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1272 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1273 struct cpu_hw_events *cpuc,
1274 int i)
1275 {
1276 return hwc->idx == cpuc->assign[i] &&
1277 hwc->last_cpu == smp_processor_id() &&
1278 hwc->last_tag == cpuc->tags[i];
1279 }
1280
1281 static void x86_pmu_start(struct perf_event *event, int flags);
1282
x86_pmu_enable(struct pmu * pmu)1283 static void x86_pmu_enable(struct pmu *pmu)
1284 {
1285 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1286 struct perf_event *event;
1287 struct hw_perf_event *hwc;
1288 int i, added = cpuc->n_added;
1289
1290 if (!x86_pmu_initialized())
1291 return;
1292
1293 if (cpuc->enabled)
1294 return;
1295
1296 if (cpuc->n_added) {
1297 int n_running = cpuc->n_events - cpuc->n_added;
1298 /*
1299 * apply assignment obtained either from
1300 * hw_perf_group_sched_in() or x86_pmu_enable()
1301 *
1302 * step1: save events moving to new counters
1303 */
1304 for (i = 0; i < n_running; i++) {
1305 event = cpuc->event_list[i];
1306 hwc = &event->hw;
1307
1308 /*
1309 * we can avoid reprogramming counter if:
1310 * - assigned same counter as last time
1311 * - running on same CPU as last time
1312 * - no other event has used the counter since
1313 */
1314 if (hwc->idx == -1 ||
1315 match_prev_assignment(hwc, cpuc, i))
1316 continue;
1317
1318 /*
1319 * Ensure we don't accidentally enable a stopped
1320 * counter simply because we rescheduled.
1321 */
1322 if (hwc->state & PERF_HES_STOPPED)
1323 hwc->state |= PERF_HES_ARCH;
1324
1325 x86_pmu_stop(event, PERF_EF_UPDATE);
1326 }
1327
1328 /*
1329 * step2: reprogram moved events into new counters
1330 */
1331 for (i = 0; i < cpuc->n_events; i++) {
1332 event = cpuc->event_list[i];
1333 hwc = &event->hw;
1334
1335 if (!match_prev_assignment(hwc, cpuc, i))
1336 x86_assign_hw_event(event, cpuc, i);
1337 else if (i < n_running)
1338 continue;
1339
1340 if (hwc->state & PERF_HES_ARCH)
1341 continue;
1342
1343 /*
1344 * if cpuc->enabled = 0, then no wrmsr as
1345 * per x86_pmu_enable_event()
1346 */
1347 x86_pmu_start(event, PERF_EF_RELOAD);
1348 }
1349 cpuc->n_added = 0;
1350 perf_events_lapic_init();
1351 }
1352
1353 cpuc->enabled = 1;
1354 barrier();
1355
1356 static_call(x86_pmu_enable_all)(added);
1357 }
1358
1359 DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1360
1361 /*
1362 * Set the next IRQ period, based on the hwc->period_left value.
1363 * To be called with the event disabled in hw:
1364 */
x86_perf_event_set_period(struct perf_event * event)1365 int x86_perf_event_set_period(struct perf_event *event)
1366 {
1367 struct hw_perf_event *hwc = &event->hw;
1368 s64 left = local64_read(&hwc->period_left);
1369 s64 period = hwc->sample_period;
1370 int ret = 0, idx = hwc->idx;
1371
1372 if (unlikely(!hwc->event_base))
1373 return 0;
1374
1375 /*
1376 * If we are way outside a reasonable range then just skip forward:
1377 */
1378 if (unlikely(left <= -period)) {
1379 left = period;
1380 local64_set(&hwc->period_left, left);
1381 hwc->last_period = period;
1382 ret = 1;
1383 }
1384
1385 if (unlikely(left <= 0)) {
1386 left += period;
1387 local64_set(&hwc->period_left, left);
1388 hwc->last_period = period;
1389 ret = 1;
1390 }
1391 /*
1392 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1393 */
1394 if (unlikely(left < 2))
1395 left = 2;
1396
1397 if (left > x86_pmu.max_period)
1398 left = x86_pmu.max_period;
1399
1400 static_call_cond(x86_pmu_limit_period)(event, &left);
1401
1402 this_cpu_write(pmc_prev_left[idx], left);
1403
1404 /*
1405 * The hw event starts counting from this event offset,
1406 * mark it to be able to extra future deltas:
1407 */
1408 local64_set(&hwc->prev_count, (u64)-left);
1409
1410 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1411
1412 /*
1413 * Sign extend the Merge event counter's upper 16 bits since
1414 * we currently declare a 48-bit counter width
1415 */
1416 if (is_counter_pair(hwc))
1417 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1418
1419 perf_event_update_userpage(event);
1420
1421 return ret;
1422 }
1423
x86_pmu_enable_event(struct perf_event * event)1424 void x86_pmu_enable_event(struct perf_event *event)
1425 {
1426 if (__this_cpu_read(cpu_hw_events.enabled))
1427 __x86_pmu_enable_event(&event->hw,
1428 ARCH_PERFMON_EVENTSEL_ENABLE);
1429 }
1430
1431 /*
1432 * Add a single event to the PMU.
1433 *
1434 * The event is added to the group of enabled events
1435 * but only if it can be scheduled with existing events.
1436 */
x86_pmu_add(struct perf_event * event,int flags)1437 static int x86_pmu_add(struct perf_event *event, int flags)
1438 {
1439 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1440 struct hw_perf_event *hwc;
1441 int assign[X86_PMC_IDX_MAX];
1442 int n, n0, ret;
1443
1444 hwc = &event->hw;
1445
1446 n0 = cpuc->n_events;
1447 ret = n = collect_events(cpuc, event, false);
1448 if (ret < 0)
1449 goto out;
1450
1451 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1452 if (!(flags & PERF_EF_START))
1453 hwc->state |= PERF_HES_ARCH;
1454
1455 /*
1456 * If group events scheduling transaction was started,
1457 * skip the schedulability test here, it will be performed
1458 * at commit time (->commit_txn) as a whole.
1459 *
1460 * If commit fails, we'll call ->del() on all events
1461 * for which ->add() was called.
1462 */
1463 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1464 goto done_collect;
1465
1466 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1467 if (ret)
1468 goto out;
1469 /*
1470 * copy new assignment, now we know it is possible
1471 * will be used by hw_perf_enable()
1472 */
1473 memcpy(cpuc->assign, assign, n*sizeof(int));
1474
1475 done_collect:
1476 /*
1477 * Commit the collect_events() state. See x86_pmu_del() and
1478 * x86_pmu_*_txn().
1479 */
1480 cpuc->n_events = n;
1481 cpuc->n_added += n - n0;
1482 cpuc->n_txn += n - n0;
1483
1484 /*
1485 * This is before x86_pmu_enable() will call x86_pmu_start(),
1486 * so we enable LBRs before an event needs them etc..
1487 */
1488 static_call_cond(x86_pmu_add)(event);
1489
1490 ret = 0;
1491 out:
1492 return ret;
1493 }
1494
x86_pmu_start(struct perf_event * event,int flags)1495 static void x86_pmu_start(struct perf_event *event, int flags)
1496 {
1497 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1498 int idx = event->hw.idx;
1499
1500 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1501 return;
1502
1503 if (WARN_ON_ONCE(idx == -1))
1504 return;
1505
1506 if (flags & PERF_EF_RELOAD) {
1507 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1508 static_call(x86_pmu_set_period)(event);
1509 }
1510
1511 event->hw.state = 0;
1512
1513 cpuc->events[idx] = event;
1514 __set_bit(idx, cpuc->active_mask);
1515 static_call(x86_pmu_enable)(event);
1516 perf_event_update_userpage(event);
1517 }
1518
perf_event_print_debug(void)1519 void perf_event_print_debug(void)
1520 {
1521 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1522 u64 pebs, debugctl;
1523 int cpu = smp_processor_id();
1524 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1525 int num_counters = hybrid(cpuc->pmu, num_counters);
1526 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1527 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1528 unsigned long flags;
1529 int idx;
1530
1531 if (!num_counters)
1532 return;
1533
1534 local_irq_save(flags);
1535
1536 if (x86_pmu.version >= 2) {
1537 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1538 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1539 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1540 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1541
1542 pr_info("\n");
1543 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1544 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1545 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1546 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1547 if (pebs_constraints) {
1548 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1549 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1550 }
1551 if (x86_pmu.lbr_nr) {
1552 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1553 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1554 }
1555 }
1556 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1557
1558 for (idx = 0; idx < num_counters; idx++) {
1559 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1560 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1561
1562 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1563
1564 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1565 cpu, idx, pmc_ctrl);
1566 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1567 cpu, idx, pmc_count);
1568 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1569 cpu, idx, prev_left);
1570 }
1571 for (idx = 0; idx < num_counters_fixed; idx++) {
1572 if (fixed_counter_disabled(idx, cpuc->pmu))
1573 continue;
1574 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1575
1576 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1577 cpu, idx, pmc_count);
1578 }
1579 local_irq_restore(flags);
1580 }
1581
x86_pmu_stop(struct perf_event * event,int flags)1582 void x86_pmu_stop(struct perf_event *event, int flags)
1583 {
1584 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1585 struct hw_perf_event *hwc = &event->hw;
1586
1587 if (test_bit(hwc->idx, cpuc->active_mask)) {
1588 static_call(x86_pmu_disable)(event);
1589 __clear_bit(hwc->idx, cpuc->active_mask);
1590 cpuc->events[hwc->idx] = NULL;
1591 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1592 hwc->state |= PERF_HES_STOPPED;
1593 }
1594
1595 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1596 /*
1597 * Drain the remaining delta count out of a event
1598 * that we are disabling:
1599 */
1600 static_call(x86_pmu_update)(event);
1601 hwc->state |= PERF_HES_UPTODATE;
1602 }
1603 }
1604
x86_pmu_del(struct perf_event * event,int flags)1605 static void x86_pmu_del(struct perf_event *event, int flags)
1606 {
1607 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1608 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1609 int i;
1610
1611 /*
1612 * If we're called during a txn, we only need to undo x86_pmu.add.
1613 * The events never got scheduled and ->cancel_txn will truncate
1614 * the event_list.
1615 *
1616 * XXX assumes any ->del() called during a TXN will only be on
1617 * an event added during that same TXN.
1618 */
1619 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1620 goto do_del;
1621
1622 __set_bit(event->hw.idx, cpuc->dirty);
1623
1624 /*
1625 * Not a TXN, therefore cleanup properly.
1626 */
1627 x86_pmu_stop(event, PERF_EF_UPDATE);
1628
1629 for (i = 0; i < cpuc->n_events; i++) {
1630 if (event == cpuc->event_list[i])
1631 break;
1632 }
1633
1634 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1635 return;
1636
1637 /* If we have a newly added event; make sure to decrease n_added. */
1638 if (i >= cpuc->n_events - cpuc->n_added)
1639 --cpuc->n_added;
1640
1641 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1642
1643 /* Delete the array entry. */
1644 while (++i < cpuc->n_events) {
1645 cpuc->event_list[i-1] = cpuc->event_list[i];
1646 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1647 }
1648 cpuc->event_constraint[i-1] = NULL;
1649 --cpuc->n_events;
1650 if (intel_cap.perf_metrics)
1651 del_nr_metric_event(cpuc, event);
1652
1653 perf_event_update_userpage(event);
1654
1655 do_del:
1656
1657 /*
1658 * This is after x86_pmu_stop(); so we disable LBRs after any
1659 * event can need them etc..
1660 */
1661 static_call_cond(x86_pmu_del)(event);
1662 }
1663
x86_pmu_handle_irq(struct pt_regs * regs)1664 int x86_pmu_handle_irq(struct pt_regs *regs)
1665 {
1666 struct perf_sample_data data;
1667 struct cpu_hw_events *cpuc;
1668 struct perf_event *event;
1669 int idx, handled = 0;
1670 u64 val;
1671
1672 cpuc = this_cpu_ptr(&cpu_hw_events);
1673
1674 /*
1675 * Some chipsets need to unmask the LVTPC in a particular spot
1676 * inside the nmi handler. As a result, the unmasking was pushed
1677 * into all the nmi handlers.
1678 *
1679 * This generic handler doesn't seem to have any issues where the
1680 * unmasking occurs so it was left at the top.
1681 */
1682 apic_write(APIC_LVTPC, APIC_DM_NMI);
1683
1684 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1685 if (!test_bit(idx, cpuc->active_mask))
1686 continue;
1687
1688 event = cpuc->events[idx];
1689
1690 val = static_call(x86_pmu_update)(event);
1691 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1692 continue;
1693
1694 /*
1695 * event overflow
1696 */
1697 handled++;
1698
1699 if (!static_call(x86_pmu_set_period)(event))
1700 continue;
1701
1702 perf_sample_data_init(&data, 0, event->hw.last_period);
1703
1704 if (has_branch_stack(event)) {
1705 data.br_stack = &cpuc->lbr_stack;
1706 data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
1707 }
1708
1709 if (perf_event_overflow(event, &data, regs))
1710 x86_pmu_stop(event, 0);
1711 }
1712
1713 if (handled)
1714 inc_irq_stat(apic_perf_irqs);
1715
1716 return handled;
1717 }
1718
perf_events_lapic_init(void)1719 void perf_events_lapic_init(void)
1720 {
1721 if (!x86_pmu.apic || !x86_pmu_initialized())
1722 return;
1723
1724 /*
1725 * Always use NMI for PMU
1726 */
1727 apic_write(APIC_LVTPC, APIC_DM_NMI);
1728 }
1729
1730 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1731 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1732 {
1733 u64 start_clock;
1734 u64 finish_clock;
1735 int ret;
1736
1737 /*
1738 * All PMUs/events that share this PMI handler should make sure to
1739 * increment active_events for their events.
1740 */
1741 if (!atomic_read(&active_events))
1742 return NMI_DONE;
1743
1744 start_clock = sched_clock();
1745 ret = static_call(x86_pmu_handle_irq)(regs);
1746 finish_clock = sched_clock();
1747
1748 perf_sample_event_took(finish_clock - start_clock);
1749
1750 return ret;
1751 }
1752 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1753
1754 struct event_constraint emptyconstraint;
1755 struct event_constraint unconstrained;
1756
x86_pmu_prepare_cpu(unsigned int cpu)1757 static int x86_pmu_prepare_cpu(unsigned int cpu)
1758 {
1759 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1760 int i;
1761
1762 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1763 cpuc->kfree_on_online[i] = NULL;
1764 if (x86_pmu.cpu_prepare)
1765 return x86_pmu.cpu_prepare(cpu);
1766 return 0;
1767 }
1768
x86_pmu_dead_cpu(unsigned int cpu)1769 static int x86_pmu_dead_cpu(unsigned int cpu)
1770 {
1771 if (x86_pmu.cpu_dead)
1772 x86_pmu.cpu_dead(cpu);
1773 return 0;
1774 }
1775
x86_pmu_online_cpu(unsigned int cpu)1776 static int x86_pmu_online_cpu(unsigned int cpu)
1777 {
1778 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1779 int i;
1780
1781 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1782 kfree(cpuc->kfree_on_online[i]);
1783 cpuc->kfree_on_online[i] = NULL;
1784 }
1785 return 0;
1786 }
1787
x86_pmu_starting_cpu(unsigned int cpu)1788 static int x86_pmu_starting_cpu(unsigned int cpu)
1789 {
1790 if (x86_pmu.cpu_starting)
1791 x86_pmu.cpu_starting(cpu);
1792 return 0;
1793 }
1794
x86_pmu_dying_cpu(unsigned int cpu)1795 static int x86_pmu_dying_cpu(unsigned int cpu)
1796 {
1797 if (x86_pmu.cpu_dying)
1798 x86_pmu.cpu_dying(cpu);
1799 return 0;
1800 }
1801
pmu_check_apic(void)1802 static void __init pmu_check_apic(void)
1803 {
1804 if (boot_cpu_has(X86_FEATURE_APIC))
1805 return;
1806
1807 x86_pmu.apic = 0;
1808 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1809 pr_info("no hardware sampling interrupt available.\n");
1810
1811 /*
1812 * If we have a PMU initialized but no APIC
1813 * interrupts, we cannot sample hardware
1814 * events (user-space has to fall back and
1815 * sample via a hrtimer based software event):
1816 */
1817 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1818
1819 }
1820
1821 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1822 .name = "format",
1823 .attrs = NULL,
1824 };
1825
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1826 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1827 {
1828 struct perf_pmu_events_attr *pmu_attr =
1829 container_of(attr, struct perf_pmu_events_attr, attr);
1830 u64 config = 0;
1831
1832 if (pmu_attr->id < x86_pmu.max_events)
1833 config = x86_pmu.event_map(pmu_attr->id);
1834
1835 /* string trumps id */
1836 if (pmu_attr->event_str)
1837 return sprintf(page, "%s\n", pmu_attr->event_str);
1838
1839 return x86_pmu.events_sysfs_show(page, config);
1840 }
1841 EXPORT_SYMBOL_GPL(events_sysfs_show);
1842
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1843 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1844 char *page)
1845 {
1846 struct perf_pmu_events_ht_attr *pmu_attr =
1847 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1848
1849 /*
1850 * Report conditional events depending on Hyper-Threading.
1851 *
1852 * This is overly conservative as usually the HT special
1853 * handling is not needed if the other CPU thread is idle.
1854 *
1855 * Note this does not (and cannot) handle the case when thread
1856 * siblings are invisible, for example with virtualization
1857 * if they are owned by some other guest. The user tool
1858 * has to re-read when a thread sibling gets onlined later.
1859 */
1860 return sprintf(page, "%s",
1861 topology_max_smt_threads() > 1 ?
1862 pmu_attr->event_str_ht :
1863 pmu_attr->event_str_noht);
1864 }
1865
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1866 ssize_t events_hybrid_sysfs_show(struct device *dev,
1867 struct device_attribute *attr,
1868 char *page)
1869 {
1870 struct perf_pmu_events_hybrid_attr *pmu_attr =
1871 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1872 struct x86_hybrid_pmu *pmu;
1873 const char *str, *next_str;
1874 int i;
1875
1876 if (hweight64(pmu_attr->pmu_type) == 1)
1877 return sprintf(page, "%s", pmu_attr->event_str);
1878
1879 /*
1880 * Hybrid PMUs may support the same event name, but with different
1881 * event encoding, e.g., the mem-loads event on an Atom PMU has
1882 * different event encoding from a Core PMU.
1883 *
1884 * The event_str includes all event encodings. Each event encoding
1885 * is divided by ";". The order of the event encodings must follow
1886 * the order of the hybrid PMU index.
1887 */
1888 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1889
1890 str = pmu_attr->event_str;
1891 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1892 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1893 continue;
1894 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1895 next_str = strchr(str, ';');
1896 if (next_str)
1897 return snprintf(page, next_str - str + 1, "%s", str);
1898 else
1899 return sprintf(page, "%s", str);
1900 }
1901 str = strchr(str, ';');
1902 str++;
1903 }
1904
1905 return 0;
1906 }
1907 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1908
1909 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1910 EVENT_ATTR(instructions, INSTRUCTIONS );
1911 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1912 EVENT_ATTR(cache-misses, CACHE_MISSES );
1913 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1914 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1915 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1916 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1917 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1918 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1919
1920 static struct attribute *empty_attrs;
1921
1922 static struct attribute *events_attr[] = {
1923 EVENT_PTR(CPU_CYCLES),
1924 EVENT_PTR(INSTRUCTIONS),
1925 EVENT_PTR(CACHE_REFERENCES),
1926 EVENT_PTR(CACHE_MISSES),
1927 EVENT_PTR(BRANCH_INSTRUCTIONS),
1928 EVENT_PTR(BRANCH_MISSES),
1929 EVENT_PTR(BUS_CYCLES),
1930 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1931 EVENT_PTR(STALLED_CYCLES_BACKEND),
1932 EVENT_PTR(REF_CPU_CYCLES),
1933 NULL,
1934 };
1935
1936 /*
1937 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1938 * out of events_attr attributes.
1939 */
1940 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1941 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1942 {
1943 struct perf_pmu_events_attr *pmu_attr;
1944
1945 if (idx >= x86_pmu.max_events)
1946 return 0;
1947
1948 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1949 /* str trumps id */
1950 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1951 }
1952
1953 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1954 .name = "events",
1955 .attrs = events_attr,
1956 .is_visible = is_visible,
1957 };
1958
x86_event_sysfs_show(char * page,u64 config,u64 event)1959 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1960 {
1961 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1962 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1963 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1964 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1965 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1966 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1967 ssize_t ret;
1968
1969 /*
1970 * We have whole page size to spend and just little data
1971 * to write, so we can safely use sprintf.
1972 */
1973 ret = sprintf(page, "event=0x%02llx", event);
1974
1975 if (umask)
1976 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1977
1978 if (edge)
1979 ret += sprintf(page + ret, ",edge");
1980
1981 if (pc)
1982 ret += sprintf(page + ret, ",pc");
1983
1984 if (any)
1985 ret += sprintf(page + ret, ",any");
1986
1987 if (inv)
1988 ret += sprintf(page + ret, ",inv");
1989
1990 if (cmask)
1991 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1992
1993 ret += sprintf(page + ret, "\n");
1994
1995 return ret;
1996 }
1997
1998 static struct attribute_group x86_pmu_attr_group;
1999 static struct attribute_group x86_pmu_caps_group;
2000
x86_pmu_static_call_update(void)2001 static void x86_pmu_static_call_update(void)
2002 {
2003 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2004 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2005 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2006 static_call_update(x86_pmu_enable, x86_pmu.enable);
2007 static_call_update(x86_pmu_disable, x86_pmu.disable);
2008
2009 static_call_update(x86_pmu_assign, x86_pmu.assign);
2010
2011 static_call_update(x86_pmu_add, x86_pmu.add);
2012 static_call_update(x86_pmu_del, x86_pmu.del);
2013 static_call_update(x86_pmu_read, x86_pmu.read);
2014
2015 static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2016 static_call_update(x86_pmu_update, x86_pmu.update);
2017 static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2018
2019 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2020 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2021 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2022
2023 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2024 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2025 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2026
2027 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2028 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2029
2030 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2031 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2032
2033 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2034 }
2035
_x86_pmu_read(struct perf_event * event)2036 static void _x86_pmu_read(struct perf_event *event)
2037 {
2038 static_call(x86_pmu_update)(event);
2039 }
2040
x86_pmu_show_pmu_cap(int num_counters,int num_counters_fixed,u64 intel_ctrl)2041 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2042 u64 intel_ctrl)
2043 {
2044 pr_info("... version: %d\n", x86_pmu.version);
2045 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2046 pr_info("... generic registers: %d\n", num_counters);
2047 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
2048 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2049 pr_info("... fixed-purpose events: %lu\n",
2050 hweight64((((1ULL << num_counters_fixed) - 1)
2051 << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2052 pr_info("... event mask: %016Lx\n", intel_ctrl);
2053 }
2054
2055 /*
2056 * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2057 * of the first registered PMU is unconditionally assigned to
2058 * each possible cpuctx->ctx.pmu.
2059 * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2060 */
x86_pmu_update_cpu_context(struct pmu * pmu,int cpu)2061 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2062 {
2063 struct perf_cpu_context *cpuctx;
2064
2065 if (!pmu->pmu_cpu_context)
2066 return;
2067
2068 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2069 cpuctx->ctx.pmu = pmu;
2070 }
2071
init_hw_perf_events(void)2072 static int __init init_hw_perf_events(void)
2073 {
2074 struct x86_pmu_quirk *quirk;
2075 int err;
2076
2077 pr_info("Performance Events: ");
2078
2079 switch (boot_cpu_data.x86_vendor) {
2080 case X86_VENDOR_INTEL:
2081 err = intel_pmu_init();
2082 break;
2083 case X86_VENDOR_AMD:
2084 err = amd_pmu_init();
2085 break;
2086 case X86_VENDOR_HYGON:
2087 err = amd_pmu_init();
2088 x86_pmu.name = "HYGON";
2089 break;
2090 case X86_VENDOR_ZHAOXIN:
2091 case X86_VENDOR_CENTAUR:
2092 err = zhaoxin_pmu_init();
2093 break;
2094 default:
2095 err = -ENOTSUPP;
2096 }
2097 if (err != 0) {
2098 pr_cont("no PMU driver, software events only.\n");
2099 err = 0;
2100 goto out_bad_pmu;
2101 }
2102
2103 pmu_check_apic();
2104
2105 /* sanity check that the hardware exists or is emulated */
2106 if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2107 goto out_bad_pmu;
2108
2109 pr_cont("%s PMU driver.\n", x86_pmu.name);
2110
2111 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2112
2113 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2114 quirk->func();
2115
2116 if (!x86_pmu.intel_ctrl)
2117 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2118
2119 perf_events_lapic_init();
2120 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2121
2122 unconstrained = (struct event_constraint)
2123 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2124 0, x86_pmu.num_counters, 0, 0);
2125
2126 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2127
2128 if (!x86_pmu.events_sysfs_show)
2129 x86_pmu_events_group.attrs = &empty_attrs;
2130
2131 pmu.attr_update = x86_pmu.attr_update;
2132
2133 if (!is_hybrid()) {
2134 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2135 x86_pmu.num_counters_fixed,
2136 x86_pmu.intel_ctrl);
2137 }
2138
2139 if (!x86_pmu.read)
2140 x86_pmu.read = _x86_pmu_read;
2141
2142 if (!x86_pmu.guest_get_msrs)
2143 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2144
2145 if (!x86_pmu.set_period)
2146 x86_pmu.set_period = x86_perf_event_set_period;
2147
2148 if (!x86_pmu.update)
2149 x86_pmu.update = x86_perf_event_update;
2150
2151 x86_pmu_static_call_update();
2152
2153 /*
2154 * Install callbacks. Core will call them for each online
2155 * cpu.
2156 */
2157 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2158 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2159 if (err)
2160 return err;
2161
2162 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2163 "perf/x86:starting", x86_pmu_starting_cpu,
2164 x86_pmu_dying_cpu);
2165 if (err)
2166 goto out;
2167
2168 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2169 x86_pmu_online_cpu, NULL);
2170 if (err)
2171 goto out1;
2172
2173 if (!is_hybrid()) {
2174 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2175 if (err)
2176 goto out2;
2177 } else {
2178 u8 cpu_type = get_this_hybrid_cpu_type();
2179 struct x86_hybrid_pmu *hybrid_pmu;
2180 int i, j;
2181
2182 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2183 cpu_type = x86_pmu.get_hybrid_cpu_type();
2184
2185 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2186 hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2187
2188 hybrid_pmu->pmu = pmu;
2189 hybrid_pmu->pmu.type = -1;
2190 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2191 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2192 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2193
2194 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2195 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2196 if (err)
2197 break;
2198
2199 if (cpu_type == hybrid_pmu->cpu_type)
2200 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2201 }
2202
2203 if (i < x86_pmu.num_hybrid_pmus) {
2204 for (j = 0; j < i; j++)
2205 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2206 pr_warn("Failed to register hybrid PMUs\n");
2207 kfree(x86_pmu.hybrid_pmu);
2208 x86_pmu.hybrid_pmu = NULL;
2209 x86_pmu.num_hybrid_pmus = 0;
2210 goto out2;
2211 }
2212 }
2213
2214 return 0;
2215
2216 out2:
2217 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2218 out1:
2219 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2220 out:
2221 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2222 out_bad_pmu:
2223 memset(&x86_pmu, 0, sizeof(x86_pmu));
2224 return err;
2225 }
2226 early_initcall(init_hw_perf_events);
2227
x86_pmu_read(struct perf_event * event)2228 static void x86_pmu_read(struct perf_event *event)
2229 {
2230 static_call(x86_pmu_read)(event);
2231 }
2232
2233 /*
2234 * Start group events scheduling transaction
2235 * Set the flag to make pmu::enable() not perform the
2236 * schedulability test, it will be performed at commit time
2237 *
2238 * We only support PERF_PMU_TXN_ADD transactions. Save the
2239 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2240 * transactions.
2241 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2242 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2243 {
2244 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2245
2246 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2247
2248 cpuc->txn_flags = txn_flags;
2249 if (txn_flags & ~PERF_PMU_TXN_ADD)
2250 return;
2251
2252 perf_pmu_disable(pmu);
2253 __this_cpu_write(cpu_hw_events.n_txn, 0);
2254 __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2255 __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2256 }
2257
2258 /*
2259 * Stop group events scheduling transaction
2260 * Clear the flag and pmu::enable() will perform the
2261 * schedulability test.
2262 */
x86_pmu_cancel_txn(struct pmu * pmu)2263 static void x86_pmu_cancel_txn(struct pmu *pmu)
2264 {
2265 unsigned int txn_flags;
2266 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2267
2268 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2269
2270 txn_flags = cpuc->txn_flags;
2271 cpuc->txn_flags = 0;
2272 if (txn_flags & ~PERF_PMU_TXN_ADD)
2273 return;
2274
2275 /*
2276 * Truncate collected array by the number of events added in this
2277 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2278 */
2279 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2280 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2281 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2282 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2283 perf_pmu_enable(pmu);
2284 }
2285
2286 /*
2287 * Commit group events scheduling transaction
2288 * Perform the group schedulability test as a whole
2289 * Return 0 if success
2290 *
2291 * Does not cancel the transaction on failure; expects the caller to do this.
2292 */
x86_pmu_commit_txn(struct pmu * pmu)2293 static int x86_pmu_commit_txn(struct pmu *pmu)
2294 {
2295 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2296 int assign[X86_PMC_IDX_MAX];
2297 int n, ret;
2298
2299 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2300
2301 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2302 cpuc->txn_flags = 0;
2303 return 0;
2304 }
2305
2306 n = cpuc->n_events;
2307
2308 if (!x86_pmu_initialized())
2309 return -EAGAIN;
2310
2311 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2312 if (ret)
2313 return ret;
2314
2315 /*
2316 * copy new assignment, now we know it is possible
2317 * will be used by hw_perf_enable()
2318 */
2319 memcpy(cpuc->assign, assign, n*sizeof(int));
2320
2321 cpuc->txn_flags = 0;
2322 perf_pmu_enable(pmu);
2323 return 0;
2324 }
2325 /*
2326 * a fake_cpuc is used to validate event groups. Due to
2327 * the extra reg logic, we need to also allocate a fake
2328 * per_core and per_cpu structure. Otherwise, group events
2329 * using extra reg may conflict without the kernel being
2330 * able to catch this when the last event gets added to
2331 * the group.
2332 */
free_fake_cpuc(struct cpu_hw_events * cpuc)2333 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2334 {
2335 intel_cpuc_finish(cpuc);
2336 kfree(cpuc);
2337 }
2338
allocate_fake_cpuc(struct pmu * event_pmu)2339 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2340 {
2341 struct cpu_hw_events *cpuc;
2342 int cpu;
2343
2344 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2345 if (!cpuc)
2346 return ERR_PTR(-ENOMEM);
2347 cpuc->is_fake = 1;
2348
2349 if (is_hybrid()) {
2350 struct x86_hybrid_pmu *h_pmu;
2351
2352 h_pmu = hybrid_pmu(event_pmu);
2353 if (cpumask_empty(&h_pmu->supported_cpus))
2354 goto error;
2355 cpu = cpumask_first(&h_pmu->supported_cpus);
2356 } else
2357 cpu = raw_smp_processor_id();
2358 cpuc->pmu = event_pmu;
2359
2360 if (intel_cpuc_prepare(cpuc, cpu))
2361 goto error;
2362
2363 return cpuc;
2364 error:
2365 free_fake_cpuc(cpuc);
2366 return ERR_PTR(-ENOMEM);
2367 }
2368
2369 /*
2370 * validate that we can schedule this event
2371 */
validate_event(struct perf_event * event)2372 static int validate_event(struct perf_event *event)
2373 {
2374 struct cpu_hw_events *fake_cpuc;
2375 struct event_constraint *c;
2376 int ret = 0;
2377
2378 fake_cpuc = allocate_fake_cpuc(event->pmu);
2379 if (IS_ERR(fake_cpuc))
2380 return PTR_ERR(fake_cpuc);
2381
2382 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2383
2384 if (!c || !c->weight)
2385 ret = -EINVAL;
2386
2387 if (x86_pmu.put_event_constraints)
2388 x86_pmu.put_event_constraints(fake_cpuc, event);
2389
2390 free_fake_cpuc(fake_cpuc);
2391
2392 return ret;
2393 }
2394
2395 /*
2396 * validate a single event group
2397 *
2398 * validation include:
2399 * - check events are compatible which each other
2400 * - events do not compete for the same counter
2401 * - number of events <= number of counters
2402 *
2403 * validation ensures the group can be loaded onto the
2404 * PMU if it was the only group available.
2405 */
validate_group(struct perf_event * event)2406 static int validate_group(struct perf_event *event)
2407 {
2408 struct perf_event *leader = event->group_leader;
2409 struct cpu_hw_events *fake_cpuc;
2410 int ret = -EINVAL, n;
2411
2412 /*
2413 * Reject events from different hybrid PMUs.
2414 */
2415 if (is_hybrid()) {
2416 struct perf_event *sibling;
2417 struct pmu *pmu = NULL;
2418
2419 if (is_x86_event(leader))
2420 pmu = leader->pmu;
2421
2422 for_each_sibling_event(sibling, leader) {
2423 if (!is_x86_event(sibling))
2424 continue;
2425 if (!pmu)
2426 pmu = sibling->pmu;
2427 else if (pmu != sibling->pmu)
2428 return ret;
2429 }
2430 }
2431
2432 fake_cpuc = allocate_fake_cpuc(event->pmu);
2433 if (IS_ERR(fake_cpuc))
2434 return PTR_ERR(fake_cpuc);
2435 /*
2436 * the event is not yet connected with its
2437 * siblings therefore we must first collect
2438 * existing siblings, then add the new event
2439 * before we can simulate the scheduling
2440 */
2441 n = collect_events(fake_cpuc, leader, true);
2442 if (n < 0)
2443 goto out;
2444
2445 fake_cpuc->n_events = n;
2446 n = collect_events(fake_cpuc, event, false);
2447 if (n < 0)
2448 goto out;
2449
2450 fake_cpuc->n_events = 0;
2451 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2452
2453 out:
2454 free_fake_cpuc(fake_cpuc);
2455 return ret;
2456 }
2457
x86_pmu_event_init(struct perf_event * event)2458 static int x86_pmu_event_init(struct perf_event *event)
2459 {
2460 struct x86_hybrid_pmu *pmu = NULL;
2461 int err;
2462
2463 if ((event->attr.type != event->pmu->type) &&
2464 (event->attr.type != PERF_TYPE_HARDWARE) &&
2465 (event->attr.type != PERF_TYPE_HW_CACHE))
2466 return -ENOENT;
2467
2468 if (is_hybrid() && (event->cpu != -1)) {
2469 pmu = hybrid_pmu(event->pmu);
2470 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2471 return -ENOENT;
2472 }
2473
2474 err = __x86_pmu_event_init(event);
2475 if (!err) {
2476 if (event->group_leader != event)
2477 err = validate_group(event);
2478 else
2479 err = validate_event(event);
2480 }
2481 if (err) {
2482 if (event->destroy)
2483 event->destroy(event);
2484 event->destroy = NULL;
2485 }
2486
2487 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2488 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2489 event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2490
2491 return err;
2492 }
2493
perf_clear_dirty_counters(void)2494 void perf_clear_dirty_counters(void)
2495 {
2496 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2497 int i;
2498
2499 /* Don't need to clear the assigned counter. */
2500 for (i = 0; i < cpuc->n_events; i++)
2501 __clear_bit(cpuc->assign[i], cpuc->dirty);
2502
2503 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2504 return;
2505
2506 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2507 if (i >= INTEL_PMC_IDX_FIXED) {
2508 /* Metrics and fake events don't have corresponding HW counters. */
2509 if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2510 continue;
2511
2512 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2513 } else {
2514 wrmsrl(x86_pmu_event_addr(i), 0);
2515 }
2516 }
2517
2518 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2519 }
2520
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2521 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2522 {
2523 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2524 return;
2525
2526 /*
2527 * This function relies on not being called concurrently in two
2528 * tasks in the same mm. Otherwise one task could observe
2529 * perf_rdpmc_allowed > 1 and return all the way back to
2530 * userspace with CR4.PCE clear while another task is still
2531 * doing on_each_cpu_mask() to propagate CR4.PCE.
2532 *
2533 * For now, this can't happen because all callers hold mmap_lock
2534 * for write. If this changes, we'll need a different solution.
2535 */
2536 mmap_assert_write_locked(mm);
2537
2538 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2539 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2540 }
2541
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2542 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2543 {
2544 if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2545 return;
2546
2547 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2548 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2549 }
2550
x86_pmu_event_idx(struct perf_event * event)2551 static int x86_pmu_event_idx(struct perf_event *event)
2552 {
2553 struct hw_perf_event *hwc = &event->hw;
2554
2555 if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2556 return 0;
2557
2558 if (is_metric_idx(hwc->idx))
2559 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2560 else
2561 return hwc->event_base_rdpmc + 1;
2562 }
2563
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2564 static ssize_t get_attr_rdpmc(struct device *cdev,
2565 struct device_attribute *attr,
2566 char *buf)
2567 {
2568 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2569 }
2570
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2571 static ssize_t set_attr_rdpmc(struct device *cdev,
2572 struct device_attribute *attr,
2573 const char *buf, size_t count)
2574 {
2575 unsigned long val;
2576 ssize_t ret;
2577
2578 ret = kstrtoul(buf, 0, &val);
2579 if (ret)
2580 return ret;
2581
2582 if (val > 2)
2583 return -EINVAL;
2584
2585 if (x86_pmu.attr_rdpmc_broken)
2586 return -ENOTSUPP;
2587
2588 if (val != x86_pmu.attr_rdpmc) {
2589 /*
2590 * Changing into or out of never available or always available,
2591 * aka perf-event-bypassing mode. This path is extremely slow,
2592 * but only root can trigger it, so it's okay.
2593 */
2594 if (val == 0)
2595 static_branch_inc(&rdpmc_never_available_key);
2596 else if (x86_pmu.attr_rdpmc == 0)
2597 static_branch_dec(&rdpmc_never_available_key);
2598
2599 if (val == 2)
2600 static_branch_inc(&rdpmc_always_available_key);
2601 else if (x86_pmu.attr_rdpmc == 2)
2602 static_branch_dec(&rdpmc_always_available_key);
2603
2604 on_each_cpu(cr4_update_pce, NULL, 1);
2605 x86_pmu.attr_rdpmc = val;
2606 }
2607
2608 return count;
2609 }
2610
2611 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2612
2613 static struct attribute *x86_pmu_attrs[] = {
2614 &dev_attr_rdpmc.attr,
2615 NULL,
2616 };
2617
2618 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2619 .attrs = x86_pmu_attrs,
2620 };
2621
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2622 static ssize_t max_precise_show(struct device *cdev,
2623 struct device_attribute *attr,
2624 char *buf)
2625 {
2626 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2627 }
2628
2629 static DEVICE_ATTR_RO(max_precise);
2630
2631 static struct attribute *x86_pmu_caps_attrs[] = {
2632 &dev_attr_max_precise.attr,
2633 NULL
2634 };
2635
2636 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2637 .name = "caps",
2638 .attrs = x86_pmu_caps_attrs,
2639 };
2640
2641 static const struct attribute_group *x86_pmu_attr_groups[] = {
2642 &x86_pmu_attr_group,
2643 &x86_pmu_format_group,
2644 &x86_pmu_events_group,
2645 &x86_pmu_caps_group,
2646 NULL,
2647 };
2648
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2649 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2650 {
2651 static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2652 }
2653
x86_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)2654 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2655 struct perf_event_context *next)
2656 {
2657 static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2658 }
2659
perf_check_microcode(void)2660 void perf_check_microcode(void)
2661 {
2662 if (x86_pmu.check_microcode)
2663 x86_pmu.check_microcode();
2664 }
2665
x86_pmu_check_period(struct perf_event * event,u64 value)2666 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2667 {
2668 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2669 return -EINVAL;
2670
2671 if (value && x86_pmu.limit_period) {
2672 s64 left = value;
2673 x86_pmu.limit_period(event, &left);
2674 if (left > value)
2675 return -EINVAL;
2676 }
2677
2678 return 0;
2679 }
2680
x86_pmu_aux_output_match(struct perf_event * event)2681 static int x86_pmu_aux_output_match(struct perf_event *event)
2682 {
2683 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2684 return 0;
2685
2686 if (x86_pmu.aux_output_match)
2687 return x86_pmu.aux_output_match(event);
2688
2689 return 0;
2690 }
2691
x86_pmu_filter_match(struct perf_event * event)2692 static int x86_pmu_filter_match(struct perf_event *event)
2693 {
2694 if (x86_pmu.filter_match)
2695 return x86_pmu.filter_match(event);
2696
2697 return 1;
2698 }
2699
2700 static struct pmu pmu = {
2701 .pmu_enable = x86_pmu_enable,
2702 .pmu_disable = x86_pmu_disable,
2703
2704 .attr_groups = x86_pmu_attr_groups,
2705
2706 .event_init = x86_pmu_event_init,
2707
2708 .event_mapped = x86_pmu_event_mapped,
2709 .event_unmapped = x86_pmu_event_unmapped,
2710
2711 .add = x86_pmu_add,
2712 .del = x86_pmu_del,
2713 .start = x86_pmu_start,
2714 .stop = x86_pmu_stop,
2715 .read = x86_pmu_read,
2716
2717 .start_txn = x86_pmu_start_txn,
2718 .cancel_txn = x86_pmu_cancel_txn,
2719 .commit_txn = x86_pmu_commit_txn,
2720
2721 .event_idx = x86_pmu_event_idx,
2722 .sched_task = x86_pmu_sched_task,
2723 .swap_task_ctx = x86_pmu_swap_task_ctx,
2724 .check_period = x86_pmu_check_period,
2725
2726 .aux_output_match = x86_pmu_aux_output_match,
2727
2728 .filter_match = x86_pmu_filter_match,
2729 };
2730
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2731 void arch_perf_update_userpage(struct perf_event *event,
2732 struct perf_event_mmap_page *userpg, u64 now)
2733 {
2734 struct cyc2ns_data data;
2735 u64 offset;
2736
2737 userpg->cap_user_time = 0;
2738 userpg->cap_user_time_zero = 0;
2739 userpg->cap_user_rdpmc =
2740 !!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2741 userpg->pmc_width = x86_pmu.cntval_bits;
2742
2743 if (!using_native_sched_clock() || !sched_clock_stable())
2744 return;
2745
2746 cyc2ns_read_begin(&data);
2747
2748 offset = data.cyc2ns_offset + __sched_clock_offset;
2749
2750 /*
2751 * Internal timekeeping for enabled/running/stopped times
2752 * is always in the local_clock domain.
2753 */
2754 userpg->cap_user_time = 1;
2755 userpg->time_mult = data.cyc2ns_mul;
2756 userpg->time_shift = data.cyc2ns_shift;
2757 userpg->time_offset = offset - now;
2758
2759 /*
2760 * cap_user_time_zero doesn't make sense when we're using a different
2761 * time base for the records.
2762 */
2763 if (!event->attr.use_clockid) {
2764 userpg->cap_user_time_zero = 1;
2765 userpg->time_zero = offset;
2766 }
2767
2768 cyc2ns_read_end();
2769 }
2770
2771 /*
2772 * Determine whether the regs were taken from an irq/exception handler rather
2773 * than from perf_arch_fetch_caller_regs().
2774 */
perf_hw_regs(struct pt_regs * regs)2775 static bool perf_hw_regs(struct pt_regs *regs)
2776 {
2777 return regs->flags & X86_EFLAGS_FIXED;
2778 }
2779
2780 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2781 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2782 {
2783 struct unwind_state state;
2784 unsigned long addr;
2785
2786 if (perf_guest_state()) {
2787 /* TODO: We don't support guest os callchain now */
2788 return;
2789 }
2790
2791 if (perf_callchain_store(entry, regs->ip))
2792 return;
2793
2794 if (perf_hw_regs(regs))
2795 unwind_start(&state, current, regs, NULL);
2796 else
2797 unwind_start(&state, current, NULL, (void *)regs->sp);
2798
2799 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2800 addr = unwind_get_return_address(&state);
2801 if (!addr || perf_callchain_store(entry, addr))
2802 return;
2803 }
2804 }
2805
2806 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2807 valid_user_frame(const void __user *fp, unsigned long size)
2808 {
2809 return __access_ok(fp, size);
2810 }
2811
get_segment_base(unsigned int segment)2812 static unsigned long get_segment_base(unsigned int segment)
2813 {
2814 struct desc_struct *desc;
2815 unsigned int idx = segment >> 3;
2816
2817 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2818 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2819 struct ldt_struct *ldt;
2820
2821 /* IRQs are off, so this synchronizes with smp_store_release */
2822 ldt = READ_ONCE(current->active_mm->context.ldt);
2823 if (!ldt || idx >= ldt->nr_entries)
2824 return 0;
2825
2826 desc = &ldt->entries[idx];
2827 #else
2828 return 0;
2829 #endif
2830 } else {
2831 if (idx >= GDT_ENTRIES)
2832 return 0;
2833
2834 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2835 }
2836
2837 return get_desc_base(desc);
2838 }
2839
2840 #ifdef CONFIG_IA32_EMULATION
2841
2842 #include <linux/compat.h>
2843
2844 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2845 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2846 {
2847 /* 32-bit process in 64-bit kernel. */
2848 unsigned long ss_base, cs_base;
2849 struct stack_frame_ia32 frame;
2850 const struct stack_frame_ia32 __user *fp;
2851
2852 if (user_64bit_mode(regs))
2853 return 0;
2854
2855 cs_base = get_segment_base(regs->cs);
2856 ss_base = get_segment_base(regs->ss);
2857
2858 fp = compat_ptr(ss_base + regs->bp);
2859 pagefault_disable();
2860 while (entry->nr < entry->max_stack) {
2861 if (!valid_user_frame(fp, sizeof(frame)))
2862 break;
2863
2864 if (__get_user(frame.next_frame, &fp->next_frame))
2865 break;
2866 if (__get_user(frame.return_address, &fp->return_address))
2867 break;
2868
2869 perf_callchain_store(entry, cs_base + frame.return_address);
2870 fp = compat_ptr(ss_base + frame.next_frame);
2871 }
2872 pagefault_enable();
2873 return 1;
2874 }
2875 #else
2876 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2877 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2878 {
2879 return 0;
2880 }
2881 #endif
2882
2883 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2884 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2885 {
2886 struct stack_frame frame;
2887 const struct stack_frame __user *fp;
2888
2889 if (perf_guest_state()) {
2890 /* TODO: We don't support guest os callchain now */
2891 return;
2892 }
2893
2894 /*
2895 * We don't know what to do with VM86 stacks.. ignore them for now.
2896 */
2897 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2898 return;
2899
2900 fp = (void __user *)regs->bp;
2901
2902 perf_callchain_store(entry, regs->ip);
2903
2904 if (!nmi_uaccess_okay())
2905 return;
2906
2907 if (perf_callchain_user32(regs, entry))
2908 return;
2909
2910 pagefault_disable();
2911 while (entry->nr < entry->max_stack) {
2912 if (!valid_user_frame(fp, sizeof(frame)))
2913 break;
2914
2915 if (__get_user(frame.next_frame, &fp->next_frame))
2916 break;
2917 if (__get_user(frame.return_address, &fp->return_address))
2918 break;
2919
2920 perf_callchain_store(entry, frame.return_address);
2921 fp = (void __user *)frame.next_frame;
2922 }
2923 pagefault_enable();
2924 }
2925
2926 /*
2927 * Deal with code segment offsets for the various execution modes:
2928 *
2929 * VM86 - the good olde 16 bit days, where the linear address is
2930 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2931 *
2932 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2933 * to figure out what the 32bit base address is.
2934 *
2935 * X32 - has TIF_X32 set, but is running in x86_64
2936 *
2937 * X86_64 - CS,DS,SS,ES are all zero based.
2938 */
code_segment_base(struct pt_regs * regs)2939 static unsigned long code_segment_base(struct pt_regs *regs)
2940 {
2941 /*
2942 * For IA32 we look at the GDT/LDT segment base to convert the
2943 * effective IP to a linear address.
2944 */
2945
2946 #ifdef CONFIG_X86_32
2947 /*
2948 * If we are in VM86 mode, add the segment offset to convert to a
2949 * linear address.
2950 */
2951 if (regs->flags & X86_VM_MASK)
2952 return 0x10 * regs->cs;
2953
2954 if (user_mode(regs) && regs->cs != __USER_CS)
2955 return get_segment_base(regs->cs);
2956 #else
2957 if (user_mode(regs) && !user_64bit_mode(regs) &&
2958 regs->cs != __USER32_CS)
2959 return get_segment_base(regs->cs);
2960 #endif
2961 return 0;
2962 }
2963
perf_instruction_pointer(struct pt_regs * regs)2964 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2965 {
2966 if (perf_guest_state())
2967 return perf_guest_get_ip();
2968
2969 return regs->ip + code_segment_base(regs);
2970 }
2971
perf_misc_flags(struct pt_regs * regs)2972 unsigned long perf_misc_flags(struct pt_regs *regs)
2973 {
2974 unsigned int guest_state = perf_guest_state();
2975 int misc = 0;
2976
2977 if (guest_state) {
2978 if (guest_state & PERF_GUEST_USER)
2979 misc |= PERF_RECORD_MISC_GUEST_USER;
2980 else
2981 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2982 } else {
2983 if (user_mode(regs))
2984 misc |= PERF_RECORD_MISC_USER;
2985 else
2986 misc |= PERF_RECORD_MISC_KERNEL;
2987 }
2988
2989 if (regs->flags & PERF_EFLAGS_EXACT)
2990 misc |= PERF_RECORD_MISC_EXACT_IP;
2991
2992 return misc;
2993 }
2994
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2995 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2996 {
2997 if (!x86_pmu_initialized()) {
2998 memset(cap, 0, sizeof(*cap));
2999 return;
3000 }
3001
3002 cap->version = x86_pmu.version;
3003 /*
3004 * KVM doesn't support the hybrid PMU yet.
3005 * Return the common value in global x86_pmu,
3006 * which available for all cores.
3007 */
3008 cap->num_counters_gp = x86_pmu.num_counters;
3009 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
3010 cap->bit_width_gp = x86_pmu.cntval_bits;
3011 cap->bit_width_fixed = x86_pmu.cntval_bits;
3012 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
3013 cap->events_mask_len = x86_pmu.events_mask_len;
3014 cap->pebs_ept = x86_pmu.pebs_ept;
3015 }
3016 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
3017
perf_get_hw_event_config(int hw_event)3018 u64 perf_get_hw_event_config(int hw_event)
3019 {
3020 int max = x86_pmu.max_events;
3021
3022 if (hw_event < max)
3023 return x86_pmu.event_map(array_index_nospec(hw_event, max));
3024
3025 return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3028