1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_hw.h"
17
18 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
19 static struct wx_dec_ptype wx_ptype_lookup[256] = {
20 /* L2: mac */
21 [0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
22 [0x12] = WX_PTT(L2, NONE, NONE, NONE, TS, PAY2),
23 [0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
24 [0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 [0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
26 [0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
27 [0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
28
29 /* L2: ethertype filter */
30 [0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
31
32 /* L3: ip non-tunnel */
33 [0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
34 [0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
35 [0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP, PAY4),
36 [0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP, PAY4),
37 [0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
38 [0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
39 [0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
40 [0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP, PAY3),
41 [0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP, PAY4),
42 [0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
43
44 /* L2: fcoe */
45 [0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
46 [0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47
48 /* IPv4 --> IPv4/IPv6 */
49 [0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
50 [0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
51 [0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP, PAY4),
52 [0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP, PAY4),
53 [0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
54 [0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
55 [0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
56 [0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP, PAY4),
57 [0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP, PAY4),
58 [0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
59
60 /* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
61 [0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
62 [0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
63 [0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
64 [0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP, PAY4),
65 [0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP, PAY4),
66 [0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
67 [0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
68 [0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
69 [0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP, PAY4),
70 [0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP, PAY4),
71 [0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
72
73 /* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
74 [0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
75 [0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
76 [0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
77 [0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP, PAY4),
78 [0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP, PAY4),
79 [0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
80 [0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
81 [0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
82 [0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP, PAY4),
83 [0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP, PAY4),
84 [0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
85
86 /* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
87 [0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
88 [0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
89 [0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
90 [0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP, PAY4),
91 [0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP, PAY4),
92 [0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
93 [0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
94 [0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
95 [0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP, PAY4),
96 [0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP, PAY4),
97 [0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
98
99 /* IPv6 --> IPv4/IPv6 */
100 [0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
101 [0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
102 [0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP, PAY4),
103 [0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP, PAY4),
104 [0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
105 [0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
106 [0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
107 [0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP, PAY4),
108 [0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP, PAY4),
109 [0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
110
111 /* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
112 [0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
113 [0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
114 [0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
115 [0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP, PAY4),
116 [0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP, PAY4),
117 [0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
118 [0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
119 [0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
120 [0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP, PAY4),
121 [0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP, PAY4),
122 [0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
123
124 /* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
125 [0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
126 [0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
127 [0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
128 [0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP, PAY4),
129 [0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP, PAY4),
130 [0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
131 [0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
132 [0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
133 [0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP, PAY4),
134 [0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP, PAY4),
135 [0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
136
137 /* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
138 [0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
139 [0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
140 [0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
141 [0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP, PAY4),
142 [0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP, PAY4),
143 [0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
144 [0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
145 [0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
146 [0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP, PAY4),
147 [0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP, PAY4),
148 [0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
149 };
150
wx_decode_ptype(const u8 ptype)151 static struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
152 {
153 return wx_ptype_lookup[ptype];
154 }
155
156 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
wx_test_staterr(union wx_rx_desc * rx_desc,const u32 stat_err_bits)157 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
158 const u32 stat_err_bits)
159 {
160 return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
161 }
162
wx_dma_sync_frag(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer)163 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
164 struct wx_rx_buffer *rx_buffer)
165 {
166 struct sk_buff *skb = rx_buffer->skb;
167 skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
168
169 dma_sync_single_range_for_cpu(rx_ring->dev,
170 WX_CB(skb)->dma,
171 skb_frag_off(frag),
172 skb_frag_size(frag),
173 DMA_FROM_DEVICE);
174
175 /* If the page was released, just unmap it. */
176 if (unlikely(WX_CB(skb)->page_released))
177 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
178 }
179
wx_get_rx_buffer(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff ** skb,int * rx_buffer_pgcnt)180 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
181 union wx_rx_desc *rx_desc,
182 struct sk_buff **skb,
183 int *rx_buffer_pgcnt)
184 {
185 struct wx_rx_buffer *rx_buffer;
186 unsigned int size;
187
188 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
189 size = le16_to_cpu(rx_desc->wb.upper.length);
190
191 #if (PAGE_SIZE < 8192)
192 *rx_buffer_pgcnt = page_count(rx_buffer->page);
193 #else
194 *rx_buffer_pgcnt = 0;
195 #endif
196
197 prefetchw(rx_buffer->page);
198 *skb = rx_buffer->skb;
199
200 /* Delay unmapping of the first packet. It carries the header
201 * information, HW may still access the header after the writeback.
202 * Only unmap it when EOP is reached
203 */
204 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
205 if (!*skb)
206 goto skip_sync;
207 } else {
208 if (*skb)
209 wx_dma_sync_frag(rx_ring, rx_buffer);
210 }
211
212 /* we are reusing so sync this buffer for CPU use */
213 dma_sync_single_range_for_cpu(rx_ring->dev,
214 rx_buffer->dma,
215 rx_buffer->page_offset,
216 size,
217 DMA_FROM_DEVICE);
218 skip_sync:
219 return rx_buffer;
220 }
221
wx_put_rx_buffer(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,struct sk_buff * skb,int rx_buffer_pgcnt)222 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
223 struct wx_rx_buffer *rx_buffer,
224 struct sk_buff *skb,
225 int rx_buffer_pgcnt)
226 {
227 if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
228 /* the page has been released from the ring */
229 WX_CB(skb)->page_released = true;
230
231 /* clear contents of rx_buffer */
232 rx_buffer->page = NULL;
233 rx_buffer->skb = NULL;
234 }
235
wx_build_skb(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,union wx_rx_desc * rx_desc)236 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
237 struct wx_rx_buffer *rx_buffer,
238 union wx_rx_desc *rx_desc)
239 {
240 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
241 #if (PAGE_SIZE < 8192)
242 unsigned int truesize = WX_RX_BUFSZ;
243 #else
244 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
245 #endif
246 struct sk_buff *skb = rx_buffer->skb;
247
248 if (!skb) {
249 void *page_addr = page_address(rx_buffer->page) +
250 rx_buffer->page_offset;
251
252 /* prefetch first cache line of first page */
253 prefetch(page_addr);
254 #if L1_CACHE_BYTES < 128
255 prefetch(page_addr + L1_CACHE_BYTES);
256 #endif
257
258 /* allocate a skb to store the frags */
259 skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
260 if (unlikely(!skb))
261 return NULL;
262
263 /* we will be copying header into skb->data in
264 * pskb_may_pull so it is in our interest to prefetch
265 * it now to avoid a possible cache miss
266 */
267 prefetchw(skb->data);
268
269 if (size <= WX_RXBUFFER_256) {
270 memcpy(__skb_put(skb, size), page_addr,
271 ALIGN(size, sizeof(long)));
272 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
273 return skb;
274 }
275
276 skb_mark_for_recycle(skb);
277
278 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
279 WX_CB(skb)->dma = rx_buffer->dma;
280
281 skb_add_rx_frag(skb, 0, rx_buffer->page,
282 rx_buffer->page_offset,
283 size, truesize);
284 goto out;
285
286 } else {
287 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
288 rx_buffer->page_offset, size, truesize);
289 }
290
291 out:
292 #if (PAGE_SIZE < 8192)
293 /* flip page offset to other buffer */
294 rx_buffer->page_offset ^= truesize;
295 #else
296 /* move offset up to the next cache line */
297 rx_buffer->page_offset += truesize;
298 #endif
299
300 return skb;
301 }
302
wx_alloc_mapped_page(struct wx_ring * rx_ring,struct wx_rx_buffer * bi)303 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
304 struct wx_rx_buffer *bi)
305 {
306 struct page *page = bi->page;
307 dma_addr_t dma;
308
309 /* since we are recycling buffers we should seldom need to alloc */
310 if (likely(page))
311 return true;
312
313 page = page_pool_dev_alloc_pages(rx_ring->page_pool);
314 WARN_ON(!page);
315 dma = page_pool_get_dma_addr(page);
316
317 bi->page_dma = dma;
318 bi->page = page;
319 bi->page_offset = 0;
320
321 return true;
322 }
323
324 /**
325 * wx_alloc_rx_buffers - Replace used receive buffers
326 * @rx_ring: ring to place buffers on
327 * @cleaned_count: number of buffers to replace
328 **/
wx_alloc_rx_buffers(struct wx_ring * rx_ring,u16 cleaned_count)329 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
330 {
331 u16 i = rx_ring->next_to_use;
332 union wx_rx_desc *rx_desc;
333 struct wx_rx_buffer *bi;
334
335 /* nothing to do */
336 if (!cleaned_count)
337 return;
338
339 rx_desc = WX_RX_DESC(rx_ring, i);
340 bi = &rx_ring->rx_buffer_info[i];
341 i -= rx_ring->count;
342
343 do {
344 if (!wx_alloc_mapped_page(rx_ring, bi))
345 break;
346
347 /* sync the buffer for use by the device */
348 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
349 bi->page_offset,
350 WX_RX_BUFSZ,
351 DMA_FROM_DEVICE);
352
353 rx_desc->read.pkt_addr =
354 cpu_to_le64(bi->page_dma + bi->page_offset);
355
356 rx_desc++;
357 bi++;
358 i++;
359 if (unlikely(!i)) {
360 rx_desc = WX_RX_DESC(rx_ring, 0);
361 bi = rx_ring->rx_buffer_info;
362 i -= rx_ring->count;
363 }
364
365 /* clear the status bits for the next_to_use descriptor */
366 rx_desc->wb.upper.status_error = 0;
367
368 cleaned_count--;
369 } while (cleaned_count);
370
371 i += rx_ring->count;
372
373 if (rx_ring->next_to_use != i) {
374 rx_ring->next_to_use = i;
375 /* update next to alloc since we have filled the ring */
376 rx_ring->next_to_alloc = i;
377
378 /* Force memory writes to complete before letting h/w
379 * know there are new descriptors to fetch. (Only
380 * applicable for weak-ordered memory model archs,
381 * such as IA-64).
382 */
383 wmb();
384 writel(i, rx_ring->tail);
385 }
386 }
387
wx_desc_unused(struct wx_ring * ring)388 u16 wx_desc_unused(struct wx_ring *ring)
389 {
390 u16 ntc = ring->next_to_clean;
391 u16 ntu = ring->next_to_use;
392
393 return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
394 }
395
396 /**
397 * wx_is_non_eop - process handling of non-EOP buffers
398 * @rx_ring: Rx ring being processed
399 * @rx_desc: Rx descriptor for current buffer
400 * @skb: Current socket buffer containing buffer in progress
401 *
402 * This function updates next to clean. If the buffer is an EOP buffer
403 * this function exits returning false, otherwise it will place the
404 * sk_buff in the next buffer to be chained and return true indicating
405 * that this is in fact a non-EOP buffer.
406 **/
wx_is_non_eop(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)407 static bool wx_is_non_eop(struct wx_ring *rx_ring,
408 union wx_rx_desc *rx_desc,
409 struct sk_buff *skb)
410 {
411 u32 ntc = rx_ring->next_to_clean + 1;
412
413 /* fetch, update, and store next to clean */
414 ntc = (ntc < rx_ring->count) ? ntc : 0;
415 rx_ring->next_to_clean = ntc;
416
417 prefetch(WX_RX_DESC(rx_ring, ntc));
418
419 /* if we are the last buffer then there is nothing else to do */
420 if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
421 return false;
422
423 rx_ring->rx_buffer_info[ntc].skb = skb;
424
425 return true;
426 }
427
wx_pull_tail(struct sk_buff * skb)428 static void wx_pull_tail(struct sk_buff *skb)
429 {
430 skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
431 unsigned int pull_len;
432 unsigned char *va;
433
434 /* it is valid to use page_address instead of kmap since we are
435 * working with pages allocated out of the lomem pool per
436 * alloc_page(GFP_ATOMIC)
437 */
438 va = skb_frag_address(frag);
439
440 /* we need the header to contain the greater of either ETH_HLEN or
441 * 60 bytes if the skb->len is less than 60 for skb_pad.
442 */
443 pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
444
445 /* align pull length to size of long to optimize memcpy performance */
446 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
447
448 /* update all of the pointers */
449 skb_frag_size_sub(frag, pull_len);
450 skb_frag_off_add(frag, pull_len);
451 skb->data_len -= pull_len;
452 skb->tail += pull_len;
453 }
454
455 /**
456 * wx_cleanup_headers - Correct corrupted or empty headers
457 * @rx_ring: rx descriptor ring packet is being transacted on
458 * @rx_desc: pointer to the EOP Rx descriptor
459 * @skb: pointer to current skb being fixed
460 *
461 * Check for corrupted packet headers caused by senders on the local L2
462 * embedded NIC switch not setting up their Tx Descriptors right. These
463 * should be very rare.
464 *
465 * Also address the case where we are pulling data in on pages only
466 * and as such no data is present in the skb header.
467 *
468 * In addition if skb is not at least 60 bytes we need to pad it so that
469 * it is large enough to qualify as a valid Ethernet frame.
470 *
471 * Returns true if an error was encountered and skb was freed.
472 **/
wx_cleanup_headers(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)473 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
474 union wx_rx_desc *rx_desc,
475 struct sk_buff *skb)
476 {
477 struct net_device *netdev = rx_ring->netdev;
478
479 /* verify that the packet does not have any known errors */
480 if (!netdev ||
481 unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
482 !(netdev->features & NETIF_F_RXALL))) {
483 dev_kfree_skb_any(skb);
484 return true;
485 }
486
487 /* place header in linear portion of buffer */
488 if (!skb_headlen(skb))
489 wx_pull_tail(skb);
490
491 /* if eth_skb_pad returns an error the skb was freed */
492 if (eth_skb_pad(skb))
493 return true;
494
495 return false;
496 }
497
wx_rx_hash(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)498 static void wx_rx_hash(struct wx_ring *ring,
499 union wx_rx_desc *rx_desc,
500 struct sk_buff *skb)
501 {
502 u16 rss_type;
503
504 if (!(ring->netdev->features & NETIF_F_RXHASH))
505 return;
506
507 rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
508 WX_RXD_RSSTYPE_MASK;
509
510 if (!rss_type)
511 return;
512
513 skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
514 (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
515 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
516 }
517
518 /**
519 * wx_rx_checksum - indicate in skb if hw indicated a good cksum
520 * @ring: structure containing ring specific data
521 * @rx_desc: current Rx descriptor being processed
522 * @skb: skb currently being received and modified
523 **/
wx_rx_checksum(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)524 static void wx_rx_checksum(struct wx_ring *ring,
525 union wx_rx_desc *rx_desc,
526 struct sk_buff *skb)
527 {
528 struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
529
530 skb_checksum_none_assert(skb);
531 /* Rx csum disabled */
532 if (!(ring->netdev->features & NETIF_F_RXCSUM))
533 return;
534
535 /* if IPv4 header checksum error */
536 if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
537 wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
538 (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
539 wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
540 ring->rx_stats.csum_err++;
541 return;
542 }
543
544 /* L4 checksum offload flag must set for the below code to work */
545 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
546 return;
547
548 /* Hardware can't guarantee csum if IPv6 Dest Header found */
549 if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP && WX_RXD_IPV6EX(rx_desc))
550 return;
551
552 /* if L4 checksum error */
553 if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
554 ring->rx_stats.csum_err++;
555 return;
556 }
557
558 /* It must be a TCP or UDP or SCTP packet with a valid checksum */
559 skb->ip_summed = CHECKSUM_UNNECESSARY;
560
561 /* If there is an outer header present that might contain a checksum
562 * we need to bump the checksum level by 1 to reflect the fact that
563 * we are indicating we validated the inner checksum.
564 */
565 if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
566 __skb_incr_checksum_unnecessary(skb);
567 ring->rx_stats.csum_good_cnt++;
568 }
569
wx_rx_vlan(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)570 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
571 struct sk_buff *skb)
572 {
573 u16 ethertype;
574 u8 idx = 0;
575
576 if ((ring->netdev->features &
577 (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
578 wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
579 idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
580 0x1c0) >> 6;
581 ethertype = ring->q_vector->wx->tpid[idx];
582 __vlan_hwaccel_put_tag(skb, htons(ethertype),
583 le16_to_cpu(rx_desc->wb.upper.vlan));
584 }
585 }
586
587 /**
588 * wx_process_skb_fields - Populate skb header fields from Rx descriptor
589 * @rx_ring: rx descriptor ring packet is being transacted on
590 * @rx_desc: pointer to the EOP Rx descriptor
591 * @skb: pointer to current skb being populated
592 *
593 * This function checks the ring, descriptor, and packet information in
594 * order to populate the hash, checksum, protocol, and
595 * other fields within the skb.
596 **/
wx_process_skb_fields(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)597 static void wx_process_skb_fields(struct wx_ring *rx_ring,
598 union wx_rx_desc *rx_desc,
599 struct sk_buff *skb)
600 {
601 wx_rx_hash(rx_ring, rx_desc, skb);
602 wx_rx_checksum(rx_ring, rx_desc, skb);
603 wx_rx_vlan(rx_ring, rx_desc, skb);
604 skb_record_rx_queue(skb, rx_ring->queue_index);
605 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
606 }
607
608 /**
609 * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
610 * @q_vector: structure containing interrupt and ring information
611 * @rx_ring: rx descriptor ring to transact packets on
612 * @budget: Total limit on number of packets to process
613 *
614 * This function provides a "bounce buffer" approach to Rx interrupt
615 * processing. The advantage to this is that on systems that have
616 * expensive overhead for IOMMU access this provides a means of avoiding
617 * it by maintaining the mapping of the page to the system.
618 *
619 * Returns amount of work completed.
620 **/
wx_clean_rx_irq(struct wx_q_vector * q_vector,struct wx_ring * rx_ring,int budget)621 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
622 struct wx_ring *rx_ring,
623 int budget)
624 {
625 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
626 u16 cleaned_count = wx_desc_unused(rx_ring);
627
628 do {
629 struct wx_rx_buffer *rx_buffer;
630 union wx_rx_desc *rx_desc;
631 struct sk_buff *skb;
632 int rx_buffer_pgcnt;
633
634 /* return some buffers to hardware, one at a time is too slow */
635 if (cleaned_count >= WX_RX_BUFFER_WRITE) {
636 wx_alloc_rx_buffers(rx_ring, cleaned_count);
637 cleaned_count = 0;
638 }
639
640 rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
641 if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
642 break;
643
644 /* This memory barrier is needed to keep us from reading
645 * any other fields out of the rx_desc until we know the
646 * descriptor has been written back
647 */
648 dma_rmb();
649
650 rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
651
652 /* retrieve a buffer from the ring */
653 skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
654
655 /* exit if we failed to retrieve a buffer */
656 if (!skb) {
657 break;
658 }
659
660 wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
661 cleaned_count++;
662
663 /* place incomplete frames back on ring for completion */
664 if (wx_is_non_eop(rx_ring, rx_desc, skb))
665 continue;
666
667 /* verify the packet layout is correct */
668 if (wx_cleanup_headers(rx_ring, rx_desc, skb))
669 continue;
670
671 /* probably a little skewed due to removing CRC */
672 total_rx_bytes += skb->len;
673
674 /* populate checksum, timestamp, VLAN, and protocol */
675 wx_process_skb_fields(rx_ring, rx_desc, skb);
676 napi_gro_receive(&q_vector->napi, skb);
677
678 /* update budget accounting */
679 total_rx_packets++;
680 } while (likely(total_rx_packets < budget));
681
682 u64_stats_update_begin(&rx_ring->syncp);
683 rx_ring->stats.packets += total_rx_packets;
684 rx_ring->stats.bytes += total_rx_bytes;
685 u64_stats_update_end(&rx_ring->syncp);
686 q_vector->rx.total_packets += total_rx_packets;
687 q_vector->rx.total_bytes += total_rx_bytes;
688
689 return total_rx_packets;
690 }
691
wx_txring_txq(const struct wx_ring * ring)692 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
693 {
694 return netdev_get_tx_queue(ring->netdev, ring->queue_index);
695 }
696
697 /**
698 * wx_clean_tx_irq - Reclaim resources after transmit completes
699 * @q_vector: structure containing interrupt and ring information
700 * @tx_ring: tx ring to clean
701 * @napi_budget: Used to determine if we are in netpoll
702 **/
wx_clean_tx_irq(struct wx_q_vector * q_vector,struct wx_ring * tx_ring,int napi_budget)703 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
704 struct wx_ring *tx_ring, int napi_budget)
705 {
706 unsigned int budget = q_vector->wx->tx_work_limit;
707 unsigned int total_bytes = 0, total_packets = 0;
708 unsigned int i = tx_ring->next_to_clean;
709 struct wx_tx_buffer *tx_buffer;
710 union wx_tx_desc *tx_desc;
711
712 if (!netif_carrier_ok(tx_ring->netdev))
713 return true;
714
715 tx_buffer = &tx_ring->tx_buffer_info[i];
716 tx_desc = WX_TX_DESC(tx_ring, i);
717 i -= tx_ring->count;
718
719 do {
720 union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
721
722 /* if next_to_watch is not set then there is no work pending */
723 if (!eop_desc)
724 break;
725
726 /* prevent any other reads prior to eop_desc */
727 smp_rmb();
728
729 /* if DD is not set pending work has not been completed */
730 if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
731 break;
732
733 /* clear next_to_watch to prevent false hangs */
734 tx_buffer->next_to_watch = NULL;
735
736 /* update the statistics for this packet */
737 total_bytes += tx_buffer->bytecount;
738 total_packets += tx_buffer->gso_segs;
739
740 /* free the skb */
741 napi_consume_skb(tx_buffer->skb, napi_budget);
742
743 /* unmap skb header data */
744 dma_unmap_single(tx_ring->dev,
745 dma_unmap_addr(tx_buffer, dma),
746 dma_unmap_len(tx_buffer, len),
747 DMA_TO_DEVICE);
748
749 /* clear tx_buffer data */
750 dma_unmap_len_set(tx_buffer, len, 0);
751
752 /* unmap remaining buffers */
753 while (tx_desc != eop_desc) {
754 tx_buffer++;
755 tx_desc++;
756 i++;
757 if (unlikely(!i)) {
758 i -= tx_ring->count;
759 tx_buffer = tx_ring->tx_buffer_info;
760 tx_desc = WX_TX_DESC(tx_ring, 0);
761 }
762
763 /* unmap any remaining paged data */
764 if (dma_unmap_len(tx_buffer, len)) {
765 dma_unmap_page(tx_ring->dev,
766 dma_unmap_addr(tx_buffer, dma),
767 dma_unmap_len(tx_buffer, len),
768 DMA_TO_DEVICE);
769 dma_unmap_len_set(tx_buffer, len, 0);
770 }
771 }
772
773 /* move us one more past the eop_desc for start of next pkt */
774 tx_buffer++;
775 tx_desc++;
776 i++;
777 if (unlikely(!i)) {
778 i -= tx_ring->count;
779 tx_buffer = tx_ring->tx_buffer_info;
780 tx_desc = WX_TX_DESC(tx_ring, 0);
781 }
782
783 /* issue prefetch for next Tx descriptor */
784 prefetch(tx_desc);
785
786 /* update budget accounting */
787 budget--;
788 } while (likely(budget));
789
790 i += tx_ring->count;
791 tx_ring->next_to_clean = i;
792 u64_stats_update_begin(&tx_ring->syncp);
793 tx_ring->stats.bytes += total_bytes;
794 tx_ring->stats.packets += total_packets;
795 u64_stats_update_end(&tx_ring->syncp);
796 q_vector->tx.total_bytes += total_bytes;
797 q_vector->tx.total_packets += total_packets;
798
799 netdev_tx_completed_queue(wx_txring_txq(tx_ring),
800 total_packets, total_bytes);
801
802 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
803 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
804 (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
805 /* Make sure that anybody stopping the queue after this
806 * sees the new next_to_clean.
807 */
808 smp_mb();
809
810 if (__netif_subqueue_stopped(tx_ring->netdev,
811 tx_ring->queue_index) &&
812 netif_running(tx_ring->netdev))
813 netif_wake_subqueue(tx_ring->netdev,
814 tx_ring->queue_index);
815 }
816
817 return !!budget;
818 }
819
820 /**
821 * wx_poll - NAPI polling RX/TX cleanup routine
822 * @napi: napi struct with our devices info in it
823 * @budget: amount of work driver is allowed to do this pass, in packets
824 *
825 * This function will clean all queues associated with a q_vector.
826 **/
wx_poll(struct napi_struct * napi,int budget)827 static int wx_poll(struct napi_struct *napi, int budget)
828 {
829 struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
830 int per_ring_budget, work_done = 0;
831 struct wx *wx = q_vector->wx;
832 bool clean_complete = true;
833 struct wx_ring *ring;
834
835 wx_for_each_ring(ring, q_vector->tx) {
836 if (!wx_clean_tx_irq(q_vector, ring, budget))
837 clean_complete = false;
838 }
839
840 /* Exit if we are called by netpoll */
841 if (budget <= 0)
842 return budget;
843
844 /* attempt to distribute budget to each queue fairly, but don't allow
845 * the budget to go below 1 because we'll exit polling
846 */
847 if (q_vector->rx.count > 1)
848 per_ring_budget = max(budget / q_vector->rx.count, 1);
849 else
850 per_ring_budget = budget;
851
852 wx_for_each_ring(ring, q_vector->rx) {
853 int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
854
855 work_done += cleaned;
856 if (cleaned >= per_ring_budget)
857 clean_complete = false;
858 }
859
860 /* If all work not completed, return budget and keep polling */
861 if (!clean_complete)
862 return budget;
863
864 /* all work done, exit the polling mode */
865 if (likely(napi_complete_done(napi, work_done))) {
866 if (netif_running(wx->netdev))
867 wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
868 }
869
870 return min(work_done, budget - 1);
871 }
872
wx_maybe_stop_tx(struct wx_ring * tx_ring,u16 size)873 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
874 {
875 if (likely(wx_desc_unused(tx_ring) >= size))
876 return 0;
877
878 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
879
880 /* For the next check */
881 smp_mb();
882
883 /* We need to check again in a case another CPU has just
884 * made room available.
885 */
886 if (likely(wx_desc_unused(tx_ring) < size))
887 return -EBUSY;
888
889 /* A reprieve! - use start_queue because it doesn't call schedule */
890 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
891
892 return 0;
893 }
894
wx_tx_cmd_type(u32 tx_flags)895 static u32 wx_tx_cmd_type(u32 tx_flags)
896 {
897 /* set type for advanced descriptor with frame checksum insertion */
898 u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
899
900 /* set HW vlan bit if vlan is present */
901 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
902 /* set segmentation enable bits for TSO/FSO */
903 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
904 /* set timestamp bit if present */
905 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
906 cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
907
908 return cmd_type;
909 }
910
wx_tx_olinfo_status(union wx_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)911 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
912 u32 tx_flags, unsigned int paylen)
913 {
914 u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
915
916 /* enable L4 checksum for TSO and TX checksum offload */
917 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
918 /* enable IPv4 checksum for TSO */
919 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
920 /* enable outer IPv4 checksum for TSO */
921 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
922 WX_TXD_EIPCS);
923 /* Check Context must be set if Tx switch is enabled, which it
924 * always is for case where virtual functions are running
925 */
926 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
927 olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
928 WX_TXD_IPSEC);
929 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
930 }
931
wx_tx_map(struct wx_ring * tx_ring,struct wx_tx_buffer * first,const u8 hdr_len)932 static void wx_tx_map(struct wx_ring *tx_ring,
933 struct wx_tx_buffer *first,
934 const u8 hdr_len)
935 {
936 struct sk_buff *skb = first->skb;
937 struct wx_tx_buffer *tx_buffer;
938 u32 tx_flags = first->tx_flags;
939 u16 i = tx_ring->next_to_use;
940 unsigned int data_len, size;
941 union wx_tx_desc *tx_desc;
942 skb_frag_t *frag;
943 dma_addr_t dma;
944 u32 cmd_type;
945
946 cmd_type = wx_tx_cmd_type(tx_flags);
947 tx_desc = WX_TX_DESC(tx_ring, i);
948 wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
949
950 size = skb_headlen(skb);
951 data_len = skb->data_len;
952 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
953
954 tx_buffer = first;
955
956 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
957 if (dma_mapping_error(tx_ring->dev, dma))
958 goto dma_error;
959
960 /* record length, and DMA address */
961 dma_unmap_len_set(tx_buffer, len, size);
962 dma_unmap_addr_set(tx_buffer, dma, dma);
963
964 tx_desc->read.buffer_addr = cpu_to_le64(dma);
965
966 while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
967 tx_desc->read.cmd_type_len =
968 cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
969
970 i++;
971 tx_desc++;
972 if (i == tx_ring->count) {
973 tx_desc = WX_TX_DESC(tx_ring, 0);
974 i = 0;
975 }
976 tx_desc->read.olinfo_status = 0;
977
978 dma += WX_MAX_DATA_PER_TXD;
979 size -= WX_MAX_DATA_PER_TXD;
980
981 tx_desc->read.buffer_addr = cpu_to_le64(dma);
982 }
983
984 if (likely(!data_len))
985 break;
986
987 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
988
989 i++;
990 tx_desc++;
991 if (i == tx_ring->count) {
992 tx_desc = WX_TX_DESC(tx_ring, 0);
993 i = 0;
994 }
995 tx_desc->read.olinfo_status = 0;
996
997 size = skb_frag_size(frag);
998
999 data_len -= size;
1000
1001 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1002 DMA_TO_DEVICE);
1003
1004 tx_buffer = &tx_ring->tx_buffer_info[i];
1005 }
1006
1007 /* write last descriptor with RS and EOP bits */
1008 cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1009 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1010
1011 netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1012
1013 skb_tx_timestamp(skb);
1014
1015 /* Force memory writes to complete before letting h/w know there
1016 * are new descriptors to fetch. (Only applicable for weak-ordered
1017 * memory model archs, such as IA-64).
1018 *
1019 * We also need this memory barrier to make certain all of the
1020 * status bits have been updated before next_to_watch is written.
1021 */
1022 wmb();
1023
1024 /* set next_to_watch value indicating a packet is present */
1025 first->next_to_watch = tx_desc;
1026
1027 i++;
1028 if (i == tx_ring->count)
1029 i = 0;
1030
1031 tx_ring->next_to_use = i;
1032
1033 wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1034
1035 if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1036 writel(i, tx_ring->tail);
1037
1038 return;
1039 dma_error:
1040 dev_err(tx_ring->dev, "TX DMA map failed\n");
1041
1042 /* clear dma mappings for failed tx_buffer_info map */
1043 for (;;) {
1044 tx_buffer = &tx_ring->tx_buffer_info[i];
1045 if (dma_unmap_len(tx_buffer, len))
1046 dma_unmap_page(tx_ring->dev,
1047 dma_unmap_addr(tx_buffer, dma),
1048 dma_unmap_len(tx_buffer, len),
1049 DMA_TO_DEVICE);
1050 dma_unmap_len_set(tx_buffer, len, 0);
1051 if (tx_buffer == first)
1052 break;
1053 if (i == 0)
1054 i += tx_ring->count;
1055 i--;
1056 }
1057
1058 dev_kfree_skb_any(first->skb);
1059 first->skb = NULL;
1060
1061 tx_ring->next_to_use = i;
1062 }
1063
wx_tx_ctxtdesc(struct wx_ring * tx_ring,u32 vlan_macip_lens,u32 fcoe_sof_eof,u32 type_tucmd,u32 mss_l4len_idx)1064 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1065 u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1066 {
1067 struct wx_tx_context_desc *context_desc;
1068 u16 i = tx_ring->next_to_use;
1069
1070 context_desc = WX_TX_CTXTDESC(tx_ring, i);
1071 i++;
1072 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1073
1074 /* set bits to identify this as an advanced context descriptor */
1075 type_tucmd |= WX_TXD_DTYP_CTXT;
1076 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1077 context_desc->seqnum_seed = cpu_to_le32(fcoe_sof_eof);
1078 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1079 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1080 }
1081
wx_get_ipv6_proto(struct sk_buff * skb,int offset,u8 * nexthdr)1082 static void wx_get_ipv6_proto(struct sk_buff *skb, int offset, u8 *nexthdr)
1083 {
1084 struct ipv6hdr *hdr = (struct ipv6hdr *)(skb->data + offset);
1085
1086 *nexthdr = hdr->nexthdr;
1087 offset += sizeof(struct ipv6hdr);
1088 while (ipv6_ext_hdr(*nexthdr)) {
1089 struct ipv6_opt_hdr _hdr, *hp;
1090
1091 if (*nexthdr == NEXTHDR_NONE)
1092 return;
1093 hp = skb_header_pointer(skb, offset, sizeof(_hdr), &_hdr);
1094 if (!hp)
1095 return;
1096 if (*nexthdr == NEXTHDR_FRAGMENT)
1097 break;
1098 *nexthdr = hp->nexthdr;
1099 }
1100 }
1101
1102 union network_header {
1103 struct iphdr *ipv4;
1104 struct ipv6hdr *ipv6;
1105 void *raw;
1106 };
1107
wx_encode_tx_desc_ptype(const struct wx_tx_buffer * first)1108 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1109 {
1110 u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1111 struct sk_buff *skb = first->skb;
1112
1113 if (skb->encapsulation) {
1114 union network_header hdr;
1115
1116 switch (first->protocol) {
1117 case htons(ETH_P_IP):
1118 tun_prot = ip_hdr(skb)->protocol;
1119 ptype = WX_PTYPE_TUN_IPV4;
1120 break;
1121 case htons(ETH_P_IPV6):
1122 wx_get_ipv6_proto(skb, skb_network_offset(skb), &tun_prot);
1123 ptype = WX_PTYPE_TUN_IPV6;
1124 break;
1125 default:
1126 return ptype;
1127 }
1128
1129 if (tun_prot == IPPROTO_IPIP) {
1130 hdr.raw = (void *)inner_ip_hdr(skb);
1131 ptype |= WX_PTYPE_PKT_IPIP;
1132 } else if (tun_prot == IPPROTO_UDP) {
1133 hdr.raw = (void *)inner_ip_hdr(skb);
1134 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1135 skb->inner_protocol != htons(ETH_P_TEB)) {
1136 ptype |= WX_PTYPE_PKT_IG;
1137 } else {
1138 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1139 == htons(ETH_P_8021Q))
1140 ptype |= WX_PTYPE_PKT_IGMV;
1141 else
1142 ptype |= WX_PTYPE_PKT_IGM;
1143 }
1144
1145 } else if (tun_prot == IPPROTO_GRE) {
1146 hdr.raw = (void *)inner_ip_hdr(skb);
1147 if (skb->inner_protocol == htons(ETH_P_IP) ||
1148 skb->inner_protocol == htons(ETH_P_IPV6)) {
1149 ptype |= WX_PTYPE_PKT_IG;
1150 } else {
1151 if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1152 == htons(ETH_P_8021Q))
1153 ptype |= WX_PTYPE_PKT_IGMV;
1154 else
1155 ptype |= WX_PTYPE_PKT_IGM;
1156 }
1157 } else {
1158 return ptype;
1159 }
1160
1161 switch (hdr.ipv4->version) {
1162 case IPVERSION:
1163 l4_prot = hdr.ipv4->protocol;
1164 break;
1165 case 6:
1166 wx_get_ipv6_proto(skb, skb_inner_network_offset(skb), &l4_prot);
1167 ptype |= WX_PTYPE_PKT_IPV6;
1168 break;
1169 default:
1170 return ptype;
1171 }
1172 } else {
1173 switch (first->protocol) {
1174 case htons(ETH_P_IP):
1175 l4_prot = ip_hdr(skb)->protocol;
1176 ptype = WX_PTYPE_PKT_IP;
1177 break;
1178 case htons(ETH_P_IPV6):
1179 wx_get_ipv6_proto(skb, skb_network_offset(skb), &l4_prot);
1180 ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1181 break;
1182 default:
1183 return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1184 }
1185 }
1186 switch (l4_prot) {
1187 case IPPROTO_TCP:
1188 ptype |= WX_PTYPE_TYP_TCP;
1189 break;
1190 case IPPROTO_UDP:
1191 ptype |= WX_PTYPE_TYP_UDP;
1192 break;
1193 case IPPROTO_SCTP:
1194 ptype |= WX_PTYPE_TYP_SCTP;
1195 break;
1196 default:
1197 ptype |= WX_PTYPE_TYP_IP;
1198 break;
1199 }
1200
1201 return ptype;
1202 }
1203
wx_tso(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 * hdr_len,u8 ptype)1204 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1205 u8 *hdr_len, u8 ptype)
1206 {
1207 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1208 struct net_device *netdev = tx_ring->netdev;
1209 u32 l4len, tunhdr_eiplen_tunlen = 0;
1210 struct sk_buff *skb = first->skb;
1211 bool enc = skb->encapsulation;
1212 struct ipv6hdr *ipv6h;
1213 struct tcphdr *tcph;
1214 struct iphdr *iph;
1215 u8 tun_prot = 0;
1216 int err;
1217
1218 if (skb->ip_summed != CHECKSUM_PARTIAL)
1219 return 0;
1220
1221 if (!skb_is_gso(skb))
1222 return 0;
1223
1224 err = skb_cow_head(skb, 0);
1225 if (err < 0)
1226 return err;
1227
1228 /* indicates the inner headers in the skbuff are valid. */
1229 iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1230 if (iph->version == 4) {
1231 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1232 iph->tot_len = 0;
1233 iph->check = 0;
1234 tcph->check = ~csum_tcpudp_magic(iph->saddr,
1235 iph->daddr, 0,
1236 IPPROTO_TCP, 0);
1237 first->tx_flags |= WX_TX_FLAGS_TSO |
1238 WX_TX_FLAGS_CSUM |
1239 WX_TX_FLAGS_IPV4 |
1240 WX_TX_FLAGS_CC;
1241 } else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1242 ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1243 tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1244 ipv6h->payload_len = 0;
1245 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1246 &ipv6h->daddr, 0,
1247 IPPROTO_TCP, 0);
1248 first->tx_flags |= WX_TX_FLAGS_TSO |
1249 WX_TX_FLAGS_CSUM |
1250 WX_TX_FLAGS_CC;
1251 }
1252
1253 /* compute header lengths */
1254 l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1255 *hdr_len = enc ? (skb_inner_transport_header(skb) - skb->data) :
1256 skb_transport_offset(skb);
1257 *hdr_len += l4len;
1258
1259 /* update gso size and bytecount with header size */
1260 first->gso_segs = skb_shinfo(skb)->gso_segs;
1261 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1262
1263 /* mss_l4len_id: use 0 as index for TSO */
1264 mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1265 mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1266
1267 /* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1268 if (enc) {
1269 switch (first->protocol) {
1270 case htons(ETH_P_IP):
1271 tun_prot = ip_hdr(skb)->protocol;
1272 first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1273 break;
1274 case htons(ETH_P_IPV6):
1275 tun_prot = ipv6_hdr(skb)->nexthdr;
1276 break;
1277 default:
1278 break;
1279 }
1280 switch (tun_prot) {
1281 case IPPROTO_UDP:
1282 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1283 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1284 WX_TXD_OUTER_IPLEN_SHIFT) |
1285 (((skb_inner_mac_header(skb) -
1286 skb_transport_header(skb)) >> 1) <<
1287 WX_TXD_TUNNEL_LEN_SHIFT);
1288 break;
1289 case IPPROTO_GRE:
1290 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1291 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1292 WX_TXD_OUTER_IPLEN_SHIFT) |
1293 (((skb_inner_mac_header(skb) -
1294 skb_transport_header(skb)) >> 1) <<
1295 WX_TXD_TUNNEL_LEN_SHIFT);
1296 break;
1297 case IPPROTO_IPIP:
1298 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1299 (char *)ip_hdr(skb)) >> 2) <<
1300 WX_TXD_OUTER_IPLEN_SHIFT;
1301 break;
1302 default:
1303 break;
1304 }
1305 vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1306 } else {
1307 vlan_macip_lens = skb_network_header_len(skb) >> 1;
1308 }
1309
1310 vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1311 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1312
1313 type_tucmd = ptype << 24;
1314 if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1315 netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1316 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1317 WX_TX_FLAGS_HW_VLAN,
1318 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1319 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1320 type_tucmd, mss_l4len_idx);
1321
1322 return 1;
1323 }
1324
wx_tx_csum(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 ptype)1325 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1326 u8 ptype)
1327 {
1328 u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1329 struct net_device *netdev = tx_ring->netdev;
1330 u32 mss_l4len_idx = 0, type_tucmd;
1331 struct sk_buff *skb = first->skb;
1332 u8 tun_prot = 0;
1333
1334 if (skb->ip_summed != CHECKSUM_PARTIAL) {
1335 if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1336 !(first->tx_flags & WX_TX_FLAGS_CC))
1337 return;
1338 vlan_macip_lens = skb_network_offset(skb) <<
1339 WX_TXD_MACLEN_SHIFT;
1340 } else {
1341 u8 l4_prot = 0;
1342 union {
1343 struct iphdr *ipv4;
1344 struct ipv6hdr *ipv6;
1345 u8 *raw;
1346 } network_hdr;
1347 union {
1348 struct tcphdr *tcphdr;
1349 u8 *raw;
1350 } transport_hdr;
1351
1352 if (skb->encapsulation) {
1353 network_hdr.raw = skb_inner_network_header(skb);
1354 transport_hdr.raw = skb_inner_transport_header(skb);
1355 vlan_macip_lens = skb_network_offset(skb) <<
1356 WX_TXD_MACLEN_SHIFT;
1357 switch (first->protocol) {
1358 case htons(ETH_P_IP):
1359 tun_prot = ip_hdr(skb)->protocol;
1360 break;
1361 case htons(ETH_P_IPV6):
1362 tun_prot = ipv6_hdr(skb)->nexthdr;
1363 break;
1364 default:
1365 return;
1366 }
1367 switch (tun_prot) {
1368 case IPPROTO_UDP:
1369 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1370 tunhdr_eiplen_tunlen |=
1371 ((skb_network_header_len(skb) >> 2) <<
1372 WX_TXD_OUTER_IPLEN_SHIFT) |
1373 (((skb_inner_mac_header(skb) -
1374 skb_transport_header(skb)) >> 1) <<
1375 WX_TXD_TUNNEL_LEN_SHIFT);
1376 break;
1377 case IPPROTO_GRE:
1378 tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1379 tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1380 WX_TXD_OUTER_IPLEN_SHIFT) |
1381 (((skb_inner_mac_header(skb) -
1382 skb_transport_header(skb)) >> 1) <<
1383 WX_TXD_TUNNEL_LEN_SHIFT);
1384 break;
1385 case IPPROTO_IPIP:
1386 tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1387 (char *)ip_hdr(skb)) >> 2) <<
1388 WX_TXD_OUTER_IPLEN_SHIFT;
1389 break;
1390 default:
1391 break;
1392 }
1393
1394 } else {
1395 network_hdr.raw = skb_network_header(skb);
1396 transport_hdr.raw = skb_transport_header(skb);
1397 vlan_macip_lens = skb_network_offset(skb) <<
1398 WX_TXD_MACLEN_SHIFT;
1399 }
1400
1401 switch (network_hdr.ipv4->version) {
1402 case IPVERSION:
1403 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1404 l4_prot = network_hdr.ipv4->protocol;
1405 break;
1406 case 6:
1407 vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1408 l4_prot = network_hdr.ipv6->nexthdr;
1409 break;
1410 default:
1411 break;
1412 }
1413
1414 switch (l4_prot) {
1415 case IPPROTO_TCP:
1416 mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1417 WX_TXD_L4LEN_SHIFT;
1418 break;
1419 case IPPROTO_SCTP:
1420 mss_l4len_idx = sizeof(struct sctphdr) <<
1421 WX_TXD_L4LEN_SHIFT;
1422 break;
1423 case IPPROTO_UDP:
1424 mss_l4len_idx = sizeof(struct udphdr) <<
1425 WX_TXD_L4LEN_SHIFT;
1426 break;
1427 default:
1428 break;
1429 }
1430
1431 /* update TX checksum flag */
1432 first->tx_flags |= WX_TX_FLAGS_CSUM;
1433 }
1434 first->tx_flags |= WX_TX_FLAGS_CC;
1435 /* vlan_macip_lens: MACLEN, VLAN tag */
1436 vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1437
1438 type_tucmd = ptype << 24;
1439 if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1440 netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1441 type_tucmd |= WX_SET_FLAG(first->tx_flags,
1442 WX_TX_FLAGS_HW_VLAN,
1443 0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1444 wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1445 type_tucmd, mss_l4len_idx);
1446 }
1447
wx_xmit_frame_ring(struct sk_buff * skb,struct wx_ring * tx_ring)1448 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1449 struct wx_ring *tx_ring)
1450 {
1451 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1452 struct wx_tx_buffer *first;
1453 u8 hdr_len = 0, ptype;
1454 unsigned short f;
1455 u32 tx_flags = 0;
1456 int tso;
1457
1458 /* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1459 * + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1460 * + 2 desc gap to keep tail from touching head,
1461 * + 1 desc for context descriptor,
1462 * otherwise try next time
1463 */
1464 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1465 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1466 frags[f]));
1467
1468 if (wx_maybe_stop_tx(tx_ring, count + 3))
1469 return NETDEV_TX_BUSY;
1470
1471 /* record the location of the first descriptor for this packet */
1472 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1473 first->skb = skb;
1474 first->bytecount = skb->len;
1475 first->gso_segs = 1;
1476
1477 /* if we have a HW VLAN tag being added default to the HW one */
1478 if (skb_vlan_tag_present(skb)) {
1479 tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1480 tx_flags |= WX_TX_FLAGS_HW_VLAN;
1481 }
1482
1483 /* record initial flags and protocol */
1484 first->tx_flags = tx_flags;
1485 first->protocol = vlan_get_protocol(skb);
1486
1487 ptype = wx_encode_tx_desc_ptype(first);
1488
1489 tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1490 if (tso < 0)
1491 goto out_drop;
1492 else if (!tso)
1493 wx_tx_csum(tx_ring, first, ptype);
1494 wx_tx_map(tx_ring, first, hdr_len);
1495
1496 return NETDEV_TX_OK;
1497 out_drop:
1498 dev_kfree_skb_any(first->skb);
1499 first->skb = NULL;
1500
1501 return NETDEV_TX_OK;
1502 }
1503
wx_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1504 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1505 struct net_device *netdev)
1506 {
1507 unsigned int r_idx = skb->queue_mapping;
1508 struct wx *wx = netdev_priv(netdev);
1509 struct wx_ring *tx_ring;
1510
1511 if (!netif_carrier_ok(netdev)) {
1512 dev_kfree_skb_any(skb);
1513 return NETDEV_TX_OK;
1514 }
1515
1516 /* The minimum packet size for olinfo paylen is 17 so pad the skb
1517 * in order to meet this minimum size requirement.
1518 */
1519 if (skb_put_padto(skb, 17))
1520 return NETDEV_TX_OK;
1521
1522 if (r_idx >= wx->num_tx_queues)
1523 r_idx = r_idx % wx->num_tx_queues;
1524 tx_ring = wx->tx_ring[r_idx];
1525
1526 return wx_xmit_frame_ring(skb, tx_ring);
1527 }
1528 EXPORT_SYMBOL(wx_xmit_frame);
1529
wx_napi_enable_all(struct wx * wx)1530 void wx_napi_enable_all(struct wx *wx)
1531 {
1532 struct wx_q_vector *q_vector;
1533 int q_idx;
1534
1535 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1536 q_vector = wx->q_vector[q_idx];
1537 napi_enable(&q_vector->napi);
1538 }
1539 }
1540 EXPORT_SYMBOL(wx_napi_enable_all);
1541
wx_napi_disable_all(struct wx * wx)1542 void wx_napi_disable_all(struct wx *wx)
1543 {
1544 struct wx_q_vector *q_vector;
1545 int q_idx;
1546
1547 for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1548 q_vector = wx->q_vector[q_idx];
1549 napi_disable(&q_vector->napi);
1550 }
1551 }
1552 EXPORT_SYMBOL(wx_napi_disable_all);
1553
1554 /**
1555 * wx_set_rss_queues: Allocate queues for RSS
1556 * @wx: board private structure to initialize
1557 *
1558 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1559 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1560 *
1561 **/
wx_set_rss_queues(struct wx * wx)1562 static void wx_set_rss_queues(struct wx *wx)
1563 {
1564 wx->num_rx_queues = wx->mac.max_rx_queues;
1565 wx->num_tx_queues = wx->mac.max_tx_queues;
1566 }
1567
wx_set_num_queues(struct wx * wx)1568 static void wx_set_num_queues(struct wx *wx)
1569 {
1570 /* Start with base case */
1571 wx->num_rx_queues = 1;
1572 wx->num_tx_queues = 1;
1573 wx->queues_per_pool = 1;
1574
1575 wx_set_rss_queues(wx);
1576 }
1577
1578 /**
1579 * wx_acquire_msix_vectors - acquire MSI-X vectors
1580 * @wx: board private structure
1581 *
1582 * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1583 * return a negative error code if unable to acquire MSI-X vectors for any
1584 * reason.
1585 */
wx_acquire_msix_vectors(struct wx * wx)1586 static int wx_acquire_msix_vectors(struct wx *wx)
1587 {
1588 struct irq_affinity affd = {0, };
1589 int nvecs, i;
1590
1591 nvecs = min_t(int, num_online_cpus(), wx->mac.max_msix_vectors);
1592
1593 wx->msix_entries = kcalloc(nvecs,
1594 sizeof(struct msix_entry),
1595 GFP_KERNEL);
1596 if (!wx->msix_entries)
1597 return -ENOMEM;
1598
1599 nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1600 nvecs,
1601 PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1602 &affd);
1603 if (nvecs < 0) {
1604 wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1605 kfree(wx->msix_entries);
1606 wx->msix_entries = NULL;
1607 return nvecs;
1608 }
1609
1610 for (i = 0; i < nvecs; i++) {
1611 wx->msix_entries[i].entry = i;
1612 wx->msix_entries[i].vector = pci_irq_vector(wx->pdev, i);
1613 }
1614
1615 /* one for msix_other */
1616 nvecs -= 1;
1617 wx->num_q_vectors = nvecs;
1618 wx->num_rx_queues = nvecs;
1619 wx->num_tx_queues = nvecs;
1620
1621 return 0;
1622 }
1623
1624 /**
1625 * wx_set_interrupt_capability - set MSI-X or MSI if supported
1626 * @wx: board private structure to initialize
1627 *
1628 * Attempt to configure the interrupts using the best available
1629 * capabilities of the hardware and the kernel.
1630 **/
wx_set_interrupt_capability(struct wx * wx)1631 static int wx_set_interrupt_capability(struct wx *wx)
1632 {
1633 struct pci_dev *pdev = wx->pdev;
1634 int nvecs, ret;
1635
1636 /* We will try to get MSI-X interrupts first */
1637 ret = wx_acquire_msix_vectors(wx);
1638 if (ret == 0 || (ret == -ENOMEM))
1639 return ret;
1640
1641 wx->num_rx_queues = 1;
1642 wx->num_tx_queues = 1;
1643 wx->num_q_vectors = 1;
1644
1645 /* minmum one for queue, one for misc*/
1646 nvecs = 1;
1647 nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1648 nvecs, PCI_IRQ_MSI | PCI_IRQ_LEGACY);
1649 if (nvecs == 1) {
1650 if (pdev->msi_enabled)
1651 wx_err(wx, "Fallback to MSI.\n");
1652 else
1653 wx_err(wx, "Fallback to LEGACY.\n");
1654 } else {
1655 wx_err(wx, "Failed to allocate MSI/LEGACY interrupts. Error: %d\n", nvecs);
1656 return nvecs;
1657 }
1658
1659 pdev->irq = pci_irq_vector(pdev, 0);
1660
1661 return 0;
1662 }
1663
1664 /**
1665 * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1666 * @wx: board private structure to initialize
1667 *
1668 * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1669 *
1670 **/
wx_cache_ring_rss(struct wx * wx)1671 static void wx_cache_ring_rss(struct wx *wx)
1672 {
1673 u16 i;
1674
1675 for (i = 0; i < wx->num_rx_queues; i++)
1676 wx->rx_ring[i]->reg_idx = i;
1677
1678 for (i = 0; i < wx->num_tx_queues; i++)
1679 wx->tx_ring[i]->reg_idx = i;
1680 }
1681
wx_add_ring(struct wx_ring * ring,struct wx_ring_container * head)1682 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1683 {
1684 ring->next = head->ring;
1685 head->ring = ring;
1686 head->count++;
1687 }
1688
1689 /**
1690 * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1691 * @wx: board private structure to initialize
1692 * @v_count: q_vectors allocated on wx, used for ring interleaving
1693 * @v_idx: index of vector in wx struct
1694 * @txr_count: total number of Tx rings to allocate
1695 * @txr_idx: index of first Tx ring to allocate
1696 * @rxr_count: total number of Rx rings to allocate
1697 * @rxr_idx: index of first Rx ring to allocate
1698 *
1699 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1700 **/
wx_alloc_q_vector(struct wx * wx,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)1701 static int wx_alloc_q_vector(struct wx *wx,
1702 unsigned int v_count, unsigned int v_idx,
1703 unsigned int txr_count, unsigned int txr_idx,
1704 unsigned int rxr_count, unsigned int rxr_idx)
1705 {
1706 struct wx_q_vector *q_vector;
1707 int ring_count, default_itr;
1708 struct wx_ring *ring;
1709
1710 /* note this will allocate space for the ring structure as well! */
1711 ring_count = txr_count + rxr_count;
1712
1713 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1714 GFP_KERNEL);
1715 if (!q_vector)
1716 return -ENOMEM;
1717
1718 /* initialize NAPI */
1719 netif_napi_add(wx->netdev, &q_vector->napi,
1720 wx_poll);
1721
1722 /* tie q_vector and wx together */
1723 wx->q_vector[v_idx] = q_vector;
1724 q_vector->wx = wx;
1725 q_vector->v_idx = v_idx;
1726 if (cpu_online(v_idx))
1727 q_vector->numa_node = cpu_to_node(v_idx);
1728
1729 /* initialize pointer to rings */
1730 ring = q_vector->ring;
1731
1732 if (wx->mac.type == wx_mac_sp)
1733 default_itr = WX_12K_ITR;
1734 else
1735 default_itr = WX_7K_ITR;
1736 /* initialize ITR */
1737 if (txr_count && !rxr_count)
1738 /* tx only vector */
1739 q_vector->itr = wx->tx_itr_setting ?
1740 default_itr : wx->tx_itr_setting;
1741 else
1742 /* rx or rx/tx vector */
1743 q_vector->itr = wx->rx_itr_setting ?
1744 default_itr : wx->rx_itr_setting;
1745
1746 while (txr_count) {
1747 /* assign generic ring traits */
1748 ring->dev = &wx->pdev->dev;
1749 ring->netdev = wx->netdev;
1750
1751 /* configure backlink on ring */
1752 ring->q_vector = q_vector;
1753
1754 /* update q_vector Tx values */
1755 wx_add_ring(ring, &q_vector->tx);
1756
1757 /* apply Tx specific ring traits */
1758 ring->count = wx->tx_ring_count;
1759
1760 ring->queue_index = txr_idx;
1761
1762 /* assign ring to wx */
1763 wx->tx_ring[txr_idx] = ring;
1764
1765 /* update count and index */
1766 txr_count--;
1767 txr_idx += v_count;
1768
1769 /* push pointer to next ring */
1770 ring++;
1771 }
1772
1773 while (rxr_count) {
1774 /* assign generic ring traits */
1775 ring->dev = &wx->pdev->dev;
1776 ring->netdev = wx->netdev;
1777
1778 /* configure backlink on ring */
1779 ring->q_vector = q_vector;
1780
1781 /* update q_vector Rx values */
1782 wx_add_ring(ring, &q_vector->rx);
1783
1784 /* apply Rx specific ring traits */
1785 ring->count = wx->rx_ring_count;
1786 ring->queue_index = rxr_idx;
1787
1788 /* assign ring to wx */
1789 wx->rx_ring[rxr_idx] = ring;
1790
1791 /* update count and index */
1792 rxr_count--;
1793 rxr_idx += v_count;
1794
1795 /* push pointer to next ring */
1796 ring++;
1797 }
1798
1799 return 0;
1800 }
1801
1802 /**
1803 * wx_free_q_vector - Free memory allocated for specific interrupt vector
1804 * @wx: board private structure to initialize
1805 * @v_idx: Index of vector to be freed
1806 *
1807 * This function frees the memory allocated to the q_vector. In addition if
1808 * NAPI is enabled it will delete any references to the NAPI struct prior
1809 * to freeing the q_vector.
1810 **/
wx_free_q_vector(struct wx * wx,int v_idx)1811 static void wx_free_q_vector(struct wx *wx, int v_idx)
1812 {
1813 struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1814 struct wx_ring *ring;
1815
1816 wx_for_each_ring(ring, q_vector->tx)
1817 wx->tx_ring[ring->queue_index] = NULL;
1818
1819 wx_for_each_ring(ring, q_vector->rx)
1820 wx->rx_ring[ring->queue_index] = NULL;
1821
1822 wx->q_vector[v_idx] = NULL;
1823 netif_napi_del(&q_vector->napi);
1824 kfree_rcu(q_vector, rcu);
1825 }
1826
1827 /**
1828 * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1829 * @wx: board private structure to initialize
1830 *
1831 * We allocate one q_vector per queue interrupt. If allocation fails we
1832 * return -ENOMEM.
1833 **/
wx_alloc_q_vectors(struct wx * wx)1834 static int wx_alloc_q_vectors(struct wx *wx)
1835 {
1836 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1837 unsigned int rxr_remaining = wx->num_rx_queues;
1838 unsigned int txr_remaining = wx->num_tx_queues;
1839 unsigned int q_vectors = wx->num_q_vectors;
1840 int rqpv, tqpv;
1841 int err;
1842
1843 for (; v_idx < q_vectors; v_idx++) {
1844 rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1845 tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1846 err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1847 tqpv, txr_idx,
1848 rqpv, rxr_idx);
1849
1850 if (err)
1851 goto err_out;
1852
1853 /* update counts and index */
1854 rxr_remaining -= rqpv;
1855 txr_remaining -= tqpv;
1856 rxr_idx++;
1857 txr_idx++;
1858 }
1859
1860 return 0;
1861
1862 err_out:
1863 wx->num_tx_queues = 0;
1864 wx->num_rx_queues = 0;
1865 wx->num_q_vectors = 0;
1866
1867 while (v_idx--)
1868 wx_free_q_vector(wx, v_idx);
1869
1870 return -ENOMEM;
1871 }
1872
1873 /**
1874 * wx_free_q_vectors - Free memory allocated for interrupt vectors
1875 * @wx: board private structure to initialize
1876 *
1877 * This function frees the memory allocated to the q_vectors. In addition if
1878 * NAPI is enabled it will delete any references to the NAPI struct prior
1879 * to freeing the q_vector.
1880 **/
wx_free_q_vectors(struct wx * wx)1881 static void wx_free_q_vectors(struct wx *wx)
1882 {
1883 int v_idx = wx->num_q_vectors;
1884
1885 wx->num_tx_queues = 0;
1886 wx->num_rx_queues = 0;
1887 wx->num_q_vectors = 0;
1888
1889 while (v_idx--)
1890 wx_free_q_vector(wx, v_idx);
1891 }
1892
wx_reset_interrupt_capability(struct wx * wx)1893 void wx_reset_interrupt_capability(struct wx *wx)
1894 {
1895 struct pci_dev *pdev = wx->pdev;
1896
1897 if (!pdev->msi_enabled && !pdev->msix_enabled)
1898 return;
1899
1900 if (pdev->msix_enabled) {
1901 kfree(wx->msix_entries);
1902 wx->msix_entries = NULL;
1903 }
1904 pci_free_irq_vectors(wx->pdev);
1905 }
1906 EXPORT_SYMBOL(wx_reset_interrupt_capability);
1907
1908 /**
1909 * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
1910 * @wx: board private structure to clear interrupt scheme on
1911 *
1912 * We go through and clear interrupt specific resources and reset the structure
1913 * to pre-load conditions
1914 **/
wx_clear_interrupt_scheme(struct wx * wx)1915 void wx_clear_interrupt_scheme(struct wx *wx)
1916 {
1917 wx_free_q_vectors(wx);
1918 wx_reset_interrupt_capability(wx);
1919 }
1920 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
1921
wx_init_interrupt_scheme(struct wx * wx)1922 int wx_init_interrupt_scheme(struct wx *wx)
1923 {
1924 int ret;
1925
1926 /* Number of supported queues */
1927 wx_set_num_queues(wx);
1928
1929 /* Set interrupt mode */
1930 ret = wx_set_interrupt_capability(wx);
1931 if (ret) {
1932 wx_err(wx, "Allocate irq vectors for failed.\n");
1933 return ret;
1934 }
1935
1936 /* Allocate memory for queues */
1937 ret = wx_alloc_q_vectors(wx);
1938 if (ret) {
1939 wx_err(wx, "Unable to allocate memory for queue vectors.\n");
1940 wx_reset_interrupt_capability(wx);
1941 return ret;
1942 }
1943
1944 wx_cache_ring_rss(wx);
1945
1946 return 0;
1947 }
1948 EXPORT_SYMBOL(wx_init_interrupt_scheme);
1949
wx_msix_clean_rings(int __always_unused irq,void * data)1950 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
1951 {
1952 struct wx_q_vector *q_vector = data;
1953
1954 /* EIAM disabled interrupts (on this vector) for us */
1955 if (q_vector->rx.ring || q_vector->tx.ring)
1956 napi_schedule_irqoff(&q_vector->napi);
1957
1958 return IRQ_HANDLED;
1959 }
1960 EXPORT_SYMBOL(wx_msix_clean_rings);
1961
wx_free_irq(struct wx * wx)1962 void wx_free_irq(struct wx *wx)
1963 {
1964 struct pci_dev *pdev = wx->pdev;
1965 int vector;
1966
1967 if (!(pdev->msix_enabled)) {
1968 free_irq(pdev->irq, wx);
1969 return;
1970 }
1971
1972 for (vector = 0; vector < wx->num_q_vectors; vector++) {
1973 struct wx_q_vector *q_vector = wx->q_vector[vector];
1974 struct msix_entry *entry = &wx->msix_entries[vector];
1975
1976 /* free only the irqs that were actually requested */
1977 if (!q_vector->rx.ring && !q_vector->tx.ring)
1978 continue;
1979
1980 free_irq(entry->vector, q_vector);
1981 }
1982
1983 if (wx->mac.type == wx_mac_em)
1984 free_irq(wx->msix_entries[vector].vector, wx);
1985 }
1986 EXPORT_SYMBOL(wx_free_irq);
1987
1988 /**
1989 * wx_setup_isb_resources - allocate interrupt status resources
1990 * @wx: board private structure
1991 *
1992 * Return 0 on success, negative on failure
1993 **/
wx_setup_isb_resources(struct wx * wx)1994 int wx_setup_isb_resources(struct wx *wx)
1995 {
1996 struct pci_dev *pdev = wx->pdev;
1997
1998 wx->isb_mem = dma_alloc_coherent(&pdev->dev,
1999 sizeof(u32) * 4,
2000 &wx->isb_dma,
2001 GFP_KERNEL);
2002 if (!wx->isb_mem) {
2003 wx_err(wx, "Alloc isb_mem failed\n");
2004 return -ENOMEM;
2005 }
2006
2007 return 0;
2008 }
2009 EXPORT_SYMBOL(wx_setup_isb_resources);
2010
2011 /**
2012 * wx_free_isb_resources - allocate all queues Rx resources
2013 * @wx: board private structure
2014 *
2015 * Return 0 on success, negative on failure
2016 **/
wx_free_isb_resources(struct wx * wx)2017 void wx_free_isb_resources(struct wx *wx)
2018 {
2019 struct pci_dev *pdev = wx->pdev;
2020
2021 dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2022 wx->isb_mem, wx->isb_dma);
2023 wx->isb_mem = NULL;
2024 }
2025 EXPORT_SYMBOL(wx_free_isb_resources);
2026
wx_misc_isb(struct wx * wx,enum wx_isb_idx idx)2027 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2028 {
2029 u32 cur_tag = 0;
2030
2031 cur_tag = wx->isb_mem[WX_ISB_HEADER];
2032 wx->isb_tag[idx] = cur_tag;
2033
2034 return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2035 }
2036 EXPORT_SYMBOL(wx_misc_isb);
2037
2038 /**
2039 * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2040 * @wx: pointer to wx struct
2041 * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2042 * @queue: queue to map the corresponding interrupt to
2043 * @msix_vector: the vector to map to the corresponding queue
2044 *
2045 **/
wx_set_ivar(struct wx * wx,s8 direction,u16 queue,u16 msix_vector)2046 static void wx_set_ivar(struct wx *wx, s8 direction,
2047 u16 queue, u16 msix_vector)
2048 {
2049 u32 ivar, index;
2050
2051 if (direction == -1) {
2052 /* other causes */
2053 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2054 index = 0;
2055 ivar = rd32(wx, WX_PX_MISC_IVAR);
2056 ivar &= ~(0xFF << index);
2057 ivar |= (msix_vector << index);
2058 wr32(wx, WX_PX_MISC_IVAR, ivar);
2059 } else {
2060 /* tx or rx causes */
2061 msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2062 index = ((16 * (queue & 1)) + (8 * direction));
2063 ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2064 ivar &= ~(0xFF << index);
2065 ivar |= (msix_vector << index);
2066 wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2067 }
2068 }
2069
2070 /**
2071 * wx_write_eitr - write EITR register in hardware specific way
2072 * @q_vector: structure containing interrupt and ring information
2073 *
2074 * This function is made to be called by ethtool and by the driver
2075 * when it needs to update EITR registers at runtime. Hardware
2076 * specific quirks/differences are taken care of here.
2077 */
wx_write_eitr(struct wx_q_vector * q_vector)2078 static void wx_write_eitr(struct wx_q_vector *q_vector)
2079 {
2080 struct wx *wx = q_vector->wx;
2081 int v_idx = q_vector->v_idx;
2082 u32 itr_reg;
2083
2084 if (wx->mac.type == wx_mac_sp)
2085 itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2086 else
2087 itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2088
2089 itr_reg |= WX_PX_ITR_CNT_WDIS;
2090
2091 wr32(wx, WX_PX_ITR(v_idx), itr_reg);
2092 }
2093
2094 /**
2095 * wx_configure_vectors - Configure vectors for hardware
2096 * @wx: board private structure
2097 *
2098 * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/LEGACY
2099 * interrupts.
2100 **/
wx_configure_vectors(struct wx * wx)2101 void wx_configure_vectors(struct wx *wx)
2102 {
2103 struct pci_dev *pdev = wx->pdev;
2104 u32 eitrsel = 0;
2105 u16 v_idx;
2106
2107 if (pdev->msix_enabled) {
2108 /* Populate MSIX to EITR Select */
2109 wr32(wx, WX_PX_ITRSEL, eitrsel);
2110 /* use EIAM to auto-mask when MSI-X interrupt is asserted
2111 * this saves a register write for every interrupt
2112 */
2113 wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2114 } else {
2115 /* legacy interrupts, use EIAM to auto-mask when reading EICR,
2116 * specifically only auto mask tx and rx interrupts.
2117 */
2118 wr32(wx, WX_PX_GPIE, 0);
2119 }
2120
2121 /* Populate the IVAR table and set the ITR values to the
2122 * corresponding register.
2123 */
2124 for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2125 struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2126 struct wx_ring *ring;
2127
2128 wx_for_each_ring(ring, q_vector->rx)
2129 wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2130
2131 wx_for_each_ring(ring, q_vector->tx)
2132 wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2133
2134 wx_write_eitr(q_vector);
2135 }
2136
2137 wx_set_ivar(wx, -1, 0, v_idx);
2138 if (pdev->msix_enabled)
2139 wr32(wx, WX_PX_ITR(v_idx), 1950);
2140 }
2141 EXPORT_SYMBOL(wx_configure_vectors);
2142
2143 /**
2144 * wx_clean_rx_ring - Free Rx Buffers per Queue
2145 * @rx_ring: ring to free buffers from
2146 **/
wx_clean_rx_ring(struct wx_ring * rx_ring)2147 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2148 {
2149 struct wx_rx_buffer *rx_buffer;
2150 u16 i = rx_ring->next_to_clean;
2151
2152 rx_buffer = &rx_ring->rx_buffer_info[i];
2153
2154 /* Free all the Rx ring sk_buffs */
2155 while (i != rx_ring->next_to_alloc) {
2156 if (rx_buffer->skb) {
2157 struct sk_buff *skb = rx_buffer->skb;
2158
2159 if (WX_CB(skb)->page_released)
2160 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2161
2162 dev_kfree_skb(skb);
2163 }
2164
2165 /* Invalidate cache lines that may have been written to by
2166 * device so that we avoid corrupting memory.
2167 */
2168 dma_sync_single_range_for_cpu(rx_ring->dev,
2169 rx_buffer->dma,
2170 rx_buffer->page_offset,
2171 WX_RX_BUFSZ,
2172 DMA_FROM_DEVICE);
2173
2174 /* free resources associated with mapping */
2175 page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2176
2177 i++;
2178 rx_buffer++;
2179 if (i == rx_ring->count) {
2180 i = 0;
2181 rx_buffer = rx_ring->rx_buffer_info;
2182 }
2183 }
2184
2185 rx_ring->next_to_alloc = 0;
2186 rx_ring->next_to_clean = 0;
2187 rx_ring->next_to_use = 0;
2188 }
2189
2190 /**
2191 * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2192 * @wx: board private structure
2193 **/
wx_clean_all_rx_rings(struct wx * wx)2194 void wx_clean_all_rx_rings(struct wx *wx)
2195 {
2196 int i;
2197
2198 for (i = 0; i < wx->num_rx_queues; i++)
2199 wx_clean_rx_ring(wx->rx_ring[i]);
2200 }
2201 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2202
2203 /**
2204 * wx_free_rx_resources - Free Rx Resources
2205 * @rx_ring: ring to clean the resources from
2206 *
2207 * Free all receive software resources
2208 **/
wx_free_rx_resources(struct wx_ring * rx_ring)2209 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2210 {
2211 wx_clean_rx_ring(rx_ring);
2212 kvfree(rx_ring->rx_buffer_info);
2213 rx_ring->rx_buffer_info = NULL;
2214
2215 /* if not set, then don't free */
2216 if (!rx_ring->desc)
2217 return;
2218
2219 dma_free_coherent(rx_ring->dev, rx_ring->size,
2220 rx_ring->desc, rx_ring->dma);
2221
2222 rx_ring->desc = NULL;
2223
2224 if (rx_ring->page_pool) {
2225 page_pool_destroy(rx_ring->page_pool);
2226 rx_ring->page_pool = NULL;
2227 }
2228 }
2229
2230 /**
2231 * wx_free_all_rx_resources - Free Rx Resources for All Queues
2232 * @wx: pointer to hardware structure
2233 *
2234 * Free all receive software resources
2235 **/
wx_free_all_rx_resources(struct wx * wx)2236 static void wx_free_all_rx_resources(struct wx *wx)
2237 {
2238 int i;
2239
2240 for (i = 0; i < wx->num_rx_queues; i++)
2241 wx_free_rx_resources(wx->rx_ring[i]);
2242 }
2243
2244 /**
2245 * wx_clean_tx_ring - Free Tx Buffers
2246 * @tx_ring: ring to be cleaned
2247 **/
wx_clean_tx_ring(struct wx_ring * tx_ring)2248 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2249 {
2250 struct wx_tx_buffer *tx_buffer;
2251 u16 i = tx_ring->next_to_clean;
2252
2253 tx_buffer = &tx_ring->tx_buffer_info[i];
2254
2255 while (i != tx_ring->next_to_use) {
2256 union wx_tx_desc *eop_desc, *tx_desc;
2257
2258 /* Free all the Tx ring sk_buffs */
2259 dev_kfree_skb_any(tx_buffer->skb);
2260
2261 /* unmap skb header data */
2262 dma_unmap_single(tx_ring->dev,
2263 dma_unmap_addr(tx_buffer, dma),
2264 dma_unmap_len(tx_buffer, len),
2265 DMA_TO_DEVICE);
2266
2267 /* check for eop_desc to determine the end of the packet */
2268 eop_desc = tx_buffer->next_to_watch;
2269 tx_desc = WX_TX_DESC(tx_ring, i);
2270
2271 /* unmap remaining buffers */
2272 while (tx_desc != eop_desc) {
2273 tx_buffer++;
2274 tx_desc++;
2275 i++;
2276 if (unlikely(i == tx_ring->count)) {
2277 i = 0;
2278 tx_buffer = tx_ring->tx_buffer_info;
2279 tx_desc = WX_TX_DESC(tx_ring, 0);
2280 }
2281
2282 /* unmap any remaining paged data */
2283 if (dma_unmap_len(tx_buffer, len))
2284 dma_unmap_page(tx_ring->dev,
2285 dma_unmap_addr(tx_buffer, dma),
2286 dma_unmap_len(tx_buffer, len),
2287 DMA_TO_DEVICE);
2288 }
2289
2290 /* move us one more past the eop_desc for start of next pkt */
2291 tx_buffer++;
2292 i++;
2293 if (unlikely(i == tx_ring->count)) {
2294 i = 0;
2295 tx_buffer = tx_ring->tx_buffer_info;
2296 }
2297 }
2298
2299 netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2300
2301 /* reset next_to_use and next_to_clean */
2302 tx_ring->next_to_use = 0;
2303 tx_ring->next_to_clean = 0;
2304 }
2305
2306 /**
2307 * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2308 * @wx: board private structure
2309 **/
wx_clean_all_tx_rings(struct wx * wx)2310 void wx_clean_all_tx_rings(struct wx *wx)
2311 {
2312 int i;
2313
2314 for (i = 0; i < wx->num_tx_queues; i++)
2315 wx_clean_tx_ring(wx->tx_ring[i]);
2316 }
2317 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2318
2319 /**
2320 * wx_free_tx_resources - Free Tx Resources per Queue
2321 * @tx_ring: Tx descriptor ring for a specific queue
2322 *
2323 * Free all transmit software resources
2324 **/
wx_free_tx_resources(struct wx_ring * tx_ring)2325 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2326 {
2327 wx_clean_tx_ring(tx_ring);
2328 kvfree(tx_ring->tx_buffer_info);
2329 tx_ring->tx_buffer_info = NULL;
2330
2331 /* if not set, then don't free */
2332 if (!tx_ring->desc)
2333 return;
2334
2335 dma_free_coherent(tx_ring->dev, tx_ring->size,
2336 tx_ring->desc, tx_ring->dma);
2337 tx_ring->desc = NULL;
2338 }
2339
2340 /**
2341 * wx_free_all_tx_resources - Free Tx Resources for All Queues
2342 * @wx: pointer to hardware structure
2343 *
2344 * Free all transmit software resources
2345 **/
wx_free_all_tx_resources(struct wx * wx)2346 static void wx_free_all_tx_resources(struct wx *wx)
2347 {
2348 int i;
2349
2350 for (i = 0; i < wx->num_tx_queues; i++)
2351 wx_free_tx_resources(wx->tx_ring[i]);
2352 }
2353
wx_free_resources(struct wx * wx)2354 void wx_free_resources(struct wx *wx)
2355 {
2356 wx_free_isb_resources(wx);
2357 wx_free_all_rx_resources(wx);
2358 wx_free_all_tx_resources(wx);
2359 }
2360 EXPORT_SYMBOL(wx_free_resources);
2361
wx_alloc_page_pool(struct wx_ring * rx_ring)2362 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2363 {
2364 int ret = 0;
2365
2366 struct page_pool_params pp_params = {
2367 .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2368 .order = 0,
2369 .pool_size = rx_ring->size,
2370 .nid = dev_to_node(rx_ring->dev),
2371 .dev = rx_ring->dev,
2372 .dma_dir = DMA_FROM_DEVICE,
2373 .offset = 0,
2374 .max_len = PAGE_SIZE,
2375 };
2376
2377 rx_ring->page_pool = page_pool_create(&pp_params);
2378 if (IS_ERR(rx_ring->page_pool)) {
2379 ret = PTR_ERR(rx_ring->page_pool);
2380 rx_ring->page_pool = NULL;
2381 }
2382
2383 return ret;
2384 }
2385
2386 /**
2387 * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2388 * @rx_ring: rx descriptor ring (for a specific queue) to setup
2389 *
2390 * Returns 0 on success, negative on failure
2391 **/
wx_setup_rx_resources(struct wx_ring * rx_ring)2392 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2393 {
2394 struct device *dev = rx_ring->dev;
2395 int orig_node = dev_to_node(dev);
2396 int numa_node = NUMA_NO_NODE;
2397 int size, ret;
2398
2399 size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2400
2401 if (rx_ring->q_vector)
2402 numa_node = rx_ring->q_vector->numa_node;
2403
2404 rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2405 if (!rx_ring->rx_buffer_info)
2406 rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2407 if (!rx_ring->rx_buffer_info)
2408 goto err;
2409
2410 /* Round up to nearest 4K */
2411 rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2412 rx_ring->size = ALIGN(rx_ring->size, 4096);
2413
2414 set_dev_node(dev, numa_node);
2415 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2416 &rx_ring->dma, GFP_KERNEL);
2417 if (!rx_ring->desc) {
2418 set_dev_node(dev, orig_node);
2419 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2420 &rx_ring->dma, GFP_KERNEL);
2421 }
2422
2423 if (!rx_ring->desc)
2424 goto err;
2425
2426 rx_ring->next_to_clean = 0;
2427 rx_ring->next_to_use = 0;
2428
2429 ret = wx_alloc_page_pool(rx_ring);
2430 if (ret < 0) {
2431 dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2432 goto err_desc;
2433 }
2434
2435 return 0;
2436
2437 err_desc:
2438 dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2439 err:
2440 kvfree(rx_ring->rx_buffer_info);
2441 rx_ring->rx_buffer_info = NULL;
2442 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2443 return -ENOMEM;
2444 }
2445
2446 /**
2447 * wx_setup_all_rx_resources - allocate all queues Rx resources
2448 * @wx: pointer to hardware structure
2449 *
2450 * If this function returns with an error, then it's possible one or
2451 * more of the rings is populated (while the rest are not). It is the
2452 * callers duty to clean those orphaned rings.
2453 *
2454 * Return 0 on success, negative on failure
2455 **/
wx_setup_all_rx_resources(struct wx * wx)2456 static int wx_setup_all_rx_resources(struct wx *wx)
2457 {
2458 int i, err = 0;
2459
2460 for (i = 0; i < wx->num_rx_queues; i++) {
2461 err = wx_setup_rx_resources(wx->rx_ring[i]);
2462 if (!err)
2463 continue;
2464
2465 wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2466 goto err_setup_rx;
2467 }
2468
2469 return 0;
2470 err_setup_rx:
2471 /* rewind the index freeing the rings as we go */
2472 while (i--)
2473 wx_free_rx_resources(wx->rx_ring[i]);
2474 return err;
2475 }
2476
2477 /**
2478 * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2479 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2480 *
2481 * Return 0 on success, negative on failure
2482 **/
wx_setup_tx_resources(struct wx_ring * tx_ring)2483 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2484 {
2485 struct device *dev = tx_ring->dev;
2486 int orig_node = dev_to_node(dev);
2487 int numa_node = NUMA_NO_NODE;
2488 int size;
2489
2490 size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2491
2492 if (tx_ring->q_vector)
2493 numa_node = tx_ring->q_vector->numa_node;
2494
2495 tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2496 if (!tx_ring->tx_buffer_info)
2497 tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2498 if (!tx_ring->tx_buffer_info)
2499 goto err;
2500
2501 /* round up to nearest 4K */
2502 tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2503 tx_ring->size = ALIGN(tx_ring->size, 4096);
2504
2505 set_dev_node(dev, numa_node);
2506 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2507 &tx_ring->dma, GFP_KERNEL);
2508 if (!tx_ring->desc) {
2509 set_dev_node(dev, orig_node);
2510 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2511 &tx_ring->dma, GFP_KERNEL);
2512 }
2513
2514 if (!tx_ring->desc)
2515 goto err;
2516
2517 tx_ring->next_to_use = 0;
2518 tx_ring->next_to_clean = 0;
2519
2520 return 0;
2521
2522 err:
2523 kvfree(tx_ring->tx_buffer_info);
2524 tx_ring->tx_buffer_info = NULL;
2525 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2526 return -ENOMEM;
2527 }
2528
2529 /**
2530 * wx_setup_all_tx_resources - allocate all queues Tx resources
2531 * @wx: pointer to private structure
2532 *
2533 * If this function returns with an error, then it's possible one or
2534 * more of the rings is populated (while the rest are not). It is the
2535 * callers duty to clean those orphaned rings.
2536 *
2537 * Return 0 on success, negative on failure
2538 **/
wx_setup_all_tx_resources(struct wx * wx)2539 static int wx_setup_all_tx_resources(struct wx *wx)
2540 {
2541 int i, err = 0;
2542
2543 for (i = 0; i < wx->num_tx_queues; i++) {
2544 err = wx_setup_tx_resources(wx->tx_ring[i]);
2545 if (!err)
2546 continue;
2547
2548 wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2549 goto err_setup_tx;
2550 }
2551
2552 return 0;
2553 err_setup_tx:
2554 /* rewind the index freeing the rings as we go */
2555 while (i--)
2556 wx_free_tx_resources(wx->tx_ring[i]);
2557 return err;
2558 }
2559
wx_setup_resources(struct wx * wx)2560 int wx_setup_resources(struct wx *wx)
2561 {
2562 int err;
2563
2564 /* allocate transmit descriptors */
2565 err = wx_setup_all_tx_resources(wx);
2566 if (err)
2567 return err;
2568
2569 /* allocate receive descriptors */
2570 err = wx_setup_all_rx_resources(wx);
2571 if (err)
2572 goto err_free_tx;
2573
2574 err = wx_setup_isb_resources(wx);
2575 if (err)
2576 goto err_free_rx;
2577
2578 return 0;
2579
2580 err_free_rx:
2581 wx_free_all_rx_resources(wx);
2582 err_free_tx:
2583 wx_free_all_tx_resources(wx);
2584
2585 return err;
2586 }
2587 EXPORT_SYMBOL(wx_setup_resources);
2588
2589 /**
2590 * wx_get_stats64 - Get System Network Statistics
2591 * @netdev: network interface device structure
2592 * @stats: storage space for 64bit statistics
2593 */
wx_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2594 void wx_get_stats64(struct net_device *netdev,
2595 struct rtnl_link_stats64 *stats)
2596 {
2597 struct wx *wx = netdev_priv(netdev);
2598 int i;
2599
2600 rcu_read_lock();
2601 for (i = 0; i < wx->num_rx_queues; i++) {
2602 struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2603 u64 bytes, packets;
2604 unsigned int start;
2605
2606 if (ring) {
2607 do {
2608 start = u64_stats_fetch_begin(&ring->syncp);
2609 packets = ring->stats.packets;
2610 bytes = ring->stats.bytes;
2611 } while (u64_stats_fetch_retry(&ring->syncp, start));
2612 stats->rx_packets += packets;
2613 stats->rx_bytes += bytes;
2614 }
2615 }
2616
2617 for (i = 0; i < wx->num_tx_queues; i++) {
2618 struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2619 u64 bytes, packets;
2620 unsigned int start;
2621
2622 if (ring) {
2623 do {
2624 start = u64_stats_fetch_begin(&ring->syncp);
2625 packets = ring->stats.packets;
2626 bytes = ring->stats.bytes;
2627 } while (u64_stats_fetch_retry(&ring->syncp,
2628 start));
2629 stats->tx_packets += packets;
2630 stats->tx_bytes += bytes;
2631 }
2632 }
2633
2634 rcu_read_unlock();
2635 }
2636 EXPORT_SYMBOL(wx_get_stats64);
2637
wx_set_features(struct net_device * netdev,netdev_features_t features)2638 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2639 {
2640 netdev_features_t changed = netdev->features ^ features;
2641 struct wx *wx = netdev_priv(netdev);
2642
2643 if (changed & NETIF_F_RXHASH)
2644 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2645 WX_RDB_RA_CTL_RSS_EN);
2646 else
2647 wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2648
2649 if (changed &
2650 (NETIF_F_HW_VLAN_CTAG_RX |
2651 NETIF_F_HW_VLAN_STAG_RX))
2652 wx_set_rx_mode(netdev);
2653
2654 return 1;
2655 }
2656 EXPORT_SYMBOL(wx_set_features);
2657
2658 MODULE_LICENSE("GPL");
2659