1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  *
6  * Created by David Woodhouse <dwmw2@infradead.org>
7  *
8  * For licensing information, see the file 'LICENCE' in this directory.
9  *
10  */
11 
12 #ifndef __JFFS2_NODELIST_H__
13 #define __JFFS2_NODELIST_H__
14 
15 #include <linux/fs.h>
16 #include <linux/types.h>
17 #include <linux/jffs2.h>
18 #include "jffs2_fs_sb.h"
19 #include "jffs2_fs_i.h"
20 #include "xattr.h"
21 #include "acl.h"
22 #include "summary.h"
23 
24 #ifdef __ECOS
25 #include "os-ecos.h"
26 #else
27 #include "os-linux.h"
28 #endif
29 
30 #define JFFS2_NATIVE_ENDIAN
31 
32 /* Note we handle mode bits conversion from JFFS2 (i.e. Linux) to/from
33    whatever OS we're actually running on here too. */
34 
35 #if defined(JFFS2_NATIVE_ENDIAN)
36 #define cpu_to_je16(x) ((jint16_t){x})
37 #define cpu_to_je32(x) ((jint32_t){x})
38 #define cpu_to_jemode(x) ((jmode_t){os_to_jffs2_mode(x)})
39 
40 #define constant_cpu_to_je16(x) ((jint16_t){x})
41 #define constant_cpu_to_je32(x) ((jint32_t){x})
42 
43 #define je16_to_cpu(x) ((x).v16)
44 #define je32_to_cpu(x) ((x).v32)
45 #define jemode_to_cpu(x) (jffs2_to_os_mode((x).m))
46 #elif defined(JFFS2_BIG_ENDIAN)
47 #define cpu_to_je16(x) ((jint16_t){cpu_to_be16(x)})
48 #define cpu_to_je32(x) ((jint32_t){cpu_to_be32(x)})
49 #define cpu_to_jemode(x) ((jmode_t){cpu_to_be32(os_to_jffs2_mode(x))})
50 
51 #define constant_cpu_to_je16(x) ((jint16_t){__constant_cpu_to_be16(x)})
52 #define constant_cpu_to_je32(x) ((jint32_t){__constant_cpu_to_be32(x)})
53 
54 #define je16_to_cpu(x) (be16_to_cpu(x.v16))
55 #define je32_to_cpu(x) (be32_to_cpu(x.v32))
56 #define jemode_to_cpu(x) (be32_to_cpu(jffs2_to_os_mode((x).m)))
57 #elif defined(JFFS2_LITTLE_ENDIAN)
58 #define cpu_to_je16(x) ((jint16_t){cpu_to_le16(x)})
59 #define cpu_to_je32(x) ((jint32_t){cpu_to_le32(x)})
60 #define cpu_to_jemode(x) ((jmode_t){cpu_to_le32(os_to_jffs2_mode(x))})
61 
62 #define constant_cpu_to_je16(x) ((jint16_t){__constant_cpu_to_le16(x)})
63 #define constant_cpu_to_je32(x) ((jint32_t){__constant_cpu_to_le32(x)})
64 
65 #define je16_to_cpu(x) (le16_to_cpu(x.v16))
66 #define je32_to_cpu(x) (le32_to_cpu(x.v32))
67 #define jemode_to_cpu(x) (le32_to_cpu(jffs2_to_os_mode((x).m)))
68 #else
69 #error wibble
70 #endif
71 
72 /* The minimal node header size */
73 #define JFFS2_MIN_NODE_HEADER sizeof(struct jffs2_raw_dirent)
74 
75 /*
76   This is all we need to keep in-core for each raw node during normal
77   operation. As and when we do read_inode on a particular inode, we can
78   scan the nodes which are listed for it and build up a proper map of
79   which nodes are currently valid. JFFSv1 always used to keep that whole
80   map in core for each inode.
81 */
82 struct jffs2_raw_node_ref
83 {
84 	struct jffs2_raw_node_ref *next_in_ino; /* Points to the next raw_node_ref
85 		for this object. If this _is_ the last, it points to the inode_cache,
86 		xattr_ref or xattr_datum instead. The common part of those structures
87 		has NULL in the first word. See jffs2_raw_ref_to_ic() below */
88 	uint32_t flash_offset;
89 #undef TEST_TOTLEN
90 #ifdef TEST_TOTLEN
91 	uint32_t __totlen; /* This may die; use ref_totlen(c, jeb, ) below */
92 #endif
93 };
94 
95 #define REF_LINK_NODE ((int32_t)-1)
96 #define REF_EMPTY_NODE ((int32_t)-2)
97 
98 /* Use blocks of about 256 bytes */
99 #define REFS_PER_BLOCK ((255/sizeof(struct jffs2_raw_node_ref))-1)
100 
ref_next(struct jffs2_raw_node_ref * ref)101 static inline struct jffs2_raw_node_ref *ref_next(struct jffs2_raw_node_ref *ref)
102 {
103 	ref++;
104 
105 	/* Link to another block of refs */
106 	if (ref->flash_offset == REF_LINK_NODE) {
107 		ref = ref->next_in_ino;
108 		if (!ref)
109 			return ref;
110 	}
111 
112 	/* End of chain */
113 	if (ref->flash_offset == REF_EMPTY_NODE)
114 		return NULL;
115 
116 	return ref;
117 }
118 
jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref * raw)119 static inline struct jffs2_inode_cache *jffs2_raw_ref_to_ic(struct jffs2_raw_node_ref *raw)
120 {
121 	while(raw->next_in_ino)
122 		raw = raw->next_in_ino;
123 
124 	/* NB. This can be a jffs2_xattr_datum or jffs2_xattr_ref and
125 	   not actually a jffs2_inode_cache. Check ->class */
126 	return ((struct jffs2_inode_cache *)raw);
127 }
128 
129 	/* flash_offset & 3 always has to be zero, because nodes are
130 	   always aligned at 4 bytes. So we have a couple of extra bits
131 	   to play with, which indicate the node's status; see below: */
132 #define REF_UNCHECKED	0	/* We haven't yet checked the CRC or built its inode */
133 #define REF_OBSOLETE	1	/* Obsolete, can be completely ignored */
134 #define REF_PRISTINE	2	/* Completely clean. GC without looking */
135 #define REF_NORMAL	3	/* Possibly overlapped. Read the page and write again on GC */
136 #define ref_flags(ref)		((ref)->flash_offset & 3)
137 #define ref_offset(ref)		((ref)->flash_offset & ~3)
138 #define ref_obsolete(ref)	(((ref)->flash_offset & 3) == REF_OBSOLETE)
139 #define mark_ref_normal(ref)    do { (ref)->flash_offset = ref_offset(ref) | REF_NORMAL; } while(0)
140 
141 /* Dirent nodes should be REF_PRISTINE only if they are not a deletion
142    dirent. Deletion dirents should be REF_NORMAL so that GC gets to
143    throw them away when appropriate */
144 #define dirent_node_state(rd)	( (je32_to_cpu((rd)->ino)?REF_PRISTINE:REF_NORMAL) )
145 
146 /* NB: REF_PRISTINE for an inode-less node (ref->next_in_ino == NULL) indicates
147    it is an unknown node of type JFFS2_NODETYPE_RWCOMPAT_COPY, so it'll get
148    copied. If you need to do anything different to GC inode-less nodes, then
149    you need to modify gc.c accordingly. */
150 
151 /* For each inode in the filesystem, we need to keep a record of
152    nlink, because it would be a PITA to scan the whole directory tree
153    at read_inode() time to calculate it, and to keep sufficient information
154    in the raw_node_ref (basically both parent and child inode number for
155    dirent nodes) would take more space than this does. We also keep
156    a pointer to the first physical node which is part of this inode, too.
157 */
158 struct jffs2_inode_cache {
159 	/* First part of structure is shared with other objects which
160 	   can terminate the raw node refs' next_in_ino list -- which
161 	   currently struct jffs2_xattr_datum and struct jffs2_xattr_ref. */
162 
163 	struct jffs2_full_dirent *scan_dents; /* Used during scan to hold
164 		temporary lists of dirents, and later must be set to
165 		NULL to mark the end of the raw_node_ref->next_in_ino
166 		chain. */
167 	struct jffs2_raw_node_ref *nodes;
168 	uint8_t class;	/* It's used for identification */
169 
170 	/* end of shared structure */
171 
172 	uint8_t flags;
173 	uint16_t state;
174 	uint32_t ino;
175 	struct jffs2_inode_cache *next;
176 #ifdef CONFIG_JFFS2_FS_XATTR
177 	struct jffs2_xattr_ref *xref;
178 #endif
179 	uint32_t pino_nlink;	/* Directories store parent inode
180 				   here; other inodes store nlink.
181 				   Zero always means that it's
182 				   completely unlinked. */
183 };
184 
185 /* Inode states for 'state' above. We need the 'GC' state to prevent
186    someone from doing a read_inode() while we're moving a 'REF_PRISTINE'
187    node without going through all the iget() nonsense */
188 #define INO_STATE_UNCHECKED	0	/* CRC checks not yet done */
189 #define INO_STATE_CHECKING	1	/* CRC checks in progress */
190 #define INO_STATE_PRESENT	2	/* In core */
191 #define INO_STATE_CHECKEDABSENT	3	/* Checked, cleared again */
192 #define INO_STATE_GC		4	/* GCing a 'pristine' node */
193 #define INO_STATE_READING	5	/* In read_inode() */
194 #define INO_STATE_CLEARING	6	/* In clear_inode() */
195 
196 #define INO_FLAGS_XATTR_CHECKED	0x01	/* has no duplicate xattr_ref */
197 
198 #define RAWNODE_CLASS_INODE_CACHE	0
199 #define RAWNODE_CLASS_XATTR_DATUM	1
200 #define RAWNODE_CLASS_XATTR_REF		2
201 
202 #define INOCACHE_HASHSIZE_MIN 128
203 #define INOCACHE_HASHSIZE_MAX 1024
204 
205 #define write_ofs(c) ((c)->nextblock->offset + (c)->sector_size - (c)->nextblock->free_size)
206 
207 /*
208   Larger representation of a raw node, kept in-core only when the
209   struct inode for this particular ino is instantiated.
210 */
211 
212 struct jffs2_full_dnode
213 {
214 	struct jffs2_raw_node_ref *raw;
215 	uint32_t ofs; /* The offset to which the data of this node belongs */
216 	uint32_t size;
217 	uint32_t frags; /* Number of fragments which currently refer
218 			to this node. When this reaches zero,
219 			the node is obsolete.  */
220 };
221 
222 /*
223    Even larger representation of a raw node, kept in-core only while
224    we're actually building up the original map of which nodes go where,
225    in read_inode()
226 */
227 struct jffs2_tmp_dnode_info
228 {
229 	struct rb_node rb;
230 	struct jffs2_full_dnode *fn;
231 	uint32_t version;
232 	uint32_t data_crc;
233 	uint32_t partial_crc;
234 	uint32_t csize;
235 	uint16_t overlapped;
236 };
237 
238 /* Temporary data structure used during readinode. */
239 struct jffs2_readinode_info
240 {
241 	struct rb_root tn_root;
242 	struct jffs2_tmp_dnode_info *mdata_tn;
243 	uint32_t highest_version;
244 	uint32_t latest_mctime;
245 	uint32_t mctime_ver;
246 	struct jffs2_full_dirent *fds;
247 	struct jffs2_raw_node_ref *latest_ref;
248 };
249 
250 struct jffs2_full_dirent
251 {
252 	struct jffs2_raw_node_ref *raw;
253 	struct jffs2_full_dirent *next;
254 	uint32_t version;
255 	uint32_t ino; /* == zero for unlink */
256 	unsigned int nhash;
257 	unsigned char type;
258 	unsigned char name[0];
259 };
260 
261 /*
262   Fragments - used to build a map of which raw node to obtain
263   data from for each part of the ino
264 */
265 struct jffs2_node_frag
266 {
267 	struct rb_node rb;
268 	struct jffs2_full_dnode *node; /* NULL for holes */
269 	uint32_t size;
270 	uint32_t ofs; /* The offset to which this fragment belongs */
271 };
272 
273 struct jffs2_eraseblock
274 {
275 	struct list_head list;
276 	int bad_count;
277 	uint32_t offset;		/* of this block in the MTD */
278 
279 	uint32_t unchecked_size;
280 	uint32_t used_size;
281 	uint32_t dirty_size;
282 	uint32_t wasted_size;
283 	uint32_t free_size;	/* Note that sector_size - free_size
284 				   is the address of the first free space */
285 	uint32_t allocated_refs;
286 	struct jffs2_raw_node_ref *first_node;
287 	struct jffs2_raw_node_ref *last_node;
288 
289 	struct jffs2_raw_node_ref *gc_node;	/* Next node to be garbage collected */
290 };
291 
jffs2_blocks_use_vmalloc(struct jffs2_sb_info * c)292 static inline int jffs2_blocks_use_vmalloc(struct jffs2_sb_info *c)
293 {
294 	return ((c->flash_size / c->sector_size) * sizeof (struct jffs2_eraseblock)) > (128 * 1024);
295 }
296 
297 #define ref_totlen(a, b, c) __jffs2_ref_totlen((a), (b), (c))
298 
299 #define ALLOC_NORMAL	0	/* Normal allocation */
300 #define ALLOC_DELETION	1	/* Deletion node. Best to allow it */
301 #define ALLOC_GC	2	/* Space requested for GC. Give it or die */
302 #define ALLOC_NORETRY	3	/* For jffs2_write_dnode: On failure, return -EAGAIN instead of retrying */
303 
304 /* How much dirty space before it goes on the very_dirty_list */
305 #define VERYDIRTY(c, size) ((size) >= ((c)->sector_size / 2))
306 
307 /* check if dirty space is more than 255 Byte */
308 #define ISDIRTY(size) ((size) >  sizeof (struct jffs2_raw_inode) + JFFS2_MIN_DATA_LEN)
309 
310 #define PAD(x) (((x)+3)&~3)
311 
jffs2_encode_dev(union jffs2_device_node * jdev,dev_t rdev)312 static inline int jffs2_encode_dev(union jffs2_device_node *jdev, dev_t rdev)
313 {
314 	if (old_valid_dev(rdev)) {
315 		jdev->old_id = cpu_to_je16(old_encode_dev(rdev));
316 		return sizeof(jdev->old_id);
317 	} else {
318 		jdev->new_id = cpu_to_je32(new_encode_dev(rdev));
319 		return sizeof(jdev->new_id);
320 	}
321 }
322 
frag_first(struct rb_root * root)323 static inline struct jffs2_node_frag *frag_first(struct rb_root *root)
324 {
325 	struct rb_node *node = rb_first(root);
326 
327 	if (!node)
328 		return NULL;
329 
330 	return rb_entry(node, struct jffs2_node_frag, rb);
331 }
332 
frag_last(struct rb_root * root)333 static inline struct jffs2_node_frag *frag_last(struct rb_root *root)
334 {
335 	struct rb_node *node = rb_last(root);
336 
337 	if (!node)
338 		return NULL;
339 
340 	return rb_entry(node, struct jffs2_node_frag, rb);
341 }
342 
343 #define frag_next(frag) rb_entry(rb_next(&(frag)->rb), struct jffs2_node_frag, rb)
344 #define frag_prev(frag) rb_entry(rb_prev(&(frag)->rb), struct jffs2_node_frag, rb)
345 #define frag_parent(frag) rb_entry(rb_parent(&(frag)->rb), struct jffs2_node_frag, rb)
346 #define frag_left(frag) rb_entry((frag)->rb.rb_left, struct jffs2_node_frag, rb)
347 #define frag_right(frag) rb_entry((frag)->rb.rb_right, struct jffs2_node_frag, rb)
348 #define frag_erase(frag, list) rb_erase(&frag->rb, list);
349 
350 #define tn_next(tn) rb_entry(rb_next(&(tn)->rb), struct jffs2_tmp_dnode_info, rb)
351 #define tn_prev(tn) rb_entry(rb_prev(&(tn)->rb), struct jffs2_tmp_dnode_info, rb)
352 #define tn_parent(tn) rb_entry(rb_parent(&(tn)->rb), struct jffs2_tmp_dnode_info, rb)
353 #define tn_left(tn) rb_entry((tn)->rb.rb_left, struct jffs2_tmp_dnode_info, rb)
354 #define tn_right(tn) rb_entry((tn)->rb.rb_right, struct jffs2_tmp_dnode_info, rb)
355 #define tn_erase(tn, list) rb_erase(&tn->rb, list);
356 #define tn_last(list) rb_entry(rb_last(list), struct jffs2_tmp_dnode_info, rb)
357 #define tn_first(list) rb_entry(rb_first(list), struct jffs2_tmp_dnode_info, rb)
358 
359 /* nodelist.c */
360 void jffs2_add_fd_to_list(struct jffs2_sb_info *c, struct jffs2_full_dirent *new, struct jffs2_full_dirent **list);
361 void jffs2_set_inocache_state(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic, int state);
362 struct jffs2_inode_cache *jffs2_get_ino_cache(struct jffs2_sb_info *c, uint32_t ino);
363 void jffs2_add_ino_cache (struct jffs2_sb_info *c, struct jffs2_inode_cache *new);
364 void jffs2_del_ino_cache(struct jffs2_sb_info *c, struct jffs2_inode_cache *old);
365 void jffs2_free_ino_caches(struct jffs2_sb_info *c);
366 void jffs2_free_raw_node_refs(struct jffs2_sb_info *c);
367 struct jffs2_node_frag *jffs2_lookup_node_frag(struct rb_root *fragtree, uint32_t offset);
368 void jffs2_kill_fragtree(struct rb_root *root, struct jffs2_sb_info *c_delete);
369 int jffs2_add_full_dnode_to_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, struct jffs2_full_dnode *fn);
370 uint32_t jffs2_truncate_fragtree (struct jffs2_sb_info *c, struct rb_root *list, uint32_t size);
371 struct jffs2_raw_node_ref *jffs2_link_node_ref(struct jffs2_sb_info *c,
372 					       struct jffs2_eraseblock *jeb,
373 					       uint32_t ofs, uint32_t len,
374 					       struct jffs2_inode_cache *ic);
375 extern uint32_t __jffs2_ref_totlen(struct jffs2_sb_info *c,
376 				   struct jffs2_eraseblock *jeb,
377 				   struct jffs2_raw_node_ref *ref);
378 
379 /* nodemgmt.c */
380 int jffs2_thread_should_wake(struct jffs2_sb_info *c);
381 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
382 			uint32_t *len, int prio, uint32_t sumsize);
383 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
384 			uint32_t *len, uint32_t sumsize);
385 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
386 						       uint32_t ofs, uint32_t len,
387 						       struct jffs2_inode_cache *ic);
388 void jffs2_complete_reservation(struct jffs2_sb_info *c);
389 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *raw);
390 
391 /* write.c */
392 int jffs2_do_new_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f, uint32_t mode, struct jffs2_raw_inode *ri);
393 
394 struct jffs2_full_dnode *jffs2_write_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
395 					   struct jffs2_raw_inode *ri, const unsigned char *data,
396 					   uint32_t datalen, int alloc_mode);
397 struct jffs2_full_dirent *jffs2_write_dirent(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
398 					     struct jffs2_raw_dirent *rd, const unsigned char *name,
399 					     uint32_t namelen, int alloc_mode);
400 int jffs2_write_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
401 			    struct jffs2_raw_inode *ri, unsigned char *buf,
402 			    uint32_t offset, uint32_t writelen, uint32_t *retlen);
403 int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, struct jffs2_inode_info *f,
404 		    struct jffs2_raw_inode *ri, const struct qstr *qstr);
405 int jffs2_do_unlink(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, const char *name,
406 		    int namelen, struct jffs2_inode_info *dead_f, uint32_t time);
407 int jffs2_do_link(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, uint32_t ino,
408 		   uint8_t type, const char *name, int namelen, uint32_t time);
409 
410 
411 /* readinode.c */
412 int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
413 			uint32_t ino, struct jffs2_raw_inode *latest_node);
414 int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic);
415 void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
416 
417 /* malloc.c */
418 int jffs2_create_slab_caches(void);
419 void jffs2_destroy_slab_caches(void);
420 
421 struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize);
422 void jffs2_free_full_dirent(struct jffs2_full_dirent *);
423 struct jffs2_full_dnode *jffs2_alloc_full_dnode(void);
424 void jffs2_free_full_dnode(struct jffs2_full_dnode *);
425 struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void);
426 void jffs2_free_raw_dirent(struct jffs2_raw_dirent *);
427 struct jffs2_raw_inode *jffs2_alloc_raw_inode(void);
428 void jffs2_free_raw_inode(struct jffs2_raw_inode *);
429 struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void);
430 void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *);
431 int jffs2_prealloc_raw_node_refs(struct jffs2_sb_info *c,
432 				 struct jffs2_eraseblock *jeb, int nr);
433 void jffs2_free_refblock(struct jffs2_raw_node_ref *);
434 struct jffs2_node_frag *jffs2_alloc_node_frag(void);
435 void jffs2_free_node_frag(struct jffs2_node_frag *);
436 struct jffs2_inode_cache *jffs2_alloc_inode_cache(void);
437 void jffs2_free_inode_cache(struct jffs2_inode_cache *);
438 #ifdef CONFIG_JFFS2_FS_XATTR
439 struct jffs2_xattr_datum *jffs2_alloc_xattr_datum(void);
440 void jffs2_free_xattr_datum(struct jffs2_xattr_datum *);
441 struct jffs2_xattr_ref *jffs2_alloc_xattr_ref(void);
442 void jffs2_free_xattr_ref(struct jffs2_xattr_ref *);
443 #endif
444 
445 /* gc.c */
446 int jffs2_garbage_collect_pass(struct jffs2_sb_info *c);
447 
448 /* read.c */
449 int jffs2_read_dnode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
450 		     struct jffs2_full_dnode *fd, unsigned char *buf,
451 		     int ofs, int len);
452 int jffs2_read_inode_range(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
453 			   unsigned char *buf, uint32_t offset, uint32_t len);
454 char *jffs2_getlink(struct jffs2_sb_info *c, struct jffs2_inode_info *f);
455 
456 /* scan.c */
457 int jffs2_scan_medium(struct jffs2_sb_info *c);
458 void jffs2_rotate_lists(struct jffs2_sb_info *c);
459 struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino);
460 int jffs2_scan_classify_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
461 int jffs2_scan_dirty_space(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t size);
462 
463 /* build.c */
464 int jffs2_do_mount_fs(struct jffs2_sb_info *c);
465 
466 /* erase.c */
467 int jffs2_erase_pending_blocks(struct jffs2_sb_info *c, int count);
468 void jffs2_free_jeb_node_refs(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
469 
470 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
471 /* wbuf.c */
472 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino);
473 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c);
474 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
475 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb);
476 #endif
477 
478 #include "debug.h"
479 
480 #endif /* __JFFS2_NODELIST_H__ */
481