1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Workingset detection
4  *
5  * Copyright (C) 2013 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/memcontrol.h>
9 #include <linux/mm_inline.h>
10 #include <linux/writeback.h>
11 #include <linux/shmem_fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/atomic.h>
14 #include <linux/module.h>
15 #include <linux/swap.h>
16 #include <linux/dax.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 
20 /*
21  *		Double CLOCK lists
22  *
23  * Per node, two clock lists are maintained for file pages: the
24  * inactive and the active list.  Freshly faulted pages start out at
25  * the head of the inactive list and page reclaim scans pages from the
26  * tail.  Pages that are accessed multiple times on the inactive list
27  * are promoted to the active list, to protect them from reclaim,
28  * whereas active pages are demoted to the inactive list when the
29  * active list grows too big.
30  *
31  *   fault ------------------------+
32  *                                 |
33  *              +--------------+   |            +-------------+
34  *   reclaim <- |   inactive   | <-+-- demotion |    active   | <--+
35  *              +--------------+                +-------------+    |
36  *                     |                                           |
37  *                     +-------------- promotion ------------------+
38  *
39  *
40  *		Access frequency and refault distance
41  *
42  * A workload is thrashing when its pages are frequently used but they
43  * are evicted from the inactive list every time before another access
44  * would have promoted them to the active list.
45  *
46  * In cases where the average access distance between thrashing pages
47  * is bigger than the size of memory there is nothing that can be
48  * done - the thrashing set could never fit into memory under any
49  * circumstance.
50  *
51  * However, the average access distance could be bigger than the
52  * inactive list, yet smaller than the size of memory.  In this case,
53  * the set could fit into memory if it weren't for the currently
54  * active pages - which may be used more, hopefully less frequently:
55  *
56  *      +-memory available to cache-+
57  *      |                           |
58  *      +-inactive------+-active----+
59  *  a b | c d e f g h i | J K L M N |
60  *      +---------------+-----------+
61  *
62  * It is prohibitively expensive to accurately track access frequency
63  * of pages.  But a reasonable approximation can be made to measure
64  * thrashing on the inactive list, after which refaulting pages can be
65  * activated optimistically to compete with the existing active pages.
66  *
67  * Approximating inactive page access frequency - Observations:
68  *
69  * 1. When a page is accessed for the first time, it is added to the
70  *    head of the inactive list, slides every existing inactive page
71  *    towards the tail by one slot, and pushes the current tail page
72  *    out of memory.
73  *
74  * 2. When a page is accessed for the second time, it is promoted to
75  *    the active list, shrinking the inactive list by one slot.  This
76  *    also slides all inactive pages that were faulted into the cache
77  *    more recently than the activated page towards the tail of the
78  *    inactive list.
79  *
80  * Thus:
81  *
82  * 1. The sum of evictions and activations between any two points in
83  *    time indicate the minimum number of inactive pages accessed in
84  *    between.
85  *
86  * 2. Moving one inactive page N page slots towards the tail of the
87  *    list requires at least N inactive page accesses.
88  *
89  * Combining these:
90  *
91  * 1. When a page is finally evicted from memory, the number of
92  *    inactive pages accessed while the page was in cache is at least
93  *    the number of page slots on the inactive list.
94  *
95  * 2. In addition, measuring the sum of evictions and activations (E)
96  *    at the time of a page's eviction, and comparing it to another
97  *    reading (R) at the time the page faults back into memory tells
98  *    the minimum number of accesses while the page was not cached.
99  *    This is called the refault distance.
100  *
101  * Because the first access of the page was the fault and the second
102  * access the refault, we combine the in-cache distance with the
103  * out-of-cache distance to get the complete minimum access distance
104  * of this page:
105  *
106  *      NR_inactive + (R - E)
107  *
108  * And knowing the minimum access distance of a page, we can easily
109  * tell if the page would be able to stay in cache assuming all page
110  * slots in the cache were available:
111  *
112  *   NR_inactive + (R - E) <= NR_inactive + NR_active
113  *
114  * If we have swap we should consider about NR_inactive_anon and
115  * NR_active_anon, so for page cache and anonymous respectively:
116  *
117  *   NR_inactive_file + (R - E) <= NR_inactive_file + NR_active_file
118  *   + NR_inactive_anon + NR_active_anon
119  *
120  *   NR_inactive_anon + (R - E) <= NR_inactive_anon + NR_active_anon
121  *   + NR_inactive_file + NR_active_file
122  *
123  * Which can be further simplified to:
124  *
125  *   (R - E) <= NR_active_file + NR_inactive_anon + NR_active_anon
126  *
127  *   (R - E) <= NR_active_anon + NR_inactive_file + NR_active_file
128  *
129  * Put into words, the refault distance (out-of-cache) can be seen as
130  * a deficit in inactive list space (in-cache).  If the inactive list
131  * had (R - E) more page slots, the page would not have been evicted
132  * in between accesses, but activated instead.  And on a full system,
133  * the only thing eating into inactive list space is active pages.
134  *
135  *
136  *		Refaulting inactive pages
137  *
138  * All that is known about the active list is that the pages have been
139  * accessed more than once in the past.  This means that at any given
140  * time there is actually a good chance that pages on the active list
141  * are no longer in active use.
142  *
143  * So when a refault distance of (R - E) is observed and there are at
144  * least (R - E) pages in the userspace workingset, the refaulting page
145  * is activated optimistically in the hope that (R - E) pages are actually
146  * used less frequently than the refaulting page - or even not used at
147  * all anymore.
148  *
149  * That means if inactive cache is refaulting with a suitable refault
150  * distance, we assume the cache workingset is transitioning and put
151  * pressure on the current workingset.
152  *
153  * If this is wrong and demotion kicks in, the pages which are truly
154  * used more frequently will be reactivated while the less frequently
155  * used once will be evicted from memory.
156  *
157  * But if this is right, the stale pages will be pushed out of memory
158  * and the used pages get to stay in cache.
159  *
160  *		Refaulting active pages
161  *
162  * If on the other hand the refaulting pages have recently been
163  * deactivated, it means that the active list is no longer protecting
164  * actively used cache from reclaim. The cache is NOT transitioning to
165  * a different workingset; the existing workingset is thrashing in the
166  * space allocated to the page cache.
167  *
168  *
169  *		Implementation
170  *
171  * For each node's LRU lists, a counter for inactive evictions and
172  * activations is maintained (node->nonresident_age).
173  *
174  * On eviction, a snapshot of this counter (along with some bits to
175  * identify the node) is stored in the now empty page cache
176  * slot of the evicted page.  This is called a shadow entry.
177  *
178  * On cache misses for which there are shadow entries, an eligible
179  * refault distance will immediately activate the refaulting page.
180  */
181 
182 #define WORKINGSET_SHIFT 1
183 #define EVICTION_SHIFT	((BITS_PER_LONG - BITS_PER_XA_VALUE) +	\
184 			 WORKINGSET_SHIFT + NODES_SHIFT + \
185 			 MEM_CGROUP_ID_SHIFT)
186 #define EVICTION_MASK	(~0UL >> EVICTION_SHIFT)
187 
188 /*
189  * Eviction timestamps need to be able to cover the full range of
190  * actionable refaults. However, bits are tight in the xarray
191  * entry, and after storing the identifier for the lruvec there might
192  * not be enough left to represent every single actionable refault. In
193  * that case, we have to sacrifice granularity for distance, and group
194  * evictions into coarser buckets by shaving off lower timestamp bits.
195  */
196 static unsigned int bucket_order __read_mostly;
197 
pack_shadow(int memcgid,pg_data_t * pgdat,unsigned long eviction,bool workingset)198 static void *pack_shadow(int memcgid, pg_data_t *pgdat, unsigned long eviction,
199 			 bool workingset)
200 {
201 	eviction &= EVICTION_MASK;
202 	eviction = (eviction << MEM_CGROUP_ID_SHIFT) | memcgid;
203 	eviction = (eviction << NODES_SHIFT) | pgdat->node_id;
204 	eviction = (eviction << WORKINGSET_SHIFT) | workingset;
205 
206 	return xa_mk_value(eviction);
207 }
208 
unpack_shadow(void * shadow,int * memcgidp,pg_data_t ** pgdat,unsigned long * evictionp,bool * workingsetp)209 static void unpack_shadow(void *shadow, int *memcgidp, pg_data_t **pgdat,
210 			  unsigned long *evictionp, bool *workingsetp)
211 {
212 	unsigned long entry = xa_to_value(shadow);
213 	int memcgid, nid;
214 	bool workingset;
215 
216 	workingset = entry & ((1UL << WORKINGSET_SHIFT) - 1);
217 	entry >>= WORKINGSET_SHIFT;
218 	nid = entry & ((1UL << NODES_SHIFT) - 1);
219 	entry >>= NODES_SHIFT;
220 	memcgid = entry & ((1UL << MEM_CGROUP_ID_SHIFT) - 1);
221 	entry >>= MEM_CGROUP_ID_SHIFT;
222 
223 	*memcgidp = memcgid;
224 	*pgdat = NODE_DATA(nid);
225 	*evictionp = entry;
226 	*workingsetp = workingset;
227 }
228 
229 #ifdef CONFIG_LRU_GEN
230 
lru_gen_eviction(struct folio * folio)231 static void *lru_gen_eviction(struct folio *folio)
232 {
233 	int hist;
234 	unsigned long token;
235 	unsigned long min_seq;
236 	struct lruvec *lruvec;
237 	struct lru_gen_folio *lrugen;
238 	int type = folio_is_file_lru(folio);
239 	int delta = folio_nr_pages(folio);
240 	int refs = folio_lru_refs(folio);
241 	int tier = lru_tier_from_refs(refs);
242 	struct mem_cgroup *memcg = folio_memcg(folio);
243 	struct pglist_data *pgdat = folio_pgdat(folio);
244 
245 	BUILD_BUG_ON(LRU_GEN_WIDTH + LRU_REFS_WIDTH > BITS_PER_LONG - EVICTION_SHIFT);
246 
247 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
248 	lrugen = &lruvec->lrugen;
249 	min_seq = READ_ONCE(lrugen->min_seq[type]);
250 	token = (min_seq << LRU_REFS_WIDTH) | max(refs - 1, 0);
251 
252 	hist = lru_hist_from_seq(min_seq);
253 	atomic_long_add(delta, &lrugen->evicted[hist][type][tier]);
254 
255 	return pack_shadow(mem_cgroup_id(memcg), pgdat, token, refs);
256 }
257 
258 /*
259  * Tests if the shadow entry is for a folio that was recently evicted.
260  * Fills in @lruvec, @token, @workingset with the values unpacked from shadow.
261  */
lru_gen_test_recent(void * shadow,bool file,struct lruvec ** lruvec,unsigned long * token,bool * workingset)262 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
263 				unsigned long *token, bool *workingset)
264 {
265 	int memcg_id;
266 	unsigned long min_seq;
267 	struct mem_cgroup *memcg;
268 	struct pglist_data *pgdat;
269 
270 	unpack_shadow(shadow, &memcg_id, &pgdat, token, workingset);
271 
272 	memcg = mem_cgroup_from_id(memcg_id);
273 	*lruvec = mem_cgroup_lruvec(memcg, pgdat);
274 
275 	min_seq = READ_ONCE((*lruvec)->lrugen.min_seq[file]);
276 	return (*token >> LRU_REFS_WIDTH) == (min_seq & (EVICTION_MASK >> LRU_REFS_WIDTH));
277 }
278 
lru_gen_refault(struct folio * folio,void * shadow)279 static void lru_gen_refault(struct folio *folio, void *shadow)
280 {
281 	bool recent;
282 	int hist, tier, refs;
283 	bool workingset;
284 	unsigned long token;
285 	struct lruvec *lruvec;
286 	struct lru_gen_folio *lrugen;
287 	int type = folio_is_file_lru(folio);
288 	int delta = folio_nr_pages(folio);
289 
290 	rcu_read_lock();
291 
292 	recent = lru_gen_test_recent(shadow, type, &lruvec, &token, &workingset);
293 	if (lruvec != folio_lruvec(folio))
294 		goto unlock;
295 
296 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + type, delta);
297 
298 	if (!recent)
299 		goto unlock;
300 
301 	lrugen = &lruvec->lrugen;
302 
303 	hist = lru_hist_from_seq(READ_ONCE(lrugen->min_seq[type]));
304 	/* see the comment in folio_lru_refs() */
305 	refs = (token & (BIT(LRU_REFS_WIDTH) - 1)) + workingset;
306 	tier = lru_tier_from_refs(refs);
307 
308 	atomic_long_add(delta, &lrugen->refaulted[hist][type][tier]);
309 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + type, delta);
310 
311 	/*
312 	 * Count the following two cases as stalls:
313 	 * 1. For pages accessed through page tables, hotter pages pushed out
314 	 *    hot pages which refaulted immediately.
315 	 * 2. For pages accessed multiple times through file descriptors,
316 	 *    they would have been protected by sort_folio().
317 	 */
318 	if (lru_gen_in_fault() || refs >= BIT(LRU_REFS_WIDTH) - 1) {
319 		set_mask_bits(&folio->flags, 0, LRU_REFS_MASK | BIT(PG_workingset));
320 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + type, delta);
321 	}
322 unlock:
323 	rcu_read_unlock();
324 }
325 
326 #else /* !CONFIG_LRU_GEN */
327 
lru_gen_eviction(struct folio * folio)328 static void *lru_gen_eviction(struct folio *folio)
329 {
330 	return NULL;
331 }
332 
lru_gen_test_recent(void * shadow,bool file,struct lruvec ** lruvec,unsigned long * token,bool * workingset)333 static bool lru_gen_test_recent(void *shadow, bool file, struct lruvec **lruvec,
334 				unsigned long *token, bool *workingset)
335 {
336 	return false;
337 }
338 
lru_gen_refault(struct folio * folio,void * shadow)339 static void lru_gen_refault(struct folio *folio, void *shadow)
340 {
341 }
342 
343 #endif /* CONFIG_LRU_GEN */
344 
345 /**
346  * workingset_age_nonresident - age non-resident entries as LRU ages
347  * @lruvec: the lruvec that was aged
348  * @nr_pages: the number of pages to count
349  *
350  * As in-memory pages are aged, non-resident pages need to be aged as
351  * well, in order for the refault distances later on to be comparable
352  * to the in-memory dimensions. This function allows reclaim and LRU
353  * operations to drive the non-resident aging along in parallel.
354  */
workingset_age_nonresident(struct lruvec * lruvec,unsigned long nr_pages)355 void workingset_age_nonresident(struct lruvec *lruvec, unsigned long nr_pages)
356 {
357 	/*
358 	 * Reclaiming a cgroup means reclaiming all its children in a
359 	 * round-robin fashion. That means that each cgroup has an LRU
360 	 * order that is composed of the LRU orders of its child
361 	 * cgroups; and every page has an LRU position not just in the
362 	 * cgroup that owns it, but in all of that group's ancestors.
363 	 *
364 	 * So when the physical inactive list of a leaf cgroup ages,
365 	 * the virtual inactive lists of all its parents, including
366 	 * the root cgroup's, age as well.
367 	 */
368 	do {
369 		atomic_long_add(nr_pages, &lruvec->nonresident_age);
370 	} while ((lruvec = parent_lruvec(lruvec)));
371 }
372 
373 /**
374  * workingset_eviction - note the eviction of a folio from memory
375  * @target_memcg: the cgroup that is causing the reclaim
376  * @folio: the folio being evicted
377  *
378  * Return: a shadow entry to be stored in @folio->mapping->i_pages in place
379  * of the evicted @folio so that a later refault can be detected.
380  */
workingset_eviction(struct folio * folio,struct mem_cgroup * target_memcg)381 void *workingset_eviction(struct folio *folio, struct mem_cgroup *target_memcg)
382 {
383 	struct pglist_data *pgdat = folio_pgdat(folio);
384 	unsigned long eviction;
385 	struct lruvec *lruvec;
386 	int memcgid;
387 
388 	/* Folio is fully exclusive and pins folio's memory cgroup pointer */
389 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
390 	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
391 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
392 
393 	if (lru_gen_enabled())
394 		return lru_gen_eviction(folio);
395 
396 	lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
397 	/* XXX: target_memcg can be NULL, go through lruvec */
398 	memcgid = mem_cgroup_id(lruvec_memcg(lruvec));
399 	eviction = atomic_long_read(&lruvec->nonresident_age);
400 	eviction >>= bucket_order;
401 	workingset_age_nonresident(lruvec, folio_nr_pages(folio));
402 	return pack_shadow(memcgid, pgdat, eviction,
403 				folio_test_workingset(folio));
404 }
405 
406 /**
407  * workingset_test_recent - tests if the shadow entry is for a folio that was
408  * recently evicted. Also fills in @workingset with the value unpacked from
409  * shadow.
410  * @shadow: the shadow entry to be tested.
411  * @file: whether the corresponding folio is from the file lru.
412  * @workingset: where the workingset value unpacked from shadow should
413  * be stored.
414  *
415  * Return: true if the shadow is for a recently evicted folio; false otherwise.
416  */
workingset_test_recent(void * shadow,bool file,bool * workingset)417 bool workingset_test_recent(void *shadow, bool file, bool *workingset)
418 {
419 	struct mem_cgroup *eviction_memcg;
420 	struct lruvec *eviction_lruvec;
421 	unsigned long refault_distance;
422 	unsigned long workingset_size;
423 	unsigned long refault;
424 	int memcgid;
425 	struct pglist_data *pgdat;
426 	unsigned long eviction;
427 
428 	if (lru_gen_enabled())
429 		return lru_gen_test_recent(shadow, file, &eviction_lruvec, &eviction, workingset);
430 
431 	unpack_shadow(shadow, &memcgid, &pgdat, &eviction, workingset);
432 	eviction <<= bucket_order;
433 
434 	/*
435 	 * Look up the memcg associated with the stored ID. It might
436 	 * have been deleted since the folio's eviction.
437 	 *
438 	 * Note that in rare events the ID could have been recycled
439 	 * for a new cgroup that refaults a shared folio. This is
440 	 * impossible to tell from the available data. However, this
441 	 * should be a rare and limited disturbance, and activations
442 	 * are always speculative anyway. Ultimately, it's the aging
443 	 * algorithm's job to shake out the minimum access frequency
444 	 * for the active cache.
445 	 *
446 	 * XXX: On !CONFIG_MEMCG, this will always return NULL; it
447 	 * would be better if the root_mem_cgroup existed in all
448 	 * configurations instead.
449 	 */
450 	eviction_memcg = mem_cgroup_from_id(memcgid);
451 	if (!mem_cgroup_disabled() && !eviction_memcg)
452 		return false;
453 
454 	eviction_lruvec = mem_cgroup_lruvec(eviction_memcg, pgdat);
455 	refault = atomic_long_read(&eviction_lruvec->nonresident_age);
456 
457 	/*
458 	 * Calculate the refault distance
459 	 *
460 	 * The unsigned subtraction here gives an accurate distance
461 	 * across nonresident_age overflows in most cases. There is a
462 	 * special case: usually, shadow entries have a short lifetime
463 	 * and are either refaulted or reclaimed along with the inode
464 	 * before they get too old.  But it is not impossible for the
465 	 * nonresident_age to lap a shadow entry in the field, which
466 	 * can then result in a false small refault distance, leading
467 	 * to a false activation should this old entry actually
468 	 * refault again.  However, earlier kernels used to deactivate
469 	 * unconditionally with *every* reclaim invocation for the
470 	 * longest time, so the occasional inappropriate activation
471 	 * leading to pressure on the active list is not a problem.
472 	 */
473 	refault_distance = (refault - eviction) & EVICTION_MASK;
474 
475 	/*
476 	 * Compare the distance to the existing workingset size. We
477 	 * don't activate pages that couldn't stay resident even if
478 	 * all the memory was available to the workingset. Whether
479 	 * workingset competition needs to consider anon or not depends
480 	 * on having free swap space.
481 	 */
482 	workingset_size = lruvec_page_state(eviction_lruvec, NR_ACTIVE_FILE);
483 	if (!file) {
484 		workingset_size += lruvec_page_state(eviction_lruvec,
485 						     NR_INACTIVE_FILE);
486 	}
487 	if (mem_cgroup_get_nr_swap_pages(eviction_memcg) > 0) {
488 		workingset_size += lruvec_page_state(eviction_lruvec,
489 						     NR_ACTIVE_ANON);
490 		if (file) {
491 			workingset_size += lruvec_page_state(eviction_lruvec,
492 						     NR_INACTIVE_ANON);
493 		}
494 	}
495 
496 	return refault_distance <= workingset_size;
497 }
498 
499 /**
500  * workingset_refault - Evaluate the refault of a previously evicted folio.
501  * @folio: The freshly allocated replacement folio.
502  * @shadow: Shadow entry of the evicted folio.
503  *
504  * Calculates and evaluates the refault distance of the previously
505  * evicted folio in the context of the node and the memcg whose memory
506  * pressure caused the eviction.
507  */
workingset_refault(struct folio * folio,void * shadow)508 void workingset_refault(struct folio *folio, void *shadow)
509 {
510 	bool file = folio_is_file_lru(folio);
511 	struct pglist_data *pgdat;
512 	struct mem_cgroup *memcg;
513 	struct lruvec *lruvec;
514 	bool workingset;
515 	long nr;
516 
517 	if (lru_gen_enabled()) {
518 		lru_gen_refault(folio, shadow);
519 		return;
520 	}
521 
522 	/* Flush stats (and potentially sleep) before holding RCU read lock */
523 	mem_cgroup_flush_stats_ratelimited();
524 
525 	rcu_read_lock();
526 
527 	/*
528 	 * The activation decision for this folio is made at the level
529 	 * where the eviction occurred, as that is where the LRU order
530 	 * during folio reclaim is being determined.
531 	 *
532 	 * However, the cgroup that will own the folio is the one that
533 	 * is actually experiencing the refault event.
534 	 */
535 	nr = folio_nr_pages(folio);
536 	memcg = folio_memcg(folio);
537 	pgdat = folio_pgdat(folio);
538 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
539 
540 	mod_lruvec_state(lruvec, WORKINGSET_REFAULT_BASE + file, nr);
541 
542 	if (!workingset_test_recent(shadow, file, &workingset))
543 		goto out;
544 
545 	folio_set_active(folio);
546 	workingset_age_nonresident(lruvec, nr);
547 	mod_lruvec_state(lruvec, WORKINGSET_ACTIVATE_BASE + file, nr);
548 
549 	/* Folio was active prior to eviction */
550 	if (workingset) {
551 		folio_set_workingset(folio);
552 		/*
553 		 * XXX: Move to folio_add_lru() when it supports new vs
554 		 * putback
555 		 */
556 		lru_note_cost_refault(folio);
557 		mod_lruvec_state(lruvec, WORKINGSET_RESTORE_BASE + file, nr);
558 	}
559 out:
560 	rcu_read_unlock();
561 }
562 
563 /**
564  * workingset_activation - note a page activation
565  * @folio: Folio that is being activated.
566  */
workingset_activation(struct folio * folio)567 void workingset_activation(struct folio *folio)
568 {
569 	struct mem_cgroup *memcg;
570 
571 	rcu_read_lock();
572 	/*
573 	 * Filter non-memcg pages here, e.g. unmap can call
574 	 * mark_page_accessed() on VDSO pages.
575 	 *
576 	 * XXX: See workingset_refault() - this should return
577 	 * root_mem_cgroup even for !CONFIG_MEMCG.
578 	 */
579 	memcg = folio_memcg_rcu(folio);
580 	if (!mem_cgroup_disabled() && !memcg)
581 		goto out;
582 	workingset_age_nonresident(folio_lruvec(folio), folio_nr_pages(folio));
583 out:
584 	rcu_read_unlock();
585 }
586 
587 /*
588  * Shadow entries reflect the share of the working set that does not
589  * fit into memory, so their number depends on the access pattern of
590  * the workload.  In most cases, they will refault or get reclaimed
591  * along with the inode, but a (malicious) workload that streams
592  * through files with a total size several times that of available
593  * memory, while preventing the inodes from being reclaimed, can
594  * create excessive amounts of shadow nodes.  To keep a lid on this,
595  * track shadow nodes and reclaim them when they grow way past the
596  * point where they would still be useful.
597  */
598 
599 struct list_lru shadow_nodes;
600 
workingset_update_node(struct xa_node * node)601 void workingset_update_node(struct xa_node *node)
602 {
603 	struct address_space *mapping;
604 
605 	/*
606 	 * Track non-empty nodes that contain only shadow entries;
607 	 * unlink those that contain pages or are being freed.
608 	 *
609 	 * Avoid acquiring the list_lru lock when the nodes are
610 	 * already where they should be. The list_empty() test is safe
611 	 * as node->private_list is protected by the i_pages lock.
612 	 */
613 	mapping = container_of(node->array, struct address_space, i_pages);
614 	lockdep_assert_held(&mapping->i_pages.xa_lock);
615 
616 	if (node->count && node->count == node->nr_values) {
617 		if (list_empty(&node->private_list)) {
618 			list_lru_add(&shadow_nodes, &node->private_list);
619 			__inc_lruvec_kmem_state(node, WORKINGSET_NODES);
620 		}
621 	} else {
622 		if (!list_empty(&node->private_list)) {
623 			list_lru_del(&shadow_nodes, &node->private_list);
624 			__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
625 		}
626 	}
627 }
628 
count_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)629 static unsigned long count_shadow_nodes(struct shrinker *shrinker,
630 					struct shrink_control *sc)
631 {
632 	unsigned long max_nodes;
633 	unsigned long nodes;
634 	unsigned long pages;
635 
636 	nodes = list_lru_shrink_count(&shadow_nodes, sc);
637 	if (!nodes)
638 		return SHRINK_EMPTY;
639 
640 	/*
641 	 * Approximate a reasonable limit for the nodes
642 	 * containing shadow entries. We don't need to keep more
643 	 * shadow entries than possible pages on the active list,
644 	 * since refault distances bigger than that are dismissed.
645 	 *
646 	 * The size of the active list converges toward 100% of
647 	 * overall page cache as memory grows, with only a tiny
648 	 * inactive list. Assume the total cache size for that.
649 	 *
650 	 * Nodes might be sparsely populated, with only one shadow
651 	 * entry in the extreme case. Obviously, we cannot keep one
652 	 * node for every eligible shadow entry, so compromise on a
653 	 * worst-case density of 1/8th. Below that, not all eligible
654 	 * refaults can be detected anymore.
655 	 *
656 	 * On 64-bit with 7 xa_nodes per page and 64 slots
657 	 * each, this will reclaim shadow entries when they consume
658 	 * ~1.8% of available memory:
659 	 *
660 	 * PAGE_SIZE / xa_nodes / node_entries * 8 / PAGE_SIZE
661 	 */
662 #ifdef CONFIG_MEMCG
663 	if (sc->memcg) {
664 		struct lruvec *lruvec;
665 		int i;
666 
667 		mem_cgroup_flush_stats();
668 		lruvec = mem_cgroup_lruvec(sc->memcg, NODE_DATA(sc->nid));
669 		for (pages = 0, i = 0; i < NR_LRU_LISTS; i++)
670 			pages += lruvec_page_state_local(lruvec,
671 							 NR_LRU_BASE + i);
672 		pages += lruvec_page_state_local(
673 			lruvec, NR_SLAB_RECLAIMABLE_B) >> PAGE_SHIFT;
674 		pages += lruvec_page_state_local(
675 			lruvec, NR_SLAB_UNRECLAIMABLE_B) >> PAGE_SHIFT;
676 	} else
677 #endif
678 		pages = node_present_pages(sc->nid);
679 
680 	max_nodes = pages >> (XA_CHUNK_SHIFT - 3);
681 
682 	if (nodes <= max_nodes)
683 		return 0;
684 	return nodes - max_nodes;
685 }
686 
shadow_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)687 static enum lru_status shadow_lru_isolate(struct list_head *item,
688 					  struct list_lru_one *lru,
689 					  spinlock_t *lru_lock,
690 					  void *arg) __must_hold(lru_lock)
691 {
692 	struct xa_node *node = container_of(item, struct xa_node, private_list);
693 	struct address_space *mapping;
694 	int ret;
695 
696 	/*
697 	 * Page cache insertions and deletions synchronously maintain
698 	 * the shadow node LRU under the i_pages lock and the
699 	 * lru_lock.  Because the page cache tree is emptied before
700 	 * the inode can be destroyed, holding the lru_lock pins any
701 	 * address_space that has nodes on the LRU.
702 	 *
703 	 * We can then safely transition to the i_pages lock to
704 	 * pin only the address_space of the particular node we want
705 	 * to reclaim, take the node off-LRU, and drop the lru_lock.
706 	 */
707 
708 	mapping = container_of(node->array, struct address_space, i_pages);
709 
710 	/* Coming from the list, invert the lock order */
711 	if (!xa_trylock(&mapping->i_pages)) {
712 		spin_unlock_irq(lru_lock);
713 		ret = LRU_RETRY;
714 		goto out;
715 	}
716 
717 	/* For page cache we need to hold i_lock */
718 	if (mapping->host != NULL) {
719 		if (!spin_trylock(&mapping->host->i_lock)) {
720 			xa_unlock(&mapping->i_pages);
721 			spin_unlock_irq(lru_lock);
722 			ret = LRU_RETRY;
723 			goto out;
724 		}
725 	}
726 
727 	list_lru_isolate(lru, item);
728 	__dec_lruvec_kmem_state(node, WORKINGSET_NODES);
729 
730 	spin_unlock(lru_lock);
731 
732 	/*
733 	 * The nodes should only contain one or more shadow entries,
734 	 * no pages, so we expect to be able to remove them all and
735 	 * delete and free the empty node afterwards.
736 	 */
737 	if (WARN_ON_ONCE(!node->nr_values))
738 		goto out_invalid;
739 	if (WARN_ON_ONCE(node->count != node->nr_values))
740 		goto out_invalid;
741 	xa_delete_node(node, workingset_update_node);
742 	__inc_lruvec_kmem_state(node, WORKINGSET_NODERECLAIM);
743 
744 out_invalid:
745 	xa_unlock_irq(&mapping->i_pages);
746 	if (mapping->host != NULL) {
747 		if (mapping_shrinkable(mapping))
748 			inode_add_lru(mapping->host);
749 		spin_unlock(&mapping->host->i_lock);
750 	}
751 	ret = LRU_REMOVED_RETRY;
752 out:
753 	cond_resched();
754 	spin_lock_irq(lru_lock);
755 	return ret;
756 }
757 
scan_shadow_nodes(struct shrinker * shrinker,struct shrink_control * sc)758 static unsigned long scan_shadow_nodes(struct shrinker *shrinker,
759 				       struct shrink_control *sc)
760 {
761 	/* list_lru lock nests inside the IRQ-safe i_pages lock */
762 	return list_lru_shrink_walk_irq(&shadow_nodes, sc, shadow_lru_isolate,
763 					NULL);
764 }
765 
766 static struct shrinker workingset_shadow_shrinker = {
767 	.count_objects = count_shadow_nodes,
768 	.scan_objects = scan_shadow_nodes,
769 	.seeks = 0, /* ->count reports only fully expendable nodes */
770 	.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE,
771 };
772 
773 /*
774  * Our list_lru->lock is IRQ-safe as it nests inside the IRQ-safe
775  * i_pages lock.
776  */
777 static struct lock_class_key shadow_nodes_key;
778 
workingset_init(void)779 static int __init workingset_init(void)
780 {
781 	unsigned int timestamp_bits;
782 	unsigned int max_order;
783 	int ret;
784 
785 	BUILD_BUG_ON(BITS_PER_LONG < EVICTION_SHIFT);
786 	/*
787 	 * Calculate the eviction bucket size to cover the longest
788 	 * actionable refault distance, which is currently half of
789 	 * memory (totalram_pages/2). However, memory hotplug may add
790 	 * some more pages at runtime, so keep working with up to
791 	 * double the initial memory by using totalram_pages as-is.
792 	 */
793 	timestamp_bits = BITS_PER_LONG - EVICTION_SHIFT;
794 	max_order = fls_long(totalram_pages() - 1);
795 	if (max_order > timestamp_bits)
796 		bucket_order = max_order - timestamp_bits;
797 	pr_info("workingset: timestamp_bits=%d max_order=%d bucket_order=%u\n",
798 	       timestamp_bits, max_order, bucket_order);
799 
800 	ret = prealloc_shrinker(&workingset_shadow_shrinker, "mm-shadow");
801 	if (ret)
802 		goto err;
803 	ret = __list_lru_init(&shadow_nodes, true, &shadow_nodes_key,
804 			      &workingset_shadow_shrinker);
805 	if (ret)
806 		goto err_list_lru;
807 	register_shrinker_prepared(&workingset_shadow_shrinker);
808 	return 0;
809 err_list_lru:
810 	free_prealloced_shrinker(&workingset_shadow_shrinker);
811 err:
812 	return ret;
813 }
814 module_init(workingset_init);
815