1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Definitions for the Interfaces handler.
7 *
8 * Version: @(#)dev.h 1.0.10 08/12/93
9 *
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
15 * Bjorn Ekwall. <bj0rn@blox.se>
16 * Pekka Riikonen <priikone@poseidon.pspt.fi>
17 *
18 * This program is free software; you can redistribute it and/or
19 * modify it under the terms of the GNU General Public License
20 * as published by the Free Software Foundation; either version
21 * 2 of the License, or (at your option) any later version.
22 *
23 * Moved to /usr/include/linux for NET3
24 */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27
28 #include <linux/if.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_packet.h>
31 #include <linux/if_link.h>
32
33 #ifdef __KERNEL__
34 #include <linux/pm_qos_params.h>
35 #include <linux/timer.h>
36 #include <linux/delay.h>
37 #include <linux/mm.h>
38 #include <asm/atomic.h>
39 #include <asm/cache.h>
40 #include <asm/byteorder.h>
41
42 #include <linux/device.h>
43 #include <linux/percpu.h>
44 #include <linux/rculist.h>
45 #include <linux/dmaengine.h>
46 #include <linux/workqueue.h>
47
48 #include <linux/ethtool.h>
49 #include <net/net_namespace.h>
50 #include <net/dsa.h>
51 #ifdef CONFIG_DCB
52 #include <net/dcbnl.h>
53 #endif
54
55 struct vlan_group;
56 struct netpoll_info;
57 struct phy_device;
58 /* 802.11 specific */
59 struct wireless_dev;
60 /* source back-compat hooks */
61 #define SET_ETHTOOL_OPS(netdev,ops) \
62 ( (netdev)->ethtool_ops = (ops) )
63
64 #define HAVE_ALLOC_NETDEV /* feature macro: alloc_xxxdev
65 functions are available. */
66 #define HAVE_FREE_NETDEV /* free_netdev() */
67 #define HAVE_NETDEV_PRIV /* netdev_priv() */
68
69 /* hardware address assignment types */
70 #define NET_ADDR_PERM 0 /* address is permanent (default) */
71 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
72 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
73
74 /* Backlog congestion levels */
75 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
76 #define NET_RX_DROP 1 /* packet dropped */
77
78 /*
79 * Transmit return codes: transmit return codes originate from three different
80 * namespaces:
81 *
82 * - qdisc return codes
83 * - driver transmit return codes
84 * - errno values
85 *
86 * Drivers are allowed to return any one of those in their hard_start_xmit()
87 * function. Real network devices commonly used with qdiscs should only return
88 * the driver transmit return codes though - when qdiscs are used, the actual
89 * transmission happens asynchronously, so the value is not propagated to
90 * higher layers. Virtual network devices transmit synchronously, in this case
91 * the driver transmit return codes are consumed by dev_queue_xmit(), all
92 * others are propagated to higher layers.
93 */
94
95 /* qdisc ->enqueue() return codes. */
96 #define NET_XMIT_SUCCESS 0x00
97 #define NET_XMIT_DROP 0x01 /* skb dropped */
98 #define NET_XMIT_CN 0x02 /* congestion notification */
99 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
100 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
101
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103 * indicates that the device will soon be dropping packets, or already drops
104 * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK 0xf0
110
111 enum netdev_tx {
112 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
113 NETDEV_TX_OK = 0x00, /* driver took care of packet */
114 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
115 NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
116 };
117 typedef enum netdev_tx netdev_tx_t;
118
119 /*
120 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
121 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
122 */
dev_xmit_complete(int rc)123 static inline bool dev_xmit_complete(int rc)
124 {
125 /*
126 * Positive cases with an skb consumed by a driver:
127 * - successful transmission (rc == NETDEV_TX_OK)
128 * - error while transmitting (rc < 0)
129 * - error while queueing to a different device (rc & NET_XMIT_MASK)
130 */
131 if (likely(rc < NET_XMIT_MASK))
132 return true;
133
134 return false;
135 }
136
137 #endif
138
139 #define MAX_ADDR_LEN 32 /* Largest hardware address length */
140
141 /* Initial net device group. All devices belong to group 0 by default. */
142 #define INIT_NETDEV_GROUP 0
143
144 #ifdef __KERNEL__
145 /*
146 * Compute the worst case header length according to the protocols
147 * used.
148 */
149
150 #if defined(CONFIG_WLAN) || defined(CONFIG_AX25) || defined(CONFIG_AX25_MODULE)
151 # if defined(CONFIG_MAC80211_MESH)
152 # define LL_MAX_HEADER 128
153 # else
154 # define LL_MAX_HEADER 96
155 # endif
156 #elif defined(CONFIG_TR) || defined(CONFIG_TR_MODULE)
157 # define LL_MAX_HEADER 48
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161
162 #if !defined(CONFIG_NET_IPIP) && !defined(CONFIG_NET_IPIP_MODULE) && \
163 !defined(CONFIG_NET_IPGRE) && !defined(CONFIG_NET_IPGRE_MODULE) && \
164 !defined(CONFIG_IPV6_SIT) && !defined(CONFIG_IPV6_SIT_MODULE) && \
165 !defined(CONFIG_IPV6_TUNNEL) && !defined(CONFIG_IPV6_TUNNEL_MODULE)
166 #define MAX_HEADER LL_MAX_HEADER
167 #else
168 #define MAX_HEADER (LL_MAX_HEADER + 48)
169 #endif
170
171 /*
172 * Old network device statistics. Fields are native words
173 * (unsigned long) so they can be read and written atomically.
174 */
175
176 struct net_device_stats {
177 unsigned long rx_packets;
178 unsigned long tx_packets;
179 unsigned long rx_bytes;
180 unsigned long tx_bytes;
181 unsigned long rx_errors;
182 unsigned long tx_errors;
183 unsigned long rx_dropped;
184 unsigned long tx_dropped;
185 unsigned long multicast;
186 unsigned long collisions;
187 unsigned long rx_length_errors;
188 unsigned long rx_over_errors;
189 unsigned long rx_crc_errors;
190 unsigned long rx_frame_errors;
191 unsigned long rx_fifo_errors;
192 unsigned long rx_missed_errors;
193 unsigned long tx_aborted_errors;
194 unsigned long tx_carrier_errors;
195 unsigned long tx_fifo_errors;
196 unsigned long tx_heartbeat_errors;
197 unsigned long tx_window_errors;
198 unsigned long rx_compressed;
199 unsigned long tx_compressed;
200 };
201
202 #endif /* __KERNEL__ */
203
204
205 /* Media selection options. */
206 enum {
207 IF_PORT_UNKNOWN = 0,
208 IF_PORT_10BASE2,
209 IF_PORT_10BASET,
210 IF_PORT_AUI,
211 IF_PORT_100BASET,
212 IF_PORT_100BASETX,
213 IF_PORT_100BASEFX
214 };
215
216 #ifdef __KERNEL__
217
218 #include <linux/cache.h>
219 #include <linux/skbuff.h>
220
221 struct neighbour;
222 struct neigh_parms;
223 struct sk_buff;
224
225 struct netdev_hw_addr {
226 struct list_head list;
227 unsigned char addr[MAX_ADDR_LEN];
228 unsigned char type;
229 #define NETDEV_HW_ADDR_T_LAN 1
230 #define NETDEV_HW_ADDR_T_SAN 2
231 #define NETDEV_HW_ADDR_T_SLAVE 3
232 #define NETDEV_HW_ADDR_T_UNICAST 4
233 #define NETDEV_HW_ADDR_T_MULTICAST 5
234 bool synced;
235 bool global_use;
236 int refcount;
237 struct rcu_head rcu_head;
238 };
239
240 struct netdev_hw_addr_list {
241 struct list_head list;
242 int count;
243 };
244
245 #define netdev_hw_addr_list_count(l) ((l)->count)
246 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
247 #define netdev_hw_addr_list_for_each(ha, l) \
248 list_for_each_entry(ha, &(l)->list, list)
249
250 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
251 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
252 #define netdev_for_each_uc_addr(ha, dev) \
253 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
254
255 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
256 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
257 #define netdev_for_each_mc_addr(ha, dev) \
258 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
259
260 struct hh_cache {
261 struct hh_cache *hh_next; /* Next entry */
262 atomic_t hh_refcnt; /* number of users */
263 /*
264 * We want hh_output, hh_len, hh_lock and hh_data be a in a separate
265 * cache line on SMP.
266 * They are mostly read, but hh_refcnt may be changed quite frequently,
267 * incurring cache line ping pongs.
268 */
269 __be16 hh_type ____cacheline_aligned_in_smp;
270 /* protocol identifier, f.e ETH_P_IP
271 * NOTE: For VLANs, this will be the
272 * encapuslated type. --BLG
273 */
274 u16 hh_len; /* length of header */
275 int (*hh_output)(struct sk_buff *skb);
276 seqlock_t hh_lock;
277
278 /* cached hardware header; allow for machine alignment needs. */
279 #define HH_DATA_MOD 16
280 #define HH_DATA_OFF(__len) \
281 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
282 #define HH_DATA_ALIGN(__len) \
283 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
284 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
285 };
286
hh_cache_put(struct hh_cache * hh)287 static inline void hh_cache_put(struct hh_cache *hh)
288 {
289 if (atomic_dec_and_test(&hh->hh_refcnt))
290 kfree(hh);
291 }
292
293 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
294 * Alternative is:
295 * dev->hard_header_len ? (dev->hard_header_len +
296 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
297 *
298 * We could use other alignment values, but we must maintain the
299 * relationship HH alignment <= LL alignment.
300 *
301 * LL_ALLOCATED_SPACE also takes into account the tailroom the device
302 * may need.
303 */
304 #define LL_RESERVED_SPACE(dev) \
305 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
306 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
307 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
308 #define LL_ALLOCATED_SPACE(dev) \
309 ((((dev)->hard_header_len+(dev)->needed_headroom+(dev)->needed_tailroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
310
311 struct header_ops {
312 int (*create) (struct sk_buff *skb, struct net_device *dev,
313 unsigned short type, const void *daddr,
314 const void *saddr, unsigned len);
315 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
316 int (*rebuild)(struct sk_buff *skb);
317 #define HAVE_HEADER_CACHE
318 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh);
319 void (*cache_update)(struct hh_cache *hh,
320 const struct net_device *dev,
321 const unsigned char *haddr);
322 };
323
324 /* These flag bits are private to the generic network queueing
325 * layer, they may not be explicitly referenced by any other
326 * code.
327 */
328
329 enum netdev_state_t {
330 __LINK_STATE_START,
331 __LINK_STATE_PRESENT,
332 __LINK_STATE_NOCARRIER,
333 __LINK_STATE_LINKWATCH_PENDING,
334 __LINK_STATE_DORMANT,
335 };
336
337
338 /*
339 * This structure holds at boot time configured netdevice settings. They
340 * are then used in the device probing.
341 */
342 struct netdev_boot_setup {
343 char name[IFNAMSIZ];
344 struct ifmap map;
345 };
346 #define NETDEV_BOOT_SETUP_MAX 8
347
348 extern int __init netdev_boot_setup(char *str);
349
350 /*
351 * Structure for NAPI scheduling similar to tasklet but with weighting
352 */
353 struct napi_struct {
354 /* The poll_list must only be managed by the entity which
355 * changes the state of the NAPI_STATE_SCHED bit. This means
356 * whoever atomically sets that bit can add this napi_struct
357 * to the per-cpu poll_list, and whoever clears that bit
358 * can remove from the list right before clearing the bit.
359 */
360 struct list_head poll_list;
361
362 unsigned long state;
363 int weight;
364 int (*poll)(struct napi_struct *, int);
365 #ifdef CONFIG_NETPOLL
366 spinlock_t poll_lock;
367 int poll_owner;
368 #endif
369
370 unsigned int gro_count;
371
372 struct net_device *dev;
373 struct list_head dev_list;
374 struct sk_buff *gro_list;
375 struct sk_buff *skb;
376 };
377
378 enum {
379 NAPI_STATE_SCHED, /* Poll is scheduled */
380 NAPI_STATE_DISABLE, /* Disable pending */
381 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
382 };
383
384 enum gro_result {
385 GRO_MERGED,
386 GRO_MERGED_FREE,
387 GRO_HELD,
388 GRO_NORMAL,
389 GRO_DROP,
390 };
391 typedef enum gro_result gro_result_t;
392
393 /*
394 * enum rx_handler_result - Possible return values for rx_handlers.
395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396 * further.
397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398 * case skb->dev was changed by rx_handler.
399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400 * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
401 *
402 * rx_handlers are functions called from inside __netif_receive_skb(), to do
403 * special processing of the skb, prior to delivery to protocol handlers.
404 *
405 * Currently, a net_device can only have a single rx_handler registered. Trying
406 * to register a second rx_handler will return -EBUSY.
407 *
408 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409 * To unregister a rx_handler on a net_device, use
410 * netdev_rx_handler_unregister().
411 *
412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413 * do with the skb.
414 *
415 * If the rx_handler consumed to skb in some way, it should return
416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417 * the skb to be delivered in some other ways.
418 *
419 * If the rx_handler changed skb->dev, to divert the skb to another
420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421 * new device will be called if it exists.
422 *
423 * If the rx_handler consider the skb should be ignored, it should return
424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425 * are registred on exact device (ptype->dev == skb->dev).
426 *
427 * If the rx_handler didn't changed skb->dev, but want the skb to be normally
428 * delivered, it should return RX_HANDLER_PASS.
429 *
430 * A device without a registered rx_handler will behave as if rx_handler
431 * returned RX_HANDLER_PASS.
432 */
433
434 enum rx_handler_result {
435 RX_HANDLER_CONSUMED,
436 RX_HANDLER_ANOTHER,
437 RX_HANDLER_EXACT,
438 RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442
443 extern void __napi_schedule(struct napi_struct *n);
444
napi_disable_pending(struct napi_struct * n)445 static inline int napi_disable_pending(struct napi_struct *n)
446 {
447 return test_bit(NAPI_STATE_DISABLE, &n->state);
448 }
449
450 /**
451 * napi_schedule_prep - check if napi can be scheduled
452 * @n: napi context
453 *
454 * Test if NAPI routine is already running, and if not mark
455 * it as running. This is used as a condition variable
456 * insure only one NAPI poll instance runs. We also make
457 * sure there is no pending NAPI disable.
458 */
napi_schedule_prep(struct napi_struct * n)459 static inline int napi_schedule_prep(struct napi_struct *n)
460 {
461 return !napi_disable_pending(n) &&
462 !test_and_set_bit(NAPI_STATE_SCHED, &n->state);
463 }
464
465 /**
466 * napi_schedule - schedule NAPI poll
467 * @n: napi context
468 *
469 * Schedule NAPI poll routine to be called if it is not already
470 * running.
471 */
napi_schedule(struct napi_struct * n)472 static inline void napi_schedule(struct napi_struct *n)
473 {
474 if (napi_schedule_prep(n))
475 __napi_schedule(n);
476 }
477
478 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)479 static inline int napi_reschedule(struct napi_struct *napi)
480 {
481 if (napi_schedule_prep(napi)) {
482 __napi_schedule(napi);
483 return 1;
484 }
485 return 0;
486 }
487
488 /**
489 * napi_complete - NAPI processing complete
490 * @n: napi context
491 *
492 * Mark NAPI processing as complete.
493 */
494 extern void __napi_complete(struct napi_struct *n);
495 extern void napi_complete(struct napi_struct *n);
496
497 /**
498 * napi_disable - prevent NAPI from scheduling
499 * @n: napi context
500 *
501 * Stop NAPI from being scheduled on this context.
502 * Waits till any outstanding processing completes.
503 */
napi_disable(struct napi_struct * n)504 static inline void napi_disable(struct napi_struct *n)
505 {
506 set_bit(NAPI_STATE_DISABLE, &n->state);
507 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
508 msleep(1);
509 clear_bit(NAPI_STATE_DISABLE, &n->state);
510 }
511
512 /**
513 * napi_enable - enable NAPI scheduling
514 * @n: napi context
515 *
516 * Resume NAPI from being scheduled on this context.
517 * Must be paired with napi_disable.
518 */
napi_enable(struct napi_struct * n)519 static inline void napi_enable(struct napi_struct *n)
520 {
521 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
522 smp_mb__before_clear_bit();
523 clear_bit(NAPI_STATE_SCHED, &n->state);
524 }
525
526 #ifdef CONFIG_SMP
527 /**
528 * napi_synchronize - wait until NAPI is not running
529 * @n: napi context
530 *
531 * Wait until NAPI is done being scheduled on this context.
532 * Waits till any outstanding processing completes but
533 * does not disable future activations.
534 */
napi_synchronize(const struct napi_struct * n)535 static inline void napi_synchronize(const struct napi_struct *n)
536 {
537 while (test_bit(NAPI_STATE_SCHED, &n->state))
538 msleep(1);
539 }
540 #else
541 # define napi_synchronize(n) barrier()
542 #endif
543
544 enum netdev_queue_state_t {
545 __QUEUE_STATE_XOFF,
546 __QUEUE_STATE_FROZEN,
547 #define QUEUE_STATE_XOFF_OR_FROZEN ((1 << __QUEUE_STATE_XOFF) | \
548 (1 << __QUEUE_STATE_FROZEN))
549 };
550
551 struct netdev_queue {
552 /*
553 * read mostly part
554 */
555 struct net_device *dev;
556 struct Qdisc *qdisc;
557 unsigned long state;
558 struct Qdisc *qdisc_sleeping;
559 #ifdef CONFIG_RPS
560 struct kobject kobj;
561 #endif
562 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
563 int numa_node;
564 #endif
565 /*
566 * write mostly part
567 */
568 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
569 int xmit_lock_owner;
570 /*
571 * please use this field instead of dev->trans_start
572 */
573 unsigned long trans_start;
574 } ____cacheline_aligned_in_smp;
575
netdev_queue_numa_node_read(const struct netdev_queue * q)576 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
577 {
578 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
579 return q->numa_node;
580 #else
581 return NUMA_NO_NODE;
582 #endif
583 }
584
netdev_queue_numa_node_write(struct netdev_queue * q,int node)585 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
586 {
587 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
588 q->numa_node = node;
589 #endif
590 }
591
592 #ifdef CONFIG_RPS
593 /*
594 * This structure holds an RPS map which can be of variable length. The
595 * map is an array of CPUs.
596 */
597 struct rps_map {
598 unsigned int len;
599 struct rcu_head rcu;
600 u16 cpus[0];
601 };
602 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + (_num * sizeof(u16)))
603
604 /*
605 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
606 * tail pointer for that CPU's input queue at the time of last enqueue, and
607 * a hardware filter index.
608 */
609 struct rps_dev_flow {
610 u16 cpu;
611 u16 filter;
612 unsigned int last_qtail;
613 };
614 #define RPS_NO_FILTER 0xffff
615
616 /*
617 * The rps_dev_flow_table structure contains a table of flow mappings.
618 */
619 struct rps_dev_flow_table {
620 unsigned int mask;
621 struct rcu_head rcu;
622 struct work_struct free_work;
623 struct rps_dev_flow flows[0];
624 };
625 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
626 (_num * sizeof(struct rps_dev_flow)))
627
628 /*
629 * The rps_sock_flow_table contains mappings of flows to the last CPU
630 * on which they were processed by the application (set in recvmsg).
631 */
632 struct rps_sock_flow_table {
633 unsigned int mask;
634 u16 ents[0];
635 };
636 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
637 (_num * sizeof(u16)))
638
639 #define RPS_NO_CPU 0xffff
640
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)641 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
642 u32 hash)
643 {
644 if (table && hash) {
645 unsigned int cpu, index = hash & table->mask;
646
647 /* We only give a hint, preemption can change cpu under us */
648 cpu = raw_smp_processor_id();
649
650 if (table->ents[index] != cpu)
651 table->ents[index] = cpu;
652 }
653 }
654
rps_reset_sock_flow(struct rps_sock_flow_table * table,u32 hash)655 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
656 u32 hash)
657 {
658 if (table && hash)
659 table->ents[hash & table->mask] = RPS_NO_CPU;
660 }
661
662 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
663
664 #ifdef CONFIG_RFS_ACCEL
665 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
666 u32 flow_id, u16 filter_id);
667 #endif
668
669 /* This structure contains an instance of an RX queue. */
670 struct netdev_rx_queue {
671 struct rps_map __rcu *rps_map;
672 struct rps_dev_flow_table __rcu *rps_flow_table;
673 struct kobject kobj;
674 struct net_device *dev;
675 } ____cacheline_aligned_in_smp;
676 #endif /* CONFIG_RPS */
677
678 #ifdef CONFIG_XPS
679 /*
680 * This structure holds an XPS map which can be of variable length. The
681 * map is an array of queues.
682 */
683 struct xps_map {
684 unsigned int len;
685 unsigned int alloc_len;
686 struct rcu_head rcu;
687 u16 queues[0];
688 };
689 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + (_num * sizeof(u16)))
690 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
691 / sizeof(u16))
692
693 /*
694 * This structure holds all XPS maps for device. Maps are indexed by CPU.
695 */
696 struct xps_dev_maps {
697 struct rcu_head rcu;
698 struct xps_map __rcu *cpu_map[0];
699 };
700 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
701 (nr_cpu_ids * sizeof(struct xps_map *)))
702 #endif /* CONFIG_XPS */
703
704 #define TC_MAX_QUEUE 16
705 #define TC_BITMASK 15
706 /* HW offloaded queuing disciplines txq count and offset maps */
707 struct netdev_tc_txq {
708 u16 count;
709 u16 offset;
710 };
711
712 /*
713 * This structure defines the management hooks for network devices.
714 * The following hooks can be defined; unless noted otherwise, they are
715 * optional and can be filled with a null pointer.
716 *
717 * int (*ndo_init)(struct net_device *dev);
718 * This function is called once when network device is registered.
719 * The network device can use this to any late stage initializaton
720 * or semantic validattion. It can fail with an error code which will
721 * be propogated back to register_netdev
722 *
723 * void (*ndo_uninit)(struct net_device *dev);
724 * This function is called when device is unregistered or when registration
725 * fails. It is not called if init fails.
726 *
727 * int (*ndo_open)(struct net_device *dev);
728 * This function is called when network device transistions to the up
729 * state.
730 *
731 * int (*ndo_stop)(struct net_device *dev);
732 * This function is called when network device transistions to the down
733 * state.
734 *
735 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
736 * struct net_device *dev);
737 * Called when a packet needs to be transmitted.
738 * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
739 * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
740 * Required can not be NULL.
741 *
742 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
743 * Called to decide which queue to when device supports multiple
744 * transmit queues.
745 *
746 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
747 * This function is called to allow device receiver to make
748 * changes to configuration when multicast or promiscious is enabled.
749 *
750 * void (*ndo_set_rx_mode)(struct net_device *dev);
751 * This function is called device changes address list filtering.
752 *
753 * void (*ndo_set_multicast_list)(struct net_device *dev);
754 * This function is called when the multicast address list changes.
755 *
756 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
757 * This function is called when the Media Access Control address
758 * needs to be changed. If this interface is not defined, the
759 * mac address can not be changed.
760 *
761 * int (*ndo_validate_addr)(struct net_device *dev);
762 * Test if Media Access Control address is valid for the device.
763 *
764 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
765 * Called when a user request an ioctl which can't be handled by
766 * the generic interface code. If not defined ioctl's return
767 * not supported error code.
768 *
769 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
770 * Used to set network devices bus interface parameters. This interface
771 * is retained for legacy reason, new devices should use the bus
772 * interface (PCI) for low level management.
773 *
774 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
775 * Called when a user wants to change the Maximum Transfer Unit
776 * of a device. If not defined, any request to change MTU will
777 * will return an error.
778 *
779 * void (*ndo_tx_timeout)(struct net_device *dev);
780 * Callback uses when the transmitter has not made any progress
781 * for dev->watchdog ticks.
782 *
783 * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
784 * struct rtnl_link_stats64 *storage);
785 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
786 * Called when a user wants to get the network device usage
787 * statistics. Drivers must do one of the following:
788 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
789 * rtnl_link_stats64 structure passed by the caller.
790 * 2. Define @ndo_get_stats to update a net_device_stats structure
791 * (which should normally be dev->stats) and return a pointer to
792 * it. The structure may be changed asynchronously only if each
793 * field is written atomically.
794 * 3. Update dev->stats asynchronously and atomically, and define
795 * neither operation.
796 *
797 * void (*ndo_vlan_rx_register)(struct net_device *dev, struct vlan_group *grp);
798 * If device support VLAN receive acceleration
799 * (ie. dev->features & NETIF_F_HW_VLAN_RX), then this function is called
800 * when vlan groups for the device changes. Note: grp is NULL
801 * if no vlan's groups are being used.
802 *
803 * void (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
804 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
805 * this function is called when a VLAN id is registered.
806 *
807 * void (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
808 * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
809 * this function is called when a VLAN id is unregistered.
810 *
811 * void (*ndo_poll_controller)(struct net_device *dev);
812 *
813 * SR-IOV management functions.
814 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
815 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
816 * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
817 * int (*ndo_get_vf_config)(struct net_device *dev,
818 * int vf, struct ifla_vf_info *ivf);
819 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
820 * struct nlattr *port[]);
821 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
822 * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
823 * Called to setup 'tc' number of traffic classes in the net device. This
824 * is always called from the stack with the rtnl lock held and netif tx
825 * queues stopped. This allows the netdevice to perform queue management
826 * safely.
827 *
828 * Fiber Channel over Ethernet (FCoE) offload functions.
829 * int (*ndo_fcoe_enable)(struct net_device *dev);
830 * Called when the FCoE protocol stack wants to start using LLD for FCoE
831 * so the underlying device can perform whatever needed configuration or
832 * initialization to support acceleration of FCoE traffic.
833 *
834 * int (*ndo_fcoe_disable)(struct net_device *dev);
835 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
836 * so the underlying device can perform whatever needed clean-ups to
837 * stop supporting acceleration of FCoE traffic.
838 *
839 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
840 * struct scatterlist *sgl, unsigned int sgc);
841 * Called when the FCoE Initiator wants to initialize an I/O that
842 * is a possible candidate for Direct Data Placement (DDP). The LLD can
843 * perform necessary setup and returns 1 to indicate the device is set up
844 * successfully to perform DDP on this I/O, otherwise this returns 0.
845 *
846 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
847 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
848 * indicated by the FC exchange id 'xid', so the underlying device can
849 * clean up and reuse resources for later DDP requests.
850 *
851 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
852 * struct scatterlist *sgl, unsigned int sgc);
853 * Called when the FCoE Target wants to initialize an I/O that
854 * is a possible candidate for Direct Data Placement (DDP). The LLD can
855 * perform necessary setup and returns 1 to indicate the device is set up
856 * successfully to perform DDP on this I/O, otherwise this returns 0.
857 *
858 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
859 * Called when the underlying device wants to override default World Wide
860 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
861 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
862 * protocol stack to use.
863 *
864 * RFS acceleration.
865 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
866 * u16 rxq_index, u32 flow_id);
867 * Set hardware filter for RFS. rxq_index is the target queue index;
868 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
869 * Return the filter ID on success, or a negative error code.
870 *
871 * Slave management functions (for bridge, bonding, etc). User should
872 * call netdev_set_master() to set dev->master properly.
873 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
874 * Called to make another netdev an underling.
875 *
876 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
877 * Called to release previously enslaved netdev.
878 *
879 * Feature/offload setting functions.
880 * u32 (*ndo_fix_features)(struct net_device *dev, u32 features);
881 * Adjusts the requested feature flags according to device-specific
882 * constraints, and returns the resulting flags. Must not modify
883 * the device state.
884 *
885 * int (*ndo_set_features)(struct net_device *dev, u32 features);
886 * Called to update device configuration to new features. Passed
887 * feature set might be less than what was returned by ndo_fix_features()).
888 * Must return >0 or -errno if it changed dev->features itself.
889 *
890 */
891 #define HAVE_NET_DEVICE_OPS
892 struct net_device_ops {
893 int (*ndo_init)(struct net_device *dev);
894 void (*ndo_uninit)(struct net_device *dev);
895 int (*ndo_open)(struct net_device *dev);
896 int (*ndo_stop)(struct net_device *dev);
897 netdev_tx_t (*ndo_start_xmit) (struct sk_buff *skb,
898 struct net_device *dev);
899 u16 (*ndo_select_queue)(struct net_device *dev,
900 struct sk_buff *skb);
901 void (*ndo_change_rx_flags)(struct net_device *dev,
902 int flags);
903 void (*ndo_set_rx_mode)(struct net_device *dev);
904 void (*ndo_set_multicast_list)(struct net_device *dev);
905 int (*ndo_set_mac_address)(struct net_device *dev,
906 void *addr);
907 int (*ndo_validate_addr)(struct net_device *dev);
908 int (*ndo_do_ioctl)(struct net_device *dev,
909 struct ifreq *ifr, int cmd);
910 int (*ndo_set_config)(struct net_device *dev,
911 struct ifmap *map);
912 int (*ndo_change_mtu)(struct net_device *dev,
913 int new_mtu);
914 int (*ndo_neigh_setup)(struct net_device *dev,
915 struct neigh_parms *);
916 void (*ndo_tx_timeout) (struct net_device *dev);
917
918 struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
919 struct rtnl_link_stats64 *storage);
920 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
921
922 void (*ndo_vlan_rx_register)(struct net_device *dev,
923 struct vlan_group *grp);
924 void (*ndo_vlan_rx_add_vid)(struct net_device *dev,
925 unsigned short vid);
926 void (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
927 unsigned short vid);
928 #ifdef CONFIG_NET_POLL_CONTROLLER
929 void (*ndo_poll_controller)(struct net_device *dev);
930 int (*ndo_netpoll_setup)(struct net_device *dev,
931 struct netpoll_info *info);
932 void (*ndo_netpoll_cleanup)(struct net_device *dev);
933 #endif
934 int (*ndo_set_vf_mac)(struct net_device *dev,
935 int queue, u8 *mac);
936 int (*ndo_set_vf_vlan)(struct net_device *dev,
937 int queue, u16 vlan, u8 qos);
938 int (*ndo_set_vf_tx_rate)(struct net_device *dev,
939 int vf, int rate);
940 int (*ndo_get_vf_config)(struct net_device *dev,
941 int vf,
942 struct ifla_vf_info *ivf);
943 int (*ndo_set_vf_port)(struct net_device *dev,
944 int vf,
945 struct nlattr *port[]);
946 int (*ndo_get_vf_port)(struct net_device *dev,
947 int vf, struct sk_buff *skb);
948 int (*ndo_setup_tc)(struct net_device *dev, u8 tc);
949 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
950 int (*ndo_fcoe_enable)(struct net_device *dev);
951 int (*ndo_fcoe_disable)(struct net_device *dev);
952 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
953 u16 xid,
954 struct scatterlist *sgl,
955 unsigned int sgc);
956 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
957 u16 xid);
958 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
959 u16 xid,
960 struct scatterlist *sgl,
961 unsigned int sgc);
962 #define NETDEV_FCOE_WWNN 0
963 #define NETDEV_FCOE_WWPN 1
964 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
965 u64 *wwn, int type);
966 #endif
967 #ifdef CONFIG_RFS_ACCEL
968 int (*ndo_rx_flow_steer)(struct net_device *dev,
969 const struct sk_buff *skb,
970 u16 rxq_index,
971 u32 flow_id);
972 #endif
973 int (*ndo_add_slave)(struct net_device *dev,
974 struct net_device *slave_dev);
975 int (*ndo_del_slave)(struct net_device *dev,
976 struct net_device *slave_dev);
977 u32 (*ndo_fix_features)(struct net_device *dev,
978 u32 features);
979 int (*ndo_set_features)(struct net_device *dev,
980 u32 features);
981 };
982
983 /*
984 * The DEVICE structure.
985 * Actually, this whole structure is a big mistake. It mixes I/O
986 * data with strictly "high-level" data, and it has to know about
987 * almost every data structure used in the INET module.
988 *
989 * FIXME: cleanup struct net_device such that network protocol info
990 * moves out.
991 */
992
993 struct net_device {
994
995 /*
996 * This is the first field of the "visible" part of this structure
997 * (i.e. as seen by users in the "Space.c" file). It is the name
998 * of the interface.
999 */
1000 char name[IFNAMSIZ];
1001
1002 struct pm_qos_request_list pm_qos_req;
1003
1004 /* device name hash chain */
1005 struct hlist_node name_hlist;
1006 /* snmp alias */
1007 char *ifalias;
1008
1009 /*
1010 * I/O specific fields
1011 * FIXME: Merge these and struct ifmap into one
1012 */
1013 unsigned long mem_end; /* shared mem end */
1014 unsigned long mem_start; /* shared mem start */
1015 unsigned long base_addr; /* device I/O address */
1016 unsigned int irq; /* device IRQ number */
1017
1018 /*
1019 * Some hardware also needs these fields, but they are not
1020 * part of the usual set specified in Space.c.
1021 */
1022
1023 unsigned char if_port; /* Selectable AUI, TP,..*/
1024 unsigned char dma; /* DMA channel */
1025
1026 unsigned long state;
1027
1028 struct list_head dev_list;
1029 struct list_head napi_list;
1030 struct list_head unreg_list;
1031
1032 /* currently active device features */
1033 u32 features;
1034 /* user-changeable features */
1035 u32 hw_features;
1036 /* user-requested features */
1037 u32 wanted_features;
1038 /* VLAN feature mask */
1039 u32 vlan_features;
1040
1041 /* Net device feature bits; if you change something,
1042 * also update netdev_features_strings[] in ethtool.c */
1043
1044 #define NETIF_F_SG 1 /* Scatter/gather IO. */
1045 #define NETIF_F_IP_CSUM 2 /* Can checksum TCP/UDP over IPv4. */
1046 #define NETIF_F_NO_CSUM 4 /* Does not require checksum. F.e. loopack. */
1047 #define NETIF_F_HW_CSUM 8 /* Can checksum all the packets. */
1048 #define NETIF_F_IPV6_CSUM 16 /* Can checksum TCP/UDP over IPV6 */
1049 #define NETIF_F_HIGHDMA 32 /* Can DMA to high memory. */
1050 #define NETIF_F_FRAGLIST 64 /* Scatter/gather IO. */
1051 #define NETIF_F_HW_VLAN_TX 128 /* Transmit VLAN hw acceleration */
1052 #define NETIF_F_HW_VLAN_RX 256 /* Receive VLAN hw acceleration */
1053 #define NETIF_F_HW_VLAN_FILTER 512 /* Receive filtering on VLAN */
1054 #define NETIF_F_VLAN_CHALLENGED 1024 /* Device cannot handle VLAN packets */
1055 #define NETIF_F_GSO 2048 /* Enable software GSO. */
1056 #define NETIF_F_LLTX 4096 /* LockLess TX - deprecated. Please */
1057 /* do not use LLTX in new drivers */
1058 #define NETIF_F_NETNS_LOCAL 8192 /* Does not change network namespaces */
1059 #define NETIF_F_GRO 16384 /* Generic receive offload */
1060 #define NETIF_F_LRO 32768 /* large receive offload */
1061
1062 /* the GSO_MASK reserves bits 16 through 23 */
1063 #define NETIF_F_FCOE_CRC (1 << 24) /* FCoE CRC32 */
1064 #define NETIF_F_SCTP_CSUM (1 << 25) /* SCTP checksum offload */
1065 #define NETIF_F_FCOE_MTU (1 << 26) /* Supports max FCoE MTU, 2158 bytes*/
1066 #define NETIF_F_NTUPLE (1 << 27) /* N-tuple filters supported */
1067 #define NETIF_F_RXHASH (1 << 28) /* Receive hashing offload */
1068 #define NETIF_F_RXCSUM (1 << 29) /* Receive checksumming offload */
1069
1070 /* Segmentation offload features */
1071 #define NETIF_F_GSO_SHIFT 16
1072 #define NETIF_F_GSO_MASK 0x00ff0000
1073 #define NETIF_F_TSO (SKB_GSO_TCPV4 << NETIF_F_GSO_SHIFT)
1074 #define NETIF_F_UFO (SKB_GSO_UDP << NETIF_F_GSO_SHIFT)
1075 #define NETIF_F_GSO_ROBUST (SKB_GSO_DODGY << NETIF_F_GSO_SHIFT)
1076 #define NETIF_F_TSO_ECN (SKB_GSO_TCP_ECN << NETIF_F_GSO_SHIFT)
1077 #define NETIF_F_TSO6 (SKB_GSO_TCPV6 << NETIF_F_GSO_SHIFT)
1078 #define NETIF_F_FSO (SKB_GSO_FCOE << NETIF_F_GSO_SHIFT)
1079
1080 /* Features valid for ethtool to change */
1081 /* = all defined minus driver/device-class-related */
1082 #define NETIF_F_NEVER_CHANGE (NETIF_F_HIGHDMA | NETIF_F_VLAN_CHALLENGED | \
1083 NETIF_F_LLTX | NETIF_F_NETNS_LOCAL)
1084 #define NETIF_F_ETHTOOL_BITS (0x3f3fffff & ~NETIF_F_NEVER_CHANGE)
1085
1086 /* List of features with software fallbacks. */
1087 #define NETIF_F_GSO_SOFTWARE (NETIF_F_TSO | NETIF_F_TSO_ECN | \
1088 NETIF_F_TSO6 | NETIF_F_UFO)
1089
1090
1091 #define NETIF_F_GEN_CSUM (NETIF_F_NO_CSUM | NETIF_F_HW_CSUM)
1092 #define NETIF_F_V4_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IP_CSUM)
1093 #define NETIF_F_V6_CSUM (NETIF_F_GEN_CSUM | NETIF_F_IPV6_CSUM)
1094 #define NETIF_F_ALL_CSUM (NETIF_F_V4_CSUM | NETIF_F_V6_CSUM)
1095
1096 #define NETIF_F_ALL_TSO (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1097
1098 #define NETIF_F_ALL_TX_OFFLOADS (NETIF_F_ALL_CSUM | NETIF_F_SG | \
1099 NETIF_F_FRAGLIST | NETIF_F_ALL_TSO | \
1100 NETIF_F_SCTP_CSUM | NETIF_F_FCOE_CRC)
1101
1102 /*
1103 * If one device supports one of these features, then enable them
1104 * for all in netdev_increment_features.
1105 */
1106 #define NETIF_F_ONE_FOR_ALL (NETIF_F_GSO_SOFTWARE | NETIF_F_GSO_ROBUST | \
1107 NETIF_F_SG | NETIF_F_HIGHDMA | \
1108 NETIF_F_FRAGLIST)
1109
1110 /* changeable features with no special hardware requirements */
1111 #define NETIF_F_SOFT_FEATURES (NETIF_F_GSO | NETIF_F_GRO)
1112
1113 /* Interface index. Unique device identifier */
1114 int ifindex;
1115 int iflink;
1116
1117 struct net_device_stats stats;
1118 atomic_long_t rx_dropped; /* dropped packets by core network
1119 * Do not use this in drivers.
1120 */
1121
1122 #ifdef CONFIG_WIRELESS_EXT
1123 /* List of functions to handle Wireless Extensions (instead of ioctl).
1124 * See <net/iw_handler.h> for details. Jean II */
1125 const struct iw_handler_def * wireless_handlers;
1126 /* Instance data managed by the core of Wireless Extensions. */
1127 struct iw_public_data * wireless_data;
1128 #endif
1129 /* Management operations */
1130 const struct net_device_ops *netdev_ops;
1131 const struct ethtool_ops *ethtool_ops;
1132
1133 /* Hardware header description */
1134 const struct header_ops *header_ops;
1135
1136 unsigned int flags; /* interface flags (a la BSD) */
1137 unsigned short gflags;
1138 unsigned int priv_flags; /* Like 'flags' but invisible to userspace. */
1139 unsigned short padded; /* How much padding added by alloc_netdev() */
1140
1141 unsigned char operstate; /* RFC2863 operstate */
1142 unsigned char link_mode; /* mapping policy to operstate */
1143
1144 unsigned int mtu; /* interface MTU value */
1145 unsigned short type; /* interface hardware type */
1146 unsigned short hard_header_len; /* hardware hdr length */
1147
1148 /* extra head- and tailroom the hardware may need, but not in all cases
1149 * can this be guaranteed, especially tailroom. Some cases also use
1150 * LL_MAX_HEADER instead to allocate the skb.
1151 */
1152 unsigned short needed_headroom;
1153 unsigned short needed_tailroom;
1154
1155 /* Interface address info. */
1156 unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1157 unsigned char addr_assign_type; /* hw address assignment type */
1158 unsigned char addr_len; /* hardware address length */
1159 unsigned short dev_id; /* for shared network cards */
1160
1161 spinlock_t addr_list_lock;
1162 struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1163 struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1164 int uc_promisc;
1165 unsigned int promiscuity;
1166 unsigned int allmulti;
1167
1168
1169 /* Protocol specific pointers */
1170
1171 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1172 struct vlan_group __rcu *vlgrp; /* VLAN group */
1173 #endif
1174 #ifdef CONFIG_NET_DSA
1175 void *dsa_ptr; /* dsa specific data */
1176 #endif
1177 void *atalk_ptr; /* AppleTalk link */
1178 struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1179 struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1180 struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1181 void *ec_ptr; /* Econet specific data */
1182 void *ax25_ptr; /* AX.25 specific data */
1183 struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1184 assign before registering */
1185
1186 /*
1187 * Cache lines mostly used on receive path (including eth_type_trans())
1188 */
1189 unsigned long last_rx; /* Time of last Rx
1190 * This should not be set in
1191 * drivers, unless really needed,
1192 * because network stack (bonding)
1193 * use it if/when necessary, to
1194 * avoid dirtying this cache line.
1195 */
1196
1197 struct net_device *master; /* Pointer to master device of a group,
1198 * which this device is member of.
1199 */
1200
1201 /* Interface address info used in eth_type_trans() */
1202 unsigned char *dev_addr; /* hw address, (before bcast
1203 because most packets are
1204 unicast) */
1205
1206 struct netdev_hw_addr_list dev_addrs; /* list of device
1207 hw addresses */
1208
1209 unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1210
1211 #ifdef CONFIG_RPS
1212 struct kset *queues_kset;
1213
1214 struct netdev_rx_queue *_rx;
1215
1216 /* Number of RX queues allocated at register_netdev() time */
1217 unsigned int num_rx_queues;
1218
1219 /* Number of RX queues currently active in device */
1220 unsigned int real_num_rx_queues;
1221
1222 #ifdef CONFIG_RFS_ACCEL
1223 /* CPU reverse-mapping for RX completion interrupts, indexed
1224 * by RX queue number. Assigned by driver. This must only be
1225 * set if the ndo_rx_flow_steer operation is defined. */
1226 struct cpu_rmap *rx_cpu_rmap;
1227 #endif
1228 #endif
1229
1230 rx_handler_func_t __rcu *rx_handler;
1231 void __rcu *rx_handler_data;
1232
1233 struct netdev_queue __rcu *ingress_queue;
1234
1235 /*
1236 * Cache lines mostly used on transmit path
1237 */
1238 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
1239
1240 /* Number of TX queues allocated at alloc_netdev_mq() time */
1241 unsigned int num_tx_queues;
1242
1243 /* Number of TX queues currently active in device */
1244 unsigned int real_num_tx_queues;
1245
1246 /* root qdisc from userspace point of view */
1247 struct Qdisc *qdisc;
1248
1249 unsigned long tx_queue_len; /* Max frames per queue allowed */
1250 spinlock_t tx_global_lock;
1251
1252 #ifdef CONFIG_XPS
1253 struct xps_dev_maps __rcu *xps_maps;
1254 #endif
1255
1256 /* These may be needed for future network-power-down code. */
1257
1258 /*
1259 * trans_start here is expensive for high speed devices on SMP,
1260 * please use netdev_queue->trans_start instead.
1261 */
1262 unsigned long trans_start; /* Time (in jiffies) of last Tx */
1263
1264 int watchdog_timeo; /* used by dev_watchdog() */
1265 struct timer_list watchdog_timer;
1266
1267 /* Number of references to this device */
1268 int __percpu *pcpu_refcnt;
1269
1270 /* delayed register/unregister */
1271 struct list_head todo_list;
1272 /* device index hash chain */
1273 struct hlist_node index_hlist;
1274
1275 struct list_head link_watch_list;
1276
1277 /* register/unregister state machine */
1278 enum { NETREG_UNINITIALIZED=0,
1279 NETREG_REGISTERED, /* completed register_netdevice */
1280 NETREG_UNREGISTERING, /* called unregister_netdevice */
1281 NETREG_UNREGISTERED, /* completed unregister todo */
1282 NETREG_RELEASED, /* called free_netdev */
1283 NETREG_DUMMY, /* dummy device for NAPI poll */
1284 } reg_state:16;
1285
1286 enum {
1287 RTNL_LINK_INITIALIZED,
1288 RTNL_LINK_INITIALIZING,
1289 } rtnl_link_state:16;
1290
1291 /* Called from unregister, can be used to call free_netdev */
1292 void (*destructor)(struct net_device *dev);
1293
1294 #ifdef CONFIG_NETPOLL
1295 struct netpoll_info *npinfo;
1296 #endif
1297
1298 #ifdef CONFIG_NET_NS
1299 /* Network namespace this network device is inside */
1300 struct net *nd_net;
1301 #endif
1302
1303 /* mid-layer private */
1304 union {
1305 void *ml_priv;
1306 struct pcpu_lstats __percpu *lstats; /* loopback stats */
1307 struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1308 struct pcpu_dstats __percpu *dstats; /* dummy stats */
1309 };
1310 /* GARP */
1311 struct garp_port __rcu *garp_port;
1312
1313 /* class/net/name entry */
1314 struct device dev;
1315 /* space for optional device, statistics, and wireless sysfs groups */
1316 const struct attribute_group *sysfs_groups[4];
1317
1318 /* rtnetlink link ops */
1319 const struct rtnl_link_ops *rtnl_link_ops;
1320
1321 /* for setting kernel sock attribute on TCP connection setup */
1322 #define GSO_MAX_SIZE 65536
1323 unsigned int gso_max_size;
1324
1325 #ifdef CONFIG_DCB
1326 /* Data Center Bridging netlink ops */
1327 const struct dcbnl_rtnl_ops *dcbnl_ops;
1328 #endif
1329 u8 num_tc;
1330 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
1331 u8 prio_tc_map[TC_BITMASK + 1];
1332
1333 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
1334 /* max exchange id for FCoE LRO by ddp */
1335 unsigned int fcoe_ddp_xid;
1336 #endif
1337 /* n-tuple filter list attached to this device */
1338 struct ethtool_rx_ntuple_list ethtool_ntuple_list;
1339
1340 /* phy device may attach itself for hardware timestamping */
1341 struct phy_device *phydev;
1342
1343 /* group the device belongs to */
1344 int group;
1345 };
1346 #define to_net_dev(d) container_of(d, struct net_device, dev)
1347
1348 #define NETDEV_ALIGN 32
1349
1350 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)1351 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1352 {
1353 return dev->prio_tc_map[prio & TC_BITMASK];
1354 }
1355
1356 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)1357 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1358 {
1359 if (tc >= dev->num_tc)
1360 return -EINVAL;
1361
1362 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1363 return 0;
1364 }
1365
1366 static inline
netdev_reset_tc(struct net_device * dev)1367 void netdev_reset_tc(struct net_device *dev)
1368 {
1369 dev->num_tc = 0;
1370 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1371 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1372 }
1373
1374 static inline
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)1375 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1376 {
1377 if (tc >= dev->num_tc)
1378 return -EINVAL;
1379
1380 dev->tc_to_txq[tc].count = count;
1381 dev->tc_to_txq[tc].offset = offset;
1382 return 0;
1383 }
1384
1385 static inline
netdev_set_num_tc(struct net_device * dev,u8 num_tc)1386 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1387 {
1388 if (num_tc > TC_MAX_QUEUE)
1389 return -EINVAL;
1390
1391 dev->num_tc = num_tc;
1392 return 0;
1393 }
1394
1395 static inline
netdev_get_num_tc(struct net_device * dev)1396 int netdev_get_num_tc(struct net_device *dev)
1397 {
1398 return dev->num_tc;
1399 }
1400
1401 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)1402 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1403 unsigned int index)
1404 {
1405 return &dev->_tx[index];
1406 }
1407
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)1408 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1409 void (*f)(struct net_device *,
1410 struct netdev_queue *,
1411 void *),
1412 void *arg)
1413 {
1414 unsigned int i;
1415
1416 for (i = 0; i < dev->num_tx_queues; i++)
1417 f(dev, &dev->_tx[i], arg);
1418 }
1419
1420 /*
1421 * Net namespace inlines
1422 */
1423 static inline
dev_net(const struct net_device * dev)1424 struct net *dev_net(const struct net_device *dev)
1425 {
1426 return read_pnet(&dev->nd_net);
1427 }
1428
1429 static inline
dev_net_set(struct net_device * dev,struct net * net)1430 void dev_net_set(struct net_device *dev, struct net *net)
1431 {
1432 #ifdef CONFIG_NET_NS
1433 release_net(dev->nd_net);
1434 dev->nd_net = hold_net(net);
1435 #endif
1436 }
1437
netdev_uses_dsa_tags(struct net_device * dev)1438 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1439 {
1440 #ifdef CONFIG_NET_DSA_TAG_DSA
1441 if (dev->dsa_ptr != NULL)
1442 return dsa_uses_dsa_tags(dev->dsa_ptr);
1443 #endif
1444
1445 return 0;
1446 }
1447
1448 #ifndef CONFIG_NET_NS
skb_set_dev(struct sk_buff * skb,struct net_device * dev)1449 static inline void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1450 {
1451 skb->dev = dev;
1452 }
1453 #else /* CONFIG_NET_NS */
1454 void skb_set_dev(struct sk_buff *skb, struct net_device *dev);
1455 #endif
1456
netdev_uses_trailer_tags(struct net_device * dev)1457 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1458 {
1459 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1460 if (dev->dsa_ptr != NULL)
1461 return dsa_uses_trailer_tags(dev->dsa_ptr);
1462 #endif
1463
1464 return 0;
1465 }
1466
1467 /**
1468 * netdev_priv - access network device private data
1469 * @dev: network device
1470 *
1471 * Get network device private data
1472 */
netdev_priv(const struct net_device * dev)1473 static inline void *netdev_priv(const struct net_device *dev)
1474 {
1475 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1476 }
1477
1478 /* Set the sysfs physical device reference for the network logical device
1479 * if set prior to registration will cause a symlink during initialization.
1480 */
1481 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1482
1483 /* Set the sysfs device type for the network logical device to allow
1484 * fin grained indentification of different network device types. For
1485 * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1486 */
1487 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1488
1489 /**
1490 * netif_napi_add - initialize a napi context
1491 * @dev: network device
1492 * @napi: napi context
1493 * @poll: polling function
1494 * @weight: default weight
1495 *
1496 * netif_napi_add() must be used to initialize a napi context prior to calling
1497 * *any* of the other napi related functions.
1498 */
1499 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1500 int (*poll)(struct napi_struct *, int), int weight);
1501
1502 /**
1503 * netif_napi_del - remove a napi context
1504 * @napi: napi context
1505 *
1506 * netif_napi_del() removes a napi context from the network device napi list
1507 */
1508 void netif_napi_del(struct napi_struct *napi);
1509
1510 struct napi_gro_cb {
1511 /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1512 void *frag0;
1513
1514 /* Length of frag0. */
1515 unsigned int frag0_len;
1516
1517 /* This indicates where we are processing relative to skb->data. */
1518 int data_offset;
1519
1520 /* This is non-zero if the packet may be of the same flow. */
1521 int same_flow;
1522
1523 /* This is non-zero if the packet cannot be merged with the new skb. */
1524 int flush;
1525
1526 /* Number of segments aggregated. */
1527 int count;
1528
1529 /* Free the skb? */
1530 int free;
1531 };
1532
1533 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1534
1535 struct packet_type {
1536 __be16 type; /* This is really htons(ether_type). */
1537 struct net_device *dev; /* NULL is wildcarded here */
1538 int (*func) (struct sk_buff *,
1539 struct net_device *,
1540 struct packet_type *,
1541 struct net_device *);
1542 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1543 u32 features);
1544 int (*gso_send_check)(struct sk_buff *skb);
1545 struct sk_buff **(*gro_receive)(struct sk_buff **head,
1546 struct sk_buff *skb);
1547 int (*gro_complete)(struct sk_buff *skb);
1548 void *af_packet_priv;
1549 struct list_head list;
1550 };
1551
1552 #include <linux/interrupt.h>
1553 #include <linux/notifier.h>
1554
1555 extern rwlock_t dev_base_lock; /* Device list lock */
1556
1557
1558 #define for_each_netdev(net, d) \
1559 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1560 #define for_each_netdev_reverse(net, d) \
1561 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1562 #define for_each_netdev_rcu(net, d) \
1563 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1564 #define for_each_netdev_safe(net, d, n) \
1565 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1566 #define for_each_netdev_continue(net, d) \
1567 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1568 #define for_each_netdev_continue_rcu(net, d) \
1569 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1570 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1571
next_net_device(struct net_device * dev)1572 static inline struct net_device *next_net_device(struct net_device *dev)
1573 {
1574 struct list_head *lh;
1575 struct net *net;
1576
1577 net = dev_net(dev);
1578 lh = dev->dev_list.next;
1579 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1580 }
1581
next_net_device_rcu(struct net_device * dev)1582 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1583 {
1584 struct list_head *lh;
1585 struct net *net;
1586
1587 net = dev_net(dev);
1588 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1589 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1590 }
1591
first_net_device(struct net * net)1592 static inline struct net_device *first_net_device(struct net *net)
1593 {
1594 return list_empty(&net->dev_base_head) ? NULL :
1595 net_device_entry(net->dev_base_head.next);
1596 }
1597
first_net_device_rcu(struct net * net)1598 static inline struct net_device *first_net_device_rcu(struct net *net)
1599 {
1600 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1601
1602 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1603 }
1604
1605 extern int netdev_boot_setup_check(struct net_device *dev);
1606 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1607 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1608 const char *hwaddr);
1609 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1610 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1611 extern void dev_add_pack(struct packet_type *pt);
1612 extern void dev_remove_pack(struct packet_type *pt);
1613 extern void __dev_remove_pack(struct packet_type *pt);
1614
1615 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1616 unsigned short mask);
1617 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1618 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1619 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1620 extern int dev_alloc_name(struct net_device *dev, const char *name);
1621 extern int dev_open(struct net_device *dev);
1622 extern int dev_close(struct net_device *dev);
1623 extern void dev_disable_lro(struct net_device *dev);
1624 extern int dev_queue_xmit(struct sk_buff *skb);
1625 extern int register_netdevice(struct net_device *dev);
1626 extern void unregister_netdevice_queue(struct net_device *dev,
1627 struct list_head *head);
1628 extern void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)1629 static inline void unregister_netdevice(struct net_device *dev)
1630 {
1631 unregister_netdevice_queue(dev, NULL);
1632 }
1633
1634 extern int netdev_refcnt_read(const struct net_device *dev);
1635 extern void free_netdev(struct net_device *dev);
1636 extern void synchronize_net(void);
1637 extern int register_netdevice_notifier(struct notifier_block *nb);
1638 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1639 extern int init_dummy_netdev(struct net_device *dev);
1640 extern void netdev_resync_ops(struct net_device *dev);
1641
1642 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1643 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1644 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1645 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1646 extern int dev_restart(struct net_device *dev);
1647 #ifdef CONFIG_NETPOLL_TRAP
1648 extern int netpoll_trap(void);
1649 #endif
1650 extern int skb_gro_receive(struct sk_buff **head,
1651 struct sk_buff *skb);
1652 extern void skb_gro_reset_offset(struct sk_buff *skb);
1653
skb_gro_offset(const struct sk_buff * skb)1654 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1655 {
1656 return NAPI_GRO_CB(skb)->data_offset;
1657 }
1658
skb_gro_len(const struct sk_buff * skb)1659 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1660 {
1661 return skb->len - NAPI_GRO_CB(skb)->data_offset;
1662 }
1663
skb_gro_pull(struct sk_buff * skb,unsigned int len)1664 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1665 {
1666 NAPI_GRO_CB(skb)->data_offset += len;
1667 }
1668
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)1669 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1670 unsigned int offset)
1671 {
1672 return NAPI_GRO_CB(skb)->frag0 + offset;
1673 }
1674
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)1675 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1676 {
1677 return NAPI_GRO_CB(skb)->frag0_len < hlen;
1678 }
1679
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)1680 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1681 unsigned int offset)
1682 {
1683 NAPI_GRO_CB(skb)->frag0 = NULL;
1684 NAPI_GRO_CB(skb)->frag0_len = 0;
1685 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
1686 }
1687
skb_gro_mac_header(struct sk_buff * skb)1688 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1689 {
1690 return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1691 }
1692
skb_gro_network_header(struct sk_buff * skb)1693 static inline void *skb_gro_network_header(struct sk_buff *skb)
1694 {
1695 return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1696 skb_network_offset(skb);
1697 }
1698
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned len)1699 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1700 unsigned short type,
1701 const void *daddr, const void *saddr,
1702 unsigned len)
1703 {
1704 if (!dev->header_ops || !dev->header_ops->create)
1705 return 0;
1706
1707 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1708 }
1709
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)1710 static inline int dev_parse_header(const struct sk_buff *skb,
1711 unsigned char *haddr)
1712 {
1713 const struct net_device *dev = skb->dev;
1714
1715 if (!dev->header_ops || !dev->header_ops->parse)
1716 return 0;
1717 return dev->header_ops->parse(skb, haddr);
1718 }
1719
1720 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1721 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
unregister_gifconf(unsigned int family)1722 static inline int unregister_gifconf(unsigned int family)
1723 {
1724 return register_gifconf(family, NULL);
1725 }
1726
1727 /*
1728 * Incoming packets are placed on per-cpu queues
1729 */
1730 struct softnet_data {
1731 struct Qdisc *output_queue;
1732 struct Qdisc **output_queue_tailp;
1733 struct list_head poll_list;
1734 struct sk_buff *completion_queue;
1735 struct sk_buff_head process_queue;
1736
1737 /* stats */
1738 unsigned int processed;
1739 unsigned int time_squeeze;
1740 unsigned int cpu_collision;
1741 unsigned int received_rps;
1742
1743 #ifdef CONFIG_RPS
1744 struct softnet_data *rps_ipi_list;
1745
1746 /* Elements below can be accessed between CPUs for RPS */
1747 struct call_single_data csd ____cacheline_aligned_in_smp;
1748 struct softnet_data *rps_ipi_next;
1749 unsigned int cpu;
1750 unsigned int input_queue_head;
1751 unsigned int input_queue_tail;
1752 #endif
1753 unsigned dropped;
1754 struct sk_buff_head input_pkt_queue;
1755 struct napi_struct backlog;
1756 };
1757
input_queue_head_incr(struct softnet_data * sd)1758 static inline void input_queue_head_incr(struct softnet_data *sd)
1759 {
1760 #ifdef CONFIG_RPS
1761 sd->input_queue_head++;
1762 #endif
1763 }
1764
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)1765 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1766 unsigned int *qtail)
1767 {
1768 #ifdef CONFIG_RPS
1769 *qtail = ++sd->input_queue_tail;
1770 #endif
1771 }
1772
1773 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
1774
1775 #define HAVE_NETIF_QUEUE
1776
1777 extern void __netif_schedule(struct Qdisc *q);
1778
netif_schedule_queue(struct netdev_queue * txq)1779 static inline void netif_schedule_queue(struct netdev_queue *txq)
1780 {
1781 if (!test_bit(__QUEUE_STATE_XOFF, &txq->state))
1782 __netif_schedule(txq->qdisc);
1783 }
1784
netif_tx_schedule_all(struct net_device * dev)1785 static inline void netif_tx_schedule_all(struct net_device *dev)
1786 {
1787 unsigned int i;
1788
1789 for (i = 0; i < dev->num_tx_queues; i++)
1790 netif_schedule_queue(netdev_get_tx_queue(dev, i));
1791 }
1792
netif_tx_start_queue(struct netdev_queue * dev_queue)1793 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1794 {
1795 clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1796 }
1797
1798 /**
1799 * netif_start_queue - allow transmit
1800 * @dev: network device
1801 *
1802 * Allow upper layers to call the device hard_start_xmit routine.
1803 */
netif_start_queue(struct net_device * dev)1804 static inline void netif_start_queue(struct net_device *dev)
1805 {
1806 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1807 }
1808
netif_tx_start_all_queues(struct net_device * dev)1809 static inline void netif_tx_start_all_queues(struct net_device *dev)
1810 {
1811 unsigned int i;
1812
1813 for (i = 0; i < dev->num_tx_queues; i++) {
1814 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1815 netif_tx_start_queue(txq);
1816 }
1817 }
1818
netif_tx_wake_queue(struct netdev_queue * dev_queue)1819 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1820 {
1821 #ifdef CONFIG_NETPOLL_TRAP
1822 if (netpoll_trap()) {
1823 netif_tx_start_queue(dev_queue);
1824 return;
1825 }
1826 #endif
1827 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &dev_queue->state))
1828 __netif_schedule(dev_queue->qdisc);
1829 }
1830
1831 /**
1832 * netif_wake_queue - restart transmit
1833 * @dev: network device
1834 *
1835 * Allow upper layers to call the device hard_start_xmit routine.
1836 * Used for flow control when transmit resources are available.
1837 */
netif_wake_queue(struct net_device * dev)1838 static inline void netif_wake_queue(struct net_device *dev)
1839 {
1840 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1841 }
1842
netif_tx_wake_all_queues(struct net_device * dev)1843 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1844 {
1845 unsigned int i;
1846
1847 for (i = 0; i < dev->num_tx_queues; i++) {
1848 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1849 netif_tx_wake_queue(txq);
1850 }
1851 }
1852
netif_tx_stop_queue(struct netdev_queue * dev_queue)1853 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1854 {
1855 if (WARN_ON(!dev_queue)) {
1856 pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1857 return;
1858 }
1859 set_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1860 }
1861
1862 /**
1863 * netif_stop_queue - stop transmitted packets
1864 * @dev: network device
1865 *
1866 * Stop upper layers calling the device hard_start_xmit routine.
1867 * Used for flow control when transmit resources are unavailable.
1868 */
netif_stop_queue(struct net_device * dev)1869 static inline void netif_stop_queue(struct net_device *dev)
1870 {
1871 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1872 }
1873
netif_tx_stop_all_queues(struct net_device * dev)1874 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1875 {
1876 unsigned int i;
1877
1878 for (i = 0; i < dev->num_tx_queues; i++) {
1879 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1880 netif_tx_stop_queue(txq);
1881 }
1882 }
1883
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)1884 static inline int netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1885 {
1886 return test_bit(__QUEUE_STATE_XOFF, &dev_queue->state);
1887 }
1888
1889 /**
1890 * netif_queue_stopped - test if transmit queue is flowblocked
1891 * @dev: network device
1892 *
1893 * Test if transmit queue on device is currently unable to send.
1894 */
netif_queue_stopped(const struct net_device * dev)1895 static inline int netif_queue_stopped(const struct net_device *dev)
1896 {
1897 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1898 }
1899
netif_tx_queue_frozen_or_stopped(const struct netdev_queue * dev_queue)1900 static inline int netif_tx_queue_frozen_or_stopped(const struct netdev_queue *dev_queue)
1901 {
1902 return dev_queue->state & QUEUE_STATE_XOFF_OR_FROZEN;
1903 }
1904
1905 /**
1906 * netif_running - test if up
1907 * @dev: network device
1908 *
1909 * Test if the device has been brought up.
1910 */
netif_running(const struct net_device * dev)1911 static inline int netif_running(const struct net_device *dev)
1912 {
1913 return test_bit(__LINK_STATE_START, &dev->state);
1914 }
1915
1916 /*
1917 * Routines to manage the subqueues on a device. We only need start
1918 * stop, and a check if it's stopped. All other device management is
1919 * done at the overall netdevice level.
1920 * Also test the device if we're multiqueue.
1921 */
1922
1923 /**
1924 * netif_start_subqueue - allow sending packets on subqueue
1925 * @dev: network device
1926 * @queue_index: sub queue index
1927 *
1928 * Start individual transmit queue of a device with multiple transmit queues.
1929 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)1930 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
1931 {
1932 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1933
1934 netif_tx_start_queue(txq);
1935 }
1936
1937 /**
1938 * netif_stop_subqueue - stop sending packets on subqueue
1939 * @dev: network device
1940 * @queue_index: sub queue index
1941 *
1942 * Stop individual transmit queue of a device with multiple transmit queues.
1943 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)1944 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
1945 {
1946 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1947 #ifdef CONFIG_NETPOLL_TRAP
1948 if (netpoll_trap())
1949 return;
1950 #endif
1951 netif_tx_stop_queue(txq);
1952 }
1953
1954 /**
1955 * netif_subqueue_stopped - test status of subqueue
1956 * @dev: network device
1957 * @queue_index: sub queue index
1958 *
1959 * Check individual transmit queue of a device with multiple transmit queues.
1960 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)1961 static inline int __netif_subqueue_stopped(const struct net_device *dev,
1962 u16 queue_index)
1963 {
1964 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1965
1966 return netif_tx_queue_stopped(txq);
1967 }
1968
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)1969 static inline int netif_subqueue_stopped(const struct net_device *dev,
1970 struct sk_buff *skb)
1971 {
1972 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
1973 }
1974
1975 /**
1976 * netif_wake_subqueue - allow sending packets on subqueue
1977 * @dev: network device
1978 * @queue_index: sub queue index
1979 *
1980 * Resume individual transmit queue of a device with multiple transmit queues.
1981 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)1982 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
1983 {
1984 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
1985 #ifdef CONFIG_NETPOLL_TRAP
1986 if (netpoll_trap())
1987 return;
1988 #endif
1989 if (test_and_clear_bit(__QUEUE_STATE_XOFF, &txq->state))
1990 __netif_schedule(txq->qdisc);
1991 }
1992
1993 /*
1994 * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
1995 * as a distribution range limit for the returned value.
1996 */
skb_tx_hash(const struct net_device * dev,const struct sk_buff * skb)1997 static inline u16 skb_tx_hash(const struct net_device *dev,
1998 const struct sk_buff *skb)
1999 {
2000 return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2001 }
2002
2003 /**
2004 * netif_is_multiqueue - test if device has multiple transmit queues
2005 * @dev: network device
2006 *
2007 * Check if device has multiple transmit queues
2008 */
netif_is_multiqueue(const struct net_device * dev)2009 static inline int netif_is_multiqueue(const struct net_device *dev)
2010 {
2011 return dev->num_tx_queues > 1;
2012 }
2013
2014 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2015 unsigned int txq);
2016
2017 #ifdef CONFIG_RPS
2018 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2019 unsigned int rxq);
2020 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2021 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2022 unsigned int rxq)
2023 {
2024 return 0;
2025 }
2026 #endif
2027
netif_copy_real_num_queues(struct net_device * to_dev,const struct net_device * from_dev)2028 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2029 const struct net_device *from_dev)
2030 {
2031 netif_set_real_num_tx_queues(to_dev, from_dev->real_num_tx_queues);
2032 #ifdef CONFIG_RPS
2033 return netif_set_real_num_rx_queues(to_dev,
2034 from_dev->real_num_rx_queues);
2035 #else
2036 return 0;
2037 #endif
2038 }
2039
2040 /* Use this variant when it is known for sure that it
2041 * is executing from hardware interrupt context or with hardware interrupts
2042 * disabled.
2043 */
2044 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2045
2046 /* Use this variant in places where it could be invoked
2047 * from either hardware interrupt or other context, with hardware interrupts
2048 * either disabled or enabled.
2049 */
2050 extern void dev_kfree_skb_any(struct sk_buff *skb);
2051
2052 #define HAVE_NETIF_RX 1
2053 extern int netif_rx(struct sk_buff *skb);
2054 extern int netif_rx_ni(struct sk_buff *skb);
2055 #define HAVE_NETIF_RECEIVE_SKB 1
2056 extern int netif_receive_skb(struct sk_buff *skb);
2057 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2058 struct sk_buff *skb);
2059 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2060 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2061 struct sk_buff *skb);
2062 extern void napi_gro_flush(struct napi_struct *napi);
2063 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2064 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2065 struct sk_buff *skb,
2066 gro_result_t ret);
2067 extern struct sk_buff * napi_frags_skb(struct napi_struct *napi);
2068 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2069
napi_free_frags(struct napi_struct * napi)2070 static inline void napi_free_frags(struct napi_struct *napi)
2071 {
2072 kfree_skb(napi->skb);
2073 napi->skb = NULL;
2074 }
2075
2076 extern int netdev_rx_handler_register(struct net_device *dev,
2077 rx_handler_func_t *rx_handler,
2078 void *rx_handler_data);
2079 extern void netdev_rx_handler_unregister(struct net_device *dev);
2080
2081 extern int dev_valid_name(const char *name);
2082 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2083 extern int dev_ethtool(struct net *net, struct ifreq *);
2084 extern unsigned dev_get_flags(const struct net_device *);
2085 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2086 extern int dev_change_flags(struct net_device *, unsigned);
2087 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2088 extern int dev_change_name(struct net_device *, const char *);
2089 extern int dev_set_alias(struct net_device *, const char *, size_t);
2090 extern int dev_change_net_namespace(struct net_device *,
2091 struct net *, const char *);
2092 extern int dev_set_mtu(struct net_device *, int);
2093 extern void dev_set_group(struct net_device *, int);
2094 extern int dev_set_mac_address(struct net_device *,
2095 struct sockaddr *);
2096 extern int dev_hard_start_xmit(struct sk_buff *skb,
2097 struct net_device *dev,
2098 struct netdev_queue *txq);
2099 extern int dev_forward_skb(struct net_device *dev,
2100 struct sk_buff *skb);
2101
2102 extern int netdev_budget;
2103
2104 /* Called by rtnetlink.c:rtnl_unlock() */
2105 extern void netdev_run_todo(void);
2106
2107 /**
2108 * dev_put - release reference to device
2109 * @dev: network device
2110 *
2111 * Release reference to device to allow it to be freed.
2112 */
dev_put(struct net_device * dev)2113 static inline void dev_put(struct net_device *dev)
2114 {
2115 irqsafe_cpu_dec(*dev->pcpu_refcnt);
2116 }
2117
2118 /**
2119 * dev_hold - get reference to device
2120 * @dev: network device
2121 *
2122 * Hold reference to device to keep it from being freed.
2123 */
dev_hold(struct net_device * dev)2124 static inline void dev_hold(struct net_device *dev)
2125 {
2126 irqsafe_cpu_inc(*dev->pcpu_refcnt);
2127 }
2128
2129 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2130 * and _off may be called from IRQ context, but it is caller
2131 * who is responsible for serialization of these calls.
2132 *
2133 * The name carrier is inappropriate, these functions should really be
2134 * called netif_lowerlayer_*() because they represent the state of any
2135 * kind of lower layer not just hardware media.
2136 */
2137
2138 extern void linkwatch_fire_event(struct net_device *dev);
2139 extern void linkwatch_forget_dev(struct net_device *dev);
2140
2141 /**
2142 * netif_carrier_ok - test if carrier present
2143 * @dev: network device
2144 *
2145 * Check if carrier is present on device
2146 */
netif_carrier_ok(const struct net_device * dev)2147 static inline int netif_carrier_ok(const struct net_device *dev)
2148 {
2149 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2150 }
2151
2152 extern unsigned long dev_trans_start(struct net_device *dev);
2153
2154 extern void __netdev_watchdog_up(struct net_device *dev);
2155
2156 extern void netif_carrier_on(struct net_device *dev);
2157
2158 extern void netif_carrier_off(struct net_device *dev);
2159
2160 extern void netif_notify_peers(struct net_device *dev);
2161
2162 /**
2163 * netif_dormant_on - mark device as dormant.
2164 * @dev: network device
2165 *
2166 * Mark device as dormant (as per RFC2863).
2167 *
2168 * The dormant state indicates that the relevant interface is not
2169 * actually in a condition to pass packets (i.e., it is not 'up') but is
2170 * in a "pending" state, waiting for some external event. For "on-
2171 * demand" interfaces, this new state identifies the situation where the
2172 * interface is waiting for events to place it in the up state.
2173 *
2174 */
netif_dormant_on(struct net_device * dev)2175 static inline void netif_dormant_on(struct net_device *dev)
2176 {
2177 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
2178 linkwatch_fire_event(dev);
2179 }
2180
2181 /**
2182 * netif_dormant_off - set device as not dormant.
2183 * @dev: network device
2184 *
2185 * Device is not in dormant state.
2186 */
netif_dormant_off(struct net_device * dev)2187 static inline void netif_dormant_off(struct net_device *dev)
2188 {
2189 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
2190 linkwatch_fire_event(dev);
2191 }
2192
2193 /**
2194 * netif_dormant - test if carrier present
2195 * @dev: network device
2196 *
2197 * Check if carrier is present on device
2198 */
netif_dormant(const struct net_device * dev)2199 static inline int netif_dormant(const struct net_device *dev)
2200 {
2201 return test_bit(__LINK_STATE_DORMANT, &dev->state);
2202 }
2203
2204
2205 /**
2206 * netif_oper_up - test if device is operational
2207 * @dev: network device
2208 *
2209 * Check if carrier is operational
2210 */
netif_oper_up(const struct net_device * dev)2211 static inline int netif_oper_up(const struct net_device *dev)
2212 {
2213 return (dev->operstate == IF_OPER_UP ||
2214 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2215 }
2216
2217 /**
2218 * netif_device_present - is device available or removed
2219 * @dev: network device
2220 *
2221 * Check if device has not been removed from system.
2222 */
netif_device_present(struct net_device * dev)2223 static inline int netif_device_present(struct net_device *dev)
2224 {
2225 return test_bit(__LINK_STATE_PRESENT, &dev->state);
2226 }
2227
2228 extern void netif_device_detach(struct net_device *dev);
2229
2230 extern void netif_device_attach(struct net_device *dev);
2231
2232 /*
2233 * Network interface message level settings
2234 */
2235 #define HAVE_NETIF_MSG 1
2236
2237 enum {
2238 NETIF_MSG_DRV = 0x0001,
2239 NETIF_MSG_PROBE = 0x0002,
2240 NETIF_MSG_LINK = 0x0004,
2241 NETIF_MSG_TIMER = 0x0008,
2242 NETIF_MSG_IFDOWN = 0x0010,
2243 NETIF_MSG_IFUP = 0x0020,
2244 NETIF_MSG_RX_ERR = 0x0040,
2245 NETIF_MSG_TX_ERR = 0x0080,
2246 NETIF_MSG_TX_QUEUED = 0x0100,
2247 NETIF_MSG_INTR = 0x0200,
2248 NETIF_MSG_TX_DONE = 0x0400,
2249 NETIF_MSG_RX_STATUS = 0x0800,
2250 NETIF_MSG_PKTDATA = 0x1000,
2251 NETIF_MSG_HW = 0x2000,
2252 NETIF_MSG_WOL = 0x4000,
2253 };
2254
2255 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2256 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2257 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2258 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2259 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2260 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2261 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2262 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2263 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2264 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2265 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2266 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2267 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2268 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2269 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2270
netif_msg_init(int debug_value,int default_msg_enable_bits)2271 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2272 {
2273 /* use default */
2274 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2275 return default_msg_enable_bits;
2276 if (debug_value == 0) /* no output */
2277 return 0;
2278 /* set low N bits */
2279 return (1 << debug_value) - 1;
2280 }
2281
__netif_tx_lock(struct netdev_queue * txq,int cpu)2282 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2283 {
2284 spin_lock(&txq->_xmit_lock);
2285 txq->xmit_lock_owner = cpu;
2286 }
2287
__netif_tx_lock_bh(struct netdev_queue * txq)2288 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2289 {
2290 spin_lock_bh(&txq->_xmit_lock);
2291 txq->xmit_lock_owner = smp_processor_id();
2292 }
2293
__netif_tx_trylock(struct netdev_queue * txq)2294 static inline int __netif_tx_trylock(struct netdev_queue *txq)
2295 {
2296 int ok = spin_trylock(&txq->_xmit_lock);
2297 if (likely(ok))
2298 txq->xmit_lock_owner = smp_processor_id();
2299 return ok;
2300 }
2301
__netif_tx_unlock(struct netdev_queue * txq)2302 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2303 {
2304 txq->xmit_lock_owner = -1;
2305 spin_unlock(&txq->_xmit_lock);
2306 }
2307
__netif_tx_unlock_bh(struct netdev_queue * txq)2308 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2309 {
2310 txq->xmit_lock_owner = -1;
2311 spin_unlock_bh(&txq->_xmit_lock);
2312 }
2313
txq_trans_update(struct netdev_queue * txq)2314 static inline void txq_trans_update(struct netdev_queue *txq)
2315 {
2316 if (txq->xmit_lock_owner != -1)
2317 txq->trans_start = jiffies;
2318 }
2319
2320 /**
2321 * netif_tx_lock - grab network device transmit lock
2322 * @dev: network device
2323 *
2324 * Get network device transmit lock
2325 */
netif_tx_lock(struct net_device * dev)2326 static inline void netif_tx_lock(struct net_device *dev)
2327 {
2328 unsigned int i;
2329 int cpu;
2330
2331 spin_lock(&dev->tx_global_lock);
2332 cpu = smp_processor_id();
2333 for (i = 0; i < dev->num_tx_queues; i++) {
2334 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2335
2336 /* We are the only thread of execution doing a
2337 * freeze, but we have to grab the _xmit_lock in
2338 * order to synchronize with threads which are in
2339 * the ->hard_start_xmit() handler and already
2340 * checked the frozen bit.
2341 */
2342 __netif_tx_lock(txq, cpu);
2343 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
2344 __netif_tx_unlock(txq);
2345 }
2346 }
2347
netif_tx_lock_bh(struct net_device * dev)2348 static inline void netif_tx_lock_bh(struct net_device *dev)
2349 {
2350 local_bh_disable();
2351 netif_tx_lock(dev);
2352 }
2353
netif_tx_unlock(struct net_device * dev)2354 static inline void netif_tx_unlock(struct net_device *dev)
2355 {
2356 unsigned int i;
2357
2358 for (i = 0; i < dev->num_tx_queues; i++) {
2359 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2360
2361 /* No need to grab the _xmit_lock here. If the
2362 * queue is not stopped for another reason, we
2363 * force a schedule.
2364 */
2365 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
2366 netif_schedule_queue(txq);
2367 }
2368 spin_unlock(&dev->tx_global_lock);
2369 }
2370
netif_tx_unlock_bh(struct net_device * dev)2371 static inline void netif_tx_unlock_bh(struct net_device *dev)
2372 {
2373 netif_tx_unlock(dev);
2374 local_bh_enable();
2375 }
2376
2377 #define HARD_TX_LOCK(dev, txq, cpu) { \
2378 if ((dev->features & NETIF_F_LLTX) == 0) { \
2379 __netif_tx_lock(txq, cpu); \
2380 } \
2381 }
2382
2383 #define HARD_TX_UNLOCK(dev, txq) { \
2384 if ((dev->features & NETIF_F_LLTX) == 0) { \
2385 __netif_tx_unlock(txq); \
2386 } \
2387 }
2388
netif_tx_disable(struct net_device * dev)2389 static inline void netif_tx_disable(struct net_device *dev)
2390 {
2391 unsigned int i;
2392 int cpu;
2393
2394 local_bh_disable();
2395 cpu = smp_processor_id();
2396 for (i = 0; i < dev->num_tx_queues; i++) {
2397 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2398
2399 __netif_tx_lock(txq, cpu);
2400 netif_tx_stop_queue(txq);
2401 __netif_tx_unlock(txq);
2402 }
2403 local_bh_enable();
2404 }
2405
netif_addr_lock(struct net_device * dev)2406 static inline void netif_addr_lock(struct net_device *dev)
2407 {
2408 spin_lock(&dev->addr_list_lock);
2409 }
2410
netif_addr_lock_bh(struct net_device * dev)2411 static inline void netif_addr_lock_bh(struct net_device *dev)
2412 {
2413 spin_lock_bh(&dev->addr_list_lock);
2414 }
2415
netif_addr_unlock(struct net_device * dev)2416 static inline void netif_addr_unlock(struct net_device *dev)
2417 {
2418 spin_unlock(&dev->addr_list_lock);
2419 }
2420
netif_addr_unlock_bh(struct net_device * dev)2421 static inline void netif_addr_unlock_bh(struct net_device *dev)
2422 {
2423 spin_unlock_bh(&dev->addr_list_lock);
2424 }
2425
2426 /*
2427 * dev_addrs walker. Should be used only for read access. Call with
2428 * rcu_read_lock held.
2429 */
2430 #define for_each_dev_addr(dev, ha) \
2431 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2432
2433 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2434
2435 extern void ether_setup(struct net_device *dev);
2436
2437 /* Support for loadable net-drivers */
2438 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2439 void (*setup)(struct net_device *),
2440 unsigned int txqs, unsigned int rxqs);
2441 #define alloc_netdev(sizeof_priv, name, setup) \
2442 alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2443
2444 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2445 alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2446
2447 extern int register_netdev(struct net_device *dev);
2448 extern void unregister_netdev(struct net_device *dev);
2449
2450 /* General hardware address lists handling functions */
2451 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2452 struct netdev_hw_addr_list *from_list,
2453 int addr_len, unsigned char addr_type);
2454 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2455 struct netdev_hw_addr_list *from_list,
2456 int addr_len, unsigned char addr_type);
2457 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2458 struct netdev_hw_addr_list *from_list,
2459 int addr_len);
2460 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2461 struct netdev_hw_addr_list *from_list,
2462 int addr_len);
2463 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2464 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2465
2466 /* Functions used for device addresses handling */
2467 extern int dev_addr_add(struct net_device *dev, unsigned char *addr,
2468 unsigned char addr_type);
2469 extern int dev_addr_del(struct net_device *dev, unsigned char *addr,
2470 unsigned char addr_type);
2471 extern int dev_addr_add_multiple(struct net_device *to_dev,
2472 struct net_device *from_dev,
2473 unsigned char addr_type);
2474 extern int dev_addr_del_multiple(struct net_device *to_dev,
2475 struct net_device *from_dev,
2476 unsigned char addr_type);
2477 extern void dev_addr_flush(struct net_device *dev);
2478 extern int dev_addr_init(struct net_device *dev);
2479
2480 /* Functions used for unicast addresses handling */
2481 extern int dev_uc_add(struct net_device *dev, unsigned char *addr);
2482 extern int dev_uc_del(struct net_device *dev, unsigned char *addr);
2483 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2484 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2485 extern void dev_uc_flush(struct net_device *dev);
2486 extern void dev_uc_init(struct net_device *dev);
2487
2488 /* Functions used for multicast addresses handling */
2489 extern int dev_mc_add(struct net_device *dev, unsigned char *addr);
2490 extern int dev_mc_add_global(struct net_device *dev, unsigned char *addr);
2491 extern int dev_mc_del(struct net_device *dev, unsigned char *addr);
2492 extern int dev_mc_del_global(struct net_device *dev, unsigned char *addr);
2493 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2494 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2495 extern void dev_mc_flush(struct net_device *dev);
2496 extern void dev_mc_init(struct net_device *dev);
2497
2498 /* Functions used for secondary unicast and multicast support */
2499 extern void dev_set_rx_mode(struct net_device *dev);
2500 extern void __dev_set_rx_mode(struct net_device *dev);
2501 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2502 extern int dev_set_allmulti(struct net_device *dev, int inc);
2503 extern void netdev_state_change(struct net_device *dev);
2504 extern int netdev_bonding_change(struct net_device *dev,
2505 unsigned long event);
2506 extern void netdev_features_change(struct net_device *dev);
2507 /* Load a device via the kmod */
2508 extern void dev_load(struct net *net, const char *name);
2509 extern void dev_mcast_init(void);
2510 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2511 struct rtnl_link_stats64 *storage);
2512
2513 extern int netdev_max_backlog;
2514 extern int netdev_tstamp_prequeue;
2515 extern int weight_p;
2516 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2517 extern int netdev_set_bond_master(struct net_device *dev,
2518 struct net_device *master);
2519 extern int skb_checksum_help(struct sk_buff *skb);
2520 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features);
2521 #ifdef CONFIG_BUG
2522 extern void netdev_rx_csum_fault(struct net_device *dev);
2523 #else
netdev_rx_csum_fault(struct net_device * dev)2524 static inline void netdev_rx_csum_fault(struct net_device *dev)
2525 {
2526 }
2527 #endif
2528 /* rx skb timestamps */
2529 extern void net_enable_timestamp(void);
2530 extern void net_disable_timestamp(void);
2531
2532 #ifdef CONFIG_PROC_FS
2533 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2534 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2535 extern void dev_seq_stop(struct seq_file *seq, void *v);
2536 #endif
2537
2538 extern int netdev_class_create_file(struct class_attribute *class_attr);
2539 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2540
2541 extern struct kobj_ns_type_operations net_ns_type_operations;
2542
2543 extern char *netdev_drivername(const struct net_device *dev, char *buffer, int len);
2544
2545 extern void linkwatch_run_queue(void);
2546
netdev_get_wanted_features(struct net_device * dev)2547 static inline u32 netdev_get_wanted_features(struct net_device *dev)
2548 {
2549 return (dev->features & ~dev->hw_features) | dev->wanted_features;
2550 }
2551 u32 netdev_increment_features(u32 all, u32 one, u32 mask);
2552 u32 netdev_fix_features(struct net_device *dev, u32 features);
2553 void netdev_update_features(struct net_device *dev);
2554
2555 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2556 struct net_device *dev);
2557
2558 u32 netif_skb_features(struct sk_buff *skb);
2559
net_gso_ok(u32 features,int gso_type)2560 static inline int net_gso_ok(u32 features, int gso_type)
2561 {
2562 int feature = gso_type << NETIF_F_GSO_SHIFT;
2563 return (features & feature) == feature;
2564 }
2565
skb_gso_ok(struct sk_buff * skb,u32 features)2566 static inline int skb_gso_ok(struct sk_buff *skb, u32 features)
2567 {
2568 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2569 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2570 }
2571
netif_needs_gso(struct sk_buff * skb,int features)2572 static inline int netif_needs_gso(struct sk_buff *skb, int features)
2573 {
2574 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2575 unlikely(skb->ip_summed != CHECKSUM_PARTIAL));
2576 }
2577
netif_set_gso_max_size(struct net_device * dev,unsigned int size)2578 static inline void netif_set_gso_max_size(struct net_device *dev,
2579 unsigned int size)
2580 {
2581 dev->gso_max_size = size;
2582 }
2583
netif_is_bond_slave(struct net_device * dev)2584 static inline int netif_is_bond_slave(struct net_device *dev)
2585 {
2586 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2587 }
2588
2589 extern struct pernet_operations __net_initdata loopback_net_ops;
2590
dev_ethtool_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2591 static inline int dev_ethtool_get_settings(struct net_device *dev,
2592 struct ethtool_cmd *cmd)
2593 {
2594 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings)
2595 return -EOPNOTSUPP;
2596 return dev->ethtool_ops->get_settings(dev, cmd);
2597 }
2598
dev_ethtool_get_rx_csum(struct net_device * dev)2599 static inline u32 dev_ethtool_get_rx_csum(struct net_device *dev)
2600 {
2601 if (dev->features & NETIF_F_RXCSUM)
2602 return 1;
2603 if (!dev->ethtool_ops || !dev->ethtool_ops->get_rx_csum)
2604 return 0;
2605 return dev->ethtool_ops->get_rx_csum(dev);
2606 }
2607
dev_ethtool_get_flags(struct net_device * dev)2608 static inline u32 dev_ethtool_get_flags(struct net_device *dev)
2609 {
2610 if (!dev->ethtool_ops || !dev->ethtool_ops->get_flags)
2611 return 0;
2612 return dev->ethtool_ops->get_flags(dev);
2613 }
2614
2615 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2616
2617 /* netdev_printk helpers, similar to dev_printk */
2618
netdev_name(const struct net_device * dev)2619 static inline const char *netdev_name(const struct net_device *dev)
2620 {
2621 if (dev->reg_state != NETREG_REGISTERED)
2622 return "(unregistered net_device)";
2623 return dev->name;
2624 }
2625
2626 extern int netdev_printk(const char *level, const struct net_device *dev,
2627 const char *format, ...)
2628 __attribute__ ((format (printf, 3, 4)));
2629 extern int netdev_emerg(const struct net_device *dev, const char *format, ...)
2630 __attribute__ ((format (printf, 2, 3)));
2631 extern int netdev_alert(const struct net_device *dev, const char *format, ...)
2632 __attribute__ ((format (printf, 2, 3)));
2633 extern int netdev_crit(const struct net_device *dev, const char *format, ...)
2634 __attribute__ ((format (printf, 2, 3)));
2635 extern int netdev_err(const struct net_device *dev, const char *format, ...)
2636 __attribute__ ((format (printf, 2, 3)));
2637 extern int netdev_warn(const struct net_device *dev, const char *format, ...)
2638 __attribute__ ((format (printf, 2, 3)));
2639 extern int netdev_notice(const struct net_device *dev, const char *format, ...)
2640 __attribute__ ((format (printf, 2, 3)));
2641 extern int netdev_info(const struct net_device *dev, const char *format, ...)
2642 __attribute__ ((format (printf, 2, 3)));
2643
2644 #define MODULE_ALIAS_NETDEV(device) \
2645 MODULE_ALIAS("netdev-" device)
2646
2647 #if defined(DEBUG)
2648 #define netdev_dbg(__dev, format, args...) \
2649 netdev_printk(KERN_DEBUG, __dev, format, ##args)
2650 #elif defined(CONFIG_DYNAMIC_DEBUG)
2651 #define netdev_dbg(__dev, format, args...) \
2652 do { \
2653 dynamic_dev_dbg((__dev)->dev.parent, "%s: " format, \
2654 netdev_name(__dev), ##args); \
2655 } while (0)
2656 #else
2657 #define netdev_dbg(__dev, format, args...) \
2658 ({ \
2659 if (0) \
2660 netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2661 0; \
2662 })
2663 #endif
2664
2665 #if defined(VERBOSE_DEBUG)
2666 #define netdev_vdbg netdev_dbg
2667 #else
2668
2669 #define netdev_vdbg(dev, format, args...) \
2670 ({ \
2671 if (0) \
2672 netdev_printk(KERN_DEBUG, dev, format, ##args); \
2673 0; \
2674 })
2675 #endif
2676
2677 /*
2678 * netdev_WARN() acts like dev_printk(), but with the key difference
2679 * of using a WARN/WARN_ON to get the message out, including the
2680 * file/line information and a backtrace.
2681 */
2682 #define netdev_WARN(dev, format, args...) \
2683 WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2684
2685 /* netif printk helpers, similar to netdev_printk */
2686
2687 #define netif_printk(priv, type, level, dev, fmt, args...) \
2688 do { \
2689 if (netif_msg_##type(priv)) \
2690 netdev_printk(level, (dev), fmt, ##args); \
2691 } while (0)
2692
2693 #define netif_level(level, priv, type, dev, fmt, args...) \
2694 do { \
2695 if (netif_msg_##type(priv)) \
2696 netdev_##level(dev, fmt, ##args); \
2697 } while (0)
2698
2699 #define netif_emerg(priv, type, dev, fmt, args...) \
2700 netif_level(emerg, priv, type, dev, fmt, ##args)
2701 #define netif_alert(priv, type, dev, fmt, args...) \
2702 netif_level(alert, priv, type, dev, fmt, ##args)
2703 #define netif_crit(priv, type, dev, fmt, args...) \
2704 netif_level(crit, priv, type, dev, fmt, ##args)
2705 #define netif_err(priv, type, dev, fmt, args...) \
2706 netif_level(err, priv, type, dev, fmt, ##args)
2707 #define netif_warn(priv, type, dev, fmt, args...) \
2708 netif_level(warn, priv, type, dev, fmt, ##args)
2709 #define netif_notice(priv, type, dev, fmt, args...) \
2710 netif_level(notice, priv, type, dev, fmt, ##args)
2711 #define netif_info(priv, type, dev, fmt, args...) \
2712 netif_level(info, priv, type, dev, fmt, ##args)
2713
2714 #if defined(DEBUG)
2715 #define netif_dbg(priv, type, dev, format, args...) \
2716 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2717 #elif defined(CONFIG_DYNAMIC_DEBUG)
2718 #define netif_dbg(priv, type, netdev, format, args...) \
2719 do { \
2720 if (netif_msg_##type(priv)) \
2721 dynamic_dev_dbg((netdev)->dev.parent, \
2722 "%s: " format, \
2723 netdev_name(netdev), ##args); \
2724 } while (0)
2725 #else
2726 #define netif_dbg(priv, type, dev, format, args...) \
2727 ({ \
2728 if (0) \
2729 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2730 0; \
2731 })
2732 #endif
2733
2734 #if defined(VERBOSE_DEBUG)
2735 #define netif_vdbg netif_dbg
2736 #else
2737 #define netif_vdbg(priv, type, dev, format, args...) \
2738 ({ \
2739 if (0) \
2740 netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2741 0; \
2742 })
2743 #endif
2744
2745 #endif /* __KERNEL__ */
2746
2747 #endif /* _LINUX_NETDEVICE_H */
2748