1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 1996 John Shifflett, GeoLog Consulting
4 * john@geolog.com
5 * jshiffle@netcom.com
6 */
7
8 /*
9 * Drew Eckhardt's excellent 'Generic NCR5380' sources from Linux-PC
10 * provided much of the inspiration and some of the code for this
11 * driver. Everything I know about Amiga DMA was gleaned from careful
12 * reading of Hamish Mcdonald's original wd33c93 driver; in fact, I
13 * borrowed shamelessly from all over that source. Thanks Hamish!
14 *
15 * _This_ driver is (I feel) an improvement over the old one in
16 * several respects:
17 *
18 * - Target Disconnection/Reconnection is now supported. Any
19 * system with more than one device active on the SCSI bus
20 * will benefit from this. The driver defaults to what I
21 * call 'adaptive disconnect' - meaning that each command
22 * is evaluated individually as to whether or not it should
23 * be run with the option to disconnect/reselect (if the
24 * device chooses), or as a "SCSI-bus-hog".
25 *
26 * - Synchronous data transfers are now supported. Because of
27 * a few devices that choke after telling the driver that
28 * they can do sync transfers, we don't automatically use
29 * this faster protocol - it can be enabled via the command-
30 * line on a device-by-device basis.
31 *
32 * - Runtime operating parameters can now be specified through
33 * the 'amiboot' or the 'insmod' command line. For amiboot do:
34 * "amiboot [usual stuff] wd33c93=blah,blah,blah"
35 * The defaults should be good for most people. See the comment
36 * for 'setup_strings' below for more details.
37 *
38 * - The old driver relied exclusively on what the Western Digital
39 * docs call "Combination Level 2 Commands", which are a great
40 * idea in that the CPU is relieved of a lot of interrupt
41 * overhead. However, by accepting a certain (user-settable)
42 * amount of additional interrupts, this driver achieves
43 * better control over the SCSI bus, and data transfers are
44 * almost as fast while being much easier to define, track,
45 * and debug.
46 *
47 *
48 * TODO:
49 * more speed. linked commands.
50 *
51 *
52 * People with bug reports, wish-lists, complaints, comments,
53 * or improvements are asked to pah-leeez email me (John Shifflett)
54 * at john@geolog.com or jshiffle@netcom.com! I'm anxious to get
55 * this thing into as good a shape as possible, and I'm positive
56 * there are lots of lurking bugs and "Stupid Places".
57 *
58 * Updates:
59 *
60 * Added support for pre -A chips, which don't have advanced features
61 * and will generate CSR_RESEL rather than CSR_RESEL_AM.
62 * Richard Hirst <richard@sleepie.demon.co.uk> August 2000
63 *
64 * Added support for Burst Mode DMA and Fast SCSI. Enabled the use of
65 * default_sx_per for asynchronous data transfers. Added adjustment
66 * of transfer periods in sx_table to the actual input-clock.
67 * peter fuerst <post@pfrst.de> February 2007
68 */
69
70 #include <linux/module.h>
71
72 #include <linux/string.h>
73 #include <linux/delay.h>
74 #include <linux/init.h>
75 #include <linux/interrupt.h>
76 #include <linux/blkdev.h>
77
78 #include <scsi/scsi.h>
79 #include <scsi/scsi_cmnd.h>
80 #include <scsi/scsi_device.h>
81 #include <scsi/scsi_host.h>
82
83 #include <asm/irq.h>
84
85 #include "wd33c93.h"
86
87 #define optimum_sx_per(hostdata) (hostdata)->sx_table[1].period_ns
88
89
90 #define WD33C93_VERSION "1.26++"
91 #define WD33C93_DATE "10/Feb/2007"
92
93 MODULE_AUTHOR("John Shifflett");
94 MODULE_DESCRIPTION("Generic WD33C93 SCSI driver");
95 MODULE_LICENSE("GPL");
96
97 /*
98 * 'setup_strings' is a single string used to pass operating parameters and
99 * settings from the kernel/module command-line to the driver. 'setup_args[]'
100 * is an array of strings that define the compile-time default values for
101 * these settings. If Linux boots with an amiboot or insmod command-line,
102 * those settings are combined with 'setup_args[]'. Note that amiboot
103 * command-lines are prefixed with "wd33c93=" while insmod uses a
104 * "setup_strings=" prefix. The driver recognizes the following keywords
105 * (lower case required) and arguments:
106 *
107 * - nosync:bitmask -bitmask is a byte where the 1st 7 bits correspond with
108 * the 7 possible SCSI devices. Set a bit to negotiate for
109 * asynchronous transfers on that device. To maintain
110 * backwards compatibility, a command-line such as
111 * "wd33c93=255" will be automatically translated to
112 * "wd33c93=nosync:0xff".
113 * - nodma:x -x = 1 to disable DMA, x = 0 to enable it. Argument is
114 * optional - if not present, same as "nodma:1".
115 * - period:ns -ns is the minimum # of nanoseconds in a SCSI data transfer
116 * period. Default is 500; acceptable values are 250 - 1000.
117 * - disconnect:x -x = 0 to never allow disconnects, 2 to always allow them.
118 * x = 1 does 'adaptive' disconnects, which is the default
119 * and generally the best choice.
120 * - debug:x -If 'DEBUGGING_ON' is defined, x is a bit mask that causes
121 * various types of debug output to printed - see the DB_xxx
122 * defines in wd33c93.h
123 * - clock:x -x = clock input in MHz for WD33c93 chip. Normal values
124 * would be from 8 through 20. Default is 8.
125 * - burst:x -x = 1 to use Burst Mode (or Demand-Mode) DMA, x = 0 to use
126 * Single Byte DMA, which is the default. Argument is
127 * optional - if not present, same as "burst:1".
128 * - fast:x -x = 1 to enable Fast SCSI, which is only effective with
129 * input-clock divisor 4 (WD33C93_FS_16_20), x = 0 to disable
130 * it, which is the default. Argument is optional - if not
131 * present, same as "fast:1".
132 * - next -No argument. Used to separate blocks of keywords when
133 * there's more than one host adapter in the system.
134 *
135 * Syntax Notes:
136 * - Numeric arguments can be decimal or the '0x' form of hex notation. There
137 * _must_ be a colon between a keyword and its numeric argument, with no
138 * spaces.
139 * - Keywords are separated by commas, no spaces, in the standard kernel
140 * command-line manner.
141 * - A keyword in the 'nth' comma-separated command-line member will overwrite
142 * the 'nth' element of setup_args[]. A blank command-line member (in
143 * other words, a comma with no preceding keyword) will _not_ overwrite
144 * the corresponding setup_args[] element.
145 * - If a keyword is used more than once, the first one applies to the first
146 * SCSI host found, the second to the second card, etc, unless the 'next'
147 * keyword is used to change the order.
148 *
149 * Some amiboot examples (for insmod, use 'setup_strings' instead of 'wd33c93'):
150 * - wd33c93=nosync:255
151 * - wd33c93=nodma
152 * - wd33c93=nodma:1
153 * - wd33c93=disconnect:2,nosync:0x08,period:250
154 * - wd33c93=debug:0x1c
155 */
156
157 /* Normally, no defaults are specified */
158 static char *setup_args[] = { "", "", "", "", "", "", "", "", "", "" };
159
160 static char *setup_strings;
161 module_param(setup_strings, charp, 0);
162
163 static void wd33c93_execute(struct Scsi_Host *instance);
164
165 #ifdef CONFIG_WD33C93_PIO
166 static inline uchar
read_wd33c93(const wd33c93_regs regs,uchar reg_num)167 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
168 {
169 uchar data;
170
171 outb(reg_num, regs.SASR);
172 data = inb(regs.SCMD);
173 return data;
174 }
175
176 static inline unsigned long
read_wd33c93_count(const wd33c93_regs regs)177 read_wd33c93_count(const wd33c93_regs regs)
178 {
179 unsigned long value;
180
181 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
182 value = inb(regs.SCMD) << 16;
183 value |= inb(regs.SCMD) << 8;
184 value |= inb(regs.SCMD);
185 return value;
186 }
187
188 static inline uchar
read_aux_stat(const wd33c93_regs regs)189 read_aux_stat(const wd33c93_regs regs)
190 {
191 return inb(regs.SASR);
192 }
193
194 static inline void
write_wd33c93(const wd33c93_regs regs,uchar reg_num,uchar value)195 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
196 {
197 outb(reg_num, regs.SASR);
198 outb(value, regs.SCMD);
199 }
200
201 static inline void
write_wd33c93_count(const wd33c93_regs regs,unsigned long value)202 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
203 {
204 outb(WD_TRANSFER_COUNT_MSB, regs.SASR);
205 outb((value >> 16) & 0xff, regs.SCMD);
206 outb((value >> 8) & 0xff, regs.SCMD);
207 outb( value & 0xff, regs.SCMD);
208 }
209
210 #define write_wd33c93_cmd(regs, cmd) \
211 write_wd33c93((regs), WD_COMMAND, (cmd))
212
213 static inline void
write_wd33c93_cdb(const wd33c93_regs regs,uint len,uchar cmnd[])214 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
215 {
216 int i;
217
218 outb(WD_CDB_1, regs.SASR);
219 for (i=0; i<len; i++)
220 outb(cmnd[i], regs.SCMD);
221 }
222
223 #else /* CONFIG_WD33C93_PIO */
224 static inline uchar
read_wd33c93(const wd33c93_regs regs,uchar reg_num)225 read_wd33c93(const wd33c93_regs regs, uchar reg_num)
226 {
227 *regs.SASR = reg_num;
228 mb();
229 return (*regs.SCMD);
230 }
231
232 static unsigned long
read_wd33c93_count(const wd33c93_regs regs)233 read_wd33c93_count(const wd33c93_regs regs)
234 {
235 unsigned long value;
236
237 *regs.SASR = WD_TRANSFER_COUNT_MSB;
238 mb();
239 value = *regs.SCMD << 16;
240 value |= *regs.SCMD << 8;
241 value |= *regs.SCMD;
242 mb();
243 return value;
244 }
245
246 static inline uchar
read_aux_stat(const wd33c93_regs regs)247 read_aux_stat(const wd33c93_regs regs)
248 {
249 return *regs.SASR;
250 }
251
252 static inline void
write_wd33c93(const wd33c93_regs regs,uchar reg_num,uchar value)253 write_wd33c93(const wd33c93_regs regs, uchar reg_num, uchar value)
254 {
255 *regs.SASR = reg_num;
256 mb();
257 *regs.SCMD = value;
258 mb();
259 }
260
261 static void
write_wd33c93_count(const wd33c93_regs regs,unsigned long value)262 write_wd33c93_count(const wd33c93_regs regs, unsigned long value)
263 {
264 *regs.SASR = WD_TRANSFER_COUNT_MSB;
265 mb();
266 *regs.SCMD = value >> 16;
267 *regs.SCMD = value >> 8;
268 *regs.SCMD = value;
269 mb();
270 }
271
272 static inline void
write_wd33c93_cmd(const wd33c93_regs regs,uchar cmd)273 write_wd33c93_cmd(const wd33c93_regs regs, uchar cmd)
274 {
275 *regs.SASR = WD_COMMAND;
276 mb();
277 *regs.SCMD = cmd;
278 mb();
279 }
280
281 static inline void
write_wd33c93_cdb(const wd33c93_regs regs,uint len,uchar cmnd[])282 write_wd33c93_cdb(const wd33c93_regs regs, uint len, uchar cmnd[])
283 {
284 int i;
285
286 *regs.SASR = WD_CDB_1;
287 for (i = 0; i < len; i++)
288 *regs.SCMD = cmnd[i];
289 }
290 #endif /* CONFIG_WD33C93_PIO */
291
292 static inline uchar
read_1_byte(const wd33c93_regs regs)293 read_1_byte(const wd33c93_regs regs)
294 {
295 uchar asr;
296 uchar x = 0;
297
298 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
299 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO | 0x80);
300 do {
301 asr = read_aux_stat(regs);
302 if (asr & ASR_DBR)
303 x = read_wd33c93(regs, WD_DATA);
304 } while (!(asr & ASR_INT));
305 return x;
306 }
307
308 static int
round_period(unsigned int period,const struct sx_period * sx_table)309 round_period(unsigned int period, const struct sx_period *sx_table)
310 {
311 int x;
312
313 for (x = 1; sx_table[x].period_ns; x++) {
314 if ((period <= sx_table[x - 0].period_ns) &&
315 (period > sx_table[x - 1].period_ns)) {
316 return x;
317 }
318 }
319 return 7;
320 }
321
322 /*
323 * Calculate Synchronous Transfer Register value from SDTR code.
324 */
325 static uchar
calc_sync_xfer(unsigned int period,unsigned int offset,unsigned int fast,const struct sx_period * sx_table)326 calc_sync_xfer(unsigned int period, unsigned int offset, unsigned int fast,
327 const struct sx_period *sx_table)
328 {
329 /* When doing Fast SCSI synchronous data transfers, the corresponding
330 * value in 'sx_table' is two times the actually used transfer period.
331 */
332 uchar result;
333
334 if (offset && fast) {
335 fast = STR_FSS;
336 period *= 2;
337 } else {
338 fast = 0;
339 }
340 period *= 4; /* convert SDTR code to ns */
341 result = sx_table[round_period(period,sx_table)].reg_value;
342 result |= (offset < OPTIMUM_SX_OFF) ? offset : OPTIMUM_SX_OFF;
343 result |= fast;
344 return result;
345 }
346
347 /*
348 * Calculate SDTR code bytes [3],[4] from period and offset.
349 */
350 static inline void
calc_sync_msg(unsigned int period,unsigned int offset,unsigned int fast,uchar msg[2])351 calc_sync_msg(unsigned int period, unsigned int offset, unsigned int fast,
352 uchar msg[2])
353 {
354 /* 'period' is a "normal"-mode value, like the ones in 'sx_table'. The
355 * actually used transfer period for Fast SCSI synchronous data
356 * transfers is half that value.
357 */
358 period /= 4;
359 if (offset && fast)
360 period /= 2;
361 msg[0] = period;
362 msg[1] = offset;
363 }
364
wd33c93_queuecommand_lck(struct scsi_cmnd * cmd)365 static int wd33c93_queuecommand_lck(struct scsi_cmnd *cmd)
366 {
367 struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd);
368 struct WD33C93_hostdata *hostdata;
369 struct scsi_cmnd *tmp;
370
371 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
372
373 DB(DB_QUEUE_COMMAND,
374 printk("Q-%d-%02x( ", cmd->device->id, cmd->cmnd[0]))
375
376 /* Set up a few fields in the scsi_cmnd structure for our own use:
377 * - host_scribble is the pointer to the next cmd in the input queue
378 * - result is what you'd expect
379 */
380 cmd->host_scribble = NULL;
381 cmd->result = 0;
382
383 /* We use the Scsi_Pointer structure that's included with each command
384 * as a scratchpad (as it's intended to be used!). The handy thing about
385 * the SCp.xxx fields is that they're always associated with a given
386 * cmd, and are preserved across disconnect-reselect. This means we
387 * can pretty much ignore SAVE_POINTERS and RESTORE_POINTERS messages
388 * if we keep all the critical pointers and counters in SCp:
389 * - SCp.ptr is the pointer into the RAM buffer
390 * - SCp.this_residual is the size of that buffer
391 * - SCp.buffer points to the current scatter-gather buffer
392 * - SCp.buffers_residual tells us how many S.G. buffers there are
393 * - SCp.have_data_in is not used
394 * - SCp.sent_command is not used
395 * - SCp.phase records this command's SRCID_ER bit setting
396 */
397
398 if (scsi_bufflen(cmd)) {
399 scsi_pointer->buffer = scsi_sglist(cmd);
400 scsi_pointer->buffers_residual = scsi_sg_count(cmd) - 1;
401 scsi_pointer->ptr = sg_virt(scsi_pointer->buffer);
402 scsi_pointer->this_residual = scsi_pointer->buffer->length;
403 } else {
404 scsi_pointer->buffer = NULL;
405 scsi_pointer->buffers_residual = 0;
406 scsi_pointer->ptr = NULL;
407 scsi_pointer->this_residual = 0;
408 }
409
410 /* WD docs state that at the conclusion of a "LEVEL2" command, the
411 * status byte can be retrieved from the LUN register. Apparently,
412 * this is the case only for *uninterrupted* LEVEL2 commands! If
413 * there are any unexpected phases entered, even if they are 100%
414 * legal (different devices may choose to do things differently),
415 * the LEVEL2 command sequence is exited. This often occurs prior
416 * to receiving the status byte, in which case the driver does a
417 * status phase interrupt and gets the status byte on its own.
418 * While such a command can then be "resumed" (ie restarted to
419 * finish up as a LEVEL2 command), the LUN register will NOT be
420 * a valid status byte at the command's conclusion, and we must
421 * use the byte obtained during the earlier interrupt. Here, we
422 * preset SCp.Status to an illegal value (0xff) so that when
423 * this command finally completes, we can tell where the actual
424 * status byte is stored.
425 */
426
427 scsi_pointer->Status = ILLEGAL_STATUS_BYTE;
428
429 /*
430 * Add the cmd to the end of 'input_Q'. Note that REQUEST SENSE
431 * commands are added to the head of the queue so that the desired
432 * sense data is not lost before REQUEST_SENSE executes.
433 */
434
435 spin_lock_irq(&hostdata->lock);
436
437 if (!(hostdata->input_Q) || (cmd->cmnd[0] == REQUEST_SENSE)) {
438 cmd->host_scribble = (uchar *) hostdata->input_Q;
439 hostdata->input_Q = cmd;
440 } else { /* find the end of the queue */
441 for (tmp = (struct scsi_cmnd *) hostdata->input_Q;
442 tmp->host_scribble;
443 tmp = (struct scsi_cmnd *) tmp->host_scribble) ;
444 tmp->host_scribble = (uchar *) cmd;
445 }
446
447 /* We know that there's at least one command in 'input_Q' now.
448 * Go see if any of them are runnable!
449 */
450
451 wd33c93_execute(cmd->device->host);
452
453 DB(DB_QUEUE_COMMAND, printk(")Q "))
454
455 spin_unlock_irq(&hostdata->lock);
456 return 0;
457 }
458
DEF_SCSI_QCMD(wd33c93_queuecommand)459 DEF_SCSI_QCMD(wd33c93_queuecommand)
460
461 /*
462 * This routine attempts to start a scsi command. If the host_card is
463 * already connected, we give up immediately. Otherwise, look through
464 * the input_Q, using the first command we find that's intended
465 * for a currently non-busy target/lun.
466 *
467 * wd33c93_execute() is always called with interrupts disabled or from
468 * the wd33c93_intr itself, which means that a wd33c93 interrupt
469 * cannot occur while we are in here.
470 */
471 static void
472 wd33c93_execute(struct Scsi_Host *instance)
473 {
474 struct scsi_pointer *scsi_pointer;
475 struct WD33C93_hostdata *hostdata =
476 (struct WD33C93_hostdata *) instance->hostdata;
477 const wd33c93_regs regs = hostdata->regs;
478 struct scsi_cmnd *cmd, *prev;
479
480 DB(DB_EXECUTE, printk("EX("))
481 if (hostdata->selecting || hostdata->connected) {
482 DB(DB_EXECUTE, printk(")EX-0 "))
483 return;
484 }
485
486 /*
487 * Search through the input_Q for a command destined
488 * for an idle target/lun.
489 */
490
491 cmd = (struct scsi_cmnd *) hostdata->input_Q;
492 prev = NULL;
493 while (cmd) {
494 if (!(hostdata->busy[cmd->device->id] &
495 (1 << (cmd->device->lun & 0xff))))
496 break;
497 prev = cmd;
498 cmd = (struct scsi_cmnd *) cmd->host_scribble;
499 }
500
501 /* quit if queue empty or all possible targets are busy */
502
503 if (!cmd) {
504 DB(DB_EXECUTE, printk(")EX-1 "))
505 return;
506 }
507
508 /* remove command from queue */
509
510 if (prev)
511 prev->host_scribble = cmd->host_scribble;
512 else
513 hostdata->input_Q = (struct scsi_cmnd *) cmd->host_scribble;
514
515 #ifdef PROC_STATISTICS
516 hostdata->cmd_cnt[cmd->device->id]++;
517 #endif
518
519 /*
520 * Start the selection process
521 */
522
523 if (cmd->sc_data_direction == DMA_TO_DEVICE)
524 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
525 else
526 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id | DSTID_DPD);
527
528 /* Now we need to figure out whether or not this command is a good
529 * candidate for disconnect/reselect. We guess to the best of our
530 * ability, based on a set of hierarchical rules. When several
531 * devices are operating simultaneously, disconnects are usually
532 * an advantage. In a single device system, or if only 1 device
533 * is being accessed, transfers usually go faster if disconnects
534 * are not allowed:
535 *
536 * + Commands should NEVER disconnect if hostdata->disconnect =
537 * DIS_NEVER (this holds for tape drives also), and ALWAYS
538 * disconnect if hostdata->disconnect = DIS_ALWAYS.
539 * + Tape drive commands should always be allowed to disconnect.
540 * + Disconnect should be allowed if disconnected_Q isn't empty.
541 * + Commands should NOT disconnect if input_Q is empty.
542 * + Disconnect should be allowed if there are commands in input_Q
543 * for a different target/lun. In this case, the other commands
544 * should be made disconnect-able, if not already.
545 *
546 * I know, I know - this code would flunk me out of any
547 * "C Programming 101" class ever offered. But it's easy
548 * to change around and experiment with for now.
549 */
550
551 scsi_pointer = WD33C93_scsi_pointer(cmd);
552 scsi_pointer->phase = 0; /* assume no disconnect */
553 if (hostdata->disconnect == DIS_NEVER)
554 goto no;
555 if (hostdata->disconnect == DIS_ALWAYS)
556 goto yes;
557 if (cmd->device->type == 1) /* tape drive? */
558 goto yes;
559 if (hostdata->disconnected_Q) /* other commands disconnected? */
560 goto yes;
561 if (!(hostdata->input_Q)) /* input_Q empty? */
562 goto no;
563 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
564 prev = (struct scsi_cmnd *) prev->host_scribble) {
565 if ((prev->device->id != cmd->device->id) ||
566 (prev->device->lun != cmd->device->lun)) {
567 for (prev = (struct scsi_cmnd *) hostdata->input_Q; prev;
568 prev = (struct scsi_cmnd *) prev->host_scribble)
569 WD33C93_scsi_pointer(prev)->phase = 1;
570 goto yes;
571 }
572 }
573
574 goto no;
575
576 yes:
577 scsi_pointer->phase = 1;
578
579 #ifdef PROC_STATISTICS
580 hostdata->disc_allowed_cnt[cmd->device->id]++;
581 #endif
582
583 no:
584
585 write_wd33c93(regs, WD_SOURCE_ID, scsi_pointer->phase ? SRCID_ER : 0);
586
587 write_wd33c93(regs, WD_TARGET_LUN, (u8)cmd->device->lun);
588 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
589 hostdata->sync_xfer[cmd->device->id]);
590 hostdata->busy[cmd->device->id] |= (1 << (cmd->device->lun & 0xFF));
591
592 if ((hostdata->level2 == L2_NONE) ||
593 (hostdata->sync_stat[cmd->device->id] == SS_UNSET)) {
594
595 /*
596 * Do a 'Select-With-ATN' command. This will end with
597 * one of the following interrupts:
598 * CSR_RESEL_AM: failure - can try again later.
599 * CSR_TIMEOUT: failure - give up.
600 * CSR_SELECT: success - proceed.
601 */
602
603 hostdata->selecting = cmd;
604
605 /* Every target has its own synchronous transfer setting, kept in the
606 * sync_xfer array, and a corresponding status byte in sync_stat[].
607 * Each target's sync_stat[] entry is initialized to SX_UNSET, and its
608 * sync_xfer[] entry is initialized to the default/safe value. SS_UNSET
609 * means that the parameters are undetermined as yet, and that we
610 * need to send an SDTR message to this device after selection is
611 * complete: We set SS_FIRST to tell the interrupt routine to do so.
612 * If we've been asked not to try synchronous transfers on this
613 * target (and _all_ luns within it), we'll still send the SDTR message
614 * later, but at that time we'll negotiate for async by specifying a
615 * sync fifo depth of 0.
616 */
617 if (hostdata->sync_stat[cmd->device->id] == SS_UNSET)
618 hostdata->sync_stat[cmd->device->id] = SS_FIRST;
619 hostdata->state = S_SELECTING;
620 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
621 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN);
622 } else {
623
624 /*
625 * Do a 'Select-With-ATN-Xfer' command. This will end with
626 * one of the following interrupts:
627 * CSR_RESEL_AM: failure - can try again later.
628 * CSR_TIMEOUT: failure - give up.
629 * anything else: success - proceed.
630 */
631
632 hostdata->connected = cmd;
633 write_wd33c93(regs, WD_COMMAND_PHASE, 0);
634
635 /* copy command_descriptor_block into WD chip
636 * (take advantage of auto-incrementing)
637 */
638
639 write_wd33c93_cdb(regs, cmd->cmd_len, cmd->cmnd);
640
641 /* The wd33c93 only knows about Group 0, 1, and 5 commands when
642 * it's doing a 'select-and-transfer'. To be safe, we write the
643 * size of the CDB into the OWN_ID register for every case. This
644 * way there won't be problems with vendor-unique, audio, etc.
645 */
646
647 write_wd33c93(regs, WD_OWN_ID, cmd->cmd_len);
648
649 /* When doing a non-disconnect command with DMA, we can save
650 * ourselves a DATA phase interrupt later by setting everything
651 * up ahead of time.
652 */
653
654 if (scsi_pointer->phase == 0 && hostdata->no_dma == 0) {
655 if (hostdata->dma_setup(cmd,
656 (cmd->sc_data_direction == DMA_TO_DEVICE) ?
657 DATA_OUT_DIR : DATA_IN_DIR))
658 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
659 else {
660 write_wd33c93_count(regs,
661 scsi_pointer->this_residual);
662 write_wd33c93(regs, WD_CONTROL,
663 CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
664 hostdata->dma = D_DMA_RUNNING;
665 }
666 } else
667 write_wd33c93_count(regs, 0); /* guarantee a DATA_PHASE interrupt */
668
669 hostdata->state = S_RUNNING_LEVEL2;
670 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
671 }
672
673 /*
674 * Since the SCSI bus can handle only 1 connection at a time,
675 * we get out of here now. If the selection fails, or when
676 * the command disconnects, we'll come back to this routine
677 * to search the input_Q again...
678 */
679
680 DB(DB_EXECUTE,
681 printk("%s)EX-2 ", scsi_pointer->phase ? "d:" : ""))
682 }
683
684 static void
transfer_pio(const wd33c93_regs regs,uchar * buf,int cnt,int data_in_dir,struct WD33C93_hostdata * hostdata)685 transfer_pio(const wd33c93_regs regs, uchar * buf, int cnt,
686 int data_in_dir, struct WD33C93_hostdata *hostdata)
687 {
688 uchar asr;
689
690 DB(DB_TRANSFER,
691 printk("(%p,%d,%s:", buf, cnt, data_in_dir ? "in" : "out"))
692
693 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
694 write_wd33c93_count(regs, cnt);
695 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
696 if (data_in_dir) {
697 do {
698 asr = read_aux_stat(regs);
699 if (asr & ASR_DBR)
700 *buf++ = read_wd33c93(regs, WD_DATA);
701 } while (!(asr & ASR_INT));
702 } else {
703 do {
704 asr = read_aux_stat(regs);
705 if (asr & ASR_DBR)
706 write_wd33c93(regs, WD_DATA, *buf++);
707 } while (!(asr & ASR_INT));
708 }
709
710 /* Note: we are returning with the interrupt UN-cleared.
711 * Since (presumably) an entire I/O operation has
712 * completed, the bus phase is probably different, and
713 * the interrupt routine will discover this when it
714 * responds to the uncleared int.
715 */
716
717 }
718
719 static void
transfer_bytes(const wd33c93_regs regs,struct scsi_cmnd * cmd,int data_in_dir)720 transfer_bytes(const wd33c93_regs regs, struct scsi_cmnd *cmd,
721 int data_in_dir)
722 {
723 struct scsi_pointer *scsi_pointer = WD33C93_scsi_pointer(cmd);
724 struct WD33C93_hostdata *hostdata;
725 unsigned long length;
726
727 hostdata = (struct WD33C93_hostdata *) cmd->device->host->hostdata;
728
729 /* Normally, you'd expect 'this_residual' to be non-zero here.
730 * In a series of scatter-gather transfers, however, this
731 * routine will usually be called with 'this_residual' equal
732 * to 0 and 'buffers_residual' non-zero. This means that a
733 * previous transfer completed, clearing 'this_residual', and
734 * now we need to setup the next scatter-gather buffer as the
735 * source or destination for THIS transfer.
736 */
737 if (!scsi_pointer->this_residual && scsi_pointer->buffers_residual) {
738 scsi_pointer->buffer = sg_next(scsi_pointer->buffer);
739 --scsi_pointer->buffers_residual;
740 scsi_pointer->this_residual = scsi_pointer->buffer->length;
741 scsi_pointer->ptr = sg_virt(scsi_pointer->buffer);
742 }
743 if (!scsi_pointer->this_residual) /* avoid bogus setups */
744 return;
745
746 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
747 hostdata->sync_xfer[cmd->device->id]);
748
749 /* 'hostdata->no_dma' is TRUE if we don't even want to try DMA.
750 * Update 'this_residual' and 'ptr' after 'transfer_pio()' returns.
751 */
752
753 if (hostdata->no_dma || hostdata->dma_setup(cmd, data_in_dir)) {
754 #ifdef PROC_STATISTICS
755 hostdata->pio_cnt++;
756 #endif
757 transfer_pio(regs, (uchar *) scsi_pointer->ptr,
758 scsi_pointer->this_residual, data_in_dir,
759 hostdata);
760 length = scsi_pointer->this_residual;
761 scsi_pointer->this_residual = read_wd33c93_count(regs);
762 scsi_pointer->ptr += length - scsi_pointer->this_residual;
763 }
764
765 /* We are able to do DMA (in fact, the Amiga hardware is
766 * already going!), so start up the wd33c93 in DMA mode.
767 * We set 'hostdata->dma' = D_DMA_RUNNING so that when the
768 * transfer completes and causes an interrupt, we're
769 * reminded to tell the Amiga to shut down its end. We'll
770 * postpone the updating of 'this_residual' and 'ptr'
771 * until then.
772 */
773
774 else {
775 #ifdef PROC_STATISTICS
776 hostdata->dma_cnt++;
777 #endif
778 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | hostdata->dma_mode);
779 write_wd33c93_count(regs, scsi_pointer->this_residual);
780
781 if ((hostdata->level2 >= L2_DATA) ||
782 (hostdata->level2 == L2_BASIC && scsi_pointer->phase == 0)) {
783 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
784 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
785 hostdata->state = S_RUNNING_LEVEL2;
786 } else
787 write_wd33c93_cmd(regs, WD_CMD_TRANS_INFO);
788
789 hostdata->dma = D_DMA_RUNNING;
790 }
791 }
792
793 void
wd33c93_intr(struct Scsi_Host * instance)794 wd33c93_intr(struct Scsi_Host *instance)
795 {
796 struct scsi_pointer *scsi_pointer;
797 struct WD33C93_hostdata *hostdata =
798 (struct WD33C93_hostdata *) instance->hostdata;
799 const wd33c93_regs regs = hostdata->regs;
800 struct scsi_cmnd *patch, *cmd;
801 uchar asr, sr, phs, id, lun, *ucp, msg;
802 unsigned long length, flags;
803
804 asr = read_aux_stat(regs);
805 if (!(asr & ASR_INT) || (asr & ASR_BSY))
806 return;
807
808 spin_lock_irqsave(&hostdata->lock, flags);
809
810 #ifdef PROC_STATISTICS
811 hostdata->int_cnt++;
812 #endif
813
814 cmd = (struct scsi_cmnd *) hostdata->connected; /* assume we're connected */
815 scsi_pointer = WD33C93_scsi_pointer(cmd);
816 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear the interrupt */
817 phs = read_wd33c93(regs, WD_COMMAND_PHASE);
818
819 DB(DB_INTR, printk("{%02x:%02x-", asr, sr))
820
821 /* After starting a DMA transfer, the next interrupt
822 * is guaranteed to be in response to completion of
823 * the transfer. Since the Amiga DMA hardware runs in
824 * in an open-ended fashion, it needs to be told when
825 * to stop; do that here if D_DMA_RUNNING is true.
826 * Also, we have to update 'this_residual' and 'ptr'
827 * based on the contents of the TRANSFER_COUNT register,
828 * in case the device decided to do an intermediate
829 * disconnect (a device may do this if it has to do a
830 * seek, or just to be nice and let other devices have
831 * some bus time during long transfers). After doing
832 * whatever is needed, we go on and service the WD3393
833 * interrupt normally.
834 */
835 if (hostdata->dma == D_DMA_RUNNING) {
836 DB(DB_TRANSFER,
837 printk("[%p/%d:", scsi_pointer->ptr, scsi_pointer->this_residual))
838 hostdata->dma_stop(cmd->device->host, cmd, 1);
839 hostdata->dma = D_DMA_OFF;
840 length = scsi_pointer->this_residual;
841 scsi_pointer->this_residual = read_wd33c93_count(regs);
842 scsi_pointer->ptr += length - scsi_pointer->this_residual;
843 DB(DB_TRANSFER,
844 printk("%p/%d]", scsi_pointer->ptr, scsi_pointer->this_residual))
845 }
846
847 /* Respond to the specific WD3393 interrupt - there are quite a few! */
848 switch (sr) {
849 case CSR_TIMEOUT:
850 DB(DB_INTR, printk("TIMEOUT"))
851
852 if (hostdata->state == S_RUNNING_LEVEL2)
853 hostdata->connected = NULL;
854 else {
855 cmd = (struct scsi_cmnd *) hostdata->selecting; /* get a valid cmd */
856 hostdata->selecting = NULL;
857 }
858
859 cmd->result = DID_NO_CONNECT << 16;
860 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
861 hostdata->state = S_UNCONNECTED;
862 scsi_done(cmd);
863
864 /* From esp.c:
865 * There is a window of time within the scsi_done() path
866 * of execution where interrupts are turned back on full
867 * blast and left that way. During that time we could
868 * reconnect to a disconnected command, then we'd bomb
869 * out below. We could also end up executing two commands
870 * at _once_. ...just so you know why the restore_flags()
871 * is here...
872 */
873
874 spin_unlock_irqrestore(&hostdata->lock, flags);
875
876 /* We are not connected to a target - check to see if there
877 * are commands waiting to be executed.
878 */
879
880 wd33c93_execute(instance);
881 break;
882
883 /* Note: this interrupt should not occur in a LEVEL2 command */
884
885 case CSR_SELECT:
886 DB(DB_INTR, printk("SELECT"))
887 hostdata->connected = cmd =
888 (struct scsi_cmnd *) hostdata->selecting;
889 hostdata->selecting = NULL;
890
891 /* construct an IDENTIFY message with correct disconnect bit */
892
893 hostdata->outgoing_msg[0] = IDENTIFY(0, cmd->device->lun);
894 if (scsi_pointer->phase)
895 hostdata->outgoing_msg[0] |= 0x40;
896
897 if (hostdata->sync_stat[cmd->device->id] == SS_FIRST) {
898
899 hostdata->sync_stat[cmd->device->id] = SS_WAITING;
900
901 /* Tack on a 2nd message to ask about synchronous transfers. If we've
902 * been asked to do only asynchronous transfers on this device, we
903 * request a fifo depth of 0, which is equivalent to async - should
904 * solve the problems some people have had with GVP's Guru ROM.
905 */
906
907 hostdata->outgoing_msg[1] = EXTENDED_MESSAGE;
908 hostdata->outgoing_msg[2] = 3;
909 hostdata->outgoing_msg[3] = EXTENDED_SDTR;
910 if (hostdata->no_sync & (1 << cmd->device->id)) {
911 calc_sync_msg(hostdata->default_sx_per, 0,
912 0, hostdata->outgoing_msg + 4);
913 } else {
914 calc_sync_msg(optimum_sx_per(hostdata),
915 OPTIMUM_SX_OFF,
916 hostdata->fast,
917 hostdata->outgoing_msg + 4);
918 }
919 hostdata->outgoing_len = 6;
920 #ifdef SYNC_DEBUG
921 ucp = hostdata->outgoing_msg + 1;
922 printk(" sending SDTR %02x03%02x%02x%02x ",
923 ucp[0], ucp[2], ucp[3], ucp[4]);
924 #endif
925 } else
926 hostdata->outgoing_len = 1;
927
928 hostdata->state = S_CONNECTED;
929 spin_unlock_irqrestore(&hostdata->lock, flags);
930 break;
931
932 case CSR_XFER_DONE | PHS_DATA_IN:
933 case CSR_UNEXP | PHS_DATA_IN:
934 case CSR_SRV_REQ | PHS_DATA_IN:
935 DB(DB_INTR,
936 printk("IN-%d.%d", scsi_pointer->this_residual,
937 scsi_pointer->buffers_residual))
938 transfer_bytes(regs, cmd, DATA_IN_DIR);
939 if (hostdata->state != S_RUNNING_LEVEL2)
940 hostdata->state = S_CONNECTED;
941 spin_unlock_irqrestore(&hostdata->lock, flags);
942 break;
943
944 case CSR_XFER_DONE | PHS_DATA_OUT:
945 case CSR_UNEXP | PHS_DATA_OUT:
946 case CSR_SRV_REQ | PHS_DATA_OUT:
947 DB(DB_INTR,
948 printk("OUT-%d.%d", scsi_pointer->this_residual,
949 scsi_pointer->buffers_residual))
950 transfer_bytes(regs, cmd, DATA_OUT_DIR);
951 if (hostdata->state != S_RUNNING_LEVEL2)
952 hostdata->state = S_CONNECTED;
953 spin_unlock_irqrestore(&hostdata->lock, flags);
954 break;
955
956 /* Note: this interrupt should not occur in a LEVEL2 command */
957
958 case CSR_XFER_DONE | PHS_COMMAND:
959 case CSR_UNEXP | PHS_COMMAND:
960 case CSR_SRV_REQ | PHS_COMMAND:
961 DB(DB_INTR, printk("CMND-%02x", cmd->cmnd[0]))
962 transfer_pio(regs, cmd->cmnd, cmd->cmd_len, DATA_OUT_DIR,
963 hostdata);
964 hostdata->state = S_CONNECTED;
965 spin_unlock_irqrestore(&hostdata->lock, flags);
966 break;
967
968 case CSR_XFER_DONE | PHS_STATUS:
969 case CSR_UNEXP | PHS_STATUS:
970 case CSR_SRV_REQ | PHS_STATUS:
971 DB(DB_INTR, printk("STATUS="))
972 scsi_pointer->Status = read_1_byte(regs);
973 DB(DB_INTR, printk("%02x", scsi_pointer->Status))
974 if (hostdata->level2 >= L2_BASIC) {
975 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
976 udelay(7);
977 hostdata->state = S_RUNNING_LEVEL2;
978 write_wd33c93(regs, WD_COMMAND_PHASE, 0x50);
979 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
980 } else {
981 hostdata->state = S_CONNECTED;
982 }
983 spin_unlock_irqrestore(&hostdata->lock, flags);
984 break;
985
986 case CSR_XFER_DONE | PHS_MESS_IN:
987 case CSR_UNEXP | PHS_MESS_IN:
988 case CSR_SRV_REQ | PHS_MESS_IN:
989 DB(DB_INTR, printk("MSG_IN="))
990
991 msg = read_1_byte(regs);
992 sr = read_wd33c93(regs, WD_SCSI_STATUS); /* clear interrupt */
993 udelay(7);
994
995 hostdata->incoming_msg[hostdata->incoming_ptr] = msg;
996 if (hostdata->incoming_msg[0] == EXTENDED_MESSAGE)
997 msg = EXTENDED_MESSAGE;
998 else
999 hostdata->incoming_ptr = 0;
1000
1001 scsi_pointer->Message = msg;
1002 switch (msg) {
1003
1004 case COMMAND_COMPLETE:
1005 DB(DB_INTR, printk("CCMP"))
1006 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1007 hostdata->state = S_PRE_CMP_DISC;
1008 break;
1009
1010 case SAVE_POINTERS:
1011 DB(DB_INTR, printk("SDP"))
1012 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1013 hostdata->state = S_CONNECTED;
1014 break;
1015
1016 case RESTORE_POINTERS:
1017 DB(DB_INTR, printk("RDP"))
1018 if (hostdata->level2 >= L2_BASIC) {
1019 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1020 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1021 hostdata->state = S_RUNNING_LEVEL2;
1022 } else {
1023 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1024 hostdata->state = S_CONNECTED;
1025 }
1026 break;
1027
1028 case DISCONNECT:
1029 DB(DB_INTR, printk("DIS"))
1030 cmd->device->disconnect = 1;
1031 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1032 hostdata->state = S_PRE_TMP_DISC;
1033 break;
1034
1035 case MESSAGE_REJECT:
1036 DB(DB_INTR, printk("REJ"))
1037 #ifdef SYNC_DEBUG
1038 printk("-REJ-");
1039 #endif
1040 if (hostdata->sync_stat[cmd->device->id] == SS_WAITING) {
1041 hostdata->sync_stat[cmd->device->id] = SS_SET;
1042 /* we want default_sx_per, not DEFAULT_SX_PER */
1043 hostdata->sync_xfer[cmd->device->id] =
1044 calc_sync_xfer(hostdata->default_sx_per
1045 / 4, 0, 0, hostdata->sx_table);
1046 }
1047 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1048 hostdata->state = S_CONNECTED;
1049 break;
1050
1051 case EXTENDED_MESSAGE:
1052 DB(DB_INTR, printk("EXT"))
1053
1054 ucp = hostdata->incoming_msg;
1055
1056 #ifdef SYNC_DEBUG
1057 printk("%02x", ucp[hostdata->incoming_ptr]);
1058 #endif
1059 /* Is this the last byte of the extended message? */
1060
1061 if ((hostdata->incoming_ptr >= 2) &&
1062 (hostdata->incoming_ptr == (ucp[1] + 1))) {
1063
1064 switch (ucp[2]) { /* what's the EXTENDED code? */
1065 case EXTENDED_SDTR:
1066 /* default to default async period */
1067 id = calc_sync_xfer(hostdata->
1068 default_sx_per / 4, 0,
1069 0, hostdata->sx_table);
1070 if (hostdata->sync_stat[cmd->device->id] !=
1071 SS_WAITING) {
1072
1073 /* A device has sent an unsolicited SDTR message; rather than go
1074 * through the effort of decoding it and then figuring out what
1075 * our reply should be, we're just gonna say that we have a
1076 * synchronous fifo depth of 0. This will result in asynchronous
1077 * transfers - not ideal but so much easier.
1078 * Actually, this is OK because it assures us that if we don't
1079 * specifically ask for sync transfers, we won't do any.
1080 */
1081
1082 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1083 hostdata->outgoing_msg[0] =
1084 EXTENDED_MESSAGE;
1085 hostdata->outgoing_msg[1] = 3;
1086 hostdata->outgoing_msg[2] =
1087 EXTENDED_SDTR;
1088 calc_sync_msg(hostdata->
1089 default_sx_per, 0,
1090 0, hostdata->outgoing_msg + 3);
1091 hostdata->outgoing_len = 5;
1092 } else {
1093 if (ucp[4]) /* well, sync transfer */
1094 id = calc_sync_xfer(ucp[3], ucp[4],
1095 hostdata->fast,
1096 hostdata->sx_table);
1097 else if (ucp[3]) /* very unlikely... */
1098 id = calc_sync_xfer(ucp[3], ucp[4],
1099 0, hostdata->sx_table);
1100 }
1101 hostdata->sync_xfer[cmd->device->id] = id;
1102 #ifdef SYNC_DEBUG
1103 printk(" sync_xfer=%02x\n",
1104 hostdata->sync_xfer[cmd->device->id]);
1105 #endif
1106 hostdata->sync_stat[cmd->device->id] =
1107 SS_SET;
1108 write_wd33c93_cmd(regs,
1109 WD_CMD_NEGATE_ACK);
1110 hostdata->state = S_CONNECTED;
1111 break;
1112 case EXTENDED_WDTR:
1113 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1114 printk("sending WDTR ");
1115 hostdata->outgoing_msg[0] =
1116 EXTENDED_MESSAGE;
1117 hostdata->outgoing_msg[1] = 2;
1118 hostdata->outgoing_msg[2] =
1119 EXTENDED_WDTR;
1120 hostdata->outgoing_msg[3] = 0; /* 8 bit transfer width */
1121 hostdata->outgoing_len = 4;
1122 write_wd33c93_cmd(regs,
1123 WD_CMD_NEGATE_ACK);
1124 hostdata->state = S_CONNECTED;
1125 break;
1126 default:
1127 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1128 printk
1129 ("Rejecting Unknown Extended Message(%02x). ",
1130 ucp[2]);
1131 hostdata->outgoing_msg[0] =
1132 MESSAGE_REJECT;
1133 hostdata->outgoing_len = 1;
1134 write_wd33c93_cmd(regs,
1135 WD_CMD_NEGATE_ACK);
1136 hostdata->state = S_CONNECTED;
1137 break;
1138 }
1139 hostdata->incoming_ptr = 0;
1140 }
1141
1142 /* We need to read more MESS_IN bytes for the extended message */
1143
1144 else {
1145 hostdata->incoming_ptr++;
1146 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1147 hostdata->state = S_CONNECTED;
1148 }
1149 break;
1150
1151 default:
1152 printk("Rejecting Unknown Message(%02x) ", msg);
1153 write_wd33c93_cmd(regs, WD_CMD_ASSERT_ATN); /* want MESS_OUT */
1154 hostdata->outgoing_msg[0] = MESSAGE_REJECT;
1155 hostdata->outgoing_len = 1;
1156 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1157 hostdata->state = S_CONNECTED;
1158 }
1159 spin_unlock_irqrestore(&hostdata->lock, flags);
1160 break;
1161
1162 /* Note: this interrupt will occur only after a LEVEL2 command */
1163
1164 case CSR_SEL_XFER_DONE:
1165
1166 /* Make sure that reselection is enabled at this point - it may
1167 * have been turned off for the command that just completed.
1168 */
1169
1170 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1171 if (phs == 0x60) {
1172 DB(DB_INTR, printk("SX-DONE"))
1173 scsi_pointer->Message = COMMAND_COMPLETE;
1174 lun = read_wd33c93(regs, WD_TARGET_LUN);
1175 DB(DB_INTR, printk(":%d.%d", scsi_pointer->Status, lun))
1176 hostdata->connected = NULL;
1177 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1178 hostdata->state = S_UNCONNECTED;
1179 if (scsi_pointer->Status == ILLEGAL_STATUS_BYTE)
1180 scsi_pointer->Status = lun;
1181 if (cmd->cmnd[0] == REQUEST_SENSE
1182 && scsi_pointer->Status != SAM_STAT_GOOD) {
1183 set_host_byte(cmd, DID_ERROR);
1184 } else {
1185 set_host_byte(cmd, DID_OK);
1186 scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
1187 set_status_byte(cmd, scsi_pointer->Status);
1188 }
1189 scsi_done(cmd);
1190
1191 /* We are no longer connected to a target - check to see if
1192 * there are commands waiting to be executed.
1193 */
1194 spin_unlock_irqrestore(&hostdata->lock, flags);
1195 wd33c93_execute(instance);
1196 } else {
1197 printk
1198 ("%02x:%02x:%02x: Unknown SEL_XFER_DONE phase!!---",
1199 asr, sr, phs);
1200 spin_unlock_irqrestore(&hostdata->lock, flags);
1201 }
1202 break;
1203
1204 /* Note: this interrupt will occur only after a LEVEL2 command */
1205
1206 case CSR_SDP:
1207 DB(DB_INTR, printk("SDP"))
1208 hostdata->state = S_RUNNING_LEVEL2;
1209 write_wd33c93(regs, WD_COMMAND_PHASE, 0x41);
1210 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1211 spin_unlock_irqrestore(&hostdata->lock, flags);
1212 break;
1213
1214 case CSR_XFER_DONE | PHS_MESS_OUT:
1215 case CSR_UNEXP | PHS_MESS_OUT:
1216 case CSR_SRV_REQ | PHS_MESS_OUT:
1217 DB(DB_INTR, printk("MSG_OUT="))
1218
1219 /* To get here, we've probably requested MESSAGE_OUT and have
1220 * already put the correct bytes in outgoing_msg[] and filled
1221 * in outgoing_len. We simply send them out to the SCSI bus.
1222 * Sometimes we get MESSAGE_OUT phase when we're not expecting
1223 * it - like when our SDTR message is rejected by a target. Some
1224 * targets send the REJECT before receiving all of the extended
1225 * message, and then seem to go back to MESSAGE_OUT for a byte
1226 * or two. Not sure why, or if I'm doing something wrong to
1227 * cause this to happen. Regardless, it seems that sending
1228 * NOP messages in these situations results in no harm and
1229 * makes everyone happy.
1230 */
1231 if (hostdata->outgoing_len == 0) {
1232 hostdata->outgoing_len = 1;
1233 hostdata->outgoing_msg[0] = NOP;
1234 }
1235 transfer_pio(regs, hostdata->outgoing_msg,
1236 hostdata->outgoing_len, DATA_OUT_DIR, hostdata);
1237 DB(DB_INTR, printk("%02x", hostdata->outgoing_msg[0]))
1238 hostdata->outgoing_len = 0;
1239 hostdata->state = S_CONNECTED;
1240 spin_unlock_irqrestore(&hostdata->lock, flags);
1241 break;
1242
1243 case CSR_UNEXP_DISC:
1244
1245 /* I think I've seen this after a request-sense that was in response
1246 * to an error condition, but not sure. We certainly need to do
1247 * something when we get this interrupt - the question is 'what?'.
1248 * Let's think positively, and assume some command has finished
1249 * in a legal manner (like a command that provokes a request-sense),
1250 * so we treat it as a normal command-complete-disconnect.
1251 */
1252
1253 /* Make sure that reselection is enabled at this point - it may
1254 * have been turned off for the command that just completed.
1255 */
1256
1257 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1258 if (cmd == NULL) {
1259 printk(" - Already disconnected! ");
1260 hostdata->state = S_UNCONNECTED;
1261 spin_unlock_irqrestore(&hostdata->lock, flags);
1262 return;
1263 }
1264 DB(DB_INTR, printk("UNEXP_DISC"))
1265 hostdata->connected = NULL;
1266 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1267 hostdata->state = S_UNCONNECTED;
1268 if (cmd->cmnd[0] == REQUEST_SENSE &&
1269 scsi_pointer->Status != SAM_STAT_GOOD) {
1270 set_host_byte(cmd, DID_ERROR);
1271 } else {
1272 set_host_byte(cmd, DID_OK);
1273 scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
1274 set_status_byte(cmd, scsi_pointer->Status);
1275 }
1276 scsi_done(cmd);
1277
1278 /* We are no longer connected to a target - check to see if
1279 * there are commands waiting to be executed.
1280 */
1281 /* look above for comments on scsi_done() */
1282 spin_unlock_irqrestore(&hostdata->lock, flags);
1283 wd33c93_execute(instance);
1284 break;
1285
1286 case CSR_DISC:
1287
1288 /* Make sure that reselection is enabled at this point - it may
1289 * have been turned off for the command that just completed.
1290 */
1291
1292 write_wd33c93(regs, WD_SOURCE_ID, SRCID_ER);
1293 DB(DB_INTR, printk("DISC"))
1294 if (cmd == NULL) {
1295 printk(" - Already disconnected! ");
1296 hostdata->state = S_UNCONNECTED;
1297 }
1298 switch (hostdata->state) {
1299 case S_PRE_CMP_DISC:
1300 hostdata->connected = NULL;
1301 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1302 hostdata->state = S_UNCONNECTED;
1303 DB(DB_INTR, printk(":%d", scsi_pointer->Status))
1304 if (cmd->cmnd[0] == REQUEST_SENSE
1305 && scsi_pointer->Status != SAM_STAT_GOOD) {
1306 set_host_byte(cmd, DID_ERROR);
1307 } else {
1308 set_host_byte(cmd, DID_OK);
1309 scsi_msg_to_host_byte(cmd, scsi_pointer->Message);
1310 set_status_byte(cmd, scsi_pointer->Status);
1311 }
1312 scsi_done(cmd);
1313 break;
1314 case S_PRE_TMP_DISC:
1315 case S_RUNNING_LEVEL2:
1316 cmd->host_scribble = (uchar *) hostdata->disconnected_Q;
1317 hostdata->disconnected_Q = cmd;
1318 hostdata->connected = NULL;
1319 hostdata->state = S_UNCONNECTED;
1320
1321 #ifdef PROC_STATISTICS
1322 hostdata->disc_done_cnt[cmd->device->id]++;
1323 #endif
1324
1325 break;
1326 default:
1327 printk("*** Unexpected DISCONNECT interrupt! ***");
1328 hostdata->state = S_UNCONNECTED;
1329 }
1330
1331 /* We are no longer connected to a target - check to see if
1332 * there are commands waiting to be executed.
1333 */
1334 spin_unlock_irqrestore(&hostdata->lock, flags);
1335 wd33c93_execute(instance);
1336 break;
1337
1338 case CSR_RESEL_AM:
1339 case CSR_RESEL:
1340 DB(DB_INTR, printk("RESEL%s", sr == CSR_RESEL_AM ? "_AM" : ""))
1341
1342 /* Old chips (pre -A ???) don't have advanced features and will
1343 * generate CSR_RESEL. In that case we have to extract the LUN the
1344 * hard way (see below).
1345 * First we have to make sure this reselection didn't
1346 * happen during Arbitration/Selection of some other device.
1347 * If yes, put losing command back on top of input_Q.
1348 */
1349 if (hostdata->level2 <= L2_NONE) {
1350
1351 if (hostdata->selecting) {
1352 cmd = (struct scsi_cmnd *) hostdata->selecting;
1353 hostdata->selecting = NULL;
1354 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1355 cmd->host_scribble =
1356 (uchar *) hostdata->input_Q;
1357 hostdata->input_Q = cmd;
1358 }
1359 }
1360
1361 else {
1362
1363 if (cmd) {
1364 if (phs == 0x00) {
1365 hostdata->busy[cmd->device->id] &=
1366 ~(1 << (cmd->device->lun & 0xff));
1367 cmd->host_scribble =
1368 (uchar *) hostdata->input_Q;
1369 hostdata->input_Q = cmd;
1370 } else {
1371 printk
1372 ("---%02x:%02x:%02x-TROUBLE: Intrusive ReSelect!---",
1373 asr, sr, phs);
1374 while (1)
1375 printk("\r");
1376 }
1377 }
1378
1379 }
1380
1381 /* OK - find out which device reselected us. */
1382
1383 id = read_wd33c93(regs, WD_SOURCE_ID);
1384 id &= SRCID_MASK;
1385
1386 /* and extract the lun from the ID message. (Note that we don't
1387 * bother to check for a valid message here - I guess this is
1388 * not the right way to go, but...)
1389 */
1390
1391 if (sr == CSR_RESEL_AM) {
1392 lun = read_wd33c93(regs, WD_DATA);
1393 if (hostdata->level2 < L2_RESELECT)
1394 write_wd33c93_cmd(regs, WD_CMD_NEGATE_ACK);
1395 lun &= 7;
1396 } else {
1397 /* Old chip; wait for msgin phase to pick up the LUN. */
1398 for (lun = 255; lun; lun--) {
1399 if ((asr = read_aux_stat(regs)) & ASR_INT)
1400 break;
1401 udelay(10);
1402 }
1403 if (!(asr & ASR_INT)) {
1404 printk
1405 ("wd33c93: Reselected without IDENTIFY\n");
1406 lun = 0;
1407 } else {
1408 /* Verify this is a change to MSG_IN and read the message */
1409 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1410 udelay(7);
1411 if (sr == (CSR_ABORT | PHS_MESS_IN) ||
1412 sr == (CSR_UNEXP | PHS_MESS_IN) ||
1413 sr == (CSR_SRV_REQ | PHS_MESS_IN)) {
1414 /* Got MSG_IN, grab target LUN */
1415 lun = read_1_byte(regs);
1416 /* Now we expect a 'paused with ACK asserted' int.. */
1417 asr = read_aux_stat(regs);
1418 if (!(asr & ASR_INT)) {
1419 udelay(10);
1420 asr = read_aux_stat(regs);
1421 if (!(asr & ASR_INT))
1422 printk
1423 ("wd33c93: No int after LUN on RESEL (%02x)\n",
1424 asr);
1425 }
1426 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1427 udelay(7);
1428 if (sr != CSR_MSGIN)
1429 printk
1430 ("wd33c93: Not paused with ACK on RESEL (%02x)\n",
1431 sr);
1432 lun &= 7;
1433 write_wd33c93_cmd(regs,
1434 WD_CMD_NEGATE_ACK);
1435 } else {
1436 printk
1437 ("wd33c93: Not MSG_IN on reselect (%02x)\n",
1438 sr);
1439 lun = 0;
1440 }
1441 }
1442 }
1443
1444 /* Now we look for the command that's reconnecting. */
1445
1446 cmd = (struct scsi_cmnd *) hostdata->disconnected_Q;
1447 patch = NULL;
1448 while (cmd) {
1449 if (id == cmd->device->id && lun == (u8)cmd->device->lun)
1450 break;
1451 patch = cmd;
1452 cmd = (struct scsi_cmnd *) cmd->host_scribble;
1453 }
1454
1455 /* Hmm. Couldn't find a valid command.... What to do? */
1456
1457 if (!cmd) {
1458 printk
1459 ("---TROUBLE: target %d.%d not in disconnect queue---",
1460 id, (u8)lun);
1461 spin_unlock_irqrestore(&hostdata->lock, flags);
1462 return;
1463 }
1464
1465 /* Ok, found the command - now start it up again. */
1466
1467 if (patch)
1468 patch->host_scribble = cmd->host_scribble;
1469 else
1470 hostdata->disconnected_Q =
1471 (struct scsi_cmnd *) cmd->host_scribble;
1472 hostdata->connected = cmd;
1473
1474 /* We don't need to worry about 'initialize_SCp()' or 'hostdata->busy[]'
1475 * because these things are preserved over a disconnect.
1476 * But we DO need to fix the DPD bit so it's correct for this command.
1477 */
1478
1479 if (cmd->sc_data_direction == DMA_TO_DEVICE)
1480 write_wd33c93(regs, WD_DESTINATION_ID, cmd->device->id);
1481 else
1482 write_wd33c93(regs, WD_DESTINATION_ID,
1483 cmd->device->id | DSTID_DPD);
1484 if (hostdata->level2 >= L2_RESELECT) {
1485 write_wd33c93_count(regs, 0); /* we want a DATA_PHASE interrupt */
1486 write_wd33c93(regs, WD_COMMAND_PHASE, 0x45);
1487 write_wd33c93_cmd(regs, WD_CMD_SEL_ATN_XFER);
1488 hostdata->state = S_RUNNING_LEVEL2;
1489 } else
1490 hostdata->state = S_CONNECTED;
1491
1492 spin_unlock_irqrestore(&hostdata->lock, flags);
1493 break;
1494
1495 default:
1496 printk("--UNKNOWN INTERRUPT:%02x:%02x:%02x--", asr, sr, phs);
1497 spin_unlock_irqrestore(&hostdata->lock, flags);
1498 }
1499
1500 DB(DB_INTR, printk("} "))
1501
1502 }
1503
1504 static void
reset_wd33c93(struct Scsi_Host * instance)1505 reset_wd33c93(struct Scsi_Host *instance)
1506 {
1507 struct WD33C93_hostdata *hostdata =
1508 (struct WD33C93_hostdata *) instance->hostdata;
1509 const wd33c93_regs regs = hostdata->regs;
1510 uchar sr;
1511
1512 #ifdef CONFIG_SGI_IP22
1513 {
1514 int busycount = 0;
1515 extern void sgiwd93_reset(unsigned long);
1516 /* wait 'til the chip gets some time for us */
1517 while ((read_aux_stat(regs) & ASR_BSY) && busycount++ < 100)
1518 udelay (10);
1519 /*
1520 * there are scsi devices out there, which manage to lock up
1521 * the wd33c93 in a busy condition. In this state it won't
1522 * accept the reset command. The only way to solve this is to
1523 * give the chip a hardware reset (if possible). The code below
1524 * does this for the SGI Indy, where this is possible
1525 */
1526 /* still busy ? */
1527 if (read_aux_stat(regs) & ASR_BSY)
1528 sgiwd93_reset(instance->base); /* yeah, give it the hard one */
1529 }
1530 #endif
1531
1532 write_wd33c93(regs, WD_OWN_ID, OWNID_EAF | OWNID_RAF |
1533 instance->this_id | hostdata->clock_freq);
1534 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1535 write_wd33c93(regs, WD_SYNCHRONOUS_TRANSFER,
1536 calc_sync_xfer(hostdata->default_sx_per / 4,
1537 DEFAULT_SX_OFF, 0, hostdata->sx_table));
1538 write_wd33c93(regs, WD_COMMAND, WD_CMD_RESET);
1539
1540
1541 #ifdef CONFIG_MVME147_SCSI
1542 udelay(25); /* The old wd33c93 on MVME147 needs this, at least */
1543 #endif
1544
1545 while (!(read_aux_stat(regs) & ASR_INT))
1546 ;
1547 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1548
1549 hostdata->microcode = read_wd33c93(regs, WD_CDB_1);
1550 if (sr == 0x00)
1551 hostdata->chip = C_WD33C93;
1552 else if (sr == 0x01) {
1553 write_wd33c93(regs, WD_QUEUE_TAG, 0xa5); /* any random number */
1554 sr = read_wd33c93(regs, WD_QUEUE_TAG);
1555 if (sr == 0xa5) {
1556 hostdata->chip = C_WD33C93B;
1557 write_wd33c93(regs, WD_QUEUE_TAG, 0);
1558 } else
1559 hostdata->chip = C_WD33C93A;
1560 } else
1561 hostdata->chip = C_UNKNOWN_CHIP;
1562
1563 if (hostdata->chip != C_WD33C93B) /* Fast SCSI unavailable */
1564 hostdata->fast = 0;
1565
1566 write_wd33c93(regs, WD_TIMEOUT_PERIOD, TIMEOUT_PERIOD_VALUE);
1567 write_wd33c93(regs, WD_CONTROL, CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1568 }
1569
1570 int
wd33c93_host_reset(struct scsi_cmnd * SCpnt)1571 wd33c93_host_reset(struct scsi_cmnd * SCpnt)
1572 {
1573 struct Scsi_Host *instance;
1574 struct WD33C93_hostdata *hostdata;
1575 int i;
1576
1577 instance = SCpnt->device->host;
1578 spin_lock_irq(instance->host_lock);
1579 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1580
1581 printk("scsi%d: reset. ", instance->host_no);
1582 disable_irq(instance->irq);
1583
1584 hostdata->dma_stop(instance, NULL, 0);
1585 for (i = 0; i < 8; i++) {
1586 hostdata->busy[i] = 0;
1587 hostdata->sync_xfer[i] =
1588 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1589 0, hostdata->sx_table);
1590 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1591 }
1592 hostdata->input_Q = NULL;
1593 hostdata->selecting = NULL;
1594 hostdata->connected = NULL;
1595 hostdata->disconnected_Q = NULL;
1596 hostdata->state = S_UNCONNECTED;
1597 hostdata->dma = D_DMA_OFF;
1598 hostdata->incoming_ptr = 0;
1599 hostdata->outgoing_len = 0;
1600
1601 reset_wd33c93(instance);
1602 SCpnt->result = DID_RESET << 16;
1603 enable_irq(instance->irq);
1604 spin_unlock_irq(instance->host_lock);
1605 return SUCCESS;
1606 }
1607
1608 int
wd33c93_abort(struct scsi_cmnd * cmd)1609 wd33c93_abort(struct scsi_cmnd * cmd)
1610 {
1611 struct Scsi_Host *instance;
1612 struct WD33C93_hostdata *hostdata;
1613 wd33c93_regs regs;
1614 struct scsi_cmnd *tmp, *prev;
1615
1616 disable_irq(cmd->device->host->irq);
1617
1618 instance = cmd->device->host;
1619 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1620 regs = hostdata->regs;
1621
1622 /*
1623 * Case 1 : If the command hasn't been issued yet, we simply remove it
1624 * from the input_Q.
1625 */
1626
1627 tmp = (struct scsi_cmnd *) hostdata->input_Q;
1628 prev = NULL;
1629 while (tmp) {
1630 if (tmp == cmd) {
1631 if (prev)
1632 prev->host_scribble = cmd->host_scribble;
1633 else
1634 hostdata->input_Q =
1635 (struct scsi_cmnd *) cmd->host_scribble;
1636 cmd->host_scribble = NULL;
1637 cmd->result = DID_ABORT << 16;
1638 printk
1639 ("scsi%d: Abort - removing command from input_Q. ",
1640 instance->host_no);
1641 enable_irq(cmd->device->host->irq);
1642 scsi_done(cmd);
1643 return SUCCESS;
1644 }
1645 prev = tmp;
1646 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1647 }
1648
1649 /*
1650 * Case 2 : If the command is connected, we're going to fail the abort
1651 * and let the high level SCSI driver retry at a later time or
1652 * issue a reset.
1653 *
1654 * Timeouts, and therefore aborted commands, will be highly unlikely
1655 * and handling them cleanly in this situation would make the common
1656 * case of noresets less efficient, and would pollute our code. So,
1657 * we fail.
1658 */
1659
1660 if (hostdata->connected == cmd) {
1661 uchar sr, asr;
1662 unsigned long timeout;
1663
1664 printk("scsi%d: Aborting connected command - ",
1665 instance->host_no);
1666
1667 printk("stopping DMA - ");
1668 if (hostdata->dma == D_DMA_RUNNING) {
1669 hostdata->dma_stop(instance, cmd, 0);
1670 hostdata->dma = D_DMA_OFF;
1671 }
1672
1673 printk("sending wd33c93 ABORT command - ");
1674 write_wd33c93(regs, WD_CONTROL,
1675 CTRL_IDI | CTRL_EDI | CTRL_POLLED);
1676 write_wd33c93_cmd(regs, WD_CMD_ABORT);
1677
1678 /* Now we have to attempt to flush out the FIFO... */
1679
1680 printk("flushing fifo - ");
1681 timeout = 1000000;
1682 do {
1683 asr = read_aux_stat(regs);
1684 if (asr & ASR_DBR)
1685 read_wd33c93(regs, WD_DATA);
1686 } while (!(asr & ASR_INT) && timeout-- > 0);
1687 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1688 printk
1689 ("asr=%02x, sr=%02x, %ld bytes un-transferred (timeout=%ld) - ",
1690 asr, sr, read_wd33c93_count(regs), timeout);
1691
1692 /*
1693 * Abort command processed.
1694 * Still connected.
1695 * We must disconnect.
1696 */
1697
1698 printk("sending wd33c93 DISCONNECT command - ");
1699 write_wd33c93_cmd(regs, WD_CMD_DISCONNECT);
1700
1701 timeout = 1000000;
1702 asr = read_aux_stat(regs);
1703 while ((asr & ASR_CIP) && timeout-- > 0)
1704 asr = read_aux_stat(regs);
1705 sr = read_wd33c93(regs, WD_SCSI_STATUS);
1706 printk("asr=%02x, sr=%02x.", asr, sr);
1707
1708 hostdata->busy[cmd->device->id] &= ~(1 << (cmd->device->lun & 0xff));
1709 hostdata->connected = NULL;
1710 hostdata->state = S_UNCONNECTED;
1711 cmd->result = DID_ABORT << 16;
1712
1713 /* sti();*/
1714 wd33c93_execute(instance);
1715
1716 enable_irq(cmd->device->host->irq);
1717 scsi_done(cmd);
1718 return SUCCESS;
1719 }
1720
1721 /*
1722 * Case 3: If the command is currently disconnected from the bus,
1723 * we're not going to expend much effort here: Let's just return
1724 * an ABORT_SNOOZE and hope for the best...
1725 */
1726
1727 tmp = (struct scsi_cmnd *) hostdata->disconnected_Q;
1728 while (tmp) {
1729 if (tmp == cmd) {
1730 printk
1731 ("scsi%d: Abort - command found on disconnected_Q - ",
1732 instance->host_no);
1733 printk("Abort SNOOZE. ");
1734 enable_irq(cmd->device->host->irq);
1735 return FAILED;
1736 }
1737 tmp = (struct scsi_cmnd *) tmp->host_scribble;
1738 }
1739
1740 /*
1741 * Case 4 : If we reached this point, the command was not found in any of
1742 * the queues.
1743 *
1744 * We probably reached this point because of an unlikely race condition
1745 * between the command completing successfully and the abortion code,
1746 * so we won't panic, but we will notify the user in case something really
1747 * broke.
1748 */
1749
1750 /* sti();*/
1751 wd33c93_execute(instance);
1752
1753 enable_irq(cmd->device->host->irq);
1754 printk("scsi%d: warning : SCSI command probably completed successfully"
1755 " before abortion. ", instance->host_no);
1756 return FAILED;
1757 }
1758
1759 #define MAX_WD33C93_HOSTS 4
1760 #define MAX_SETUP_ARGS ARRAY_SIZE(setup_args)
1761 #define SETUP_BUFFER_SIZE 200
1762 static char setup_buffer[SETUP_BUFFER_SIZE];
1763 static char setup_used[MAX_SETUP_ARGS];
1764 static int done_setup = 0;
1765
1766 static int
wd33c93_setup(char * str)1767 wd33c93_setup(char *str)
1768 {
1769 int i;
1770 char *p1, *p2;
1771
1772 /* The kernel does some processing of the command-line before calling
1773 * this function: If it begins with any decimal or hex number arguments,
1774 * ints[0] = how many numbers found and ints[1] through [n] are the values
1775 * themselves. str points to where the non-numeric arguments (if any)
1776 * start: We do our own parsing of those. We construct synthetic 'nosync'
1777 * keywords out of numeric args (to maintain compatibility with older
1778 * versions) and then add the rest of the arguments.
1779 */
1780
1781 p1 = setup_buffer;
1782 *p1 = '\0';
1783 if (str)
1784 strncpy(p1, str, SETUP_BUFFER_SIZE - strlen(setup_buffer));
1785 setup_buffer[SETUP_BUFFER_SIZE - 1] = '\0';
1786 p1 = setup_buffer;
1787 i = 0;
1788 while (*p1 && (i < MAX_SETUP_ARGS)) {
1789 p2 = strchr(p1, ',');
1790 if (p2) {
1791 *p2 = '\0';
1792 if (p1 != p2)
1793 setup_args[i] = p1;
1794 p1 = p2 + 1;
1795 i++;
1796 } else {
1797 setup_args[i] = p1;
1798 break;
1799 }
1800 }
1801 for (i = 0; i < MAX_SETUP_ARGS; i++)
1802 setup_used[i] = 0;
1803 done_setup = 1;
1804
1805 return 1;
1806 }
1807 __setup("wd33c93=", wd33c93_setup);
1808
1809 /* check_setup_args() returns index if key found, 0 if not
1810 */
1811 static int
check_setup_args(char * key,int * flags,int * val,char * buf)1812 check_setup_args(char *key, int *flags, int *val, char *buf)
1813 {
1814 int x;
1815 char *cp;
1816
1817 for (x = 0; x < MAX_SETUP_ARGS; x++) {
1818 if (setup_used[x])
1819 continue;
1820 if (!strncmp(setup_args[x], key, strlen(key)))
1821 break;
1822 if (!strncmp(setup_args[x], "next", strlen("next")))
1823 return 0;
1824 }
1825 if (x == MAX_SETUP_ARGS)
1826 return 0;
1827 setup_used[x] = 1;
1828 cp = setup_args[x] + strlen(key);
1829 *val = -1;
1830 if (*cp != ':')
1831 return ++x;
1832 cp++;
1833 if ((*cp >= '0') && (*cp <= '9')) {
1834 *val = simple_strtoul(cp, NULL, 0);
1835 }
1836 return ++x;
1837 }
1838
1839 /*
1840 * Calculate internal data-transfer-clock cycle from input-clock
1841 * frequency (/MHz) and fill 'sx_table'.
1842 *
1843 * The original driver used to rely on a fixed sx_table, containing periods
1844 * for (only) the lower limits of the respective input-clock-frequency ranges
1845 * (8-10/12-15/16-20 MHz). Although it seems, that no problems occurred with
1846 * this setting so far, it might be desirable to adjust the transfer periods
1847 * closer to the really attached, possibly 25% higher, input-clock, since
1848 * - the wd33c93 may really use a significant shorter period, than it has
1849 * negotiated (eg. thrashing the target, which expects 4/8MHz, with 5/10MHz
1850 * instead).
1851 * - the wd33c93 may ask the target for a lower transfer rate, than the target
1852 * is capable of (eg. negotiating for an assumed minimum of 252ns instead of
1853 * possible 200ns, which indeed shows up in tests as an approx. 10% lower
1854 * transfer rate).
1855 */
1856 static inline unsigned int
round_4(unsigned int x)1857 round_4(unsigned int x)
1858 {
1859 switch (x & 3) {
1860 case 1: --x;
1861 break;
1862 case 2: ++x;
1863 fallthrough;
1864 case 3: ++x;
1865 }
1866 return x;
1867 }
1868
1869 static void
calc_sx_table(unsigned int mhz,struct sx_period sx_table[9])1870 calc_sx_table(unsigned int mhz, struct sx_period sx_table[9])
1871 {
1872 unsigned int d, i;
1873 if (mhz < 11)
1874 d = 2; /* divisor for 8-10 MHz input-clock */
1875 else if (mhz < 16)
1876 d = 3; /* divisor for 12-15 MHz input-clock */
1877 else
1878 d = 4; /* divisor for 16-20 MHz input-clock */
1879
1880 d = (100000 * d) / 2 / mhz; /* 100 x DTCC / nanosec */
1881
1882 sx_table[0].period_ns = 1;
1883 sx_table[0].reg_value = 0x20;
1884 for (i = 1; i < 8; i++) {
1885 sx_table[i].period_ns = round_4((i+1)*d / 100);
1886 sx_table[i].reg_value = (i+1)*0x10;
1887 }
1888 sx_table[7].reg_value = 0;
1889 sx_table[8].period_ns = 0;
1890 sx_table[8].reg_value = 0;
1891 }
1892
1893 /*
1894 * check and, maybe, map an init- or "clock:"- argument.
1895 */
1896 static uchar
set_clk_freq(int freq,int * mhz)1897 set_clk_freq(int freq, int *mhz)
1898 {
1899 int x = freq;
1900 if (WD33C93_FS_8_10 == freq)
1901 freq = 8;
1902 else if (WD33C93_FS_12_15 == freq)
1903 freq = 12;
1904 else if (WD33C93_FS_16_20 == freq)
1905 freq = 16;
1906 else if (freq > 7 && freq < 11)
1907 x = WD33C93_FS_8_10;
1908 else if (freq > 11 && freq < 16)
1909 x = WD33C93_FS_12_15;
1910 else if (freq > 15 && freq < 21)
1911 x = WD33C93_FS_16_20;
1912 else {
1913 /* Hmm, wouldn't it be safer to assume highest freq here? */
1914 x = WD33C93_FS_8_10;
1915 freq = 8;
1916 }
1917 *mhz = freq;
1918 return x;
1919 }
1920
1921 /*
1922 * to be used with the resync: fast: ... options
1923 */
set_resync(struct WD33C93_hostdata * hd,int mask)1924 static inline void set_resync ( struct WD33C93_hostdata *hd, int mask )
1925 {
1926 int i;
1927 for (i = 0; i < 8; i++)
1928 if (mask & (1 << i))
1929 hd->sync_stat[i] = SS_UNSET;
1930 }
1931
1932 void
wd33c93_init(struct Scsi_Host * instance,const wd33c93_regs regs,dma_setup_t setup,dma_stop_t stop,int clock_freq)1933 wd33c93_init(struct Scsi_Host *instance, const wd33c93_regs regs,
1934 dma_setup_t setup, dma_stop_t stop, int clock_freq)
1935 {
1936 struct WD33C93_hostdata *hostdata;
1937 int i;
1938 int flags;
1939 int val;
1940 char buf[32];
1941
1942 if (!done_setup && setup_strings)
1943 wd33c93_setup(setup_strings);
1944
1945 hostdata = (struct WD33C93_hostdata *) instance->hostdata;
1946
1947 hostdata->regs = regs;
1948 hostdata->clock_freq = set_clk_freq(clock_freq, &i);
1949 calc_sx_table(i, hostdata->sx_table);
1950 hostdata->dma_setup = setup;
1951 hostdata->dma_stop = stop;
1952 hostdata->dma_bounce_buffer = NULL;
1953 hostdata->dma_bounce_len = 0;
1954 for (i = 0; i < 8; i++) {
1955 hostdata->busy[i] = 0;
1956 hostdata->sync_xfer[i] =
1957 calc_sync_xfer(DEFAULT_SX_PER / 4, DEFAULT_SX_OFF,
1958 0, hostdata->sx_table);
1959 hostdata->sync_stat[i] = SS_UNSET; /* using default sync values */
1960 #ifdef PROC_STATISTICS
1961 hostdata->cmd_cnt[i] = 0;
1962 hostdata->disc_allowed_cnt[i] = 0;
1963 hostdata->disc_done_cnt[i] = 0;
1964 #endif
1965 }
1966 hostdata->input_Q = NULL;
1967 hostdata->selecting = NULL;
1968 hostdata->connected = NULL;
1969 hostdata->disconnected_Q = NULL;
1970 hostdata->state = S_UNCONNECTED;
1971 hostdata->dma = D_DMA_OFF;
1972 hostdata->level2 = L2_BASIC;
1973 hostdata->disconnect = DIS_ADAPTIVE;
1974 hostdata->args = DEBUG_DEFAULTS;
1975 hostdata->incoming_ptr = 0;
1976 hostdata->outgoing_len = 0;
1977 hostdata->default_sx_per = DEFAULT_SX_PER;
1978 hostdata->no_dma = 0; /* default is DMA enabled */
1979
1980 #ifdef PROC_INTERFACE
1981 hostdata->proc = PR_VERSION | PR_INFO | PR_STATISTICS |
1982 PR_CONNECTED | PR_INPUTQ | PR_DISCQ | PR_STOP;
1983 #ifdef PROC_STATISTICS
1984 hostdata->dma_cnt = 0;
1985 hostdata->pio_cnt = 0;
1986 hostdata->int_cnt = 0;
1987 #endif
1988 #endif
1989
1990 if (check_setup_args("clock", &flags, &val, buf)) {
1991 hostdata->clock_freq = set_clk_freq(val, &val);
1992 calc_sx_table(val, hostdata->sx_table);
1993 }
1994
1995 if (check_setup_args("nosync", &flags, &val, buf))
1996 hostdata->no_sync = val;
1997
1998 if (check_setup_args("nodma", &flags, &val, buf))
1999 hostdata->no_dma = (val == -1) ? 1 : val;
2000
2001 if (check_setup_args("period", &flags, &val, buf))
2002 hostdata->default_sx_per =
2003 hostdata->sx_table[round_period((unsigned int) val,
2004 hostdata->sx_table)].period_ns;
2005
2006 if (check_setup_args("disconnect", &flags, &val, buf)) {
2007 if ((val >= DIS_NEVER) && (val <= DIS_ALWAYS))
2008 hostdata->disconnect = val;
2009 else
2010 hostdata->disconnect = DIS_ADAPTIVE;
2011 }
2012
2013 if (check_setup_args("level2", &flags, &val, buf))
2014 hostdata->level2 = val;
2015
2016 if (check_setup_args("debug", &flags, &val, buf))
2017 hostdata->args = val & DB_MASK;
2018
2019 if (check_setup_args("burst", &flags, &val, buf))
2020 hostdata->dma_mode = val ? CTRL_BURST:CTRL_DMA;
2021
2022 if (WD33C93_FS_16_20 == hostdata->clock_freq /* divisor 4 */
2023 && check_setup_args("fast", &flags, &val, buf))
2024 hostdata->fast = !!val;
2025
2026 if ((i = check_setup_args("next", &flags, &val, buf))) {
2027 while (i)
2028 setup_used[--i] = 1;
2029 }
2030 #ifdef PROC_INTERFACE
2031 if (check_setup_args("proc", &flags, &val, buf))
2032 hostdata->proc = val;
2033 #endif
2034
2035 spin_lock_irq(&hostdata->lock);
2036 reset_wd33c93(instance);
2037 spin_unlock_irq(&hostdata->lock);
2038
2039 printk("wd33c93-%d: chip=%s/%d no_sync=0x%x no_dma=%d",
2040 instance->host_no,
2041 (hostdata->chip == C_WD33C93) ? "WD33c93" : (hostdata->chip ==
2042 C_WD33C93A) ?
2043 "WD33c93A" : (hostdata->chip ==
2044 C_WD33C93B) ? "WD33c93B" : "unknown",
2045 hostdata->microcode, hostdata->no_sync, hostdata->no_dma);
2046 #ifdef DEBUGGING_ON
2047 printk(" debug_flags=0x%02x\n", hostdata->args);
2048 #else
2049 printk(" debugging=OFF\n");
2050 #endif
2051 printk(" setup_args=");
2052 for (i = 0; i < MAX_SETUP_ARGS; i++)
2053 printk("%s,", setup_args[i]);
2054 printk("\n");
2055 printk(" Version %s - %s\n", WD33C93_VERSION, WD33C93_DATE);
2056 }
2057
wd33c93_write_info(struct Scsi_Host * instance,char * buf,int len)2058 int wd33c93_write_info(struct Scsi_Host *instance, char *buf, int len)
2059 {
2060 #ifdef PROC_INTERFACE
2061 char *bp;
2062 struct WD33C93_hostdata *hd;
2063 int x;
2064
2065 hd = (struct WD33C93_hostdata *) instance->hostdata;
2066
2067 /* We accept the following
2068 * keywords (same format as command-line, but arguments are not optional):
2069 * debug
2070 * disconnect
2071 * period
2072 * resync
2073 * proc
2074 * nodma
2075 * level2
2076 * burst
2077 * fast
2078 * nosync
2079 */
2080
2081 buf[len] = '\0';
2082 for (bp = buf; *bp; ) {
2083 while (',' == *bp || ' ' == *bp)
2084 ++bp;
2085 if (!strncmp(bp, "debug:", 6)) {
2086 hd->args = simple_strtoul(bp+6, &bp, 0) & DB_MASK;
2087 } else if (!strncmp(bp, "disconnect:", 11)) {
2088 x = simple_strtoul(bp+11, &bp, 0);
2089 if (x < DIS_NEVER || x > DIS_ALWAYS)
2090 x = DIS_ADAPTIVE;
2091 hd->disconnect = x;
2092 } else if (!strncmp(bp, "period:", 7)) {
2093 x = simple_strtoul(bp+7, &bp, 0);
2094 hd->default_sx_per =
2095 hd->sx_table[round_period((unsigned int) x,
2096 hd->sx_table)].period_ns;
2097 } else if (!strncmp(bp, "resync:", 7)) {
2098 set_resync(hd, (int)simple_strtoul(bp+7, &bp, 0));
2099 } else if (!strncmp(bp, "proc:", 5)) {
2100 hd->proc = simple_strtoul(bp+5, &bp, 0);
2101 } else if (!strncmp(bp, "nodma:", 6)) {
2102 hd->no_dma = simple_strtoul(bp+6, &bp, 0);
2103 } else if (!strncmp(bp, "level2:", 7)) {
2104 hd->level2 = simple_strtoul(bp+7, &bp, 0);
2105 } else if (!strncmp(bp, "burst:", 6)) {
2106 hd->dma_mode =
2107 simple_strtol(bp+6, &bp, 0) ? CTRL_BURST:CTRL_DMA;
2108 } else if (!strncmp(bp, "fast:", 5)) {
2109 x = !!simple_strtol(bp+5, &bp, 0);
2110 if (x != hd->fast)
2111 set_resync(hd, 0xff);
2112 hd->fast = x;
2113 } else if (!strncmp(bp, "nosync:", 7)) {
2114 x = simple_strtoul(bp+7, &bp, 0);
2115 set_resync(hd, x ^ hd->no_sync);
2116 hd->no_sync = x;
2117 } else {
2118 break; /* unknown keyword,syntax-error,... */
2119 }
2120 }
2121 return len;
2122 #else
2123 return 0;
2124 #endif
2125 }
2126
2127 int
wd33c93_show_info(struct seq_file * m,struct Scsi_Host * instance)2128 wd33c93_show_info(struct seq_file *m, struct Scsi_Host *instance)
2129 {
2130 #ifdef PROC_INTERFACE
2131 struct WD33C93_hostdata *hd;
2132 struct scsi_cmnd *cmd;
2133 int x;
2134
2135 hd = (struct WD33C93_hostdata *) instance->hostdata;
2136
2137 spin_lock_irq(&hd->lock);
2138 if (hd->proc & PR_VERSION)
2139 seq_printf(m, "\nVersion %s - %s.",
2140 WD33C93_VERSION, WD33C93_DATE);
2141
2142 if (hd->proc & PR_INFO) {
2143 seq_printf(m, "\nclock_freq=%02x no_sync=%02x no_dma=%d"
2144 " dma_mode=%02x fast=%d",
2145 hd->clock_freq, hd->no_sync, hd->no_dma, hd->dma_mode, hd->fast);
2146 seq_puts(m, "\nsync_xfer[] = ");
2147 for (x = 0; x < 7; x++)
2148 seq_printf(m, "\t%02x", hd->sync_xfer[x]);
2149 seq_puts(m, "\nsync_stat[] = ");
2150 for (x = 0; x < 7; x++)
2151 seq_printf(m, "\t%02x", hd->sync_stat[x]);
2152 }
2153 #ifdef PROC_STATISTICS
2154 if (hd->proc & PR_STATISTICS) {
2155 seq_puts(m, "\ncommands issued: ");
2156 for (x = 0; x < 7; x++)
2157 seq_printf(m, "\t%ld", hd->cmd_cnt[x]);
2158 seq_puts(m, "\ndisconnects allowed:");
2159 for (x = 0; x < 7; x++)
2160 seq_printf(m, "\t%ld", hd->disc_allowed_cnt[x]);
2161 seq_puts(m, "\ndisconnects done: ");
2162 for (x = 0; x < 7; x++)
2163 seq_printf(m, "\t%ld", hd->disc_done_cnt[x]);
2164 seq_printf(m,
2165 "\ninterrupts: %ld, DATA_PHASE ints: %ld DMA, %ld PIO",
2166 hd->int_cnt, hd->dma_cnt, hd->pio_cnt);
2167 }
2168 #endif
2169 if (hd->proc & PR_CONNECTED) {
2170 seq_puts(m, "\nconnected: ");
2171 if (hd->connected) {
2172 cmd = (struct scsi_cmnd *) hd->connected;
2173 seq_printf(m, " %d:%llu(%02x)",
2174 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2175 }
2176 }
2177 if (hd->proc & PR_INPUTQ) {
2178 seq_puts(m, "\ninput_Q: ");
2179 cmd = (struct scsi_cmnd *) hd->input_Q;
2180 while (cmd) {
2181 seq_printf(m, " %d:%llu(%02x)",
2182 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2183 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2184 }
2185 }
2186 if (hd->proc & PR_DISCQ) {
2187 seq_puts(m, "\ndisconnected_Q:");
2188 cmd = (struct scsi_cmnd *) hd->disconnected_Q;
2189 while (cmd) {
2190 seq_printf(m, " %d:%llu(%02x)",
2191 cmd->device->id, cmd->device->lun, cmd->cmnd[0]);
2192 cmd = (struct scsi_cmnd *) cmd->host_scribble;
2193 }
2194 }
2195 seq_putc(m, '\n');
2196 spin_unlock_irq(&hd->lock);
2197 #endif /* PROC_INTERFACE */
2198 return 0;
2199 }
2200
2201 EXPORT_SYMBOL(wd33c93_host_reset);
2202 EXPORT_SYMBOL(wd33c93_init);
2203 EXPORT_SYMBOL(wd33c93_abort);
2204 EXPORT_SYMBOL(wd33c93_queuecommand);
2205 EXPORT_SYMBOL(wd33c93_intr);
2206 EXPORT_SYMBOL(wd33c93_show_info);
2207 EXPORT_SYMBOL(wd33c93_write_info);
2208