1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <asm/io.h>
31
32
33 struct resource ioport_resource = {
34 .name = "PCI IO",
35 .start = 0,
36 .end = IO_SPACE_LIMIT,
37 .flags = IORESOURCE_IO,
38 };
39 EXPORT_SYMBOL(ioport_resource);
40
41 struct resource iomem_resource = {
42 .name = "PCI mem",
43 .start = 0,
44 .end = -1,
45 .flags = IORESOURCE_MEM,
46 };
47 EXPORT_SYMBOL(iomem_resource);
48
49 /* constraints to be met while allocating resources */
50 struct resource_constraint {
51 resource_size_t min, max, align;
52 resource_size_t (*alignf)(void *, const struct resource *,
53 resource_size_t, resource_size_t);
54 void *alignf_data;
55 };
56
57 static DEFINE_RWLOCK(resource_lock);
58
next_resource(struct resource * p)59 static struct resource *next_resource(struct resource *p)
60 {
61 if (p->child)
62 return p->child;
63 while (!p->sibling && p->parent)
64 p = p->parent;
65 return p->sibling;
66 }
67
next_resource_skip_children(struct resource * p)68 static struct resource *next_resource_skip_children(struct resource *p)
69 {
70 while (!p->sibling && p->parent)
71 p = p->parent;
72 return p->sibling;
73 }
74
75 #define for_each_resource(_root, _p, _skip_children) \
76 for ((_p) = (_root)->child; (_p); \
77 (_p) = (_skip_children) ? next_resource_skip_children(_p) : \
78 next_resource(_p))
79
r_next(struct seq_file * m,void * v,loff_t * pos)80 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
81 {
82 struct resource *p = v;
83 (*pos)++;
84 return (void *)next_resource(p);
85 }
86
87 #ifdef CONFIG_PROC_FS
88
89 enum { MAX_IORES_LEVEL = 5 };
90
r_start(struct seq_file * m,loff_t * pos)91 static void *r_start(struct seq_file *m, loff_t *pos)
92 __acquires(resource_lock)
93 {
94 struct resource *p = pde_data(file_inode(m->file));
95 loff_t l = 0;
96 read_lock(&resource_lock);
97 for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
98 ;
99 return p;
100 }
101
r_stop(struct seq_file * m,void * v)102 static void r_stop(struct seq_file *m, void *v)
103 __releases(resource_lock)
104 {
105 read_unlock(&resource_lock);
106 }
107
r_show(struct seq_file * m,void * v)108 static int r_show(struct seq_file *m, void *v)
109 {
110 struct resource *root = pde_data(file_inode(m->file));
111 struct resource *r = v, *p;
112 unsigned long long start, end;
113 int width = root->end < 0x10000 ? 4 : 8;
114 int depth;
115
116 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
117 if (p->parent == root)
118 break;
119
120 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
121 start = r->start;
122 end = r->end;
123 } else {
124 start = end = 0;
125 }
126
127 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
128 depth * 2, "",
129 width, start,
130 width, end,
131 r->name ? r->name : "<BAD>");
132 return 0;
133 }
134
135 static const struct seq_operations resource_op = {
136 .start = r_start,
137 .next = r_next,
138 .stop = r_stop,
139 .show = r_show,
140 };
141
ioresources_init(void)142 static int __init ioresources_init(void)
143 {
144 proc_create_seq_data("ioports", 0, NULL, &resource_op,
145 &ioport_resource);
146 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
147 return 0;
148 }
149 __initcall(ioresources_init);
150
151 #endif /* CONFIG_PROC_FS */
152
free_resource(struct resource * res)153 static void free_resource(struct resource *res)
154 {
155 /**
156 * If the resource was allocated using memblock early during boot
157 * we'll leak it here: we can only return full pages back to the
158 * buddy and trying to be smart and reusing them eventually in
159 * alloc_resource() overcomplicates resource handling.
160 */
161 if (res && PageSlab(virt_to_head_page(res)))
162 kfree(res);
163 }
164
alloc_resource(gfp_t flags)165 static struct resource *alloc_resource(gfp_t flags)
166 {
167 return kzalloc(sizeof(struct resource), flags);
168 }
169
170 /* Return the conflict entry if you can't request it */
__request_resource(struct resource * root,struct resource * new)171 static struct resource * __request_resource(struct resource *root, struct resource *new)
172 {
173 resource_size_t start = new->start;
174 resource_size_t end = new->end;
175 struct resource *tmp, **p;
176
177 if (end < start)
178 return root;
179 if (start < root->start)
180 return root;
181 if (end > root->end)
182 return root;
183 p = &root->child;
184 for (;;) {
185 tmp = *p;
186 if (!tmp || tmp->start > end) {
187 new->sibling = tmp;
188 *p = new;
189 new->parent = root;
190 return NULL;
191 }
192 p = &tmp->sibling;
193 if (tmp->end < start)
194 continue;
195 return tmp;
196 }
197 }
198
__release_resource(struct resource * old,bool release_child)199 static int __release_resource(struct resource *old, bool release_child)
200 {
201 struct resource *tmp, **p, *chd;
202
203 p = &old->parent->child;
204 for (;;) {
205 tmp = *p;
206 if (!tmp)
207 break;
208 if (tmp == old) {
209 if (release_child || !(tmp->child)) {
210 *p = tmp->sibling;
211 } else {
212 for (chd = tmp->child;; chd = chd->sibling) {
213 chd->parent = tmp->parent;
214 if (!(chd->sibling))
215 break;
216 }
217 *p = tmp->child;
218 chd->sibling = tmp->sibling;
219 }
220 old->parent = NULL;
221 return 0;
222 }
223 p = &tmp->sibling;
224 }
225 return -EINVAL;
226 }
227
__release_child_resources(struct resource * r)228 static void __release_child_resources(struct resource *r)
229 {
230 struct resource *tmp, *p;
231 resource_size_t size;
232
233 p = r->child;
234 r->child = NULL;
235 while (p) {
236 tmp = p;
237 p = p->sibling;
238
239 tmp->parent = NULL;
240 tmp->sibling = NULL;
241 __release_child_resources(tmp);
242
243 printk(KERN_DEBUG "release child resource %pR\n", tmp);
244 /* need to restore size, and keep flags */
245 size = resource_size(tmp);
246 tmp->start = 0;
247 tmp->end = size - 1;
248 }
249 }
250
release_child_resources(struct resource * r)251 void release_child_resources(struct resource *r)
252 {
253 write_lock(&resource_lock);
254 __release_child_resources(r);
255 write_unlock(&resource_lock);
256 }
257
258 /**
259 * request_resource_conflict - request and reserve an I/O or memory resource
260 * @root: root resource descriptor
261 * @new: resource descriptor desired by caller
262 *
263 * Returns 0 for success, conflict resource on error.
264 */
request_resource_conflict(struct resource * root,struct resource * new)265 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
266 {
267 struct resource *conflict;
268
269 write_lock(&resource_lock);
270 conflict = __request_resource(root, new);
271 write_unlock(&resource_lock);
272 return conflict;
273 }
274
275 /**
276 * request_resource - request and reserve an I/O or memory resource
277 * @root: root resource descriptor
278 * @new: resource descriptor desired by caller
279 *
280 * Returns 0 for success, negative error code on error.
281 */
request_resource(struct resource * root,struct resource * new)282 int request_resource(struct resource *root, struct resource *new)
283 {
284 struct resource *conflict;
285
286 conflict = request_resource_conflict(root, new);
287 return conflict ? -EBUSY : 0;
288 }
289
290 EXPORT_SYMBOL(request_resource);
291
292 /**
293 * release_resource - release a previously reserved resource
294 * @old: resource pointer
295 */
release_resource(struct resource * old)296 int release_resource(struct resource *old)
297 {
298 int retval;
299
300 write_lock(&resource_lock);
301 retval = __release_resource(old, true);
302 write_unlock(&resource_lock);
303 return retval;
304 }
305
306 EXPORT_SYMBOL(release_resource);
307
308 /**
309 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
310 * [@start..@end].
311 *
312 * If a resource is found, returns 0 and @*res is overwritten with the part
313 * of the resource that's within [@start..@end]; if none is found, returns
314 * -ENODEV. Returns -EINVAL for invalid parameters.
315 *
316 * @start: start address of the resource searched for
317 * @end: end address of same resource
318 * @flags: flags which the resource must have
319 * @desc: descriptor the resource must have
320 * @res: return ptr, if resource found
321 *
322 * The caller must specify @start, @end, @flags, and @desc
323 * (which may be IORES_DESC_NONE).
324 */
find_next_iomem_res(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,struct resource * res)325 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
326 unsigned long flags, unsigned long desc,
327 struct resource *res)
328 {
329 struct resource *p;
330
331 if (!res)
332 return -EINVAL;
333
334 if (start >= end)
335 return -EINVAL;
336
337 read_lock(&resource_lock);
338
339 for (p = iomem_resource.child; p; p = next_resource(p)) {
340 /* If we passed the resource we are looking for, stop */
341 if (p->start > end) {
342 p = NULL;
343 break;
344 }
345
346 /* Skip until we find a range that matches what we look for */
347 if (p->end < start)
348 continue;
349
350 if ((p->flags & flags) != flags)
351 continue;
352 if ((desc != IORES_DESC_NONE) && (desc != p->desc))
353 continue;
354
355 /* Found a match, break */
356 break;
357 }
358
359 if (p) {
360 /* copy data */
361 *res = (struct resource) {
362 .start = max(start, p->start),
363 .end = min(end, p->end),
364 .flags = p->flags,
365 .desc = p->desc,
366 .parent = p->parent,
367 };
368 }
369
370 read_unlock(&resource_lock);
371 return p ? 0 : -ENODEV;
372 }
373
__walk_iomem_res_desc(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,void * arg,int (* func)(struct resource *,void *))374 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
375 unsigned long flags, unsigned long desc,
376 void *arg,
377 int (*func)(struct resource *, void *))
378 {
379 struct resource res;
380 int ret = -EINVAL;
381
382 while (start < end &&
383 !find_next_iomem_res(start, end, flags, desc, &res)) {
384 ret = (*func)(&res, arg);
385 if (ret)
386 break;
387
388 start = res.end + 1;
389 }
390
391 return ret;
392 }
393
394 /**
395 * walk_iomem_res_desc - Walks through iomem resources and calls func()
396 * with matching resource ranges.
397 * *
398 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
399 * @flags: I/O resource flags
400 * @start: start addr
401 * @end: end addr
402 * @arg: function argument for the callback @func
403 * @func: callback function that is called for each qualifying resource area
404 *
405 * All the memory ranges which overlap start,end and also match flags and
406 * desc are valid candidates.
407 *
408 * NOTE: For a new descriptor search, define a new IORES_DESC in
409 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
410 */
walk_iomem_res_desc(unsigned long desc,unsigned long flags,u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))411 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
412 u64 end, void *arg, int (*func)(struct resource *, void *))
413 {
414 return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
415 }
416 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
417
418 /*
419 * This function calls the @func callback against all memory ranges of type
420 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
421 * Now, this function is only for System RAM, it deals with full ranges and
422 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
423 * ranges.
424 */
walk_system_ram_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))425 int walk_system_ram_res(u64 start, u64 end, void *arg,
426 int (*func)(struct resource *, void *))
427 {
428 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
429
430 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
431 func);
432 }
433
434 /*
435 * This function calls the @func callback against all memory ranges, which
436 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
437 */
walk_mem_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))438 int walk_mem_res(u64 start, u64 end, void *arg,
439 int (*func)(struct resource *, void *))
440 {
441 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
442
443 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
444 func);
445 }
446
447 /*
448 * This function calls the @func callback against all memory ranges of type
449 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
450 * It is to be used only for System RAM.
451 */
walk_system_ram_range(unsigned long start_pfn,unsigned long nr_pages,void * arg,int (* func)(unsigned long,unsigned long,void *))452 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
453 void *arg, int (*func)(unsigned long, unsigned long, void *))
454 {
455 resource_size_t start, end;
456 unsigned long flags;
457 struct resource res;
458 unsigned long pfn, end_pfn;
459 int ret = -EINVAL;
460
461 start = (u64) start_pfn << PAGE_SHIFT;
462 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
463 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
464 while (start < end &&
465 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
466 pfn = PFN_UP(res.start);
467 end_pfn = PFN_DOWN(res.end + 1);
468 if (end_pfn > pfn)
469 ret = (*func)(pfn, end_pfn - pfn, arg);
470 if (ret)
471 break;
472 start = res.end + 1;
473 }
474 return ret;
475 }
476
__is_ram(unsigned long pfn,unsigned long nr_pages,void * arg)477 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
478 {
479 return 1;
480 }
481
482 /*
483 * This generic page_is_ram() returns true if specified address is
484 * registered as System RAM in iomem_resource list.
485 */
page_is_ram(unsigned long pfn)486 int __weak page_is_ram(unsigned long pfn)
487 {
488 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
489 }
490 EXPORT_SYMBOL_GPL(page_is_ram);
491
__region_intersects(resource_size_t start,size_t size,unsigned long flags,unsigned long desc)492 static int __region_intersects(resource_size_t start, size_t size,
493 unsigned long flags, unsigned long desc)
494 {
495 struct resource res;
496 int type = 0; int other = 0;
497 struct resource *p;
498
499 res.start = start;
500 res.end = start + size - 1;
501
502 for (p = iomem_resource.child; p ; p = p->sibling) {
503 bool is_type = (((p->flags & flags) == flags) &&
504 ((desc == IORES_DESC_NONE) ||
505 (desc == p->desc)));
506
507 if (resource_overlaps(p, &res))
508 is_type ? type++ : other++;
509 }
510
511 if (type == 0)
512 return REGION_DISJOINT;
513
514 if (other == 0)
515 return REGION_INTERSECTS;
516
517 return REGION_MIXED;
518 }
519
520 /**
521 * region_intersects() - determine intersection of region with known resources
522 * @start: region start address
523 * @size: size of region
524 * @flags: flags of resource (in iomem_resource)
525 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
526 *
527 * Check if the specified region partially overlaps or fully eclipses a
528 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
529 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
530 * return REGION_MIXED if the region overlaps @flags/@desc and another
531 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
532 * and no other defined resource. Note that REGION_INTERSECTS is also
533 * returned in the case when the specified region overlaps RAM and undefined
534 * memory holes.
535 *
536 * region_intersect() is used by memory remapping functions to ensure
537 * the user is not remapping RAM and is a vast speed up over walking
538 * through the resource table page by page.
539 */
region_intersects(resource_size_t start,size_t size,unsigned long flags,unsigned long desc)540 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
541 unsigned long desc)
542 {
543 int ret;
544
545 read_lock(&resource_lock);
546 ret = __region_intersects(start, size, flags, desc);
547 read_unlock(&resource_lock);
548
549 return ret;
550 }
551 EXPORT_SYMBOL_GPL(region_intersects);
552
arch_remove_reservations(struct resource * avail)553 void __weak arch_remove_reservations(struct resource *avail)
554 {
555 }
556
simple_align_resource(void * data,const struct resource * avail,resource_size_t size,resource_size_t align)557 static resource_size_t simple_align_resource(void *data,
558 const struct resource *avail,
559 resource_size_t size,
560 resource_size_t align)
561 {
562 return avail->start;
563 }
564
resource_clip(struct resource * res,resource_size_t min,resource_size_t max)565 static void resource_clip(struct resource *res, resource_size_t min,
566 resource_size_t max)
567 {
568 if (res->start < min)
569 res->start = min;
570 if (res->end > max)
571 res->end = max;
572 }
573
574 /*
575 * Find empty slot in the resource tree with the given range and
576 * alignment constraints
577 */
__find_resource(struct resource * root,struct resource * old,struct resource * new,resource_size_t size,struct resource_constraint * constraint)578 static int __find_resource(struct resource *root, struct resource *old,
579 struct resource *new,
580 resource_size_t size,
581 struct resource_constraint *constraint)
582 {
583 struct resource *this = root->child;
584 struct resource tmp = *new, avail, alloc;
585
586 tmp.start = root->start;
587 /*
588 * Skip past an allocated resource that starts at 0, since the assignment
589 * of this->start - 1 to tmp->end below would cause an underflow.
590 */
591 if (this && this->start == root->start) {
592 tmp.start = (this == old) ? old->start : this->end + 1;
593 this = this->sibling;
594 }
595 for(;;) {
596 if (this)
597 tmp.end = (this == old) ? this->end : this->start - 1;
598 else
599 tmp.end = root->end;
600
601 if (tmp.end < tmp.start)
602 goto next;
603
604 resource_clip(&tmp, constraint->min, constraint->max);
605 arch_remove_reservations(&tmp);
606
607 /* Check for overflow after ALIGN() */
608 avail.start = ALIGN(tmp.start, constraint->align);
609 avail.end = tmp.end;
610 avail.flags = new->flags & ~IORESOURCE_UNSET;
611 if (avail.start >= tmp.start) {
612 alloc.flags = avail.flags;
613 alloc.start = constraint->alignf(constraint->alignf_data, &avail,
614 size, constraint->align);
615 alloc.end = alloc.start + size - 1;
616 if (alloc.start <= alloc.end &&
617 resource_contains(&avail, &alloc)) {
618 new->start = alloc.start;
619 new->end = alloc.end;
620 return 0;
621 }
622 }
623
624 next: if (!this || this->end == root->end)
625 break;
626
627 if (this != old)
628 tmp.start = this->end + 1;
629 this = this->sibling;
630 }
631 return -EBUSY;
632 }
633
634 /*
635 * Find empty slot in the resource tree given range and alignment.
636 */
find_resource(struct resource * root,struct resource * new,resource_size_t size,struct resource_constraint * constraint)637 static int find_resource(struct resource *root, struct resource *new,
638 resource_size_t size,
639 struct resource_constraint *constraint)
640 {
641 return __find_resource(root, NULL, new, size, constraint);
642 }
643
644 /**
645 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
646 * The resource will be relocated if the new size cannot be reallocated in the
647 * current location.
648 *
649 * @root: root resource descriptor
650 * @old: resource descriptor desired by caller
651 * @newsize: new size of the resource descriptor
652 * @constraint: the size and alignment constraints to be met.
653 */
reallocate_resource(struct resource * root,struct resource * old,resource_size_t newsize,struct resource_constraint * constraint)654 static int reallocate_resource(struct resource *root, struct resource *old,
655 resource_size_t newsize,
656 struct resource_constraint *constraint)
657 {
658 int err=0;
659 struct resource new = *old;
660 struct resource *conflict;
661
662 write_lock(&resource_lock);
663
664 if ((err = __find_resource(root, old, &new, newsize, constraint)))
665 goto out;
666
667 if (resource_contains(&new, old)) {
668 old->start = new.start;
669 old->end = new.end;
670 goto out;
671 }
672
673 if (old->child) {
674 err = -EBUSY;
675 goto out;
676 }
677
678 if (resource_contains(old, &new)) {
679 old->start = new.start;
680 old->end = new.end;
681 } else {
682 __release_resource(old, true);
683 *old = new;
684 conflict = __request_resource(root, old);
685 BUG_ON(conflict);
686 }
687 out:
688 write_unlock(&resource_lock);
689 return err;
690 }
691
692
693 /**
694 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
695 * The resource will be reallocated with a new size if it was already allocated
696 * @root: root resource descriptor
697 * @new: resource descriptor desired by caller
698 * @size: requested resource region size
699 * @min: minimum boundary to allocate
700 * @max: maximum boundary to allocate
701 * @align: alignment requested, in bytes
702 * @alignf: alignment function, optional, called if not NULL
703 * @alignf_data: arbitrary data to pass to the @alignf function
704 */
allocate_resource(struct resource * root,struct resource * new,resource_size_t size,resource_size_t min,resource_size_t max,resource_size_t align,resource_size_t (* alignf)(void *,const struct resource *,resource_size_t,resource_size_t),void * alignf_data)705 int allocate_resource(struct resource *root, struct resource *new,
706 resource_size_t size, resource_size_t min,
707 resource_size_t max, resource_size_t align,
708 resource_size_t (*alignf)(void *,
709 const struct resource *,
710 resource_size_t,
711 resource_size_t),
712 void *alignf_data)
713 {
714 int err;
715 struct resource_constraint constraint;
716
717 if (!alignf)
718 alignf = simple_align_resource;
719
720 constraint.min = min;
721 constraint.max = max;
722 constraint.align = align;
723 constraint.alignf = alignf;
724 constraint.alignf_data = alignf_data;
725
726 if ( new->parent ) {
727 /* resource is already allocated, try reallocating with
728 the new constraints */
729 return reallocate_resource(root, new, size, &constraint);
730 }
731
732 write_lock(&resource_lock);
733 err = find_resource(root, new, size, &constraint);
734 if (err >= 0 && __request_resource(root, new))
735 err = -EBUSY;
736 write_unlock(&resource_lock);
737 return err;
738 }
739
740 EXPORT_SYMBOL(allocate_resource);
741
742 /**
743 * lookup_resource - find an existing resource by a resource start address
744 * @root: root resource descriptor
745 * @start: resource start address
746 *
747 * Returns a pointer to the resource if found, NULL otherwise
748 */
lookup_resource(struct resource * root,resource_size_t start)749 struct resource *lookup_resource(struct resource *root, resource_size_t start)
750 {
751 struct resource *res;
752
753 read_lock(&resource_lock);
754 for (res = root->child; res; res = res->sibling) {
755 if (res->start == start)
756 break;
757 }
758 read_unlock(&resource_lock);
759
760 return res;
761 }
762
763 /*
764 * Insert a resource into the resource tree. If successful, return NULL,
765 * otherwise return the conflicting resource (compare to __request_resource())
766 */
__insert_resource(struct resource * parent,struct resource * new)767 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
768 {
769 struct resource *first, *next;
770
771 for (;; parent = first) {
772 first = __request_resource(parent, new);
773 if (!first)
774 return first;
775
776 if (first == parent)
777 return first;
778 if (WARN_ON(first == new)) /* duplicated insertion */
779 return first;
780
781 if ((first->start > new->start) || (first->end < new->end))
782 break;
783 if ((first->start == new->start) && (first->end == new->end))
784 break;
785 }
786
787 for (next = first; ; next = next->sibling) {
788 /* Partial overlap? Bad, and unfixable */
789 if (next->start < new->start || next->end > new->end)
790 return next;
791 if (!next->sibling)
792 break;
793 if (next->sibling->start > new->end)
794 break;
795 }
796
797 new->parent = parent;
798 new->sibling = next->sibling;
799 new->child = first;
800
801 next->sibling = NULL;
802 for (next = first; next; next = next->sibling)
803 next->parent = new;
804
805 if (parent->child == first) {
806 parent->child = new;
807 } else {
808 next = parent->child;
809 while (next->sibling != first)
810 next = next->sibling;
811 next->sibling = new;
812 }
813 return NULL;
814 }
815
816 /**
817 * insert_resource_conflict - Inserts resource in the resource tree
818 * @parent: parent of the new resource
819 * @new: new resource to insert
820 *
821 * Returns 0 on success, conflict resource if the resource can't be inserted.
822 *
823 * This function is equivalent to request_resource_conflict when no conflict
824 * happens. If a conflict happens, and the conflicting resources
825 * entirely fit within the range of the new resource, then the new
826 * resource is inserted and the conflicting resources become children of
827 * the new resource.
828 *
829 * This function is intended for producers of resources, such as FW modules
830 * and bus drivers.
831 */
insert_resource_conflict(struct resource * parent,struct resource * new)832 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
833 {
834 struct resource *conflict;
835
836 write_lock(&resource_lock);
837 conflict = __insert_resource(parent, new);
838 write_unlock(&resource_lock);
839 return conflict;
840 }
841
842 /**
843 * insert_resource - Inserts a resource in the resource tree
844 * @parent: parent of the new resource
845 * @new: new resource to insert
846 *
847 * Returns 0 on success, -EBUSY if the resource can't be inserted.
848 *
849 * This function is intended for producers of resources, such as FW modules
850 * and bus drivers.
851 */
insert_resource(struct resource * parent,struct resource * new)852 int insert_resource(struct resource *parent, struct resource *new)
853 {
854 struct resource *conflict;
855
856 conflict = insert_resource_conflict(parent, new);
857 return conflict ? -EBUSY : 0;
858 }
859 EXPORT_SYMBOL_GPL(insert_resource);
860
861 /**
862 * insert_resource_expand_to_fit - Insert a resource into the resource tree
863 * @root: root resource descriptor
864 * @new: new resource to insert
865 *
866 * Insert a resource into the resource tree, possibly expanding it in order
867 * to make it encompass any conflicting resources.
868 */
insert_resource_expand_to_fit(struct resource * root,struct resource * new)869 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
870 {
871 if (new->parent)
872 return;
873
874 write_lock(&resource_lock);
875 for (;;) {
876 struct resource *conflict;
877
878 conflict = __insert_resource(root, new);
879 if (!conflict)
880 break;
881 if (conflict == root)
882 break;
883
884 /* Ok, expand resource to cover the conflict, then try again .. */
885 if (conflict->start < new->start)
886 new->start = conflict->start;
887 if (conflict->end > new->end)
888 new->end = conflict->end;
889
890 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
891 }
892 write_unlock(&resource_lock);
893 }
894
895 /**
896 * remove_resource - Remove a resource in the resource tree
897 * @old: resource to remove
898 *
899 * Returns 0 on success, -EINVAL if the resource is not valid.
900 *
901 * This function removes a resource previously inserted by insert_resource()
902 * or insert_resource_conflict(), and moves the children (if any) up to
903 * where they were before. insert_resource() and insert_resource_conflict()
904 * insert a new resource, and move any conflicting resources down to the
905 * children of the new resource.
906 *
907 * insert_resource(), insert_resource_conflict() and remove_resource() are
908 * intended for producers of resources, such as FW modules and bus drivers.
909 */
remove_resource(struct resource * old)910 int remove_resource(struct resource *old)
911 {
912 int retval;
913
914 write_lock(&resource_lock);
915 retval = __release_resource(old, false);
916 write_unlock(&resource_lock);
917 return retval;
918 }
919 EXPORT_SYMBOL_GPL(remove_resource);
920
__adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)921 static int __adjust_resource(struct resource *res, resource_size_t start,
922 resource_size_t size)
923 {
924 struct resource *tmp, *parent = res->parent;
925 resource_size_t end = start + size - 1;
926 int result = -EBUSY;
927
928 if (!parent)
929 goto skip;
930
931 if ((start < parent->start) || (end > parent->end))
932 goto out;
933
934 if (res->sibling && (res->sibling->start <= end))
935 goto out;
936
937 tmp = parent->child;
938 if (tmp != res) {
939 while (tmp->sibling != res)
940 tmp = tmp->sibling;
941 if (start <= tmp->end)
942 goto out;
943 }
944
945 skip:
946 for (tmp = res->child; tmp; tmp = tmp->sibling)
947 if ((tmp->start < start) || (tmp->end > end))
948 goto out;
949
950 res->start = start;
951 res->end = end;
952 result = 0;
953
954 out:
955 return result;
956 }
957
958 /**
959 * adjust_resource - modify a resource's start and size
960 * @res: resource to modify
961 * @start: new start value
962 * @size: new size
963 *
964 * Given an existing resource, change its start and size to match the
965 * arguments. Returns 0 on success, -EBUSY if it can't fit.
966 * Existing children of the resource are assumed to be immutable.
967 */
adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)968 int adjust_resource(struct resource *res, resource_size_t start,
969 resource_size_t size)
970 {
971 int result;
972
973 write_lock(&resource_lock);
974 result = __adjust_resource(res, start, size);
975 write_unlock(&resource_lock);
976 return result;
977 }
978 EXPORT_SYMBOL(adjust_resource);
979
980 static void __init
__reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)981 __reserve_region_with_split(struct resource *root, resource_size_t start,
982 resource_size_t end, const char *name)
983 {
984 struct resource *parent = root;
985 struct resource *conflict;
986 struct resource *res = alloc_resource(GFP_ATOMIC);
987 struct resource *next_res = NULL;
988 int type = resource_type(root);
989
990 if (!res)
991 return;
992
993 res->name = name;
994 res->start = start;
995 res->end = end;
996 res->flags = type | IORESOURCE_BUSY;
997 res->desc = IORES_DESC_NONE;
998
999 while (1) {
1000
1001 conflict = __request_resource(parent, res);
1002 if (!conflict) {
1003 if (!next_res)
1004 break;
1005 res = next_res;
1006 next_res = NULL;
1007 continue;
1008 }
1009
1010 /* conflict covered whole area */
1011 if (conflict->start <= res->start &&
1012 conflict->end >= res->end) {
1013 free_resource(res);
1014 WARN_ON(next_res);
1015 break;
1016 }
1017
1018 /* failed, split and try again */
1019 if (conflict->start > res->start) {
1020 end = res->end;
1021 res->end = conflict->start - 1;
1022 if (conflict->end < end) {
1023 next_res = alloc_resource(GFP_ATOMIC);
1024 if (!next_res) {
1025 free_resource(res);
1026 break;
1027 }
1028 next_res->name = name;
1029 next_res->start = conflict->end + 1;
1030 next_res->end = end;
1031 next_res->flags = type | IORESOURCE_BUSY;
1032 next_res->desc = IORES_DESC_NONE;
1033 }
1034 } else {
1035 res->start = conflict->end + 1;
1036 }
1037 }
1038
1039 }
1040
1041 void __init
reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1042 reserve_region_with_split(struct resource *root, resource_size_t start,
1043 resource_size_t end, const char *name)
1044 {
1045 int abort = 0;
1046
1047 write_lock(&resource_lock);
1048 if (root->start > start || root->end < end) {
1049 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1050 (unsigned long long)start, (unsigned long long)end,
1051 root);
1052 if (start > root->end || end < root->start)
1053 abort = 1;
1054 else {
1055 if (end > root->end)
1056 end = root->end;
1057 if (start < root->start)
1058 start = root->start;
1059 pr_err("fixing request to [0x%llx-0x%llx]\n",
1060 (unsigned long long)start,
1061 (unsigned long long)end);
1062 }
1063 dump_stack();
1064 }
1065 if (!abort)
1066 __reserve_region_with_split(root, start, end, name);
1067 write_unlock(&resource_lock);
1068 }
1069
1070 /**
1071 * resource_alignment - calculate resource's alignment
1072 * @res: resource pointer
1073 *
1074 * Returns alignment on success, 0 (invalid alignment) on failure.
1075 */
resource_alignment(struct resource * res)1076 resource_size_t resource_alignment(struct resource *res)
1077 {
1078 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1079 case IORESOURCE_SIZEALIGN:
1080 return resource_size(res);
1081 case IORESOURCE_STARTALIGN:
1082 return res->start;
1083 default:
1084 return 0;
1085 }
1086 }
1087
1088 /*
1089 * This is compatibility stuff for IO resources.
1090 *
1091 * Note how this, unlike the above, knows about
1092 * the IO flag meanings (busy etc).
1093 *
1094 * request_region creates a new busy region.
1095 *
1096 * release_region releases a matching busy region.
1097 */
1098
1099 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1100
1101 static struct inode *iomem_inode;
1102
1103 #ifdef CONFIG_IO_STRICT_DEVMEM
revoke_iomem(struct resource * res)1104 static void revoke_iomem(struct resource *res)
1105 {
1106 /* pairs with smp_store_release() in iomem_init_inode() */
1107 struct inode *inode = smp_load_acquire(&iomem_inode);
1108
1109 /*
1110 * Check that the initialization has completed. Losing the race
1111 * is ok because it means drivers are claiming resources before
1112 * the fs_initcall level of init and prevent iomem_get_mapping users
1113 * from establishing mappings.
1114 */
1115 if (!inode)
1116 return;
1117
1118 /*
1119 * The expectation is that the driver has successfully marked
1120 * the resource busy by this point, so devmem_is_allowed()
1121 * should start returning false, however for performance this
1122 * does not iterate the entire resource range.
1123 */
1124 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1125 devmem_is_allowed(PHYS_PFN(res->end))) {
1126 /*
1127 * *cringe* iomem=relaxed says "go ahead, what's the
1128 * worst that can happen?"
1129 */
1130 return;
1131 }
1132
1133 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1134 }
1135 #else
revoke_iomem(struct resource * res)1136 static void revoke_iomem(struct resource *res) {}
1137 #endif
1138
iomem_get_mapping(void)1139 struct address_space *iomem_get_mapping(void)
1140 {
1141 /*
1142 * This function is only called from file open paths, hence guaranteed
1143 * that fs_initcalls have completed and no need to check for NULL. But
1144 * since revoke_iomem can be called before the initcall we still need
1145 * the barrier to appease checkers.
1146 */
1147 return smp_load_acquire(&iomem_inode)->i_mapping;
1148 }
1149
__request_region_locked(struct resource * res,struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1150 static int __request_region_locked(struct resource *res, struct resource *parent,
1151 resource_size_t start, resource_size_t n,
1152 const char *name, int flags)
1153 {
1154 DECLARE_WAITQUEUE(wait, current);
1155
1156 res->name = name;
1157 res->start = start;
1158 res->end = start + n - 1;
1159
1160 for (;;) {
1161 struct resource *conflict;
1162
1163 res->flags = resource_type(parent) | resource_ext_type(parent);
1164 res->flags |= IORESOURCE_BUSY | flags;
1165 res->desc = parent->desc;
1166
1167 conflict = __request_resource(parent, res);
1168 if (!conflict)
1169 break;
1170 /*
1171 * mm/hmm.c reserves physical addresses which then
1172 * become unavailable to other users. Conflicts are
1173 * not expected. Warn to aid debugging if encountered.
1174 */
1175 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1176 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1177 conflict->name, conflict, res);
1178 }
1179 if (conflict != parent) {
1180 if (!(conflict->flags & IORESOURCE_BUSY)) {
1181 parent = conflict;
1182 continue;
1183 }
1184 }
1185 if (conflict->flags & flags & IORESOURCE_MUXED) {
1186 add_wait_queue(&muxed_resource_wait, &wait);
1187 write_unlock(&resource_lock);
1188 set_current_state(TASK_UNINTERRUPTIBLE);
1189 schedule();
1190 remove_wait_queue(&muxed_resource_wait, &wait);
1191 write_lock(&resource_lock);
1192 continue;
1193 }
1194 /* Uhhuh, that didn't work out.. */
1195 return -EBUSY;
1196 }
1197
1198 return 0;
1199 }
1200
1201 /**
1202 * __request_region - create a new busy resource region
1203 * @parent: parent resource descriptor
1204 * @start: resource start address
1205 * @n: resource region size
1206 * @name: reserving caller's ID string
1207 * @flags: IO resource flags
1208 */
__request_region(struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1209 struct resource *__request_region(struct resource *parent,
1210 resource_size_t start, resource_size_t n,
1211 const char *name, int flags)
1212 {
1213 struct resource *res = alloc_resource(GFP_KERNEL);
1214 int ret;
1215
1216 if (!res)
1217 return NULL;
1218
1219 write_lock(&resource_lock);
1220 ret = __request_region_locked(res, parent, start, n, name, flags);
1221 write_unlock(&resource_lock);
1222
1223 if (ret) {
1224 free_resource(res);
1225 return NULL;
1226 }
1227
1228 if (parent == &iomem_resource)
1229 revoke_iomem(res);
1230
1231 return res;
1232 }
1233 EXPORT_SYMBOL(__request_region);
1234
1235 /**
1236 * __release_region - release a previously reserved resource region
1237 * @parent: parent resource descriptor
1238 * @start: resource start address
1239 * @n: resource region size
1240 *
1241 * The described resource region must match a currently busy region.
1242 */
__release_region(struct resource * parent,resource_size_t start,resource_size_t n)1243 void __release_region(struct resource *parent, resource_size_t start,
1244 resource_size_t n)
1245 {
1246 struct resource **p;
1247 resource_size_t end;
1248
1249 p = &parent->child;
1250 end = start + n - 1;
1251
1252 write_lock(&resource_lock);
1253
1254 for (;;) {
1255 struct resource *res = *p;
1256
1257 if (!res)
1258 break;
1259 if (res->start <= start && res->end >= end) {
1260 if (!(res->flags & IORESOURCE_BUSY)) {
1261 p = &res->child;
1262 continue;
1263 }
1264 if (res->start != start || res->end != end)
1265 break;
1266 *p = res->sibling;
1267 write_unlock(&resource_lock);
1268 if (res->flags & IORESOURCE_MUXED)
1269 wake_up(&muxed_resource_wait);
1270 free_resource(res);
1271 return;
1272 }
1273 p = &res->sibling;
1274 }
1275
1276 write_unlock(&resource_lock);
1277
1278 printk(KERN_WARNING "Trying to free nonexistent resource "
1279 "<%016llx-%016llx>\n", (unsigned long long)start,
1280 (unsigned long long)end);
1281 }
1282 EXPORT_SYMBOL(__release_region);
1283
1284 #ifdef CONFIG_MEMORY_HOTREMOVE
1285 /**
1286 * release_mem_region_adjustable - release a previously reserved memory region
1287 * @start: resource start address
1288 * @size: resource region size
1289 *
1290 * This interface is intended for memory hot-delete. The requested region
1291 * is released from a currently busy memory resource. The requested region
1292 * must either match exactly or fit into a single busy resource entry. In
1293 * the latter case, the remaining resource is adjusted accordingly.
1294 * Existing children of the busy memory resource must be immutable in the
1295 * request.
1296 *
1297 * Note:
1298 * - Additional release conditions, such as overlapping region, can be
1299 * supported after they are confirmed as valid cases.
1300 * - When a busy memory resource gets split into two entries, the code
1301 * assumes that all children remain in the lower address entry for
1302 * simplicity. Enhance this logic when necessary.
1303 */
release_mem_region_adjustable(resource_size_t start,resource_size_t size)1304 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1305 {
1306 struct resource *parent = &iomem_resource;
1307 struct resource *new_res = NULL;
1308 bool alloc_nofail = false;
1309 struct resource **p;
1310 struct resource *res;
1311 resource_size_t end;
1312
1313 end = start + size - 1;
1314 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1315 return;
1316
1317 /*
1318 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1319 * just before releasing the region. This is highly unlikely to
1320 * fail - let's play save and make it never fail as the caller cannot
1321 * perform any error handling (e.g., trying to re-add memory will fail
1322 * similarly).
1323 */
1324 retry:
1325 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1326
1327 p = &parent->child;
1328 write_lock(&resource_lock);
1329
1330 while ((res = *p)) {
1331 if (res->start >= end)
1332 break;
1333
1334 /* look for the next resource if it does not fit into */
1335 if (res->start > start || res->end < end) {
1336 p = &res->sibling;
1337 continue;
1338 }
1339
1340 /*
1341 * All memory regions added from memory-hotplug path have the
1342 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have
1343 * this flag, we know that we are dealing with a resource coming
1344 * from HMM/devm. HMM/devm use another mechanism to add/release
1345 * a resource. This goes via devm_request_mem_region and
1346 * devm_release_mem_region.
1347 * HMM/devm take care to release their resources when they want,
1348 * so if we are dealing with them, let us just back off here.
1349 */
1350 if (!(res->flags & IORESOURCE_SYSRAM)) {
1351 break;
1352 }
1353
1354 if (!(res->flags & IORESOURCE_MEM))
1355 break;
1356
1357 if (!(res->flags & IORESOURCE_BUSY)) {
1358 p = &res->child;
1359 continue;
1360 }
1361
1362 /* found the target resource; let's adjust accordingly */
1363 if (res->start == start && res->end == end) {
1364 /* free the whole entry */
1365 *p = res->sibling;
1366 free_resource(res);
1367 } else if (res->start == start && res->end != end) {
1368 /* adjust the start */
1369 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1370 res->end - end));
1371 } else if (res->start != start && res->end == end) {
1372 /* adjust the end */
1373 WARN_ON_ONCE(__adjust_resource(res, res->start,
1374 start - res->start));
1375 } else {
1376 /* split into two entries - we need a new resource */
1377 if (!new_res) {
1378 new_res = alloc_resource(GFP_ATOMIC);
1379 if (!new_res) {
1380 alloc_nofail = true;
1381 write_unlock(&resource_lock);
1382 goto retry;
1383 }
1384 }
1385 new_res->name = res->name;
1386 new_res->start = end + 1;
1387 new_res->end = res->end;
1388 new_res->flags = res->flags;
1389 new_res->desc = res->desc;
1390 new_res->parent = res->parent;
1391 new_res->sibling = res->sibling;
1392 new_res->child = NULL;
1393
1394 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1395 start - res->start)))
1396 break;
1397 res->sibling = new_res;
1398 new_res = NULL;
1399 }
1400
1401 break;
1402 }
1403
1404 write_unlock(&resource_lock);
1405 free_resource(new_res);
1406 }
1407 #endif /* CONFIG_MEMORY_HOTREMOVE */
1408
1409 #ifdef CONFIG_MEMORY_HOTPLUG
system_ram_resources_mergeable(struct resource * r1,struct resource * r2)1410 static bool system_ram_resources_mergeable(struct resource *r1,
1411 struct resource *r2)
1412 {
1413 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1414 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1415 r1->name == r2->name && r1->desc == r2->desc &&
1416 !r1->child && !r2->child;
1417 }
1418
1419 /**
1420 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1421 * merge it with adjacent, mergeable resources
1422 * @res: resource descriptor
1423 *
1424 * This interface is intended for memory hotplug, whereby lots of contiguous
1425 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1426 * the actual resource boundaries are not of interest (e.g., it might be
1427 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1428 * same parent, and that don't have any children are considered. All mergeable
1429 * resources must be immutable during the request.
1430 *
1431 * Note:
1432 * - The caller has to make sure that no pointers to resources that are
1433 * marked mergeable are used anymore after this call - the resource might
1434 * be freed and the pointer might be stale!
1435 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1436 */
merge_system_ram_resource(struct resource * res)1437 void merge_system_ram_resource(struct resource *res)
1438 {
1439 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1440 struct resource *cur;
1441
1442 if (WARN_ON_ONCE((res->flags & flags) != flags))
1443 return;
1444
1445 write_lock(&resource_lock);
1446 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1447
1448 /* Try to merge with next item in the list. */
1449 cur = res->sibling;
1450 if (cur && system_ram_resources_mergeable(res, cur)) {
1451 res->end = cur->end;
1452 res->sibling = cur->sibling;
1453 free_resource(cur);
1454 }
1455
1456 /* Try to merge with previous item in the list. */
1457 cur = res->parent->child;
1458 while (cur && cur->sibling != res)
1459 cur = cur->sibling;
1460 if (cur && system_ram_resources_mergeable(cur, res)) {
1461 cur->end = res->end;
1462 cur->sibling = res->sibling;
1463 free_resource(res);
1464 }
1465 write_unlock(&resource_lock);
1466 }
1467 #endif /* CONFIG_MEMORY_HOTPLUG */
1468
1469 /*
1470 * Managed region resource
1471 */
devm_resource_release(struct device * dev,void * ptr)1472 static void devm_resource_release(struct device *dev, void *ptr)
1473 {
1474 struct resource **r = ptr;
1475
1476 release_resource(*r);
1477 }
1478
1479 /**
1480 * devm_request_resource() - request and reserve an I/O or memory resource
1481 * @dev: device for which to request the resource
1482 * @root: root of the resource tree from which to request the resource
1483 * @new: descriptor of the resource to request
1484 *
1485 * This is a device-managed version of request_resource(). There is usually
1486 * no need to release resources requested by this function explicitly since
1487 * that will be taken care of when the device is unbound from its driver.
1488 * If for some reason the resource needs to be released explicitly, because
1489 * of ordering issues for example, drivers must call devm_release_resource()
1490 * rather than the regular release_resource().
1491 *
1492 * When a conflict is detected between any existing resources and the newly
1493 * requested resource, an error message will be printed.
1494 *
1495 * Returns 0 on success or a negative error code on failure.
1496 */
devm_request_resource(struct device * dev,struct resource * root,struct resource * new)1497 int devm_request_resource(struct device *dev, struct resource *root,
1498 struct resource *new)
1499 {
1500 struct resource *conflict, **ptr;
1501
1502 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1503 if (!ptr)
1504 return -ENOMEM;
1505
1506 *ptr = new;
1507
1508 conflict = request_resource_conflict(root, new);
1509 if (conflict) {
1510 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1511 new, conflict->name, conflict);
1512 devres_free(ptr);
1513 return -EBUSY;
1514 }
1515
1516 devres_add(dev, ptr);
1517 return 0;
1518 }
1519 EXPORT_SYMBOL(devm_request_resource);
1520
devm_resource_match(struct device * dev,void * res,void * data)1521 static int devm_resource_match(struct device *dev, void *res, void *data)
1522 {
1523 struct resource **ptr = res;
1524
1525 return *ptr == data;
1526 }
1527
1528 /**
1529 * devm_release_resource() - release a previously requested resource
1530 * @dev: device for which to release the resource
1531 * @new: descriptor of the resource to release
1532 *
1533 * Releases a resource previously requested using devm_request_resource().
1534 */
devm_release_resource(struct device * dev,struct resource * new)1535 void devm_release_resource(struct device *dev, struct resource *new)
1536 {
1537 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1538 new));
1539 }
1540 EXPORT_SYMBOL(devm_release_resource);
1541
1542 struct region_devres {
1543 struct resource *parent;
1544 resource_size_t start;
1545 resource_size_t n;
1546 };
1547
devm_region_release(struct device * dev,void * res)1548 static void devm_region_release(struct device *dev, void *res)
1549 {
1550 struct region_devres *this = res;
1551
1552 __release_region(this->parent, this->start, this->n);
1553 }
1554
devm_region_match(struct device * dev,void * res,void * match_data)1555 static int devm_region_match(struct device *dev, void *res, void *match_data)
1556 {
1557 struct region_devres *this = res, *match = match_data;
1558
1559 return this->parent == match->parent &&
1560 this->start == match->start && this->n == match->n;
1561 }
1562
1563 struct resource *
__devm_request_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n,const char * name)1564 __devm_request_region(struct device *dev, struct resource *parent,
1565 resource_size_t start, resource_size_t n, const char *name)
1566 {
1567 struct region_devres *dr = NULL;
1568 struct resource *res;
1569
1570 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1571 GFP_KERNEL);
1572 if (!dr)
1573 return NULL;
1574
1575 dr->parent = parent;
1576 dr->start = start;
1577 dr->n = n;
1578
1579 res = __request_region(parent, start, n, name, 0);
1580 if (res)
1581 devres_add(dev, dr);
1582 else
1583 devres_free(dr);
1584
1585 return res;
1586 }
1587 EXPORT_SYMBOL(__devm_request_region);
1588
__devm_release_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n)1589 void __devm_release_region(struct device *dev, struct resource *parent,
1590 resource_size_t start, resource_size_t n)
1591 {
1592 struct region_devres match_data = { parent, start, n };
1593
1594 __release_region(parent, start, n);
1595 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1596 &match_data));
1597 }
1598 EXPORT_SYMBOL(__devm_release_region);
1599
1600 /*
1601 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1602 */
1603 #define MAXRESERVE 4
reserve_setup(char * str)1604 static int __init reserve_setup(char *str)
1605 {
1606 static int reserved;
1607 static struct resource reserve[MAXRESERVE];
1608
1609 for (;;) {
1610 unsigned int io_start, io_num;
1611 int x = reserved;
1612 struct resource *parent;
1613
1614 if (get_option(&str, &io_start) != 2)
1615 break;
1616 if (get_option(&str, &io_num) == 0)
1617 break;
1618 if (x < MAXRESERVE) {
1619 struct resource *res = reserve + x;
1620
1621 /*
1622 * If the region starts below 0x10000, we assume it's
1623 * I/O port space; otherwise assume it's memory.
1624 */
1625 if (io_start < 0x10000) {
1626 res->flags = IORESOURCE_IO;
1627 parent = &ioport_resource;
1628 } else {
1629 res->flags = IORESOURCE_MEM;
1630 parent = &iomem_resource;
1631 }
1632 res->name = "reserved";
1633 res->start = io_start;
1634 res->end = io_start + io_num - 1;
1635 res->flags |= IORESOURCE_BUSY;
1636 res->desc = IORES_DESC_NONE;
1637 res->child = NULL;
1638 if (request_resource(parent, res) == 0)
1639 reserved = x+1;
1640 }
1641 }
1642 return 1;
1643 }
1644 __setup("reserve=", reserve_setup);
1645
1646 /*
1647 * Check if the requested addr and size spans more than any slot in the
1648 * iomem resource tree.
1649 */
iomem_map_sanity_check(resource_size_t addr,unsigned long size)1650 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1651 {
1652 struct resource *p = &iomem_resource;
1653 int err = 0;
1654 loff_t l;
1655
1656 read_lock(&resource_lock);
1657 for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1658 /*
1659 * We can probably skip the resources without
1660 * IORESOURCE_IO attribute?
1661 */
1662 if (p->start >= addr + size)
1663 continue;
1664 if (p->end < addr)
1665 continue;
1666 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1667 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1668 continue;
1669 /*
1670 * if a resource is "BUSY", it's not a hardware resource
1671 * but a driver mapping of such a resource; we don't want
1672 * to warn for those; some drivers legitimately map only
1673 * partial hardware resources. (example: vesafb)
1674 */
1675 if (p->flags & IORESOURCE_BUSY)
1676 continue;
1677
1678 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n",
1679 (unsigned long long)addr,
1680 (unsigned long long)(addr + size - 1),
1681 p->name, p);
1682 err = -1;
1683 break;
1684 }
1685 read_unlock(&resource_lock);
1686
1687 return err;
1688 }
1689
1690 #ifdef CONFIG_STRICT_DEVMEM
1691 static int strict_iomem_checks = 1;
1692 #else
1693 static int strict_iomem_checks;
1694 #endif
1695
1696 /*
1697 * Check if an address is exclusive to the kernel and must not be mapped to
1698 * user space, for example, via /dev/mem.
1699 *
1700 * Returns true if exclusive to the kernel, otherwise returns false.
1701 */
iomem_is_exclusive(u64 addr)1702 bool iomem_is_exclusive(u64 addr)
1703 {
1704 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1705 IORESOURCE_EXCLUSIVE;
1706 bool skip_children = false, err = false;
1707 int size = PAGE_SIZE;
1708 struct resource *p;
1709
1710 addr = addr & PAGE_MASK;
1711
1712 read_lock(&resource_lock);
1713 for_each_resource(&iomem_resource, p, skip_children) {
1714 if (p->start >= addr + size)
1715 break;
1716 if (p->end < addr) {
1717 skip_children = true;
1718 continue;
1719 }
1720 skip_children = false;
1721
1722 /*
1723 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1724 * IORESOURCE_EXCLUSIVE is set, even if they
1725 * are not busy and even if "iomem=relaxed" is set. The
1726 * responsible driver dynamically adds/removes system RAM within
1727 * such an area and uncontrolled access is dangerous.
1728 */
1729 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1730 err = true;
1731 break;
1732 }
1733
1734 /*
1735 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1736 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1737 * resource is busy.
1738 */
1739 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1740 continue;
1741 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1742 || p->flags & IORESOURCE_EXCLUSIVE) {
1743 err = true;
1744 break;
1745 }
1746 }
1747 read_unlock(&resource_lock);
1748
1749 return err;
1750 }
1751
resource_list_create_entry(struct resource * res,size_t extra_size)1752 struct resource_entry *resource_list_create_entry(struct resource *res,
1753 size_t extra_size)
1754 {
1755 struct resource_entry *entry;
1756
1757 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1758 if (entry) {
1759 INIT_LIST_HEAD(&entry->node);
1760 entry->res = res ? res : &entry->__res;
1761 }
1762
1763 return entry;
1764 }
1765 EXPORT_SYMBOL(resource_list_create_entry);
1766
resource_list_free(struct list_head * head)1767 void resource_list_free(struct list_head *head)
1768 {
1769 struct resource_entry *entry, *tmp;
1770
1771 list_for_each_entry_safe(entry, tmp, head, node)
1772 resource_list_destroy_entry(entry);
1773 }
1774 EXPORT_SYMBOL(resource_list_free);
1775
1776 #ifdef CONFIG_DEVICE_PRIVATE
__request_free_mem_region(struct device * dev,struct resource * base,unsigned long size,const char * name)1777 static struct resource *__request_free_mem_region(struct device *dev,
1778 struct resource *base, unsigned long size, const char *name)
1779 {
1780 resource_size_t end, addr;
1781 struct resource *res;
1782 struct region_devres *dr = NULL;
1783
1784 size = ALIGN(size, 1UL << PA_SECTION_SHIFT);
1785 end = min_t(unsigned long, base->end, (1UL << MAX_PHYSMEM_BITS) - 1);
1786 addr = end - size + 1UL;
1787
1788 res = alloc_resource(GFP_KERNEL);
1789 if (!res)
1790 return ERR_PTR(-ENOMEM);
1791
1792 if (dev) {
1793 dr = devres_alloc(devm_region_release,
1794 sizeof(struct region_devres), GFP_KERNEL);
1795 if (!dr) {
1796 free_resource(res);
1797 return ERR_PTR(-ENOMEM);
1798 }
1799 }
1800
1801 write_lock(&resource_lock);
1802 for (; addr > size && addr >= base->start; addr -= size) {
1803 if (__region_intersects(addr, size, 0, IORES_DESC_NONE) !=
1804 REGION_DISJOINT)
1805 continue;
1806
1807 if (__request_region_locked(res, &iomem_resource, addr, size,
1808 name, 0))
1809 break;
1810
1811 if (dev) {
1812 dr->parent = &iomem_resource;
1813 dr->start = addr;
1814 dr->n = size;
1815 devres_add(dev, dr);
1816 }
1817
1818 res->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1819 write_unlock(&resource_lock);
1820
1821 /*
1822 * A driver is claiming this region so revoke any mappings.
1823 */
1824 revoke_iomem(res);
1825 return res;
1826 }
1827 write_unlock(&resource_lock);
1828
1829 free_resource(res);
1830 if (dr)
1831 devres_free(dr);
1832
1833 return ERR_PTR(-ERANGE);
1834 }
1835
1836 /**
1837 * devm_request_free_mem_region - find free region for device private memory
1838 *
1839 * @dev: device struct to bind the resource to
1840 * @size: size in bytes of the device memory to add
1841 * @base: resource tree to look in
1842 *
1843 * This function tries to find an empty range of physical address big enough to
1844 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1845 * memory, which in turn allocates struct pages.
1846 */
devm_request_free_mem_region(struct device * dev,struct resource * base,unsigned long size)1847 struct resource *devm_request_free_mem_region(struct device *dev,
1848 struct resource *base, unsigned long size)
1849 {
1850 return __request_free_mem_region(dev, base, size, dev_name(dev));
1851 }
1852 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
1853
request_free_mem_region(struct resource * base,unsigned long size,const char * name)1854 struct resource *request_free_mem_region(struct resource *base,
1855 unsigned long size, const char *name)
1856 {
1857 return __request_free_mem_region(NULL, base, size, name);
1858 }
1859 EXPORT_SYMBOL_GPL(request_free_mem_region);
1860
1861 #endif /* CONFIG_DEVICE_PRIVATE */
1862
strict_iomem(char * str)1863 static int __init strict_iomem(char *str)
1864 {
1865 if (strstr(str, "relaxed"))
1866 strict_iomem_checks = 0;
1867 if (strstr(str, "strict"))
1868 strict_iomem_checks = 1;
1869 return 1;
1870 }
1871
iomem_fs_init_fs_context(struct fs_context * fc)1872 static int iomem_fs_init_fs_context(struct fs_context *fc)
1873 {
1874 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
1875 }
1876
1877 static struct file_system_type iomem_fs_type = {
1878 .name = "iomem",
1879 .owner = THIS_MODULE,
1880 .init_fs_context = iomem_fs_init_fs_context,
1881 .kill_sb = kill_anon_super,
1882 };
1883
iomem_init_inode(void)1884 static int __init iomem_init_inode(void)
1885 {
1886 static struct vfsmount *iomem_vfs_mount;
1887 static int iomem_fs_cnt;
1888 struct inode *inode;
1889 int rc;
1890
1891 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
1892 if (rc < 0) {
1893 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
1894 return rc;
1895 }
1896
1897 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
1898 if (IS_ERR(inode)) {
1899 rc = PTR_ERR(inode);
1900 pr_err("Cannot allocate inode for iomem: %d\n", rc);
1901 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
1902 return rc;
1903 }
1904
1905 /*
1906 * Publish iomem revocation inode initialized.
1907 * Pairs with smp_load_acquire() in revoke_iomem().
1908 */
1909 smp_store_release(&iomem_inode, inode);
1910
1911 return 0;
1912 }
1913
1914 fs_initcall(iomem_init_inode);
1915
1916 __setup("iomem=", strict_iomem);
1917