1 /*
2 * Driver for Digigram VX222 V2/Mic soundcards
3 *
4 * VX222-specific low-level routines
5 *
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/firmware.h>
26 #include <linux/mutex.h>
27
28 #include <sound/core.h>
29 #include <sound/control.h>
30 #include <sound/tlv.h>
31 #include <asm/io.h>
32 #include "vx222.h"
33
34
35 static int vx2_reg_offset[VX_REG_MAX] = {
36 [VX_ICR] = 0x00,
37 [VX_CVR] = 0x04,
38 [VX_ISR] = 0x08,
39 [VX_IVR] = 0x0c,
40 [VX_RXH] = 0x14,
41 [VX_RXM] = 0x18,
42 [VX_RXL] = 0x1c,
43 [VX_DMA] = 0x10,
44 [VX_CDSP] = 0x20,
45 [VX_CFG] = 0x24,
46 [VX_RUER] = 0x28,
47 [VX_DATA] = 0x2c,
48 [VX_STATUS] = 0x30,
49 [VX_LOFREQ] = 0x34,
50 [VX_HIFREQ] = 0x38,
51 [VX_CSUER] = 0x3c,
52 [VX_SELMIC] = 0x40,
53 [VX_COMPOT] = 0x44, // Write: POTENTIOMETER ; Read: COMPRESSION LEVEL activate
54 [VX_SCOMPR] = 0x48, // Read: COMPRESSION THRESHOLD activate
55 [VX_GLIMIT] = 0x4c, // Read: LEVEL LIMITATION activate
56 [VX_INTCSR] = 0x4c, // VX_INTCSR_REGISTER_OFFSET
57 [VX_CNTRL] = 0x50, // VX_CNTRL_REGISTER_OFFSET
58 [VX_GPIOC] = 0x54, // VX_GPIOC (new with PLX9030)
59 };
60
61 static int vx2_reg_index[VX_REG_MAX] = {
62 [VX_ICR] = 1,
63 [VX_CVR] = 1,
64 [VX_ISR] = 1,
65 [VX_IVR] = 1,
66 [VX_RXH] = 1,
67 [VX_RXM] = 1,
68 [VX_RXL] = 1,
69 [VX_DMA] = 1,
70 [VX_CDSP] = 1,
71 [VX_CFG] = 1,
72 [VX_RUER] = 1,
73 [VX_DATA] = 1,
74 [VX_STATUS] = 1,
75 [VX_LOFREQ] = 1,
76 [VX_HIFREQ] = 1,
77 [VX_CSUER] = 1,
78 [VX_SELMIC] = 1,
79 [VX_COMPOT] = 1,
80 [VX_SCOMPR] = 1,
81 [VX_GLIMIT] = 1,
82 [VX_INTCSR] = 0, /* on the PLX */
83 [VX_CNTRL] = 0, /* on the PLX */
84 [VX_GPIOC] = 0, /* on the PLX */
85 };
86
vx2_reg_addr(struct vx_core * _chip,int reg)87 static inline unsigned long vx2_reg_addr(struct vx_core *_chip, int reg)
88 {
89 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
90 return chip->port[vx2_reg_index[reg]] + vx2_reg_offset[reg];
91 }
92
93 /**
94 * snd_vx_inb - read a byte from the register
95 * @offset: register enum
96 */
vx2_inb(struct vx_core * chip,int offset)97 static unsigned char vx2_inb(struct vx_core *chip, int offset)
98 {
99 return inb(vx2_reg_addr(chip, offset));
100 }
101
102 /**
103 * snd_vx_outb - write a byte on the register
104 * @offset: the register offset
105 * @val: the value to write
106 */
vx2_outb(struct vx_core * chip,int offset,unsigned char val)107 static void vx2_outb(struct vx_core *chip, int offset, unsigned char val)
108 {
109 outb(val, vx2_reg_addr(chip, offset));
110 /*
111 printk(KERN_DEBUG "outb: %x -> %x\n", val, vx2_reg_addr(chip, offset));
112 */
113 }
114
115 /**
116 * snd_vx_inl - read a 32bit word from the register
117 * @offset: register enum
118 */
vx2_inl(struct vx_core * chip,int offset)119 static unsigned int vx2_inl(struct vx_core *chip, int offset)
120 {
121 return inl(vx2_reg_addr(chip, offset));
122 }
123
124 /**
125 * snd_vx_outl - write a 32bit word on the register
126 * @offset: the register enum
127 * @val: the value to write
128 */
vx2_outl(struct vx_core * chip,int offset,unsigned int val)129 static void vx2_outl(struct vx_core *chip, int offset, unsigned int val)
130 {
131 /*
132 printk(KERN_DEBUG "outl: %x -> %x\n", val, vx2_reg_addr(chip, offset));
133 */
134 outl(val, vx2_reg_addr(chip, offset));
135 }
136
137 /*
138 * redefine macros to call directly
139 */
140 #undef vx_inb
141 #define vx_inb(chip,reg) vx2_inb((struct vx_core*)(chip), VX_##reg)
142 #undef vx_outb
143 #define vx_outb(chip,reg,val) vx2_outb((struct vx_core*)(chip), VX_##reg, val)
144 #undef vx_inl
145 #define vx_inl(chip,reg) vx2_inl((struct vx_core*)(chip), VX_##reg)
146 #undef vx_outl
147 #define vx_outl(chip,reg,val) vx2_outl((struct vx_core*)(chip), VX_##reg, val)
148
149
150 /*
151 * vx_reset_dsp - reset the DSP
152 */
153
154 #define XX_DSP_RESET_WAIT_TIME 2 /* ms */
155
vx2_reset_dsp(struct vx_core * _chip)156 static void vx2_reset_dsp(struct vx_core *_chip)
157 {
158 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
159
160 /* set the reset dsp bit to 0 */
161 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_DSP_RESET_MASK);
162
163 mdelay(XX_DSP_RESET_WAIT_TIME);
164
165 chip->regCDSP |= VX_CDSP_DSP_RESET_MASK;
166 /* set the reset dsp bit to 1 */
167 vx_outl(chip, CDSP, chip->regCDSP);
168 }
169
170
vx2_test_xilinx(struct vx_core * _chip)171 static int vx2_test_xilinx(struct vx_core *_chip)
172 {
173 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
174 unsigned int data;
175
176 snd_printdd("testing xilinx...\n");
177 /* This test uses several write/read sequences on TEST0 and TEST1 bits
178 * to figure out whever or not the xilinx was correctly loaded
179 */
180
181 /* We write 1 on CDSP.TEST0. We should get 0 on STATUS.TEST0. */
182 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST0_MASK);
183 vx_inl(chip, ISR);
184 data = vx_inl(chip, STATUS);
185 if ((data & VX_STATUS_VAL_TEST0_MASK) == VX_STATUS_VAL_TEST0_MASK) {
186 snd_printdd("bad!\n");
187 return -ENODEV;
188 }
189
190 /* We write 0 on CDSP.TEST0. We should get 1 on STATUS.TEST0. */
191 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST0_MASK);
192 vx_inl(chip, ISR);
193 data = vx_inl(chip, STATUS);
194 if (! (data & VX_STATUS_VAL_TEST0_MASK)) {
195 snd_printdd("bad! #2\n");
196 return -ENODEV;
197 }
198
199 if (_chip->type == VX_TYPE_BOARD) {
200 /* not implemented on VX_2_BOARDS */
201 /* We write 1 on CDSP.TEST1. We should get 0 on STATUS.TEST1. */
202 vx_outl(chip, CDSP, chip->regCDSP | VX_CDSP_TEST1_MASK);
203 vx_inl(chip, ISR);
204 data = vx_inl(chip, STATUS);
205 if ((data & VX_STATUS_VAL_TEST1_MASK) == VX_STATUS_VAL_TEST1_MASK) {
206 snd_printdd("bad! #3\n");
207 return -ENODEV;
208 }
209
210 /* We write 0 on CDSP.TEST1. We should get 1 on STATUS.TEST1. */
211 vx_outl(chip, CDSP, chip->regCDSP & ~VX_CDSP_TEST1_MASK);
212 vx_inl(chip, ISR);
213 data = vx_inl(chip, STATUS);
214 if (! (data & VX_STATUS_VAL_TEST1_MASK)) {
215 snd_printdd("bad! #4\n");
216 return -ENODEV;
217 }
218 }
219 snd_printdd("ok, xilinx fine.\n");
220 return 0;
221 }
222
223
224 /**
225 * vx_setup_pseudo_dma - set up the pseudo dma read/write mode.
226 * @do_write: 0 = read, 1 = set up for DMA write
227 */
vx2_setup_pseudo_dma(struct vx_core * chip,int do_write)228 static void vx2_setup_pseudo_dma(struct vx_core *chip, int do_write)
229 {
230 /* Interrupt mode and HREQ pin enabled for host transmit data transfers
231 * (in case of the use of the pseudo-dma facility).
232 */
233 vx_outl(chip, ICR, do_write ? ICR_TREQ : ICR_RREQ);
234
235 /* Reset the pseudo-dma register (in case of the use of the
236 * pseudo-dma facility).
237 */
238 vx_outl(chip, RESET_DMA, 0);
239 }
240
241 /*
242 * vx_release_pseudo_dma - disable the pseudo-DMA mode
243 */
vx2_release_pseudo_dma(struct vx_core * chip)244 static inline void vx2_release_pseudo_dma(struct vx_core *chip)
245 {
246 /* HREQ pin disabled. */
247 vx_outl(chip, ICR, 0);
248 }
249
250
251
252 /* pseudo-dma write */
vx2_dma_write(struct vx_core * chip,struct snd_pcm_runtime * runtime,struct vx_pipe * pipe,int count)253 static void vx2_dma_write(struct vx_core *chip, struct snd_pcm_runtime *runtime,
254 struct vx_pipe *pipe, int count)
255 {
256 unsigned long port = vx2_reg_addr(chip, VX_DMA);
257 int offset = pipe->hw_ptr;
258 u32 *addr = (u32 *)(runtime->dma_area + offset);
259
260 if (snd_BUG_ON(count % 4))
261 return;
262
263 vx2_setup_pseudo_dma(chip, 1);
264
265 /* Transfer using pseudo-dma.
266 */
267 if (offset + count > pipe->buffer_bytes) {
268 int length = pipe->buffer_bytes - offset;
269 count -= length;
270 length >>= 2; /* in 32bit words */
271 /* Transfer using pseudo-dma. */
272 while (length-- > 0) {
273 outl(cpu_to_le32(*addr), port);
274 addr++;
275 }
276 addr = (u32 *)runtime->dma_area;
277 pipe->hw_ptr = 0;
278 }
279 pipe->hw_ptr += count;
280 count >>= 2; /* in 32bit words */
281 /* Transfer using pseudo-dma. */
282 while (count-- > 0) {
283 outl(cpu_to_le32(*addr), port);
284 addr++;
285 }
286
287 vx2_release_pseudo_dma(chip);
288 }
289
290
291 /* pseudo dma read */
vx2_dma_read(struct vx_core * chip,struct snd_pcm_runtime * runtime,struct vx_pipe * pipe,int count)292 static void vx2_dma_read(struct vx_core *chip, struct snd_pcm_runtime *runtime,
293 struct vx_pipe *pipe, int count)
294 {
295 int offset = pipe->hw_ptr;
296 u32 *addr = (u32 *)(runtime->dma_area + offset);
297 unsigned long port = vx2_reg_addr(chip, VX_DMA);
298
299 if (snd_BUG_ON(count % 4))
300 return;
301
302 vx2_setup_pseudo_dma(chip, 0);
303 /* Transfer using pseudo-dma.
304 */
305 if (offset + count > pipe->buffer_bytes) {
306 int length = pipe->buffer_bytes - offset;
307 count -= length;
308 length >>= 2; /* in 32bit words */
309 /* Transfer using pseudo-dma. */
310 while (length-- > 0)
311 *addr++ = le32_to_cpu(inl(port));
312 addr = (u32 *)runtime->dma_area;
313 pipe->hw_ptr = 0;
314 }
315 pipe->hw_ptr += count;
316 count >>= 2; /* in 32bit words */
317 /* Transfer using pseudo-dma. */
318 while (count-- > 0)
319 *addr++ = le32_to_cpu(inl(port));
320
321 vx2_release_pseudo_dma(chip);
322 }
323
324 #define VX_XILINX_RESET_MASK 0x40000000
325 #define VX_USERBIT0_MASK 0x00000004
326 #define VX_USERBIT1_MASK 0x00000020
327 #define VX_CNTRL_REGISTER_VALUE 0x00172012
328
329 /*
330 * transfer counts bits to PLX
331 */
put_xilinx_data(struct vx_core * chip,unsigned int port,unsigned int counts,unsigned char data)332 static int put_xilinx_data(struct vx_core *chip, unsigned int port, unsigned int counts, unsigned char data)
333 {
334 unsigned int i;
335
336 for (i = 0; i < counts; i++) {
337 unsigned int val;
338
339 /* set the clock bit to 0. */
340 val = VX_CNTRL_REGISTER_VALUE & ~VX_USERBIT0_MASK;
341 vx2_outl(chip, port, val);
342 vx2_inl(chip, port);
343 udelay(1);
344
345 if (data & (1 << i))
346 val |= VX_USERBIT1_MASK;
347 else
348 val &= ~VX_USERBIT1_MASK;
349 vx2_outl(chip, port, val);
350 vx2_inl(chip, port);
351
352 /* set the clock bit to 1. */
353 val |= VX_USERBIT0_MASK;
354 vx2_outl(chip, port, val);
355 vx2_inl(chip, port);
356 udelay(1);
357 }
358 return 0;
359 }
360
361 /*
362 * load the xilinx image
363 */
vx2_load_xilinx_binary(struct vx_core * chip,const struct firmware * xilinx)364 static int vx2_load_xilinx_binary(struct vx_core *chip, const struct firmware *xilinx)
365 {
366 unsigned int i;
367 unsigned int port;
368 const unsigned char *image;
369
370 /* XILINX reset (wait at least 1 millisecond between reset on and off). */
371 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE | VX_XILINX_RESET_MASK);
372 vx_inl(chip, CNTRL);
373 msleep(10);
374 vx_outl(chip, CNTRL, VX_CNTRL_REGISTER_VALUE);
375 vx_inl(chip, CNTRL);
376 msleep(10);
377
378 if (chip->type == VX_TYPE_BOARD)
379 port = VX_CNTRL;
380 else
381 port = VX_GPIOC; /* VX222 V2 and VX222_MIC_BOARD with new PLX9030 use this register */
382
383 image = xilinx->data;
384 for (i = 0; i < xilinx->size; i++, image++) {
385 if (put_xilinx_data(chip, port, 8, *image) < 0)
386 return -EINVAL;
387 /* don't take too much time in this loop... */
388 cond_resched();
389 }
390 put_xilinx_data(chip, port, 4, 0xff); /* end signature */
391
392 msleep(200);
393
394 /* test after loading (is buggy with VX222) */
395 if (chip->type != VX_TYPE_BOARD) {
396 /* Test if load successful: test bit 8 of register GPIOC (VX222: use CNTRL) ! */
397 i = vx_inl(chip, GPIOC);
398 if (i & 0x0100)
399 return 0;
400 snd_printk(KERN_ERR "vx222: xilinx test failed after load, GPIOC=0x%x\n", i);
401 return -EINVAL;
402 }
403
404 return 0;
405 }
406
407
408 /*
409 * load the boot/dsp images
410 */
vx2_load_dsp(struct vx_core * vx,int index,const struct firmware * dsp)411 static int vx2_load_dsp(struct vx_core *vx, int index, const struct firmware *dsp)
412 {
413 int err;
414
415 switch (index) {
416 case 1:
417 /* xilinx image */
418 if ((err = vx2_load_xilinx_binary(vx, dsp)) < 0)
419 return err;
420 if ((err = vx2_test_xilinx(vx)) < 0)
421 return err;
422 return 0;
423 case 2:
424 /* DSP boot */
425 return snd_vx_dsp_boot(vx, dsp);
426 case 3:
427 /* DSP image */
428 return snd_vx_dsp_load(vx, dsp);
429 default:
430 snd_BUG();
431 return -EINVAL;
432 }
433 }
434
435
436 /*
437 * vx_test_and_ack - test and acknowledge interrupt
438 *
439 * called from irq hander, too
440 *
441 * spinlock held!
442 */
vx2_test_and_ack(struct vx_core * chip)443 static int vx2_test_and_ack(struct vx_core *chip)
444 {
445 /* not booted yet? */
446 if (! (chip->chip_status & VX_STAT_XILINX_LOADED))
447 return -ENXIO;
448
449 if (! (vx_inl(chip, STATUS) & VX_STATUS_MEMIRQ_MASK))
450 return -EIO;
451
452 /* ok, interrupts generated, now ack it */
453 /* set ACQUIT bit up and down */
454 vx_outl(chip, STATUS, 0);
455 /* useless read just to spend some time and maintain
456 * the ACQUIT signal up for a while ( a bus cycle )
457 */
458 vx_inl(chip, STATUS);
459 /* ack */
460 vx_outl(chip, STATUS, VX_STATUS_MEMIRQ_MASK);
461 /* useless read just to spend some time and maintain
462 * the ACQUIT signal up for a while ( a bus cycle ) */
463 vx_inl(chip, STATUS);
464 /* clear */
465 vx_outl(chip, STATUS, 0);
466
467 return 0;
468 }
469
470
471 /*
472 * vx_validate_irq - enable/disable IRQ
473 */
vx2_validate_irq(struct vx_core * _chip,int enable)474 static void vx2_validate_irq(struct vx_core *_chip, int enable)
475 {
476 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
477
478 /* Set the interrupt enable bit to 1 in CDSP register */
479 if (enable) {
480 /* Set the PCI interrupt enable bit to 1.*/
481 vx_outl(chip, INTCSR, VX_INTCSR_VALUE|VX_PCI_INTERRUPT_MASK);
482 chip->regCDSP |= VX_CDSP_VALID_IRQ_MASK;
483 } else {
484 /* Set the PCI interrupt enable bit to 0. */
485 vx_outl(chip, INTCSR, VX_INTCSR_VALUE&~VX_PCI_INTERRUPT_MASK);
486 chip->regCDSP &= ~VX_CDSP_VALID_IRQ_MASK;
487 }
488 vx_outl(chip, CDSP, chip->regCDSP);
489 }
490
491
492 /*
493 * write an AKM codec data (24bit)
494 */
vx2_write_codec_reg(struct vx_core * chip,unsigned int data)495 static void vx2_write_codec_reg(struct vx_core *chip, unsigned int data)
496 {
497 unsigned int i;
498
499 vx_inl(chip, HIFREQ);
500
501 /* We have to send 24 bits (3 x 8 bits). Start with most signif. Bit */
502 for (i = 0; i < 24; i++, data <<= 1)
503 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
504 /* Terminate access to codec registers */
505 vx_inl(chip, RUER);
506 }
507
508
509 #define AKM_CODEC_POWER_CONTROL_CMD 0xA007
510 #define AKM_CODEC_RESET_ON_CMD 0xA100
511 #define AKM_CODEC_RESET_OFF_CMD 0xA103
512 #define AKM_CODEC_CLOCK_FORMAT_CMD 0xA240
513 #define AKM_CODEC_MUTE_CMD 0xA38D
514 #define AKM_CODEC_UNMUTE_CMD 0xA30D
515 #define AKM_CODEC_LEFT_LEVEL_CMD 0xA400
516 #define AKM_CODEC_RIGHT_LEVEL_CMD 0xA500
517
518 static const u8 vx2_akm_gains_lut[VX2_AKM_LEVEL_MAX+1] = {
519 0x7f, // [000] = +0.000 dB -> AKM(0x7f) = +0.000 dB error(+0.000 dB)
520 0x7d, // [001] = -0.500 dB -> AKM(0x7d) = -0.572 dB error(-0.072 dB)
521 0x7c, // [002] = -1.000 dB -> AKM(0x7c) = -0.873 dB error(+0.127 dB)
522 0x7a, // [003] = -1.500 dB -> AKM(0x7a) = -1.508 dB error(-0.008 dB)
523 0x79, // [004] = -2.000 dB -> AKM(0x79) = -1.844 dB error(+0.156 dB)
524 0x77, // [005] = -2.500 dB -> AKM(0x77) = -2.557 dB error(-0.057 dB)
525 0x76, // [006] = -3.000 dB -> AKM(0x76) = -2.937 dB error(+0.063 dB)
526 0x75, // [007] = -3.500 dB -> AKM(0x75) = -3.334 dB error(+0.166 dB)
527 0x73, // [008] = -4.000 dB -> AKM(0x73) = -4.188 dB error(-0.188 dB)
528 0x72, // [009] = -4.500 dB -> AKM(0x72) = -4.648 dB error(-0.148 dB)
529 0x71, // [010] = -5.000 dB -> AKM(0x71) = -5.134 dB error(-0.134 dB)
530 0x70, // [011] = -5.500 dB -> AKM(0x70) = -5.649 dB error(-0.149 dB)
531 0x6f, // [012] = -6.000 dB -> AKM(0x6f) = -6.056 dB error(-0.056 dB)
532 0x6d, // [013] = -6.500 dB -> AKM(0x6d) = -6.631 dB error(-0.131 dB)
533 0x6c, // [014] = -7.000 dB -> AKM(0x6c) = -6.933 dB error(+0.067 dB)
534 0x6a, // [015] = -7.500 dB -> AKM(0x6a) = -7.571 dB error(-0.071 dB)
535 0x69, // [016] = -8.000 dB -> AKM(0x69) = -7.909 dB error(+0.091 dB)
536 0x67, // [017] = -8.500 dB -> AKM(0x67) = -8.626 dB error(-0.126 dB)
537 0x66, // [018] = -9.000 dB -> AKM(0x66) = -9.008 dB error(-0.008 dB)
538 0x65, // [019] = -9.500 dB -> AKM(0x65) = -9.407 dB error(+0.093 dB)
539 0x64, // [020] = -10.000 dB -> AKM(0x64) = -9.826 dB error(+0.174 dB)
540 0x62, // [021] = -10.500 dB -> AKM(0x62) = -10.730 dB error(-0.230 dB)
541 0x61, // [022] = -11.000 dB -> AKM(0x61) = -11.219 dB error(-0.219 dB)
542 0x60, // [023] = -11.500 dB -> AKM(0x60) = -11.738 dB error(-0.238 dB)
543 0x5f, // [024] = -12.000 dB -> AKM(0x5f) = -12.149 dB error(-0.149 dB)
544 0x5e, // [025] = -12.500 dB -> AKM(0x5e) = -12.434 dB error(+0.066 dB)
545 0x5c, // [026] = -13.000 dB -> AKM(0x5c) = -13.033 dB error(-0.033 dB)
546 0x5b, // [027] = -13.500 dB -> AKM(0x5b) = -13.350 dB error(+0.150 dB)
547 0x59, // [028] = -14.000 dB -> AKM(0x59) = -14.018 dB error(-0.018 dB)
548 0x58, // [029] = -14.500 dB -> AKM(0x58) = -14.373 dB error(+0.127 dB)
549 0x56, // [030] = -15.000 dB -> AKM(0x56) = -15.130 dB error(-0.130 dB)
550 0x55, // [031] = -15.500 dB -> AKM(0x55) = -15.534 dB error(-0.034 dB)
551 0x54, // [032] = -16.000 dB -> AKM(0x54) = -15.958 dB error(+0.042 dB)
552 0x53, // [033] = -16.500 dB -> AKM(0x53) = -16.404 dB error(+0.096 dB)
553 0x52, // [034] = -17.000 dB -> AKM(0x52) = -16.874 dB error(+0.126 dB)
554 0x51, // [035] = -17.500 dB -> AKM(0x51) = -17.371 dB error(+0.129 dB)
555 0x50, // [036] = -18.000 dB -> AKM(0x50) = -17.898 dB error(+0.102 dB)
556 0x4e, // [037] = -18.500 dB -> AKM(0x4e) = -18.605 dB error(-0.105 dB)
557 0x4d, // [038] = -19.000 dB -> AKM(0x4d) = -18.905 dB error(+0.095 dB)
558 0x4b, // [039] = -19.500 dB -> AKM(0x4b) = -19.538 dB error(-0.038 dB)
559 0x4a, // [040] = -20.000 dB -> AKM(0x4a) = -19.872 dB error(+0.128 dB)
560 0x48, // [041] = -20.500 dB -> AKM(0x48) = -20.583 dB error(-0.083 dB)
561 0x47, // [042] = -21.000 dB -> AKM(0x47) = -20.961 dB error(+0.039 dB)
562 0x46, // [043] = -21.500 dB -> AKM(0x46) = -21.356 dB error(+0.144 dB)
563 0x44, // [044] = -22.000 dB -> AKM(0x44) = -22.206 dB error(-0.206 dB)
564 0x43, // [045] = -22.500 dB -> AKM(0x43) = -22.664 dB error(-0.164 dB)
565 0x42, // [046] = -23.000 dB -> AKM(0x42) = -23.147 dB error(-0.147 dB)
566 0x41, // [047] = -23.500 dB -> AKM(0x41) = -23.659 dB error(-0.159 dB)
567 0x40, // [048] = -24.000 dB -> AKM(0x40) = -24.203 dB error(-0.203 dB)
568 0x3f, // [049] = -24.500 dB -> AKM(0x3f) = -24.635 dB error(-0.135 dB)
569 0x3e, // [050] = -25.000 dB -> AKM(0x3e) = -24.935 dB error(+0.065 dB)
570 0x3c, // [051] = -25.500 dB -> AKM(0x3c) = -25.569 dB error(-0.069 dB)
571 0x3b, // [052] = -26.000 dB -> AKM(0x3b) = -25.904 dB error(+0.096 dB)
572 0x39, // [053] = -26.500 dB -> AKM(0x39) = -26.615 dB error(-0.115 dB)
573 0x38, // [054] = -27.000 dB -> AKM(0x38) = -26.994 dB error(+0.006 dB)
574 0x37, // [055] = -27.500 dB -> AKM(0x37) = -27.390 dB error(+0.110 dB)
575 0x36, // [056] = -28.000 dB -> AKM(0x36) = -27.804 dB error(+0.196 dB)
576 0x34, // [057] = -28.500 dB -> AKM(0x34) = -28.699 dB error(-0.199 dB)
577 0x33, // [058] = -29.000 dB -> AKM(0x33) = -29.183 dB error(-0.183 dB)
578 0x32, // [059] = -29.500 dB -> AKM(0x32) = -29.696 dB error(-0.196 dB)
579 0x31, // [060] = -30.000 dB -> AKM(0x31) = -30.241 dB error(-0.241 dB)
580 0x31, // [061] = -30.500 dB -> AKM(0x31) = -30.241 dB error(+0.259 dB)
581 0x30, // [062] = -31.000 dB -> AKM(0x30) = -30.823 dB error(+0.177 dB)
582 0x2e, // [063] = -31.500 dB -> AKM(0x2e) = -31.610 dB error(-0.110 dB)
583 0x2d, // [064] = -32.000 dB -> AKM(0x2d) = -31.945 dB error(+0.055 dB)
584 0x2b, // [065] = -32.500 dB -> AKM(0x2b) = -32.659 dB error(-0.159 dB)
585 0x2a, // [066] = -33.000 dB -> AKM(0x2a) = -33.038 dB error(-0.038 dB)
586 0x29, // [067] = -33.500 dB -> AKM(0x29) = -33.435 dB error(+0.065 dB)
587 0x28, // [068] = -34.000 dB -> AKM(0x28) = -33.852 dB error(+0.148 dB)
588 0x27, // [069] = -34.500 dB -> AKM(0x27) = -34.289 dB error(+0.211 dB)
589 0x25, // [070] = -35.000 dB -> AKM(0x25) = -35.235 dB error(-0.235 dB)
590 0x24, // [071] = -35.500 dB -> AKM(0x24) = -35.750 dB error(-0.250 dB)
591 0x24, // [072] = -36.000 dB -> AKM(0x24) = -35.750 dB error(+0.250 dB)
592 0x23, // [073] = -36.500 dB -> AKM(0x23) = -36.297 dB error(+0.203 dB)
593 0x22, // [074] = -37.000 dB -> AKM(0x22) = -36.881 dB error(+0.119 dB)
594 0x21, // [075] = -37.500 dB -> AKM(0x21) = -37.508 dB error(-0.008 dB)
595 0x20, // [076] = -38.000 dB -> AKM(0x20) = -38.183 dB error(-0.183 dB)
596 0x1f, // [077] = -38.500 dB -> AKM(0x1f) = -38.726 dB error(-0.226 dB)
597 0x1e, // [078] = -39.000 dB -> AKM(0x1e) = -39.108 dB error(-0.108 dB)
598 0x1d, // [079] = -39.500 dB -> AKM(0x1d) = -39.507 dB error(-0.007 dB)
599 0x1c, // [080] = -40.000 dB -> AKM(0x1c) = -39.926 dB error(+0.074 dB)
600 0x1b, // [081] = -40.500 dB -> AKM(0x1b) = -40.366 dB error(+0.134 dB)
601 0x1a, // [082] = -41.000 dB -> AKM(0x1a) = -40.829 dB error(+0.171 dB)
602 0x19, // [083] = -41.500 dB -> AKM(0x19) = -41.318 dB error(+0.182 dB)
603 0x18, // [084] = -42.000 dB -> AKM(0x18) = -41.837 dB error(+0.163 dB)
604 0x17, // [085] = -42.500 dB -> AKM(0x17) = -42.389 dB error(+0.111 dB)
605 0x16, // [086] = -43.000 dB -> AKM(0x16) = -42.978 dB error(+0.022 dB)
606 0x15, // [087] = -43.500 dB -> AKM(0x15) = -43.610 dB error(-0.110 dB)
607 0x14, // [088] = -44.000 dB -> AKM(0x14) = -44.291 dB error(-0.291 dB)
608 0x14, // [089] = -44.500 dB -> AKM(0x14) = -44.291 dB error(+0.209 dB)
609 0x13, // [090] = -45.000 dB -> AKM(0x13) = -45.031 dB error(-0.031 dB)
610 0x12, // [091] = -45.500 dB -> AKM(0x12) = -45.840 dB error(-0.340 dB)
611 0x12, // [092] = -46.000 dB -> AKM(0x12) = -45.840 dB error(+0.160 dB)
612 0x11, // [093] = -46.500 dB -> AKM(0x11) = -46.731 dB error(-0.231 dB)
613 0x11, // [094] = -47.000 dB -> AKM(0x11) = -46.731 dB error(+0.269 dB)
614 0x10, // [095] = -47.500 dB -> AKM(0x10) = -47.725 dB error(-0.225 dB)
615 0x10, // [096] = -48.000 dB -> AKM(0x10) = -47.725 dB error(+0.275 dB)
616 0x0f, // [097] = -48.500 dB -> AKM(0x0f) = -48.553 dB error(-0.053 dB)
617 0x0e, // [098] = -49.000 dB -> AKM(0x0e) = -49.152 dB error(-0.152 dB)
618 0x0d, // [099] = -49.500 dB -> AKM(0x0d) = -49.796 dB error(-0.296 dB)
619 0x0d, // [100] = -50.000 dB -> AKM(0x0d) = -49.796 dB error(+0.204 dB)
620 0x0c, // [101] = -50.500 dB -> AKM(0x0c) = -50.491 dB error(+0.009 dB)
621 0x0b, // [102] = -51.000 dB -> AKM(0x0b) = -51.247 dB error(-0.247 dB)
622 0x0b, // [103] = -51.500 dB -> AKM(0x0b) = -51.247 dB error(+0.253 dB)
623 0x0a, // [104] = -52.000 dB -> AKM(0x0a) = -52.075 dB error(-0.075 dB)
624 0x0a, // [105] = -52.500 dB -> AKM(0x0a) = -52.075 dB error(+0.425 dB)
625 0x09, // [106] = -53.000 dB -> AKM(0x09) = -52.990 dB error(+0.010 dB)
626 0x09, // [107] = -53.500 dB -> AKM(0x09) = -52.990 dB error(+0.510 dB)
627 0x08, // [108] = -54.000 dB -> AKM(0x08) = -54.013 dB error(-0.013 dB)
628 0x08, // [109] = -54.500 dB -> AKM(0x08) = -54.013 dB error(+0.487 dB)
629 0x07, // [110] = -55.000 dB -> AKM(0x07) = -55.173 dB error(-0.173 dB)
630 0x07, // [111] = -55.500 dB -> AKM(0x07) = -55.173 dB error(+0.327 dB)
631 0x06, // [112] = -56.000 dB -> AKM(0x06) = -56.512 dB error(-0.512 dB)
632 0x06, // [113] = -56.500 dB -> AKM(0x06) = -56.512 dB error(-0.012 dB)
633 0x06, // [114] = -57.000 dB -> AKM(0x06) = -56.512 dB error(+0.488 dB)
634 0x05, // [115] = -57.500 dB -> AKM(0x05) = -58.095 dB error(-0.595 dB)
635 0x05, // [116] = -58.000 dB -> AKM(0x05) = -58.095 dB error(-0.095 dB)
636 0x05, // [117] = -58.500 dB -> AKM(0x05) = -58.095 dB error(+0.405 dB)
637 0x05, // [118] = -59.000 dB -> AKM(0x05) = -58.095 dB error(+0.905 dB)
638 0x04, // [119] = -59.500 dB -> AKM(0x04) = -60.034 dB error(-0.534 dB)
639 0x04, // [120] = -60.000 dB -> AKM(0x04) = -60.034 dB error(-0.034 dB)
640 0x04, // [121] = -60.500 dB -> AKM(0x04) = -60.034 dB error(+0.466 dB)
641 0x04, // [122] = -61.000 dB -> AKM(0x04) = -60.034 dB error(+0.966 dB)
642 0x03, // [123] = -61.500 dB -> AKM(0x03) = -62.532 dB error(-1.032 dB)
643 0x03, // [124] = -62.000 dB -> AKM(0x03) = -62.532 dB error(-0.532 dB)
644 0x03, // [125] = -62.500 dB -> AKM(0x03) = -62.532 dB error(-0.032 dB)
645 0x03, // [126] = -63.000 dB -> AKM(0x03) = -62.532 dB error(+0.468 dB)
646 0x03, // [127] = -63.500 dB -> AKM(0x03) = -62.532 dB error(+0.968 dB)
647 0x03, // [128] = -64.000 dB -> AKM(0x03) = -62.532 dB error(+1.468 dB)
648 0x02, // [129] = -64.500 dB -> AKM(0x02) = -66.054 dB error(-1.554 dB)
649 0x02, // [130] = -65.000 dB -> AKM(0x02) = -66.054 dB error(-1.054 dB)
650 0x02, // [131] = -65.500 dB -> AKM(0x02) = -66.054 dB error(-0.554 dB)
651 0x02, // [132] = -66.000 dB -> AKM(0x02) = -66.054 dB error(-0.054 dB)
652 0x02, // [133] = -66.500 dB -> AKM(0x02) = -66.054 dB error(+0.446 dB)
653 0x02, // [134] = -67.000 dB -> AKM(0x02) = -66.054 dB error(+0.946 dB)
654 0x02, // [135] = -67.500 dB -> AKM(0x02) = -66.054 dB error(+1.446 dB)
655 0x02, // [136] = -68.000 dB -> AKM(0x02) = -66.054 dB error(+1.946 dB)
656 0x02, // [137] = -68.500 dB -> AKM(0x02) = -66.054 dB error(+2.446 dB)
657 0x02, // [138] = -69.000 dB -> AKM(0x02) = -66.054 dB error(+2.946 dB)
658 0x01, // [139] = -69.500 dB -> AKM(0x01) = -72.075 dB error(-2.575 dB)
659 0x01, // [140] = -70.000 dB -> AKM(0x01) = -72.075 dB error(-2.075 dB)
660 0x01, // [141] = -70.500 dB -> AKM(0x01) = -72.075 dB error(-1.575 dB)
661 0x01, // [142] = -71.000 dB -> AKM(0x01) = -72.075 dB error(-1.075 dB)
662 0x01, // [143] = -71.500 dB -> AKM(0x01) = -72.075 dB error(-0.575 dB)
663 0x01, // [144] = -72.000 dB -> AKM(0x01) = -72.075 dB error(-0.075 dB)
664 0x01, // [145] = -72.500 dB -> AKM(0x01) = -72.075 dB error(+0.425 dB)
665 0x01, // [146] = -73.000 dB -> AKM(0x01) = -72.075 dB error(+0.925 dB)
666 0x00}; // [147] = -73.500 dB -> AKM(0x00) = mute error(+infini)
667
668 /*
669 * pseudo-codec write entry
670 */
vx2_write_akm(struct vx_core * chip,int reg,unsigned int data)671 static void vx2_write_akm(struct vx_core *chip, int reg, unsigned int data)
672 {
673 unsigned int val;
674
675 if (reg == XX_CODEC_DAC_CONTROL_REGISTER) {
676 vx2_write_codec_reg(chip, data ? AKM_CODEC_MUTE_CMD : AKM_CODEC_UNMUTE_CMD);
677 return;
678 }
679
680 /* `data' is a value between 0x0 and VX2_AKM_LEVEL_MAX = 0x093, in the case of the AKM codecs, we need
681 a look up table, as there is no linear matching between the driver codec values
682 and the real dBu value
683 */
684 if (snd_BUG_ON(data >= sizeof(vx2_akm_gains_lut)))
685 return;
686
687 switch (reg) {
688 case XX_CODEC_LEVEL_LEFT_REGISTER:
689 val = AKM_CODEC_LEFT_LEVEL_CMD;
690 break;
691 case XX_CODEC_LEVEL_RIGHT_REGISTER:
692 val = AKM_CODEC_RIGHT_LEVEL_CMD;
693 break;
694 default:
695 snd_BUG();
696 return;
697 }
698 val |= vx2_akm_gains_lut[data];
699
700 vx2_write_codec_reg(chip, val);
701 }
702
703
704 /*
705 * write codec bit for old VX222 board
706 */
vx2_old_write_codec_bit(struct vx_core * chip,int codec,unsigned int data)707 static void vx2_old_write_codec_bit(struct vx_core *chip, int codec, unsigned int data)
708 {
709 int i;
710
711 /* activate access to codec registers */
712 vx_inl(chip, HIFREQ);
713
714 for (i = 0; i < 24; i++, data <<= 1)
715 vx_outl(chip, DATA, ((data & 0x800000) ? VX_DATA_CODEC_MASK : 0));
716
717 /* Terminate access to codec registers */
718 vx_inl(chip, RUER);
719 }
720
721
722 /*
723 * reset codec bit
724 */
vx2_reset_codec(struct vx_core * _chip)725 static void vx2_reset_codec(struct vx_core *_chip)
726 {
727 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
728
729 /* Set the reset CODEC bit to 0. */
730 vx_outl(chip, CDSP, chip->regCDSP &~ VX_CDSP_CODEC_RESET_MASK);
731 vx_inl(chip, CDSP);
732 msleep(10);
733 /* Set the reset CODEC bit to 1. */
734 chip->regCDSP |= VX_CDSP_CODEC_RESET_MASK;
735 vx_outl(chip, CDSP, chip->regCDSP);
736 vx_inl(chip, CDSP);
737 if (_chip->type == VX_TYPE_BOARD) {
738 msleep(1);
739 return;
740 }
741
742 msleep(5); /* additionnel wait time for AKM's */
743
744 vx2_write_codec_reg(_chip, AKM_CODEC_POWER_CONTROL_CMD); /* DAC power up, ADC power up, Vref power down */
745
746 vx2_write_codec_reg(_chip, AKM_CODEC_CLOCK_FORMAT_CMD); /* default */
747 vx2_write_codec_reg(_chip, AKM_CODEC_MUTE_CMD); /* Mute = ON ,Deemphasis = OFF */
748 vx2_write_codec_reg(_chip, AKM_CODEC_RESET_OFF_CMD); /* DAC and ADC normal operation */
749
750 if (_chip->type == VX_TYPE_MIC) {
751 /* set up the micro input selector */
752 chip->regSELMIC = MICRO_SELECT_INPUT_NORM |
753 MICRO_SELECT_PREAMPLI_G_0 |
754 MICRO_SELECT_NOISE_T_52DB;
755
756 /* reset phantom power supply */
757 chip->regSELMIC &= ~MICRO_SELECT_PHANTOM_ALIM;
758
759 vx_outl(_chip, SELMIC, chip->regSELMIC);
760 }
761 }
762
763
764 /*
765 * change the audio source
766 */
vx2_change_audio_source(struct vx_core * _chip,int src)767 static void vx2_change_audio_source(struct vx_core *_chip, int src)
768 {
769 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
770
771 switch (src) {
772 case VX_AUDIO_SRC_DIGITAL:
773 chip->regCFG |= VX_CFG_DATAIN_SEL_MASK;
774 break;
775 default:
776 chip->regCFG &= ~VX_CFG_DATAIN_SEL_MASK;
777 break;
778 }
779 vx_outl(chip, CFG, chip->regCFG);
780 }
781
782
783 /*
784 * set the clock source
785 */
vx2_set_clock_source(struct vx_core * _chip,int source)786 static void vx2_set_clock_source(struct vx_core *_chip, int source)
787 {
788 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
789
790 if (source == INTERNAL_QUARTZ)
791 chip->regCFG &= ~VX_CFG_CLOCKIN_SEL_MASK;
792 else
793 chip->regCFG |= VX_CFG_CLOCKIN_SEL_MASK;
794 vx_outl(chip, CFG, chip->regCFG);
795 }
796
797 /*
798 * reset the board
799 */
vx2_reset_board(struct vx_core * _chip,int cold_reset)800 static void vx2_reset_board(struct vx_core *_chip, int cold_reset)
801 {
802 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
803
804 /* initialize the register values */
805 chip->regCDSP = VX_CDSP_CODEC_RESET_MASK | VX_CDSP_DSP_RESET_MASK ;
806 chip->regCFG = 0;
807 }
808
809
810
811 /*
812 * input level controls for VX222 Mic
813 */
814
815 /* Micro level is specified to be adjustable from -96dB to 63 dB (board coded 0x00 ... 318),
816 * 318 = 210 + 36 + 36 + 36 (210 = +9dB variable) (3 * 36 = 3 steps of 18dB pre ampli)
817 * as we will mute if less than -110dB, so let's simply use line input coded levels and add constant offset !
818 */
819 #define V2_MICRO_LEVEL_RANGE (318 - 255)
820
vx2_set_input_level(struct snd_vx222 * chip)821 static void vx2_set_input_level(struct snd_vx222 *chip)
822 {
823 int i, miclevel, preamp;
824 unsigned int data;
825
826 miclevel = chip->mic_level;
827 miclevel += V2_MICRO_LEVEL_RANGE; /* add 318 - 0xff */
828 preamp = 0;
829 while (miclevel > 210) { /* limitation to +9dB of 3310 real gain */
830 preamp++; /* raise pre ampli + 18dB */
831 miclevel -= (18 * 2); /* lower level 18 dB (*2 because of 0.5 dB steps !) */
832 }
833 if (snd_BUG_ON(preamp >= 4))
834 return;
835
836 /* set pre-amp level */
837 chip->regSELMIC &= ~MICRO_SELECT_PREAMPLI_MASK;
838 chip->regSELMIC |= (preamp << MICRO_SELECT_PREAMPLI_OFFSET) & MICRO_SELECT_PREAMPLI_MASK;
839 vx_outl(chip, SELMIC, chip->regSELMIC);
840
841 data = (unsigned int)miclevel << 16 |
842 (unsigned int)chip->input_level[1] << 8 |
843 (unsigned int)chip->input_level[0];
844 vx_inl(chip, DATA); /* Activate input level programming */
845
846 /* We have to send 32 bits (4 x 8 bits) */
847 for (i = 0; i < 32; i++, data <<= 1)
848 vx_outl(chip, DATA, ((data & 0x80000000) ? VX_DATA_CODEC_MASK : 0));
849
850 vx_inl(chip, RUER); /* Terminate input level programming */
851 }
852
853
854 #define MIC_LEVEL_MAX 0xff
855
856 static const DECLARE_TLV_DB_SCALE(db_scale_mic, -6450, 50, 0);
857
858 /*
859 * controls API for input levels
860 */
861
862 /* input levels */
vx_input_level_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)863 static int vx_input_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
864 {
865 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
866 uinfo->count = 2;
867 uinfo->value.integer.min = 0;
868 uinfo->value.integer.max = MIC_LEVEL_MAX;
869 return 0;
870 }
871
vx_input_level_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)872 static int vx_input_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
873 {
874 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
875 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
876 mutex_lock(&_chip->mixer_mutex);
877 ucontrol->value.integer.value[0] = chip->input_level[0];
878 ucontrol->value.integer.value[1] = chip->input_level[1];
879 mutex_unlock(&_chip->mixer_mutex);
880 return 0;
881 }
882
vx_input_level_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)883 static int vx_input_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
884 {
885 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
886 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
887 if (ucontrol->value.integer.value[0] < 0 ||
888 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
889 return -EINVAL;
890 if (ucontrol->value.integer.value[1] < 0 ||
891 ucontrol->value.integer.value[1] > MIC_LEVEL_MAX)
892 return -EINVAL;
893 mutex_lock(&_chip->mixer_mutex);
894 if (chip->input_level[0] != ucontrol->value.integer.value[0] ||
895 chip->input_level[1] != ucontrol->value.integer.value[1]) {
896 chip->input_level[0] = ucontrol->value.integer.value[0];
897 chip->input_level[1] = ucontrol->value.integer.value[1];
898 vx2_set_input_level(chip);
899 mutex_unlock(&_chip->mixer_mutex);
900 return 1;
901 }
902 mutex_unlock(&_chip->mixer_mutex);
903 return 0;
904 }
905
906 /* mic level */
vx_mic_level_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)907 static int vx_mic_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
908 {
909 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
910 uinfo->count = 1;
911 uinfo->value.integer.min = 0;
912 uinfo->value.integer.max = MIC_LEVEL_MAX;
913 return 0;
914 }
915
vx_mic_level_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)916 static int vx_mic_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
917 {
918 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
919 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
920 ucontrol->value.integer.value[0] = chip->mic_level;
921 return 0;
922 }
923
vx_mic_level_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)924 static int vx_mic_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
925 {
926 struct vx_core *_chip = snd_kcontrol_chip(kcontrol);
927 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
928 if (ucontrol->value.integer.value[0] < 0 ||
929 ucontrol->value.integer.value[0] > MIC_LEVEL_MAX)
930 return -EINVAL;
931 mutex_lock(&_chip->mixer_mutex);
932 if (chip->mic_level != ucontrol->value.integer.value[0]) {
933 chip->mic_level = ucontrol->value.integer.value[0];
934 vx2_set_input_level(chip);
935 mutex_unlock(&_chip->mixer_mutex);
936 return 1;
937 }
938 mutex_unlock(&_chip->mixer_mutex);
939 return 0;
940 }
941
942 static struct snd_kcontrol_new vx_control_input_level = {
943 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
944 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
945 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
946 .name = "Capture Volume",
947 .info = vx_input_level_info,
948 .get = vx_input_level_get,
949 .put = vx_input_level_put,
950 .tlv = { .p = db_scale_mic },
951 };
952
953 static struct snd_kcontrol_new vx_control_mic_level = {
954 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
955 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
956 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
957 .name = "Mic Capture Volume",
958 .info = vx_mic_level_info,
959 .get = vx_mic_level_get,
960 .put = vx_mic_level_put,
961 .tlv = { .p = db_scale_mic },
962 };
963
964 /*
965 * FIXME: compressor/limiter implementation is missing yet...
966 */
967
vx2_add_mic_controls(struct vx_core * _chip)968 static int vx2_add_mic_controls(struct vx_core *_chip)
969 {
970 struct snd_vx222 *chip = (struct snd_vx222 *)_chip;
971 int err;
972
973 if (_chip->type != VX_TYPE_MIC)
974 return 0;
975
976 /* mute input levels */
977 chip->input_level[0] = chip->input_level[1] = 0;
978 chip->mic_level = 0;
979 vx2_set_input_level(chip);
980
981 /* controls */
982 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_input_level, chip))) < 0)
983 return err;
984 if ((err = snd_ctl_add(_chip->card, snd_ctl_new1(&vx_control_mic_level, chip))) < 0)
985 return err;
986
987 return 0;
988 }
989
990
991 /*
992 * callbacks
993 */
994 struct snd_vx_ops vx222_ops = {
995 .in8 = vx2_inb,
996 .in32 = vx2_inl,
997 .out8 = vx2_outb,
998 .out32 = vx2_outl,
999 .test_and_ack = vx2_test_and_ack,
1000 .validate_irq = vx2_validate_irq,
1001 .akm_write = vx2_write_akm,
1002 .reset_codec = vx2_reset_codec,
1003 .change_audio_source = vx2_change_audio_source,
1004 .set_clock_source = vx2_set_clock_source,
1005 .load_dsp = vx2_load_dsp,
1006 .reset_dsp = vx2_reset_dsp,
1007 .reset_board = vx2_reset_board,
1008 .dma_write = vx2_dma_write,
1009 .dma_read = vx2_dma_read,
1010 .add_controls = vx2_add_mic_controls,
1011 };
1012
1013 /* for old VX222 board */
1014 struct snd_vx_ops vx222_old_ops = {
1015 .in8 = vx2_inb,
1016 .in32 = vx2_inl,
1017 .out8 = vx2_outb,
1018 .out32 = vx2_outl,
1019 .test_and_ack = vx2_test_and_ack,
1020 .validate_irq = vx2_validate_irq,
1021 .write_codec = vx2_old_write_codec_bit,
1022 .reset_codec = vx2_reset_codec,
1023 .change_audio_source = vx2_change_audio_source,
1024 .set_clock_source = vx2_set_clock_source,
1025 .load_dsp = vx2_load_dsp,
1026 .reset_dsp = vx2_reset_dsp,
1027 .reset_board = vx2_reset_board,
1028 .dma_write = vx2_dma_write,
1029 .dma_read = vx2_dma_read,
1030 };
1031
1032