1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Virtual cpu timer based timer functions.
4 *
5 * Copyright IBM Corp. 2004, 2012
6 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7 */
8
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16 #include <asm/alternative.h>
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21
22 #include "entry.h"
23
24 static void virt_timer_expire(void);
25
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
get_vtimer(void)36 static inline u64 get_vtimer(void)
37 {
38 u64 timer;
39
40 asm volatile("stpt %0" : "=Q" (timer));
41 return timer;
42 }
43
set_vtimer(u64 expires)44 static inline void set_vtimer(u64 expires)
45 {
46 u64 timer;
47
48 asm volatile(
49 " stpt %0\n" /* Store current cpu timer value */
50 " spt %1" /* Set new value imm. afterwards */
51 : "=Q" (timer) : "Q" (expires));
52 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53 S390_lowcore.last_update_timer = expires;
54 }
55
virt_timer_forward(u64 elapsed)56 static inline int virt_timer_forward(u64 elapsed)
57 {
58 BUG_ON(!irqs_disabled());
59
60 if (list_empty(&virt_timer_list))
61 return 0;
62 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63 return elapsed >= atomic64_read(&virt_timer_current);
64 }
65
update_mt_scaling(void)66 static void update_mt_scaling(void)
67 {
68 u64 cycles_new[8], *cycles_old;
69 u64 delta, fac, mult, div;
70 int i;
71
72 stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73 cycles_old = this_cpu_ptr(mt_cycles);
74 fac = 1;
75 mult = div = 0;
76 for (i = 0; i <= smp_cpu_mtid; i++) {
77 delta = cycles_new[i] - cycles_old[i];
78 div += delta;
79 mult *= i + 1;
80 mult += delta * fac;
81 fac *= i + 1;
82 }
83 div *= fac;
84 if (div > 0) {
85 /* Update scaling factor */
86 __this_cpu_write(mt_scaling_mult, mult);
87 __this_cpu_write(mt_scaling_div, div);
88 memcpy(cycles_old, cycles_new,
89 sizeof(u64) * (smp_cpu_mtid + 1));
90 }
91 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93
update_tsk_timer(unsigned long * tsk_vtime,u64 new)94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96 u64 delta;
97
98 delta = new - *tsk_vtime;
99 *tsk_vtime = new;
100 return delta;
101 }
102
103
scale_vtime(u64 vtime)104 static inline u64 scale_vtime(u64 vtime)
105 {
106 u64 mult = __this_cpu_read(mt_scaling_mult);
107 u64 div = __this_cpu_read(mt_scaling_div);
108
109 if (smp_cpu_mtid)
110 return vtime * mult / div;
111 return vtime;
112 }
113
account_system_index_scaled(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115 enum cpu_usage_stat index)
116 {
117 p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118 account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120
121 /*
122 * Update process times based on virtual cpu times stored by entry.S
123 * to the lowcore fields user_timer, system_timer & steal_clock.
124 */
do_account_vtime(struct task_struct * tsk)125 static int do_account_vtime(struct task_struct *tsk)
126 {
127 u64 timer, clock, user, guest, system, hardirq, softirq;
128
129 timer = S390_lowcore.last_update_timer;
130 clock = S390_lowcore.last_update_clock;
131 asm volatile(
132 " stpt %0\n" /* Store current cpu timer value */
133 " stckf %1" /* Store current tod clock value */
134 : "=Q" (S390_lowcore.last_update_timer),
135 "=Q" (S390_lowcore.last_update_clock)
136 : : "cc");
137 clock = S390_lowcore.last_update_clock - clock;
138 timer -= S390_lowcore.last_update_timer;
139
140 if (hardirq_count())
141 S390_lowcore.hardirq_timer += timer;
142 else
143 S390_lowcore.system_timer += timer;
144
145 /* Update MT utilization calculation */
146 if (smp_cpu_mtid &&
147 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
148 update_mt_scaling();
149
150 /* Calculate cputime delta */
151 user = update_tsk_timer(&tsk->thread.user_timer,
152 READ_ONCE(S390_lowcore.user_timer));
153 guest = update_tsk_timer(&tsk->thread.guest_timer,
154 READ_ONCE(S390_lowcore.guest_timer));
155 system = update_tsk_timer(&tsk->thread.system_timer,
156 READ_ONCE(S390_lowcore.system_timer));
157 hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
158 READ_ONCE(S390_lowcore.hardirq_timer));
159 softirq = update_tsk_timer(&tsk->thread.softirq_timer,
160 READ_ONCE(S390_lowcore.softirq_timer));
161 S390_lowcore.steal_timer +=
162 clock - user - guest - system - hardirq - softirq;
163
164 /* Push account value */
165 if (user) {
166 account_user_time(tsk, cputime_to_nsecs(user));
167 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
168 }
169
170 if (guest) {
171 account_guest_time(tsk, cputime_to_nsecs(guest));
172 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
173 }
174
175 if (system)
176 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
177 if (hardirq)
178 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
179 if (softirq)
180 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
181
182 return virt_timer_forward(user + guest + system + hardirq + softirq);
183 }
184
vtime_task_switch(struct task_struct * prev)185 void vtime_task_switch(struct task_struct *prev)
186 {
187 do_account_vtime(prev);
188 prev->thread.user_timer = S390_lowcore.user_timer;
189 prev->thread.guest_timer = S390_lowcore.guest_timer;
190 prev->thread.system_timer = S390_lowcore.system_timer;
191 prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
192 prev->thread.softirq_timer = S390_lowcore.softirq_timer;
193 S390_lowcore.user_timer = current->thread.user_timer;
194 S390_lowcore.guest_timer = current->thread.guest_timer;
195 S390_lowcore.system_timer = current->thread.system_timer;
196 S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
197 S390_lowcore.softirq_timer = current->thread.softirq_timer;
198 }
199
200 /*
201 * In s390, accounting pending user time also implies
202 * accounting system time in order to correctly compute
203 * the stolen time accounting.
204 */
vtime_flush(struct task_struct * tsk)205 void vtime_flush(struct task_struct *tsk)
206 {
207 u64 steal, avg_steal;
208
209 if (do_account_vtime(tsk))
210 virt_timer_expire();
211
212 steal = S390_lowcore.steal_timer;
213 avg_steal = S390_lowcore.avg_steal_timer / 2;
214 if ((s64) steal > 0) {
215 S390_lowcore.steal_timer = 0;
216 account_steal_time(cputime_to_nsecs(steal));
217 avg_steal += steal;
218 }
219 S390_lowcore.avg_steal_timer = avg_steal;
220 }
221
vtime_delta(void)222 static u64 vtime_delta(void)
223 {
224 u64 timer = S390_lowcore.last_update_timer;
225
226 S390_lowcore.last_update_timer = get_vtimer();
227
228 return timer - S390_lowcore.last_update_timer;
229 }
230
231 /*
232 * Update process times based on virtual cpu times stored by entry.S
233 * to the lowcore fields user_timer, system_timer & steal_clock.
234 */
vtime_account_kernel(struct task_struct * tsk)235 void vtime_account_kernel(struct task_struct *tsk)
236 {
237 u64 delta = vtime_delta();
238
239 if (tsk->flags & PF_VCPU)
240 S390_lowcore.guest_timer += delta;
241 else
242 S390_lowcore.system_timer += delta;
243
244 virt_timer_forward(delta);
245 }
246 EXPORT_SYMBOL_GPL(vtime_account_kernel);
247
vtime_account_softirq(struct task_struct * tsk)248 void vtime_account_softirq(struct task_struct *tsk)
249 {
250 u64 delta = vtime_delta();
251
252 S390_lowcore.softirq_timer += delta;
253
254 virt_timer_forward(delta);
255 }
256
vtime_account_hardirq(struct task_struct * tsk)257 void vtime_account_hardirq(struct task_struct *tsk)
258 {
259 u64 delta = vtime_delta();
260
261 S390_lowcore.hardirq_timer += delta;
262
263 virt_timer_forward(delta);
264 }
265
266 /*
267 * Sorted add to a list. List is linear searched until first bigger
268 * element is found.
269 */
list_add_sorted(struct vtimer_list * timer,struct list_head * head)270 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
271 {
272 struct vtimer_list *tmp;
273
274 list_for_each_entry(tmp, head, entry) {
275 if (tmp->expires > timer->expires) {
276 list_add_tail(&timer->entry, &tmp->entry);
277 return;
278 }
279 }
280 list_add_tail(&timer->entry, head);
281 }
282
283 /*
284 * Handler for expired virtual CPU timer.
285 */
virt_timer_expire(void)286 static void virt_timer_expire(void)
287 {
288 struct vtimer_list *timer, *tmp;
289 unsigned long elapsed;
290 LIST_HEAD(cb_list);
291
292 /* walk timer list, fire all expired timers */
293 spin_lock(&virt_timer_lock);
294 elapsed = atomic64_read(&virt_timer_elapsed);
295 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
296 if (timer->expires < elapsed)
297 /* move expired timer to the callback queue */
298 list_move_tail(&timer->entry, &cb_list);
299 else
300 timer->expires -= elapsed;
301 }
302 if (!list_empty(&virt_timer_list)) {
303 timer = list_first_entry(&virt_timer_list,
304 struct vtimer_list, entry);
305 atomic64_set(&virt_timer_current, timer->expires);
306 }
307 atomic64_sub(elapsed, &virt_timer_elapsed);
308 spin_unlock(&virt_timer_lock);
309
310 /* Do callbacks and recharge periodic timers */
311 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
312 list_del_init(&timer->entry);
313 timer->function(timer->data);
314 if (timer->interval) {
315 /* Recharge interval timer */
316 timer->expires = timer->interval +
317 atomic64_read(&virt_timer_elapsed);
318 spin_lock(&virt_timer_lock);
319 list_add_sorted(timer, &virt_timer_list);
320 spin_unlock(&virt_timer_lock);
321 }
322 }
323 }
324
init_virt_timer(struct vtimer_list * timer)325 void init_virt_timer(struct vtimer_list *timer)
326 {
327 timer->function = NULL;
328 INIT_LIST_HEAD(&timer->entry);
329 }
330 EXPORT_SYMBOL(init_virt_timer);
331
vtimer_pending(struct vtimer_list * timer)332 static inline int vtimer_pending(struct vtimer_list *timer)
333 {
334 return !list_empty(&timer->entry);
335 }
336
internal_add_vtimer(struct vtimer_list * timer)337 static void internal_add_vtimer(struct vtimer_list *timer)
338 {
339 if (list_empty(&virt_timer_list)) {
340 /* First timer, just program it. */
341 atomic64_set(&virt_timer_current, timer->expires);
342 atomic64_set(&virt_timer_elapsed, 0);
343 list_add(&timer->entry, &virt_timer_list);
344 } else {
345 /* Update timer against current base. */
346 timer->expires += atomic64_read(&virt_timer_elapsed);
347 if (likely((s64) timer->expires <
348 (s64) atomic64_read(&virt_timer_current)))
349 /* The new timer expires before the current timer. */
350 atomic64_set(&virt_timer_current, timer->expires);
351 /* Insert new timer into the list. */
352 list_add_sorted(timer, &virt_timer_list);
353 }
354 }
355
__add_vtimer(struct vtimer_list * timer,int periodic)356 static void __add_vtimer(struct vtimer_list *timer, int periodic)
357 {
358 unsigned long flags;
359
360 timer->interval = periodic ? timer->expires : 0;
361 spin_lock_irqsave(&virt_timer_lock, flags);
362 internal_add_vtimer(timer);
363 spin_unlock_irqrestore(&virt_timer_lock, flags);
364 }
365
366 /*
367 * add_virt_timer - add a oneshot virtual CPU timer
368 */
add_virt_timer(struct vtimer_list * timer)369 void add_virt_timer(struct vtimer_list *timer)
370 {
371 __add_vtimer(timer, 0);
372 }
373 EXPORT_SYMBOL(add_virt_timer);
374
375 /*
376 * add_virt_timer_int - add an interval virtual CPU timer
377 */
add_virt_timer_periodic(struct vtimer_list * timer)378 void add_virt_timer_periodic(struct vtimer_list *timer)
379 {
380 __add_vtimer(timer, 1);
381 }
382 EXPORT_SYMBOL(add_virt_timer_periodic);
383
__mod_vtimer(struct vtimer_list * timer,u64 expires,int periodic)384 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
385 {
386 unsigned long flags;
387 int rc;
388
389 BUG_ON(!timer->function);
390
391 if (timer->expires == expires && vtimer_pending(timer))
392 return 1;
393 spin_lock_irqsave(&virt_timer_lock, flags);
394 rc = vtimer_pending(timer);
395 if (rc)
396 list_del_init(&timer->entry);
397 timer->interval = periodic ? expires : 0;
398 timer->expires = expires;
399 internal_add_vtimer(timer);
400 spin_unlock_irqrestore(&virt_timer_lock, flags);
401 return rc;
402 }
403
404 /*
405 * returns whether it has modified a pending timer (1) or not (0)
406 */
mod_virt_timer(struct vtimer_list * timer,u64 expires)407 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
408 {
409 return __mod_vtimer(timer, expires, 0);
410 }
411 EXPORT_SYMBOL(mod_virt_timer);
412
413 /*
414 * returns whether it has modified a pending timer (1) or not (0)
415 */
mod_virt_timer_periodic(struct vtimer_list * timer,u64 expires)416 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
417 {
418 return __mod_vtimer(timer, expires, 1);
419 }
420 EXPORT_SYMBOL(mod_virt_timer_periodic);
421
422 /*
423 * Delete a virtual timer.
424 *
425 * returns whether the deleted timer was pending (1) or not (0)
426 */
del_virt_timer(struct vtimer_list * timer)427 int del_virt_timer(struct vtimer_list *timer)
428 {
429 unsigned long flags;
430
431 if (!vtimer_pending(timer))
432 return 0;
433 spin_lock_irqsave(&virt_timer_lock, flags);
434 list_del_init(&timer->entry);
435 spin_unlock_irqrestore(&virt_timer_lock, flags);
436 return 1;
437 }
438 EXPORT_SYMBOL(del_virt_timer);
439
440 /*
441 * Start the virtual CPU timer on the current CPU.
442 */
vtime_init(void)443 void vtime_init(void)
444 {
445 /* set initial cpu timer */
446 set_vtimer(VTIMER_MAX_SLICE);
447 /* Setup initial MT scaling values */
448 if (smp_cpu_mtid) {
449 __this_cpu_write(mt_scaling_jiffies, jiffies);
450 __this_cpu_write(mt_scaling_mult, 1);
451 __this_cpu_write(mt_scaling_div, 1);
452 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
453 }
454 }
455