1 /*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting, Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36
37 #include <linux/kbd_kern.h>
38 #include <linux/kbd_diacr.h>
39 #include <linux/vt_kern.h>
40 #include <linux/input.h>
41 #include <linux/reboot.h>
42 #include <linux/notifier.h>
43 #include <linux/jiffies.h>
44 #include <linux/uaccess.h>
45
46 #include <asm/irq_regs.h>
47
48 extern void ctrl_alt_del(void);
49
50 /*
51 * Exported functions/variables
52 */
53
54 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55
56 /*
57 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
58 * This seems a good reason to start with NumLock off. On HIL keyboards
59 * of PARISC machines however there is no NumLock key and everyone expects the
60 * keypad to be used for numbers.
61 */
62
63 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
64 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
65 #else
66 #define KBD_DEFLEDS 0
67 #endif
68
69 #define KBD_DEFLOCK 0
70
71 /*
72 * Handler Tables.
73 */
74
75 #define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
80
81 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83 static k_handler_fn K_HANDLERS;
84 static k_handler_fn *k_handler[16] = { K_HANDLERS };
85
86 #define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
92
93 typedef void (fn_handler_fn)(struct vc_data *vc);
94 static fn_handler_fn FN_HANDLERS;
95 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
96
97 /*
98 * Variables exported for vt_ioctl.c
99 */
100
101 struct vt_spawn_console vt_spawn_con = {
102 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
103 .pid = NULL,
104 .sig = 0,
105 };
106
107
108 /*
109 * Internal Data.
110 */
111
112 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
113 static struct kbd_struct *kbd = kbd_table;
114
115 /* maximum values each key_handler can handle */
116 static const int max_vals[] = {
117 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
118 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
119 255, NR_LOCK - 1, 255, NR_BRL - 1
120 };
121
122 static const int NR_TYPES = ARRAY_SIZE(max_vals);
123
124 static struct input_handler kbd_handler;
125 static DEFINE_SPINLOCK(kbd_event_lock);
126 static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)]; /* keyboard key bitmap */
127 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
128 static bool dead_key_next;
129 static int npadch = -1; /* -1 or number assembled on pad */
130 static unsigned int diacr;
131 static char rep; /* flag telling character repeat */
132
133 static int shift_state = 0;
134
135 static unsigned char ledstate = 0xff; /* undefined */
136 static unsigned char ledioctl;
137
138 static struct ledptr {
139 unsigned int *addr;
140 unsigned int mask;
141 unsigned char valid:1;
142 } ledptrs[3];
143
144 /*
145 * Notifier list for console keyboard events
146 */
147 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
148
register_keyboard_notifier(struct notifier_block * nb)149 int register_keyboard_notifier(struct notifier_block *nb)
150 {
151 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
152 }
153 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
154
unregister_keyboard_notifier(struct notifier_block * nb)155 int unregister_keyboard_notifier(struct notifier_block *nb)
156 {
157 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
158 }
159 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
160
161 /*
162 * Translation of scancodes to keycodes. We set them on only the first
163 * keyboard in the list that accepts the scancode and keycode.
164 * Explanation for not choosing the first attached keyboard anymore:
165 * USB keyboards for example have two event devices: one for all "normal"
166 * keys and one for extra function keys (like "volume up", "make coffee",
167 * etc.). So this means that scancodes for the extra function keys won't
168 * be valid for the first event device, but will be for the second.
169 */
170
171 struct getset_keycode_data {
172 struct input_keymap_entry ke;
173 int error;
174 };
175
getkeycode_helper(struct input_handle * handle,void * data)176 static int getkeycode_helper(struct input_handle *handle, void *data)
177 {
178 struct getset_keycode_data *d = data;
179
180 d->error = input_get_keycode(handle->dev, &d->ke);
181
182 return d->error == 0; /* stop as soon as we successfully get one */
183 }
184
getkeycode(unsigned int scancode)185 static int getkeycode(unsigned int scancode)
186 {
187 struct getset_keycode_data d = {
188 .ke = {
189 .flags = 0,
190 .len = sizeof(scancode),
191 .keycode = 0,
192 },
193 .error = -ENODEV,
194 };
195
196 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
197
198 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
199
200 return d.error ?: d.ke.keycode;
201 }
202
setkeycode_helper(struct input_handle * handle,void * data)203 static int setkeycode_helper(struct input_handle *handle, void *data)
204 {
205 struct getset_keycode_data *d = data;
206
207 d->error = input_set_keycode(handle->dev, &d->ke);
208
209 return d->error == 0; /* stop as soon as we successfully set one */
210 }
211
setkeycode(unsigned int scancode,unsigned int keycode)212 static int setkeycode(unsigned int scancode, unsigned int keycode)
213 {
214 struct getset_keycode_data d = {
215 .ke = {
216 .flags = 0,
217 .len = sizeof(scancode),
218 .keycode = keycode,
219 },
220 .error = -ENODEV,
221 };
222
223 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
224
225 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
226
227 return d.error;
228 }
229
230 /*
231 * Making beeps and bells. Note that we prefer beeps to bells, but when
232 * shutting the sound off we do both.
233 */
234
kd_sound_helper(struct input_handle * handle,void * data)235 static int kd_sound_helper(struct input_handle *handle, void *data)
236 {
237 unsigned int *hz = data;
238 struct input_dev *dev = handle->dev;
239
240 if (test_bit(EV_SND, dev->evbit)) {
241 if (test_bit(SND_TONE, dev->sndbit)) {
242 input_inject_event(handle, EV_SND, SND_TONE, *hz);
243 if (*hz)
244 return 0;
245 }
246 if (test_bit(SND_BELL, dev->sndbit))
247 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
248 }
249
250 return 0;
251 }
252
kd_nosound(unsigned long ignored)253 static void kd_nosound(unsigned long ignored)
254 {
255 static unsigned int zero;
256
257 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
258 }
259
260 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
261
kd_mksound(unsigned int hz,unsigned int ticks)262 void kd_mksound(unsigned int hz, unsigned int ticks)
263 {
264 del_timer_sync(&kd_mksound_timer);
265
266 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
267
268 if (hz && ticks)
269 mod_timer(&kd_mksound_timer, jiffies + ticks);
270 }
271 EXPORT_SYMBOL(kd_mksound);
272
273 /*
274 * Setting the keyboard rate.
275 */
276
kbd_rate_helper(struct input_handle * handle,void * data)277 static int kbd_rate_helper(struct input_handle *handle, void *data)
278 {
279 struct input_dev *dev = handle->dev;
280 struct kbd_repeat *rep = data;
281
282 if (test_bit(EV_REP, dev->evbit)) {
283
284 if (rep[0].delay > 0)
285 input_inject_event(handle,
286 EV_REP, REP_DELAY, rep[0].delay);
287 if (rep[0].period > 0)
288 input_inject_event(handle,
289 EV_REP, REP_PERIOD, rep[0].period);
290
291 rep[1].delay = dev->rep[REP_DELAY];
292 rep[1].period = dev->rep[REP_PERIOD];
293 }
294
295 return 0;
296 }
297
kbd_rate(struct kbd_repeat * rep)298 int kbd_rate(struct kbd_repeat *rep)
299 {
300 struct kbd_repeat data[2] = { *rep };
301
302 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
303 *rep = data[1]; /* Copy currently used settings */
304
305 return 0;
306 }
307
308 /*
309 * Helper Functions.
310 */
put_queue(struct vc_data * vc,int ch)311 static void put_queue(struct vc_data *vc, int ch)
312 {
313 struct tty_struct *tty = vc->port.tty;
314
315 if (tty) {
316 tty_insert_flip_char(tty, ch, 0);
317 con_schedule_flip(tty);
318 }
319 }
320
puts_queue(struct vc_data * vc,char * cp)321 static void puts_queue(struct vc_data *vc, char *cp)
322 {
323 struct tty_struct *tty = vc->port.tty;
324
325 if (!tty)
326 return;
327
328 while (*cp) {
329 tty_insert_flip_char(tty, *cp, 0);
330 cp++;
331 }
332 con_schedule_flip(tty);
333 }
334
applkey(struct vc_data * vc,int key,char mode)335 static void applkey(struct vc_data *vc, int key, char mode)
336 {
337 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
338
339 buf[1] = (mode ? 'O' : '[');
340 buf[2] = key;
341 puts_queue(vc, buf);
342 }
343
344 /*
345 * Many other routines do put_queue, but I think either
346 * they produce ASCII, or they produce some user-assigned
347 * string, and in both cases we might assume that it is
348 * in utf-8 already.
349 */
to_utf8(struct vc_data * vc,uint c)350 static void to_utf8(struct vc_data *vc, uint c)
351 {
352 if (c < 0x80)
353 /* 0******* */
354 put_queue(vc, c);
355 else if (c < 0x800) {
356 /* 110***** 10****** */
357 put_queue(vc, 0xc0 | (c >> 6));
358 put_queue(vc, 0x80 | (c & 0x3f));
359 } else if (c < 0x10000) {
360 if (c >= 0xD800 && c < 0xE000)
361 return;
362 if (c == 0xFFFF)
363 return;
364 /* 1110**** 10****** 10****** */
365 put_queue(vc, 0xe0 | (c >> 12));
366 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
367 put_queue(vc, 0x80 | (c & 0x3f));
368 } else if (c < 0x110000) {
369 /* 11110*** 10****** 10****** 10****** */
370 put_queue(vc, 0xf0 | (c >> 18));
371 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
372 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
373 put_queue(vc, 0x80 | (c & 0x3f));
374 }
375 }
376
377 /*
378 * Called after returning from RAW mode or when changing consoles - recompute
379 * shift_down[] and shift_state from key_down[] maybe called when keymap is
380 * undefined, so that shiftkey release is seen. The caller must hold the
381 * kbd_event_lock.
382 */
383
do_compute_shiftstate(void)384 static void do_compute_shiftstate(void)
385 {
386 unsigned int i, j, k, sym, val;
387
388 shift_state = 0;
389 memset(shift_down, 0, sizeof(shift_down));
390
391 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
392
393 if (!key_down[i])
394 continue;
395
396 k = i * BITS_PER_LONG;
397
398 for (j = 0; j < BITS_PER_LONG; j++, k++) {
399
400 if (!test_bit(k, key_down))
401 continue;
402
403 sym = U(key_maps[0][k]);
404 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
405 continue;
406
407 val = KVAL(sym);
408 if (val == KVAL(K_CAPSSHIFT))
409 val = KVAL(K_SHIFT);
410
411 shift_down[val]++;
412 shift_state |= (1 << val);
413 }
414 }
415 }
416
417 /* We still have to export this method to vt.c */
compute_shiftstate(void)418 void compute_shiftstate(void)
419 {
420 unsigned long flags;
421 spin_lock_irqsave(&kbd_event_lock, flags);
422 do_compute_shiftstate();
423 spin_unlock_irqrestore(&kbd_event_lock, flags);
424 }
425
426 /*
427 * We have a combining character DIACR here, followed by the character CH.
428 * If the combination occurs in the table, return the corresponding value.
429 * Otherwise, if CH is a space or equals DIACR, return DIACR.
430 * Otherwise, conclude that DIACR was not combining after all,
431 * queue it and return CH.
432 */
handle_diacr(struct vc_data * vc,unsigned int ch)433 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
434 {
435 unsigned int d = diacr;
436 unsigned int i;
437
438 diacr = 0;
439
440 if ((d & ~0xff) == BRL_UC_ROW) {
441 if ((ch & ~0xff) == BRL_UC_ROW)
442 return d | ch;
443 } else {
444 for (i = 0; i < accent_table_size; i++)
445 if (accent_table[i].diacr == d && accent_table[i].base == ch)
446 return accent_table[i].result;
447 }
448
449 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
450 return d;
451
452 if (kbd->kbdmode == VC_UNICODE)
453 to_utf8(vc, d);
454 else {
455 int c = conv_uni_to_8bit(d);
456 if (c != -1)
457 put_queue(vc, c);
458 }
459
460 return ch;
461 }
462
463 /*
464 * Special function handlers
465 */
fn_enter(struct vc_data * vc)466 static void fn_enter(struct vc_data *vc)
467 {
468 if (diacr) {
469 if (kbd->kbdmode == VC_UNICODE)
470 to_utf8(vc, diacr);
471 else {
472 int c = conv_uni_to_8bit(diacr);
473 if (c != -1)
474 put_queue(vc, c);
475 }
476 diacr = 0;
477 }
478
479 put_queue(vc, 13);
480 if (vc_kbd_mode(kbd, VC_CRLF))
481 put_queue(vc, 10);
482 }
483
fn_caps_toggle(struct vc_data * vc)484 static void fn_caps_toggle(struct vc_data *vc)
485 {
486 if (rep)
487 return;
488
489 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
490 }
491
fn_caps_on(struct vc_data * vc)492 static void fn_caps_on(struct vc_data *vc)
493 {
494 if (rep)
495 return;
496
497 set_vc_kbd_led(kbd, VC_CAPSLOCK);
498 }
499
fn_show_ptregs(struct vc_data * vc)500 static void fn_show_ptregs(struct vc_data *vc)
501 {
502 struct pt_regs *regs = get_irq_regs();
503
504 if (regs)
505 show_regs(regs);
506 }
507
fn_hold(struct vc_data * vc)508 static void fn_hold(struct vc_data *vc)
509 {
510 struct tty_struct *tty = vc->port.tty;
511
512 if (rep || !tty)
513 return;
514
515 /*
516 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
517 * these routines are also activated by ^S/^Q.
518 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
519 */
520 if (tty->stopped)
521 start_tty(tty);
522 else
523 stop_tty(tty);
524 }
525
fn_num(struct vc_data * vc)526 static void fn_num(struct vc_data *vc)
527 {
528 if (vc_kbd_mode(kbd, VC_APPLIC))
529 applkey(vc, 'P', 1);
530 else
531 fn_bare_num(vc);
532 }
533
534 /*
535 * Bind this to Shift-NumLock if you work in application keypad mode
536 * but want to be able to change the NumLock flag.
537 * Bind this to NumLock if you prefer that the NumLock key always
538 * changes the NumLock flag.
539 */
fn_bare_num(struct vc_data * vc)540 static void fn_bare_num(struct vc_data *vc)
541 {
542 if (!rep)
543 chg_vc_kbd_led(kbd, VC_NUMLOCK);
544 }
545
fn_lastcons(struct vc_data * vc)546 static void fn_lastcons(struct vc_data *vc)
547 {
548 /* switch to the last used console, ChN */
549 set_console(last_console);
550 }
551
fn_dec_console(struct vc_data * vc)552 static void fn_dec_console(struct vc_data *vc)
553 {
554 int i, cur = fg_console;
555
556 /* Currently switching? Queue this next switch relative to that. */
557 if (want_console != -1)
558 cur = want_console;
559
560 for (i = cur - 1; i != cur; i--) {
561 if (i == -1)
562 i = MAX_NR_CONSOLES - 1;
563 if (vc_cons_allocated(i))
564 break;
565 }
566 set_console(i);
567 }
568
fn_inc_console(struct vc_data * vc)569 static void fn_inc_console(struct vc_data *vc)
570 {
571 int i, cur = fg_console;
572
573 /* Currently switching? Queue this next switch relative to that. */
574 if (want_console != -1)
575 cur = want_console;
576
577 for (i = cur+1; i != cur; i++) {
578 if (i == MAX_NR_CONSOLES)
579 i = 0;
580 if (vc_cons_allocated(i))
581 break;
582 }
583 set_console(i);
584 }
585
fn_send_intr(struct vc_data * vc)586 static void fn_send_intr(struct vc_data *vc)
587 {
588 struct tty_struct *tty = vc->port.tty;
589
590 if (!tty)
591 return;
592 tty_insert_flip_char(tty, 0, TTY_BREAK);
593 con_schedule_flip(tty);
594 }
595
fn_scroll_forw(struct vc_data * vc)596 static void fn_scroll_forw(struct vc_data *vc)
597 {
598 scrollfront(vc, 0);
599 }
600
fn_scroll_back(struct vc_data * vc)601 static void fn_scroll_back(struct vc_data *vc)
602 {
603 scrollback(vc, 0);
604 }
605
fn_show_mem(struct vc_data * vc)606 static void fn_show_mem(struct vc_data *vc)
607 {
608 show_mem(0);
609 }
610
fn_show_state(struct vc_data * vc)611 static void fn_show_state(struct vc_data *vc)
612 {
613 show_state();
614 }
615
fn_boot_it(struct vc_data * vc)616 static void fn_boot_it(struct vc_data *vc)
617 {
618 ctrl_alt_del();
619 }
620
fn_compose(struct vc_data * vc)621 static void fn_compose(struct vc_data *vc)
622 {
623 dead_key_next = true;
624 }
625
fn_spawn_con(struct vc_data * vc)626 static void fn_spawn_con(struct vc_data *vc)
627 {
628 spin_lock(&vt_spawn_con.lock);
629 if (vt_spawn_con.pid)
630 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
631 put_pid(vt_spawn_con.pid);
632 vt_spawn_con.pid = NULL;
633 }
634 spin_unlock(&vt_spawn_con.lock);
635 }
636
fn_SAK(struct vc_data * vc)637 static void fn_SAK(struct vc_data *vc)
638 {
639 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
640 schedule_work(SAK_work);
641 }
642
fn_null(struct vc_data * vc)643 static void fn_null(struct vc_data *vc)
644 {
645 do_compute_shiftstate();
646 }
647
648 /*
649 * Special key handlers
650 */
k_ignore(struct vc_data * vc,unsigned char value,char up_flag)651 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
652 {
653 }
654
k_spec(struct vc_data * vc,unsigned char value,char up_flag)655 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
656 {
657 if (up_flag)
658 return;
659 if (value >= ARRAY_SIZE(fn_handler))
660 return;
661 if ((kbd->kbdmode == VC_RAW ||
662 kbd->kbdmode == VC_MEDIUMRAW ||
663 kbd->kbdmode == VC_OFF) &&
664 value != KVAL(K_SAK))
665 return; /* SAK is allowed even in raw mode */
666 fn_handler[value](vc);
667 }
668
k_lowercase(struct vc_data * vc,unsigned char value,char up_flag)669 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
670 {
671 pr_err("k_lowercase was called - impossible\n");
672 }
673
k_unicode(struct vc_data * vc,unsigned int value,char up_flag)674 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
675 {
676 if (up_flag)
677 return; /* no action, if this is a key release */
678
679 if (diacr)
680 value = handle_diacr(vc, value);
681
682 if (dead_key_next) {
683 dead_key_next = false;
684 diacr = value;
685 return;
686 }
687 if (kbd->kbdmode == VC_UNICODE)
688 to_utf8(vc, value);
689 else {
690 int c = conv_uni_to_8bit(value);
691 if (c != -1)
692 put_queue(vc, c);
693 }
694 }
695
696 /*
697 * Handle dead key. Note that we now may have several
698 * dead keys modifying the same character. Very useful
699 * for Vietnamese.
700 */
k_deadunicode(struct vc_data * vc,unsigned int value,char up_flag)701 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
702 {
703 if (up_flag)
704 return;
705
706 diacr = (diacr ? handle_diacr(vc, value) : value);
707 }
708
k_self(struct vc_data * vc,unsigned char value,char up_flag)709 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
710 {
711 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
712 }
713
k_dead2(struct vc_data * vc,unsigned char value,char up_flag)714 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
715 {
716 k_deadunicode(vc, value, up_flag);
717 }
718
719 /*
720 * Obsolete - for backwards compatibility only
721 */
k_dead(struct vc_data * vc,unsigned char value,char up_flag)722 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
723 {
724 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
725
726 k_deadunicode(vc, ret_diacr[value], up_flag);
727 }
728
k_cons(struct vc_data * vc,unsigned char value,char up_flag)729 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
730 {
731 if (up_flag)
732 return;
733
734 set_console(value);
735 }
736
k_fn(struct vc_data * vc,unsigned char value,char up_flag)737 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
738 {
739 if (up_flag)
740 return;
741
742 if ((unsigned)value < ARRAY_SIZE(func_table)) {
743 if (func_table[value])
744 puts_queue(vc, func_table[value]);
745 } else
746 pr_err("k_fn called with value=%d\n", value);
747 }
748
k_cur(struct vc_data * vc,unsigned char value,char up_flag)749 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
750 {
751 static const char cur_chars[] = "BDCA";
752
753 if (up_flag)
754 return;
755
756 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
757 }
758
k_pad(struct vc_data * vc,unsigned char value,char up_flag)759 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
760 {
761 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
762 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
763
764 if (up_flag)
765 return; /* no action, if this is a key release */
766
767 /* kludge... shift forces cursor/number keys */
768 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
769 applkey(vc, app_map[value], 1);
770 return;
771 }
772
773 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
774
775 switch (value) {
776 case KVAL(K_PCOMMA):
777 case KVAL(K_PDOT):
778 k_fn(vc, KVAL(K_REMOVE), 0);
779 return;
780 case KVAL(K_P0):
781 k_fn(vc, KVAL(K_INSERT), 0);
782 return;
783 case KVAL(K_P1):
784 k_fn(vc, KVAL(K_SELECT), 0);
785 return;
786 case KVAL(K_P2):
787 k_cur(vc, KVAL(K_DOWN), 0);
788 return;
789 case KVAL(K_P3):
790 k_fn(vc, KVAL(K_PGDN), 0);
791 return;
792 case KVAL(K_P4):
793 k_cur(vc, KVAL(K_LEFT), 0);
794 return;
795 case KVAL(K_P6):
796 k_cur(vc, KVAL(K_RIGHT), 0);
797 return;
798 case KVAL(K_P7):
799 k_fn(vc, KVAL(K_FIND), 0);
800 return;
801 case KVAL(K_P8):
802 k_cur(vc, KVAL(K_UP), 0);
803 return;
804 case KVAL(K_P9):
805 k_fn(vc, KVAL(K_PGUP), 0);
806 return;
807 case KVAL(K_P5):
808 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
809 return;
810 }
811 }
812
813 put_queue(vc, pad_chars[value]);
814 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
815 put_queue(vc, 10);
816 }
817
k_shift(struct vc_data * vc,unsigned char value,char up_flag)818 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
819 {
820 int old_state = shift_state;
821
822 if (rep)
823 return;
824 /*
825 * Mimic typewriter:
826 * a CapsShift key acts like Shift but undoes CapsLock
827 */
828 if (value == KVAL(K_CAPSSHIFT)) {
829 value = KVAL(K_SHIFT);
830 if (!up_flag)
831 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
832 }
833
834 if (up_flag) {
835 /*
836 * handle the case that two shift or control
837 * keys are depressed simultaneously
838 */
839 if (shift_down[value])
840 shift_down[value]--;
841 } else
842 shift_down[value]++;
843
844 if (shift_down[value])
845 shift_state |= (1 << value);
846 else
847 shift_state &= ~(1 << value);
848
849 /* kludge */
850 if (up_flag && shift_state != old_state && npadch != -1) {
851 if (kbd->kbdmode == VC_UNICODE)
852 to_utf8(vc, npadch);
853 else
854 put_queue(vc, npadch & 0xff);
855 npadch = -1;
856 }
857 }
858
k_meta(struct vc_data * vc,unsigned char value,char up_flag)859 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
860 {
861 if (up_flag)
862 return;
863
864 if (vc_kbd_mode(kbd, VC_META)) {
865 put_queue(vc, '\033');
866 put_queue(vc, value);
867 } else
868 put_queue(vc, value | 0x80);
869 }
870
k_ascii(struct vc_data * vc,unsigned char value,char up_flag)871 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
872 {
873 int base;
874
875 if (up_flag)
876 return;
877
878 if (value < 10) {
879 /* decimal input of code, while Alt depressed */
880 base = 10;
881 } else {
882 /* hexadecimal input of code, while AltGr depressed */
883 value -= 10;
884 base = 16;
885 }
886
887 if (npadch == -1)
888 npadch = value;
889 else
890 npadch = npadch * base + value;
891 }
892
k_lock(struct vc_data * vc,unsigned char value,char up_flag)893 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
894 {
895 if (up_flag || rep)
896 return;
897
898 chg_vc_kbd_lock(kbd, value);
899 }
900
k_slock(struct vc_data * vc,unsigned char value,char up_flag)901 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
902 {
903 k_shift(vc, value, up_flag);
904 if (up_flag || rep)
905 return;
906
907 chg_vc_kbd_slock(kbd, value);
908 /* try to make Alt, oops, AltGr and such work */
909 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
910 kbd->slockstate = 0;
911 chg_vc_kbd_slock(kbd, value);
912 }
913 }
914
915 /* by default, 300ms interval for combination release */
916 static unsigned brl_timeout = 300;
917 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
918 module_param(brl_timeout, uint, 0644);
919
920 static unsigned brl_nbchords = 1;
921 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
922 module_param(brl_nbchords, uint, 0644);
923
k_brlcommit(struct vc_data * vc,unsigned int pattern,char up_flag)924 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
925 {
926 static unsigned long chords;
927 static unsigned committed;
928
929 if (!brl_nbchords)
930 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
931 else {
932 committed |= pattern;
933 chords++;
934 if (chords == brl_nbchords) {
935 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
936 chords = 0;
937 committed = 0;
938 }
939 }
940 }
941
k_brl(struct vc_data * vc,unsigned char value,char up_flag)942 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
943 {
944 static unsigned pressed, committing;
945 static unsigned long releasestart;
946
947 if (kbd->kbdmode != VC_UNICODE) {
948 if (!up_flag)
949 pr_warning("keyboard mode must be unicode for braille patterns\n");
950 return;
951 }
952
953 if (!value) {
954 k_unicode(vc, BRL_UC_ROW, up_flag);
955 return;
956 }
957
958 if (value > 8)
959 return;
960
961 if (!up_flag) {
962 pressed |= 1 << (value - 1);
963 if (!brl_timeout)
964 committing = pressed;
965 } else if (brl_timeout) {
966 if (!committing ||
967 time_after(jiffies,
968 releasestart + msecs_to_jiffies(brl_timeout))) {
969 committing = pressed;
970 releasestart = jiffies;
971 }
972 pressed &= ~(1 << (value - 1));
973 if (!pressed && committing) {
974 k_brlcommit(vc, committing, 0);
975 committing = 0;
976 }
977 } else {
978 if (committing) {
979 k_brlcommit(vc, committing, 0);
980 committing = 0;
981 }
982 pressed &= ~(1 << (value - 1));
983 }
984 }
985
986 /*
987 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
988 * or (ii) whatever pattern of lights people want to show using KDSETLED,
989 * or (iii) specified bits of specified words in kernel memory.
990 */
getledstate(void)991 unsigned char getledstate(void)
992 {
993 return ledstate;
994 }
995
setledstate(struct kbd_struct * kbd,unsigned int led)996 void setledstate(struct kbd_struct *kbd, unsigned int led)
997 {
998 unsigned long flags;
999 spin_lock_irqsave(&kbd_event_lock, flags);
1000 if (!(led & ~7)) {
1001 ledioctl = led;
1002 kbd->ledmode = LED_SHOW_IOCTL;
1003 } else
1004 kbd->ledmode = LED_SHOW_FLAGS;
1005
1006 set_leds();
1007 spin_unlock_irqrestore(&kbd_event_lock, flags);
1008 }
1009
getleds(void)1010 static inline unsigned char getleds(void)
1011 {
1012 struct kbd_struct *kbd = kbd_table + fg_console;
1013 unsigned char leds;
1014 int i;
1015
1016 if (kbd->ledmode == LED_SHOW_IOCTL)
1017 return ledioctl;
1018
1019 leds = kbd->ledflagstate;
1020
1021 if (kbd->ledmode == LED_SHOW_MEM) {
1022 for (i = 0; i < 3; i++)
1023 if (ledptrs[i].valid) {
1024 if (*ledptrs[i].addr & ledptrs[i].mask)
1025 leds |= (1 << i);
1026 else
1027 leds &= ~(1 << i);
1028 }
1029 }
1030 return leds;
1031 }
1032
kbd_update_leds_helper(struct input_handle * handle,void * data)1033 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1034 {
1035 unsigned char leds = *(unsigned char *)data;
1036
1037 if (test_bit(EV_LED, handle->dev->evbit)) {
1038 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1039 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1040 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1041 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1042 }
1043
1044 return 0;
1045 }
1046
1047 /**
1048 * vt_get_leds - helper for braille console
1049 * @console: console to read
1050 * @flag: flag we want to check
1051 *
1052 * Check the status of a keyboard led flag and report it back
1053 */
vt_get_leds(int console,int flag)1054 int vt_get_leds(int console, int flag)
1055 {
1056 struct kbd_struct * kbd = kbd_table + console;
1057 int ret;
1058
1059 ret = vc_kbd_led(kbd, flag);
1060
1061 return ret;
1062 }
1063 EXPORT_SYMBOL_GPL(vt_get_leds);
1064
1065 /**
1066 * vt_set_led_state - set LED state of a console
1067 * @console: console to set
1068 * @leds: LED bits
1069 *
1070 * Set the LEDs on a console. This is a wrapper for the VT layer
1071 * so that we can keep kbd knowledge internal
1072 */
vt_set_led_state(int console,int leds)1073 void vt_set_led_state(int console, int leds)
1074 {
1075 struct kbd_struct * kbd = kbd_table + console;
1076 setledstate(kbd, leds);
1077 }
1078
1079 /**
1080 * vt_kbd_con_start - Keyboard side of console start
1081 * @console: console
1082 *
1083 * Handle console start. This is a wrapper for the VT layer
1084 * so that we can keep kbd knowledge internal
1085 *
1086 * FIXME: We eventually need to hold the kbd lock here to protect
1087 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1088 * and start_tty under the kbd_event_lock, while normal tty paths
1089 * don't hold the lock. We probably need to split out an LED lock
1090 * but not during an -rc release!
1091 */
vt_kbd_con_start(int console)1092 void vt_kbd_con_start(int console)
1093 {
1094 struct kbd_struct * kbd = kbd_table + console;
1095 /* unsigned long flags; */
1096 /* spin_lock_irqsave(&kbd_event_lock, flags); */
1097 clr_vc_kbd_led(kbd, VC_SCROLLOCK);
1098 set_leds();
1099 /* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1100 }
1101
1102 /**
1103 * vt_kbd_con_stop - Keyboard side of console stop
1104 * @console: console
1105 *
1106 * Handle console stop. This is a wrapper for the VT layer
1107 * so that we can keep kbd knowledge internal
1108 *
1109 * FIXME: We eventually need to hold the kbd lock here to protect
1110 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1111 * and start_tty under the kbd_event_lock, while normal tty paths
1112 * don't hold the lock. We probably need to split out an LED lock
1113 * but not during an -rc release!
1114 */
vt_kbd_con_stop(int console)1115 void vt_kbd_con_stop(int console)
1116 {
1117 struct kbd_struct * kbd = kbd_table + console;
1118 /* unsigned long flags; */
1119 /* spin_lock_irqsave(&kbd_event_lock, flags); */
1120 set_vc_kbd_led(kbd, VC_SCROLLOCK);
1121 set_leds();
1122 /* spin_unlock_irqrestore(&kbd_event_lock, flags); */
1123 }
1124
1125 /*
1126 * This is the tasklet that updates LED state on all keyboards
1127 * attached to the box. The reason we use tasklet is that we
1128 * need to handle the scenario when keyboard handler is not
1129 * registered yet but we already getting updates from the VT to
1130 * update led state.
1131 */
kbd_bh(unsigned long dummy)1132 static void kbd_bh(unsigned long dummy)
1133 {
1134 unsigned char leds = getleds();
1135
1136 if (leds != ledstate) {
1137 input_handler_for_each_handle(&kbd_handler, &leds,
1138 kbd_update_leds_helper);
1139 ledstate = leds;
1140 }
1141 }
1142
1143 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1144
1145 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1146 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1147 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1148 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1149 defined(CONFIG_AVR32)
1150
1151 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1152 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1153
1154 static const unsigned short x86_keycodes[256] =
1155 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1156 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1157 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1158 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1159 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1160 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1161 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1162 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1163 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1164 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1165 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1166 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1167 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1168 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1169 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1170
1171 #ifdef CONFIG_SPARC
1172 static int sparc_l1_a_state;
1173 extern void sun_do_break(void);
1174 #endif
1175
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1176 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1177 unsigned char up_flag)
1178 {
1179 int code;
1180
1181 switch (keycode) {
1182
1183 case KEY_PAUSE:
1184 put_queue(vc, 0xe1);
1185 put_queue(vc, 0x1d | up_flag);
1186 put_queue(vc, 0x45 | up_flag);
1187 break;
1188
1189 case KEY_HANGEUL:
1190 if (!up_flag)
1191 put_queue(vc, 0xf2);
1192 break;
1193
1194 case KEY_HANJA:
1195 if (!up_flag)
1196 put_queue(vc, 0xf1);
1197 break;
1198
1199 case KEY_SYSRQ:
1200 /*
1201 * Real AT keyboards (that's what we're trying
1202 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1203 * pressing PrtSc/SysRq alone, but simply 0x54
1204 * when pressing Alt+PrtSc/SysRq.
1205 */
1206 if (test_bit(KEY_LEFTALT, key_down) ||
1207 test_bit(KEY_RIGHTALT, key_down)) {
1208 put_queue(vc, 0x54 | up_flag);
1209 } else {
1210 put_queue(vc, 0xe0);
1211 put_queue(vc, 0x2a | up_flag);
1212 put_queue(vc, 0xe0);
1213 put_queue(vc, 0x37 | up_flag);
1214 }
1215 break;
1216
1217 default:
1218 if (keycode > 255)
1219 return -1;
1220
1221 code = x86_keycodes[keycode];
1222 if (!code)
1223 return -1;
1224
1225 if (code & 0x100)
1226 put_queue(vc, 0xe0);
1227 put_queue(vc, (code & 0x7f) | up_flag);
1228
1229 break;
1230 }
1231
1232 return 0;
1233 }
1234
1235 #else
1236
1237 #define HW_RAW(dev) 0
1238
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1239 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1240 {
1241 if (keycode > 127)
1242 return -1;
1243
1244 put_queue(vc, keycode | up_flag);
1245 return 0;
1246 }
1247 #endif
1248
kbd_rawcode(unsigned char data)1249 static void kbd_rawcode(unsigned char data)
1250 {
1251 struct vc_data *vc = vc_cons[fg_console].d;
1252
1253 kbd = kbd_table + vc->vc_num;
1254 if (kbd->kbdmode == VC_RAW)
1255 put_queue(vc, data);
1256 }
1257
kbd_keycode(unsigned int keycode,int down,int hw_raw)1258 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1259 {
1260 struct vc_data *vc = vc_cons[fg_console].d;
1261 unsigned short keysym, *key_map;
1262 unsigned char type;
1263 bool raw_mode;
1264 struct tty_struct *tty;
1265 int shift_final;
1266 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1267 int rc;
1268
1269 tty = vc->port.tty;
1270
1271 if (tty && (!tty->driver_data)) {
1272 /* No driver data? Strange. Okay we fix it then. */
1273 tty->driver_data = vc;
1274 }
1275
1276 kbd = kbd_table + vc->vc_num;
1277
1278 #ifdef CONFIG_SPARC
1279 if (keycode == KEY_STOP)
1280 sparc_l1_a_state = down;
1281 #endif
1282
1283 rep = (down == 2);
1284
1285 raw_mode = (kbd->kbdmode == VC_RAW);
1286 if (raw_mode && !hw_raw)
1287 if (emulate_raw(vc, keycode, !down << 7))
1288 if (keycode < BTN_MISC && printk_ratelimit())
1289 pr_warning("can't emulate rawmode for keycode %d\n",
1290 keycode);
1291
1292 #ifdef CONFIG_SPARC
1293 if (keycode == KEY_A && sparc_l1_a_state) {
1294 sparc_l1_a_state = false;
1295 sun_do_break();
1296 }
1297 #endif
1298
1299 if (kbd->kbdmode == VC_MEDIUMRAW) {
1300 /*
1301 * This is extended medium raw mode, with keys above 127
1302 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1303 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1304 * interfere with anything else. The two bytes after 0 will
1305 * always have the up flag set not to interfere with older
1306 * applications. This allows for 16384 different keycodes,
1307 * which should be enough.
1308 */
1309 if (keycode < 128) {
1310 put_queue(vc, keycode | (!down << 7));
1311 } else {
1312 put_queue(vc, !down << 7);
1313 put_queue(vc, (keycode >> 7) | 0x80);
1314 put_queue(vc, keycode | 0x80);
1315 }
1316 raw_mode = true;
1317 }
1318
1319 if (down)
1320 set_bit(keycode, key_down);
1321 else
1322 clear_bit(keycode, key_down);
1323
1324 if (rep &&
1325 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1326 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1327 /*
1328 * Don't repeat a key if the input buffers are not empty and the
1329 * characters get aren't echoed locally. This makes key repeat
1330 * usable with slow applications and under heavy loads.
1331 */
1332 return;
1333 }
1334
1335 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1336 param.ledstate = kbd->ledflagstate;
1337 key_map = key_maps[shift_final];
1338
1339 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1340 KBD_KEYCODE, ¶m);
1341 if (rc == NOTIFY_STOP || !key_map) {
1342 atomic_notifier_call_chain(&keyboard_notifier_list,
1343 KBD_UNBOUND_KEYCODE, ¶m);
1344 do_compute_shiftstate();
1345 kbd->slockstate = 0;
1346 return;
1347 }
1348
1349 if (keycode < NR_KEYS)
1350 keysym = key_map[keycode];
1351 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1352 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1353 else
1354 return;
1355
1356 type = KTYP(keysym);
1357
1358 if (type < 0xf0) {
1359 param.value = keysym;
1360 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1361 KBD_UNICODE, ¶m);
1362 if (rc != NOTIFY_STOP)
1363 if (down && !raw_mode)
1364 to_utf8(vc, keysym);
1365 return;
1366 }
1367
1368 type -= 0xf0;
1369
1370 if (type == KT_LETTER) {
1371 type = KT_LATIN;
1372 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1373 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1374 if (key_map)
1375 keysym = key_map[keycode];
1376 }
1377 }
1378
1379 param.value = keysym;
1380 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1381 KBD_KEYSYM, ¶m);
1382 if (rc == NOTIFY_STOP)
1383 return;
1384
1385 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1386 return;
1387
1388 (*k_handler[type])(vc, keysym & 0xff, !down);
1389
1390 param.ledstate = kbd->ledflagstate;
1391 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1392
1393 if (type != KT_SLOCK)
1394 kbd->slockstate = 0;
1395 }
1396
kbd_event(struct input_handle * handle,unsigned int event_type,unsigned int event_code,int value)1397 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1398 unsigned int event_code, int value)
1399 {
1400 /* We are called with interrupts disabled, just take the lock */
1401 spin_lock(&kbd_event_lock);
1402
1403 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1404 kbd_rawcode(value);
1405 if (event_type == EV_KEY)
1406 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1407
1408 spin_unlock(&kbd_event_lock);
1409
1410 tasklet_schedule(&keyboard_tasklet);
1411 do_poke_blanked_console = 1;
1412 schedule_console_callback();
1413 }
1414
kbd_match(struct input_handler * handler,struct input_dev * dev)1415 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1416 {
1417 int i;
1418
1419 if (test_bit(EV_SND, dev->evbit))
1420 return true;
1421
1422 if (test_bit(EV_KEY, dev->evbit)) {
1423 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1424 if (test_bit(i, dev->keybit))
1425 return true;
1426 for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1427 if (test_bit(i, dev->keybit))
1428 return true;
1429 }
1430
1431 return false;
1432 }
1433
1434 /*
1435 * When a keyboard (or other input device) is found, the kbd_connect
1436 * function is called. The function then looks at the device, and if it
1437 * likes it, it can open it and get events from it. In this (kbd_connect)
1438 * function, we should decide which VT to bind that keyboard to initially.
1439 */
kbd_connect(struct input_handler * handler,struct input_dev * dev,const struct input_device_id * id)1440 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1441 const struct input_device_id *id)
1442 {
1443 struct input_handle *handle;
1444 int error;
1445
1446 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1447 if (!handle)
1448 return -ENOMEM;
1449
1450 handle->dev = dev;
1451 handle->handler = handler;
1452 handle->name = "kbd";
1453
1454 error = input_register_handle(handle);
1455 if (error)
1456 goto err_free_handle;
1457
1458 error = input_open_device(handle);
1459 if (error)
1460 goto err_unregister_handle;
1461
1462 return 0;
1463
1464 err_unregister_handle:
1465 input_unregister_handle(handle);
1466 err_free_handle:
1467 kfree(handle);
1468 return error;
1469 }
1470
kbd_disconnect(struct input_handle * handle)1471 static void kbd_disconnect(struct input_handle *handle)
1472 {
1473 input_close_device(handle);
1474 input_unregister_handle(handle);
1475 kfree(handle);
1476 }
1477
1478 /*
1479 * Start keyboard handler on the new keyboard by refreshing LED state to
1480 * match the rest of the system.
1481 */
kbd_start(struct input_handle * handle)1482 static void kbd_start(struct input_handle *handle)
1483 {
1484 tasklet_disable(&keyboard_tasklet);
1485
1486 if (ledstate != 0xff)
1487 kbd_update_leds_helper(handle, &ledstate);
1488
1489 tasklet_enable(&keyboard_tasklet);
1490 }
1491
1492 static const struct input_device_id kbd_ids[] = {
1493 {
1494 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1495 .evbit = { BIT_MASK(EV_KEY) },
1496 },
1497
1498 {
1499 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1500 .evbit = { BIT_MASK(EV_SND) },
1501 },
1502
1503 { }, /* Terminating entry */
1504 };
1505
1506 MODULE_DEVICE_TABLE(input, kbd_ids);
1507
1508 static struct input_handler kbd_handler = {
1509 .event = kbd_event,
1510 .match = kbd_match,
1511 .connect = kbd_connect,
1512 .disconnect = kbd_disconnect,
1513 .start = kbd_start,
1514 .name = "kbd",
1515 .id_table = kbd_ids,
1516 };
1517
kbd_init(void)1518 int __init kbd_init(void)
1519 {
1520 int i;
1521 int error;
1522
1523 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1524 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1525 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1526 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1527 kbd_table[i].lockstate = KBD_DEFLOCK;
1528 kbd_table[i].slockstate = 0;
1529 kbd_table[i].modeflags = KBD_DEFMODE;
1530 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1531 }
1532
1533 error = input_register_handler(&kbd_handler);
1534 if (error)
1535 return error;
1536
1537 tasklet_enable(&keyboard_tasklet);
1538 tasklet_schedule(&keyboard_tasklet);
1539
1540 return 0;
1541 }
1542
1543 /* Ioctl support code */
1544
1545 /**
1546 * vt_do_diacrit - diacritical table updates
1547 * @cmd: ioctl request
1548 * @up: pointer to user data for ioctl
1549 * @perm: permissions check computed by caller
1550 *
1551 * Update the diacritical tables atomically and safely. Lock them
1552 * against simultaneous keypresses
1553 */
vt_do_diacrit(unsigned int cmd,void __user * up,int perm)1554 int vt_do_diacrit(unsigned int cmd, void __user *up, int perm)
1555 {
1556 struct kbdiacrs __user *a = up;
1557 unsigned long flags;
1558 int asize;
1559 int ret = 0;
1560
1561 switch (cmd) {
1562 case KDGKBDIACR:
1563 {
1564 struct kbdiacr *diacr;
1565 int i;
1566
1567 diacr = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1568 GFP_KERNEL);
1569 if (diacr == NULL)
1570 return -ENOMEM;
1571
1572 /* Lock the diacriticals table, make a copy and then
1573 copy it after we unlock */
1574 spin_lock_irqsave(&kbd_event_lock, flags);
1575
1576 asize = accent_table_size;
1577 for (i = 0; i < asize; i++) {
1578 diacr[i].diacr = conv_uni_to_8bit(
1579 accent_table[i].diacr);
1580 diacr[i].base = conv_uni_to_8bit(
1581 accent_table[i].base);
1582 diacr[i].result = conv_uni_to_8bit(
1583 accent_table[i].result);
1584 }
1585 spin_unlock_irqrestore(&kbd_event_lock, flags);
1586
1587 if (put_user(asize, &a->kb_cnt))
1588 ret = -EFAULT;
1589 else if (copy_to_user(a->kbdiacr, diacr,
1590 asize * sizeof(struct kbdiacr)))
1591 ret = -EFAULT;
1592 kfree(diacr);
1593 return ret;
1594 }
1595 case KDGKBDIACRUC:
1596 {
1597 struct kbdiacrsuc __user *a = up;
1598 void *buf;
1599
1600 buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1601 GFP_KERNEL);
1602 if (buf == NULL)
1603 return -ENOMEM;
1604
1605 /* Lock the diacriticals table, make a copy and then
1606 copy it after we unlock */
1607 spin_lock_irqsave(&kbd_event_lock, flags);
1608
1609 asize = accent_table_size;
1610 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1611
1612 spin_unlock_irqrestore(&kbd_event_lock, flags);
1613
1614 if (put_user(asize, &a->kb_cnt))
1615 ret = -EFAULT;
1616 else if (copy_to_user(a->kbdiacruc, buf,
1617 asize*sizeof(struct kbdiacruc)))
1618 ret = -EFAULT;
1619 kfree(buf);
1620 return ret;
1621 }
1622
1623 case KDSKBDIACR:
1624 {
1625 struct kbdiacrs __user *a = up;
1626 struct kbdiacr *diacr = NULL;
1627 unsigned int ct;
1628 int i;
1629
1630 if (!perm)
1631 return -EPERM;
1632 if (get_user(ct, &a->kb_cnt))
1633 return -EFAULT;
1634 if (ct >= MAX_DIACR)
1635 return -EINVAL;
1636
1637 if (ct) {
1638 diacr = kmalloc(sizeof(struct kbdiacr) * ct,
1639 GFP_KERNEL);
1640 if (diacr == NULL)
1641 return -ENOMEM;
1642
1643 if (copy_from_user(diacr, a->kbdiacr,
1644 sizeof(struct kbdiacr) * ct)) {
1645 kfree(diacr);
1646 return -EFAULT;
1647 }
1648 }
1649
1650 spin_lock_irqsave(&kbd_event_lock, flags);
1651 accent_table_size = ct;
1652 for (i = 0; i < ct; i++) {
1653 accent_table[i].diacr =
1654 conv_8bit_to_uni(diacr[i].diacr);
1655 accent_table[i].base =
1656 conv_8bit_to_uni(diacr[i].base);
1657 accent_table[i].result =
1658 conv_8bit_to_uni(diacr[i].result);
1659 }
1660 spin_unlock_irqrestore(&kbd_event_lock, flags);
1661 kfree(diacr);
1662 return 0;
1663 }
1664
1665 case KDSKBDIACRUC:
1666 {
1667 struct kbdiacrsuc __user *a = up;
1668 unsigned int ct;
1669 void *buf = NULL;
1670
1671 if (!perm)
1672 return -EPERM;
1673
1674 if (get_user(ct, &a->kb_cnt))
1675 return -EFAULT;
1676
1677 if (ct >= MAX_DIACR)
1678 return -EINVAL;
1679
1680 if (ct) {
1681 buf = kmalloc(ct * sizeof(struct kbdiacruc),
1682 GFP_KERNEL);
1683 if (buf == NULL)
1684 return -ENOMEM;
1685
1686 if (copy_from_user(buf, a->kbdiacruc,
1687 ct * sizeof(struct kbdiacruc))) {
1688 kfree(buf);
1689 return -EFAULT;
1690 }
1691 }
1692 spin_lock_irqsave(&kbd_event_lock, flags);
1693 if (ct)
1694 memcpy(accent_table, buf,
1695 ct * sizeof(struct kbdiacruc));
1696 accent_table_size = ct;
1697 spin_unlock_irqrestore(&kbd_event_lock, flags);
1698 kfree(buf);
1699 return 0;
1700 }
1701 }
1702 return ret;
1703 }
1704
1705 /**
1706 * vt_do_kdskbmode - set keyboard mode ioctl
1707 * @console: the console to use
1708 * @arg: the requested mode
1709 *
1710 * Update the keyboard mode bits while holding the correct locks.
1711 * Return 0 for success or an error code.
1712 */
vt_do_kdskbmode(int console,unsigned int arg)1713 int vt_do_kdskbmode(int console, unsigned int arg)
1714 {
1715 struct kbd_struct * kbd = kbd_table + console;
1716 int ret = 0;
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&kbd_event_lock, flags);
1720 switch(arg) {
1721 case K_RAW:
1722 kbd->kbdmode = VC_RAW;
1723 break;
1724 case K_MEDIUMRAW:
1725 kbd->kbdmode = VC_MEDIUMRAW;
1726 break;
1727 case K_XLATE:
1728 kbd->kbdmode = VC_XLATE;
1729 do_compute_shiftstate();
1730 break;
1731 case K_UNICODE:
1732 kbd->kbdmode = VC_UNICODE;
1733 do_compute_shiftstate();
1734 break;
1735 case K_OFF:
1736 kbd->kbdmode = VC_OFF;
1737 break;
1738 default:
1739 ret = -EINVAL;
1740 }
1741 spin_unlock_irqrestore(&kbd_event_lock, flags);
1742 return ret;
1743 }
1744
1745 /**
1746 * vt_do_kdskbmeta - set keyboard meta state
1747 * @console: the console to use
1748 * @arg: the requested meta state
1749 *
1750 * Update the keyboard meta bits while holding the correct locks.
1751 * Return 0 for success or an error code.
1752 */
vt_do_kdskbmeta(int console,unsigned int arg)1753 int vt_do_kdskbmeta(int console, unsigned int arg)
1754 {
1755 struct kbd_struct * kbd = kbd_table + console;
1756 int ret = 0;
1757 unsigned long flags;
1758
1759 spin_lock_irqsave(&kbd_event_lock, flags);
1760 switch(arg) {
1761 case K_METABIT:
1762 clr_vc_kbd_mode(kbd, VC_META);
1763 break;
1764 case K_ESCPREFIX:
1765 set_vc_kbd_mode(kbd, VC_META);
1766 break;
1767 default:
1768 ret = -EINVAL;
1769 }
1770 spin_unlock_irqrestore(&kbd_event_lock, flags);
1771 return ret;
1772 }
1773
vt_do_kbkeycode_ioctl(int cmd,struct kbkeycode __user * user_kbkc,int perm)1774 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1775 int perm)
1776 {
1777 struct kbkeycode tmp;
1778 int kc = 0;
1779
1780 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1781 return -EFAULT;
1782 switch (cmd) {
1783 case KDGETKEYCODE:
1784 kc = getkeycode(tmp.scancode);
1785 if (kc >= 0)
1786 kc = put_user(kc, &user_kbkc->keycode);
1787 break;
1788 case KDSETKEYCODE:
1789 if (!perm)
1790 return -EPERM;
1791 kc = setkeycode(tmp.scancode, tmp.keycode);
1792 break;
1793 }
1794 return kc;
1795 }
1796
1797 #define i (tmp.kb_index)
1798 #define s (tmp.kb_table)
1799 #define v (tmp.kb_value)
1800
vt_do_kdsk_ioctl(int cmd,struct kbentry __user * user_kbe,int perm,int console)1801 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1802 int console)
1803 {
1804 struct kbd_struct * kbd = kbd_table + console;
1805 struct kbentry tmp;
1806 ushort *key_map, *new_map, val, ov;
1807 unsigned long flags;
1808
1809 if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1810 return -EFAULT;
1811
1812 if (!capable(CAP_SYS_TTY_CONFIG))
1813 perm = 0;
1814
1815 switch (cmd) {
1816 case KDGKBENT:
1817 /* Ensure another thread doesn't free it under us */
1818 spin_lock_irqsave(&kbd_event_lock, flags);
1819 key_map = key_maps[s];
1820 if (key_map) {
1821 val = U(key_map[i]);
1822 if (kbd->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1823 val = K_HOLE;
1824 } else
1825 val = (i ? K_HOLE : K_NOSUCHMAP);
1826 spin_unlock_irqrestore(&kbd_event_lock, flags);
1827 return put_user(val, &user_kbe->kb_value);
1828 case KDSKBENT:
1829 if (!perm)
1830 return -EPERM;
1831 if (!i && v == K_NOSUCHMAP) {
1832 spin_lock_irqsave(&kbd_event_lock, flags);
1833 /* deallocate map */
1834 key_map = key_maps[s];
1835 if (s && key_map) {
1836 key_maps[s] = NULL;
1837 if (key_map[0] == U(K_ALLOCATED)) {
1838 kfree(key_map);
1839 keymap_count--;
1840 }
1841 }
1842 spin_unlock_irqrestore(&kbd_event_lock, flags);
1843 break;
1844 }
1845
1846 if (KTYP(v) < NR_TYPES) {
1847 if (KVAL(v) > max_vals[KTYP(v)])
1848 return -EINVAL;
1849 } else
1850 if (kbd->kbdmode != VC_UNICODE)
1851 return -EINVAL;
1852
1853 /* ++Geert: non-PC keyboards may generate keycode zero */
1854 #if !defined(__mc68000__) && !defined(__powerpc__)
1855 /* assignment to entry 0 only tests validity of args */
1856 if (!i)
1857 break;
1858 #endif
1859
1860 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1861 if (!new_map)
1862 return -ENOMEM;
1863 spin_lock_irqsave(&kbd_event_lock, flags);
1864 key_map = key_maps[s];
1865 if (key_map == NULL) {
1866 int j;
1867
1868 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1869 !capable(CAP_SYS_RESOURCE)) {
1870 spin_unlock_irqrestore(&kbd_event_lock, flags);
1871 kfree(new_map);
1872 return -EPERM;
1873 }
1874 key_maps[s] = new_map;
1875 key_map = new_map;
1876 key_map[0] = U(K_ALLOCATED);
1877 for (j = 1; j < NR_KEYS; j++)
1878 key_map[j] = U(K_HOLE);
1879 keymap_count++;
1880 } else
1881 kfree(new_map);
1882
1883 ov = U(key_map[i]);
1884 if (v == ov)
1885 goto out;
1886 /*
1887 * Attention Key.
1888 */
1889 if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1890 spin_unlock_irqrestore(&kbd_event_lock, flags);
1891 return -EPERM;
1892 }
1893 key_map[i] = U(v);
1894 if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1895 do_compute_shiftstate();
1896 out:
1897 spin_unlock_irqrestore(&kbd_event_lock, flags);
1898 break;
1899 }
1900 return 0;
1901 }
1902 #undef i
1903 #undef s
1904 #undef v
1905
1906 /* FIXME: This one needs untangling and locking */
vt_do_kdgkb_ioctl(int cmd,struct kbsentry __user * user_kdgkb,int perm)1907 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1908 {
1909 struct kbsentry *kbs;
1910 char *p;
1911 u_char *q;
1912 u_char __user *up;
1913 int sz;
1914 int delta;
1915 char *first_free, *fj, *fnw;
1916 int i, j, k;
1917 int ret;
1918
1919 if (!capable(CAP_SYS_TTY_CONFIG))
1920 perm = 0;
1921
1922 kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1923 if (!kbs) {
1924 ret = -ENOMEM;
1925 goto reterr;
1926 }
1927
1928 /* we mostly copy too much here (512bytes), but who cares ;) */
1929 if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1930 ret = -EFAULT;
1931 goto reterr;
1932 }
1933 kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1934 i = kbs->kb_func;
1935
1936 switch (cmd) {
1937 case KDGKBSENT:
1938 sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1939 a struct member */
1940 up = user_kdgkb->kb_string;
1941 p = func_table[i];
1942 if(p)
1943 for ( ; *p && sz; p++, sz--)
1944 if (put_user(*p, up++)) {
1945 ret = -EFAULT;
1946 goto reterr;
1947 }
1948 if (put_user('\0', up)) {
1949 ret = -EFAULT;
1950 goto reterr;
1951 }
1952 kfree(kbs);
1953 return ((p && *p) ? -EOVERFLOW : 0);
1954 case KDSKBSENT:
1955 if (!perm) {
1956 ret = -EPERM;
1957 goto reterr;
1958 }
1959
1960 q = func_table[i];
1961 first_free = funcbufptr + (funcbufsize - funcbufleft);
1962 for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1963 ;
1964 if (j < MAX_NR_FUNC)
1965 fj = func_table[j];
1966 else
1967 fj = first_free;
1968
1969 delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1970 if (delta <= funcbufleft) { /* it fits in current buf */
1971 if (j < MAX_NR_FUNC) {
1972 memmove(fj + delta, fj, first_free - fj);
1973 for (k = j; k < MAX_NR_FUNC; k++)
1974 if (func_table[k])
1975 func_table[k] += delta;
1976 }
1977 if (!q)
1978 func_table[i] = fj;
1979 funcbufleft -= delta;
1980 } else { /* allocate a larger buffer */
1981 sz = 256;
1982 while (sz < funcbufsize - funcbufleft + delta)
1983 sz <<= 1;
1984 fnw = kmalloc(sz, GFP_KERNEL);
1985 if(!fnw) {
1986 ret = -ENOMEM;
1987 goto reterr;
1988 }
1989
1990 if (!q)
1991 func_table[i] = fj;
1992 if (fj > funcbufptr)
1993 memmove(fnw, funcbufptr, fj - funcbufptr);
1994 for (k = 0; k < j; k++)
1995 if (func_table[k])
1996 func_table[k] = fnw + (func_table[k] - funcbufptr);
1997
1998 if (first_free > fj) {
1999 memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
2000 for (k = j; k < MAX_NR_FUNC; k++)
2001 if (func_table[k])
2002 func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
2003 }
2004 if (funcbufptr != func_buf)
2005 kfree(funcbufptr);
2006 funcbufptr = fnw;
2007 funcbufleft = funcbufleft - delta + sz - funcbufsize;
2008 funcbufsize = sz;
2009 }
2010 strcpy(func_table[i], kbs->kb_string);
2011 break;
2012 }
2013 ret = 0;
2014 reterr:
2015 kfree(kbs);
2016 return ret;
2017 }
2018
vt_do_kdskled(int console,int cmd,unsigned long arg,int perm)2019 int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
2020 {
2021 struct kbd_struct * kbd = kbd_table + console;
2022 unsigned long flags;
2023 unsigned char ucval;
2024
2025 switch(cmd) {
2026 /* the ioctls below read/set the flags usually shown in the leds */
2027 /* don't use them - they will go away without warning */
2028 case KDGKBLED:
2029 spin_lock_irqsave(&kbd_event_lock, flags);
2030 ucval = kbd->ledflagstate | (kbd->default_ledflagstate << 4);
2031 spin_unlock_irqrestore(&kbd_event_lock, flags);
2032 return put_user(ucval, (char __user *)arg);
2033
2034 case KDSKBLED:
2035 if (!perm)
2036 return -EPERM;
2037 if (arg & ~0x77)
2038 return -EINVAL;
2039 spin_lock_irqsave(&kbd_event_lock, flags);
2040 kbd->ledflagstate = (arg & 7);
2041 kbd->default_ledflagstate = ((arg >> 4) & 7);
2042 set_leds();
2043 spin_unlock_irqrestore(&kbd_event_lock, flags);
2044 return 0;
2045
2046 /* the ioctls below only set the lights, not the functions */
2047 /* for those, see KDGKBLED and KDSKBLED above */
2048 case KDGETLED:
2049 ucval = getledstate();
2050 return put_user(ucval, (char __user *)arg);
2051
2052 case KDSETLED:
2053 if (!perm)
2054 return -EPERM;
2055 setledstate(kbd, arg);
2056 return 0;
2057 }
2058 return -ENOIOCTLCMD;
2059 }
2060
vt_do_kdgkbmode(int console)2061 int vt_do_kdgkbmode(int console)
2062 {
2063 struct kbd_struct * kbd = kbd_table + console;
2064 /* This is a spot read so needs no locking */
2065 switch (kbd->kbdmode) {
2066 case VC_RAW:
2067 return K_RAW;
2068 case VC_MEDIUMRAW:
2069 return K_MEDIUMRAW;
2070 case VC_UNICODE:
2071 return K_UNICODE;
2072 case VC_OFF:
2073 return K_OFF;
2074 default:
2075 return K_XLATE;
2076 }
2077 }
2078
2079 /**
2080 * vt_do_kdgkbmeta - report meta status
2081 * @console: console to report
2082 *
2083 * Report the meta flag status of this console
2084 */
vt_do_kdgkbmeta(int console)2085 int vt_do_kdgkbmeta(int console)
2086 {
2087 struct kbd_struct * kbd = kbd_table + console;
2088 /* Again a spot read so no locking */
2089 return vc_kbd_mode(kbd, VC_META) ? K_ESCPREFIX : K_METABIT;
2090 }
2091
2092 /**
2093 * vt_reset_unicode - reset the unicode status
2094 * @console: console being reset
2095 *
2096 * Restore the unicode console state to its default
2097 */
vt_reset_unicode(int console)2098 void vt_reset_unicode(int console)
2099 {
2100 unsigned long flags;
2101
2102 spin_lock_irqsave(&kbd_event_lock, flags);
2103 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2104 spin_unlock_irqrestore(&kbd_event_lock, flags);
2105 }
2106
2107 /**
2108 * vt_get_shiftstate - shift bit state
2109 *
2110 * Report the shift bits from the keyboard state. We have to export
2111 * this to support some oddities in the vt layer.
2112 */
vt_get_shift_state(void)2113 int vt_get_shift_state(void)
2114 {
2115 /* Don't lock as this is a transient report */
2116 return shift_state;
2117 }
2118
2119 /**
2120 * vt_reset_keyboard - reset keyboard state
2121 * @console: console to reset
2122 *
2123 * Reset the keyboard bits for a console as part of a general console
2124 * reset event
2125 */
vt_reset_keyboard(int console)2126 void vt_reset_keyboard(int console)
2127 {
2128 struct kbd_struct * kbd = kbd_table + console;
2129 unsigned long flags;
2130
2131 spin_lock_irqsave(&kbd_event_lock, flags);
2132 set_vc_kbd_mode(kbd, VC_REPEAT);
2133 clr_vc_kbd_mode(kbd, VC_CKMODE);
2134 clr_vc_kbd_mode(kbd, VC_APPLIC);
2135 clr_vc_kbd_mode(kbd, VC_CRLF);
2136 kbd->lockstate = 0;
2137 kbd->slockstate = 0;
2138 kbd->ledmode = LED_SHOW_FLAGS;
2139 kbd->ledflagstate = kbd->default_ledflagstate;
2140 /* do not do set_leds here because this causes an endless tasklet loop
2141 when the keyboard hasn't been initialized yet */
2142 spin_unlock_irqrestore(&kbd_event_lock, flags);
2143 }
2144
2145 /**
2146 * vt_get_kbd_mode_bit - read keyboard status bits
2147 * @console: console to read from
2148 * @bit: mode bit to read
2149 *
2150 * Report back a vt mode bit. We do this without locking so the
2151 * caller must be sure that there are no synchronization needs
2152 */
2153
vt_get_kbd_mode_bit(int console,int bit)2154 int vt_get_kbd_mode_bit(int console, int bit)
2155 {
2156 struct kbd_struct * kbd = kbd_table + console;
2157 return vc_kbd_mode(kbd, bit);
2158 }
2159
2160 /**
2161 * vt_set_kbd_mode_bit - read keyboard status bits
2162 * @console: console to read from
2163 * @bit: mode bit to read
2164 *
2165 * Set a vt mode bit. We do this without locking so the
2166 * caller must be sure that there are no synchronization needs
2167 */
2168
vt_set_kbd_mode_bit(int console,int bit)2169 void vt_set_kbd_mode_bit(int console, int bit)
2170 {
2171 struct kbd_struct * kbd = kbd_table + console;
2172 unsigned long flags;
2173
2174 spin_lock_irqsave(&kbd_event_lock, flags);
2175 set_vc_kbd_mode(kbd, bit);
2176 spin_unlock_irqrestore(&kbd_event_lock, flags);
2177 }
2178
2179 /**
2180 * vt_clr_kbd_mode_bit - read keyboard status bits
2181 * @console: console to read from
2182 * @bit: mode bit to read
2183 *
2184 * Report back a vt mode bit. We do this without locking so the
2185 * caller must be sure that there are no synchronization needs
2186 */
2187
vt_clr_kbd_mode_bit(int console,int bit)2188 void vt_clr_kbd_mode_bit(int console, int bit)
2189 {
2190 struct kbd_struct * kbd = kbd_table + console;
2191 unsigned long flags;
2192
2193 spin_lock_irqsave(&kbd_event_lock, flags);
2194 clr_vc_kbd_mode(kbd, bit);
2195 spin_unlock_irqrestore(&kbd_event_lock, flags);
2196 }
2197