1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Written for linux by Johan Myreen as a translation from
4 * the assembly version by Linus (with diacriticals added)
5 *
6 * Some additional features added by Christoph Niemann (ChN), March 1993
7 *
8 * Loadable keymaps by Risto Kankkunen, May 1993
9 *
10 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
11 * Added decr/incr_console, dynamic keymaps, Unicode support,
12 * dynamic function/string keys, led setting, Sept 1994
13 * `Sticky' modifier keys, 951006.
14 *
15 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
16 *
17 * Modified to provide 'generic' keyboard support by Hamish Macdonald
18 * Merge with the m68k keyboard driver and split-off of the PC low-level
19 * parts by Geert Uytterhoeven, May 1997
20 *
21 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
22 * 30-07-98: Dead keys redone, aeb@cwi.nl.
23 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/consolemap.h>
29 #include <linux/init.h>
30 #include <linux/input.h>
31 #include <linux/jiffies.h>
32 #include <linux/kbd_diacr.h>
33 #include <linux/kbd_kern.h>
34 #include <linux/leds.h>
35 #include <linux/mm.h>
36 #include <linux/module.h>
37 #include <linux/nospec.h>
38 #include <linux/notifier.h>
39 #include <linux/reboot.h>
40 #include <linux/sched/debug.h>
41 #include <linux/sched/signal.h>
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/string.h>
45 #include <linux/tty_flip.h>
46 #include <linux/tty.h>
47 #include <linux/uaccess.h>
48 #include <linux/vt_kern.h>
49
50 #include <asm/irq_regs.h>
51
52 /*
53 * Exported functions/variables
54 */
55
56 #define KBD_DEFMODE (BIT(VC_REPEAT) | BIT(VC_META))
57
58 #if defined(CONFIG_X86) || defined(CONFIG_PARISC)
59 #include <asm/kbdleds.h>
60 #else
kbd_defleds(void)61 static inline int kbd_defleds(void)
62 {
63 return 0;
64 }
65 #endif
66
67 #define KBD_DEFLOCK 0
68
69 /*
70 * Handler Tables.
71 */
72
73 #define K_HANDLERS\
74 k_self, k_fn, k_spec, k_pad,\
75 k_dead, k_cons, k_cur, k_shift,\
76 k_meta, k_ascii, k_lock, k_lowercase,\
77 k_slock, k_dead2, k_brl, k_ignore
78
79 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
80 char up_flag);
81 static k_handler_fn K_HANDLERS;
82 static k_handler_fn *k_handler[16] = { K_HANDLERS };
83
84 #define FN_HANDLERS\
85 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
86 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
87 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
88 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
89 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
90
91 typedef void (fn_handler_fn)(struct vc_data *vc);
92 static fn_handler_fn FN_HANDLERS;
93 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
94
95 /*
96 * Variables exported for vt_ioctl.c
97 */
98
99 struct vt_spawn_console vt_spawn_con = {
100 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
101 .pid = NULL,
102 .sig = 0,
103 };
104
105
106 /*
107 * Internal Data.
108 */
109
110 static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 static struct kbd_struct *kbd = kbd_table;
112
113 /* maximum values each key_handler can handle */
114 static const unsigned char max_vals[] = {
115 [ KT_LATIN ] = 255,
116 [ KT_FN ] = ARRAY_SIZE(func_table) - 1,
117 [ KT_SPEC ] = ARRAY_SIZE(fn_handler) - 1,
118 [ KT_PAD ] = NR_PAD - 1,
119 [ KT_DEAD ] = NR_DEAD - 1,
120 [ KT_CONS ] = 255,
121 [ KT_CUR ] = 3,
122 [ KT_SHIFT ] = NR_SHIFT - 1,
123 [ KT_META ] = 255,
124 [ KT_ASCII ] = NR_ASCII - 1,
125 [ KT_LOCK ] = NR_LOCK - 1,
126 [ KT_LETTER ] = 255,
127 [ KT_SLOCK ] = NR_LOCK - 1,
128 [ KT_DEAD2 ] = 255,
129 [ KT_BRL ] = NR_BRL - 1,
130 };
131
132 static const int NR_TYPES = ARRAY_SIZE(max_vals);
133
134 static void kbd_bh(struct tasklet_struct *unused);
135 static DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh);
136
137 static struct input_handler kbd_handler;
138 static DEFINE_SPINLOCK(kbd_event_lock);
139 static DEFINE_SPINLOCK(led_lock);
140 static DEFINE_SPINLOCK(func_buf_lock); /* guard 'func_buf' and friends */
141 static DECLARE_BITMAP(key_down, KEY_CNT); /* keyboard key bitmap */
142 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
143 static bool dead_key_next;
144
145 /* Handles a number being assembled on the number pad */
146 static bool npadch_active;
147 static unsigned int npadch_value;
148
149 static unsigned int diacr;
150 static bool rep; /* flag telling character repeat */
151
152 static int shift_state = 0;
153
154 static unsigned int ledstate = -1U; /* undefined */
155 static unsigned char ledioctl;
156 static bool vt_switch;
157
158 /*
159 * Notifier list for console keyboard events
160 */
161 static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
162
register_keyboard_notifier(struct notifier_block * nb)163 int register_keyboard_notifier(struct notifier_block *nb)
164 {
165 return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
166 }
167 EXPORT_SYMBOL_GPL(register_keyboard_notifier);
168
unregister_keyboard_notifier(struct notifier_block * nb)169 int unregister_keyboard_notifier(struct notifier_block *nb)
170 {
171 return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
172 }
173 EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
174
175 /*
176 * Translation of scancodes to keycodes. We set them on only the first
177 * keyboard in the list that accepts the scancode and keycode.
178 * Explanation for not choosing the first attached keyboard anymore:
179 * USB keyboards for example have two event devices: one for all "normal"
180 * keys and one for extra function keys (like "volume up", "make coffee",
181 * etc.). So this means that scancodes for the extra function keys won't
182 * be valid for the first event device, but will be for the second.
183 */
184
185 struct getset_keycode_data {
186 struct input_keymap_entry ke;
187 int error;
188 };
189
getkeycode_helper(struct input_handle * handle,void * data)190 static int getkeycode_helper(struct input_handle *handle, void *data)
191 {
192 struct getset_keycode_data *d = data;
193
194 d->error = input_get_keycode(handle->dev, &d->ke);
195
196 return d->error == 0; /* stop as soon as we successfully get one */
197 }
198
getkeycode(unsigned int scancode)199 static int getkeycode(unsigned int scancode)
200 {
201 struct getset_keycode_data d = {
202 .ke = {
203 .flags = 0,
204 .len = sizeof(scancode),
205 .keycode = 0,
206 },
207 .error = -ENODEV,
208 };
209
210 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
211
212 input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
213
214 return d.error ?: d.ke.keycode;
215 }
216
setkeycode_helper(struct input_handle * handle,void * data)217 static int setkeycode_helper(struct input_handle *handle, void *data)
218 {
219 struct getset_keycode_data *d = data;
220
221 d->error = input_set_keycode(handle->dev, &d->ke);
222
223 return d->error == 0; /* stop as soon as we successfully set one */
224 }
225
setkeycode(unsigned int scancode,unsigned int keycode)226 static int setkeycode(unsigned int scancode, unsigned int keycode)
227 {
228 struct getset_keycode_data d = {
229 .ke = {
230 .flags = 0,
231 .len = sizeof(scancode),
232 .keycode = keycode,
233 },
234 .error = -ENODEV,
235 };
236
237 memcpy(d.ke.scancode, &scancode, sizeof(scancode));
238
239 input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
240
241 return d.error;
242 }
243
244 /*
245 * Making beeps and bells. Note that we prefer beeps to bells, but when
246 * shutting the sound off we do both.
247 */
248
kd_sound_helper(struct input_handle * handle,void * data)249 static int kd_sound_helper(struct input_handle *handle, void *data)
250 {
251 unsigned int *hz = data;
252 struct input_dev *dev = handle->dev;
253
254 if (test_bit(EV_SND, dev->evbit)) {
255 if (test_bit(SND_TONE, dev->sndbit)) {
256 input_inject_event(handle, EV_SND, SND_TONE, *hz);
257 if (*hz)
258 return 0;
259 }
260 if (test_bit(SND_BELL, dev->sndbit))
261 input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
262 }
263
264 return 0;
265 }
266
kd_nosound(struct timer_list * unused)267 static void kd_nosound(struct timer_list *unused)
268 {
269 static unsigned int zero;
270
271 input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
272 }
273
274 static DEFINE_TIMER(kd_mksound_timer, kd_nosound);
275
kd_mksound(unsigned int hz,unsigned int ticks)276 void kd_mksound(unsigned int hz, unsigned int ticks)
277 {
278 del_timer_sync(&kd_mksound_timer);
279
280 input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
281
282 if (hz && ticks)
283 mod_timer(&kd_mksound_timer, jiffies + ticks);
284 }
285 EXPORT_SYMBOL(kd_mksound);
286
287 /*
288 * Setting the keyboard rate.
289 */
290
kbd_rate_helper(struct input_handle * handle,void * data)291 static int kbd_rate_helper(struct input_handle *handle, void *data)
292 {
293 struct input_dev *dev = handle->dev;
294 struct kbd_repeat *rpt = data;
295
296 if (test_bit(EV_REP, dev->evbit)) {
297
298 if (rpt[0].delay > 0)
299 input_inject_event(handle,
300 EV_REP, REP_DELAY, rpt[0].delay);
301 if (rpt[0].period > 0)
302 input_inject_event(handle,
303 EV_REP, REP_PERIOD, rpt[0].period);
304
305 rpt[1].delay = dev->rep[REP_DELAY];
306 rpt[1].period = dev->rep[REP_PERIOD];
307 }
308
309 return 0;
310 }
311
kbd_rate(struct kbd_repeat * rpt)312 int kbd_rate(struct kbd_repeat *rpt)
313 {
314 struct kbd_repeat data[2] = { *rpt };
315
316 input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
317 *rpt = data[1]; /* Copy currently used settings */
318
319 return 0;
320 }
321
322 /*
323 * Helper Functions.
324 */
put_queue(struct vc_data * vc,int ch)325 static void put_queue(struct vc_data *vc, int ch)
326 {
327 tty_insert_flip_char(&vc->port, ch, 0);
328 tty_flip_buffer_push(&vc->port);
329 }
330
puts_queue(struct vc_data * vc,const char * cp)331 static void puts_queue(struct vc_data *vc, const char *cp)
332 {
333 tty_insert_flip_string(&vc->port, cp, strlen(cp));
334 tty_flip_buffer_push(&vc->port);
335 }
336
applkey(struct vc_data * vc,int key,char mode)337 static void applkey(struct vc_data *vc, int key, char mode)
338 {
339 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
340
341 buf[1] = (mode ? 'O' : '[');
342 buf[2] = key;
343 puts_queue(vc, buf);
344 }
345
346 /*
347 * Many other routines do put_queue, but I think either
348 * they produce ASCII, or they produce some user-assigned
349 * string, and in both cases we might assume that it is
350 * in utf-8 already.
351 */
to_utf8(struct vc_data * vc,uint c)352 static void to_utf8(struct vc_data *vc, uint c)
353 {
354 if (c < 0x80)
355 /* 0******* */
356 put_queue(vc, c);
357 else if (c < 0x800) {
358 /* 110***** 10****** */
359 put_queue(vc, 0xc0 | (c >> 6));
360 put_queue(vc, 0x80 | (c & 0x3f));
361 } else if (c < 0x10000) {
362 if (c >= 0xD800 && c < 0xE000)
363 return;
364 if (c == 0xFFFF)
365 return;
366 /* 1110**** 10****** 10****** */
367 put_queue(vc, 0xe0 | (c >> 12));
368 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
369 put_queue(vc, 0x80 | (c & 0x3f));
370 } else if (c < 0x110000) {
371 /* 11110*** 10****** 10****** 10****** */
372 put_queue(vc, 0xf0 | (c >> 18));
373 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
374 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
375 put_queue(vc, 0x80 | (c & 0x3f));
376 }
377 }
378
379 /* FIXME: review locking for vt.c callers */
set_leds(void)380 static void set_leds(void)
381 {
382 tasklet_schedule(&keyboard_tasklet);
383 }
384
385 /*
386 * Called after returning from RAW mode or when changing consoles - recompute
387 * shift_down[] and shift_state from key_down[] maybe called when keymap is
388 * undefined, so that shiftkey release is seen. The caller must hold the
389 * kbd_event_lock.
390 */
391
do_compute_shiftstate(void)392 static void do_compute_shiftstate(void)
393 {
394 unsigned int k, sym, val;
395
396 shift_state = 0;
397 memset(shift_down, 0, sizeof(shift_down));
398
399 for_each_set_bit(k, key_down, min(NR_KEYS, KEY_CNT)) {
400 sym = U(key_maps[0][k]);
401 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
402 continue;
403
404 val = KVAL(sym);
405 if (val == KVAL(K_CAPSSHIFT))
406 val = KVAL(K_SHIFT);
407
408 shift_down[val]++;
409 shift_state |= BIT(val);
410 }
411 }
412
413 /* We still have to export this method to vt.c */
vt_set_leds_compute_shiftstate(void)414 void vt_set_leds_compute_shiftstate(void)
415 {
416 unsigned long flags;
417
418 /*
419 * When VT is switched, the keyboard led needs to be set once.
420 * Ensure that after the switch is completed, the state of the
421 * keyboard LED is consistent with the state of the keyboard lock.
422 */
423 vt_switch = true;
424 set_leds();
425
426 spin_lock_irqsave(&kbd_event_lock, flags);
427 do_compute_shiftstate();
428 spin_unlock_irqrestore(&kbd_event_lock, flags);
429 }
430
431 /*
432 * We have a combining character DIACR here, followed by the character CH.
433 * If the combination occurs in the table, return the corresponding value.
434 * Otherwise, if CH is a space or equals DIACR, return DIACR.
435 * Otherwise, conclude that DIACR was not combining after all,
436 * queue it and return CH.
437 */
handle_diacr(struct vc_data * vc,unsigned int ch)438 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
439 {
440 unsigned int d = diacr;
441 unsigned int i;
442
443 diacr = 0;
444
445 if ((d & ~0xff) == BRL_UC_ROW) {
446 if ((ch & ~0xff) == BRL_UC_ROW)
447 return d | ch;
448 } else {
449 for (i = 0; i < accent_table_size; i++)
450 if (accent_table[i].diacr == d && accent_table[i].base == ch)
451 return accent_table[i].result;
452 }
453
454 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
455 return d;
456
457 if (kbd->kbdmode == VC_UNICODE)
458 to_utf8(vc, d);
459 else {
460 int c = conv_uni_to_8bit(d);
461 if (c != -1)
462 put_queue(vc, c);
463 }
464
465 return ch;
466 }
467
468 /*
469 * Special function handlers
470 */
fn_enter(struct vc_data * vc)471 static void fn_enter(struct vc_data *vc)
472 {
473 if (diacr) {
474 if (kbd->kbdmode == VC_UNICODE)
475 to_utf8(vc, diacr);
476 else {
477 int c = conv_uni_to_8bit(diacr);
478 if (c != -1)
479 put_queue(vc, c);
480 }
481 diacr = 0;
482 }
483
484 put_queue(vc, '\r');
485 if (vc_kbd_mode(kbd, VC_CRLF))
486 put_queue(vc, '\n');
487 }
488
fn_caps_toggle(struct vc_data * vc)489 static void fn_caps_toggle(struct vc_data *vc)
490 {
491 if (rep)
492 return;
493
494 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
495 }
496
fn_caps_on(struct vc_data * vc)497 static void fn_caps_on(struct vc_data *vc)
498 {
499 if (rep)
500 return;
501
502 set_vc_kbd_led(kbd, VC_CAPSLOCK);
503 }
504
fn_show_ptregs(struct vc_data * vc)505 static void fn_show_ptregs(struct vc_data *vc)
506 {
507 struct pt_regs *regs = get_irq_regs();
508
509 if (regs)
510 show_regs(regs);
511 }
512
fn_hold(struct vc_data * vc)513 static void fn_hold(struct vc_data *vc)
514 {
515 struct tty_struct *tty = vc->port.tty;
516
517 if (rep || !tty)
518 return;
519
520 /*
521 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
522 * these routines are also activated by ^S/^Q.
523 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
524 */
525 if (tty->flow.stopped)
526 start_tty(tty);
527 else
528 stop_tty(tty);
529 }
530
fn_num(struct vc_data * vc)531 static void fn_num(struct vc_data *vc)
532 {
533 if (vc_kbd_mode(kbd, VC_APPLIC))
534 applkey(vc, 'P', 1);
535 else
536 fn_bare_num(vc);
537 }
538
539 /*
540 * Bind this to Shift-NumLock if you work in application keypad mode
541 * but want to be able to change the NumLock flag.
542 * Bind this to NumLock if you prefer that the NumLock key always
543 * changes the NumLock flag.
544 */
fn_bare_num(struct vc_data * vc)545 static void fn_bare_num(struct vc_data *vc)
546 {
547 if (!rep)
548 chg_vc_kbd_led(kbd, VC_NUMLOCK);
549 }
550
fn_lastcons(struct vc_data * vc)551 static void fn_lastcons(struct vc_data *vc)
552 {
553 /* switch to the last used console, ChN */
554 set_console(last_console);
555 }
556
fn_dec_console(struct vc_data * vc)557 static void fn_dec_console(struct vc_data *vc)
558 {
559 int i, cur = fg_console;
560
561 /* Currently switching? Queue this next switch relative to that. */
562 if (want_console != -1)
563 cur = want_console;
564
565 for (i = cur - 1; i != cur; i--) {
566 if (i == -1)
567 i = MAX_NR_CONSOLES - 1;
568 if (vc_cons_allocated(i))
569 break;
570 }
571 set_console(i);
572 }
573
fn_inc_console(struct vc_data * vc)574 static void fn_inc_console(struct vc_data *vc)
575 {
576 int i, cur = fg_console;
577
578 /* Currently switching? Queue this next switch relative to that. */
579 if (want_console != -1)
580 cur = want_console;
581
582 for (i = cur+1; i != cur; i++) {
583 if (i == MAX_NR_CONSOLES)
584 i = 0;
585 if (vc_cons_allocated(i))
586 break;
587 }
588 set_console(i);
589 }
590
fn_send_intr(struct vc_data * vc)591 static void fn_send_intr(struct vc_data *vc)
592 {
593 tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
594 tty_flip_buffer_push(&vc->port);
595 }
596
fn_scroll_forw(struct vc_data * vc)597 static void fn_scroll_forw(struct vc_data *vc)
598 {
599 scrollfront(vc, 0);
600 }
601
fn_scroll_back(struct vc_data * vc)602 static void fn_scroll_back(struct vc_data *vc)
603 {
604 scrollback(vc);
605 }
606
fn_show_mem(struct vc_data * vc)607 static void fn_show_mem(struct vc_data *vc)
608 {
609 show_mem(0, NULL);
610 }
611
fn_show_state(struct vc_data * vc)612 static void fn_show_state(struct vc_data *vc)
613 {
614 show_state();
615 }
616
fn_boot_it(struct vc_data * vc)617 static void fn_boot_it(struct vc_data *vc)
618 {
619 ctrl_alt_del();
620 }
621
fn_compose(struct vc_data * vc)622 static void fn_compose(struct vc_data *vc)
623 {
624 dead_key_next = true;
625 }
626
fn_spawn_con(struct vc_data * vc)627 static void fn_spawn_con(struct vc_data *vc)
628 {
629 spin_lock(&vt_spawn_con.lock);
630 if (vt_spawn_con.pid)
631 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
632 put_pid(vt_spawn_con.pid);
633 vt_spawn_con.pid = NULL;
634 }
635 spin_unlock(&vt_spawn_con.lock);
636 }
637
fn_SAK(struct vc_data * vc)638 static void fn_SAK(struct vc_data *vc)
639 {
640 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
641 schedule_work(SAK_work);
642 }
643
fn_null(struct vc_data * vc)644 static void fn_null(struct vc_data *vc)
645 {
646 do_compute_shiftstate();
647 }
648
649 /*
650 * Special key handlers
651 */
k_ignore(struct vc_data * vc,unsigned char value,char up_flag)652 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
653 {
654 }
655
k_spec(struct vc_data * vc,unsigned char value,char up_flag)656 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
657 {
658 if (up_flag)
659 return;
660 if (value >= ARRAY_SIZE(fn_handler))
661 return;
662 if ((kbd->kbdmode == VC_RAW ||
663 kbd->kbdmode == VC_MEDIUMRAW ||
664 kbd->kbdmode == VC_OFF) &&
665 value != KVAL(K_SAK))
666 return; /* SAK is allowed even in raw mode */
667 fn_handler[value](vc);
668 }
669
k_lowercase(struct vc_data * vc,unsigned char value,char up_flag)670 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
671 {
672 pr_err("k_lowercase was called - impossible\n");
673 }
674
k_unicode(struct vc_data * vc,unsigned int value,char up_flag)675 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
676 {
677 if (up_flag)
678 return; /* no action, if this is a key release */
679
680 if (diacr)
681 value = handle_diacr(vc, value);
682
683 if (dead_key_next) {
684 dead_key_next = false;
685 diacr = value;
686 return;
687 }
688 if (kbd->kbdmode == VC_UNICODE)
689 to_utf8(vc, value);
690 else {
691 int c = conv_uni_to_8bit(value);
692 if (c != -1)
693 put_queue(vc, c);
694 }
695 }
696
697 /*
698 * Handle dead key. Note that we now may have several
699 * dead keys modifying the same character. Very useful
700 * for Vietnamese.
701 */
k_deadunicode(struct vc_data * vc,unsigned int value,char up_flag)702 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
703 {
704 if (up_flag)
705 return;
706
707 diacr = (diacr ? handle_diacr(vc, value) : value);
708 }
709
k_self(struct vc_data * vc,unsigned char value,char up_flag)710 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
711 {
712 k_unicode(vc, conv_8bit_to_uni(value), up_flag);
713 }
714
k_dead2(struct vc_data * vc,unsigned char value,char up_flag)715 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
716 {
717 k_deadunicode(vc, value, up_flag);
718 }
719
720 /*
721 * Obsolete - for backwards compatibility only
722 */
k_dead(struct vc_data * vc,unsigned char value,char up_flag)723 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
724 {
725 static const unsigned char ret_diacr[NR_DEAD] = {
726 '`', /* dead_grave */
727 '\'', /* dead_acute */
728 '^', /* dead_circumflex */
729 '~', /* dead_tilda */
730 '"', /* dead_diaeresis */
731 ',', /* dead_cedilla */
732 '_', /* dead_macron */
733 'U', /* dead_breve */
734 '.', /* dead_abovedot */
735 '*', /* dead_abovering */
736 '=', /* dead_doubleacute */
737 'c', /* dead_caron */
738 'k', /* dead_ogonek */
739 'i', /* dead_iota */
740 '#', /* dead_voiced_sound */
741 'o', /* dead_semivoiced_sound */
742 '!', /* dead_belowdot */
743 '?', /* dead_hook */
744 '+', /* dead_horn */
745 '-', /* dead_stroke */
746 ')', /* dead_abovecomma */
747 '(', /* dead_abovereversedcomma */
748 ':', /* dead_doublegrave */
749 'n', /* dead_invertedbreve */
750 ';', /* dead_belowcomma */
751 '$', /* dead_currency */
752 '@', /* dead_greek */
753 };
754
755 k_deadunicode(vc, ret_diacr[value], up_flag);
756 }
757
k_cons(struct vc_data * vc,unsigned char value,char up_flag)758 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
759 {
760 if (up_flag)
761 return;
762
763 set_console(value);
764 }
765
k_fn(struct vc_data * vc,unsigned char value,char up_flag)766 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
767 {
768 if (up_flag)
769 return;
770
771 if ((unsigned)value < ARRAY_SIZE(func_table)) {
772 unsigned long flags;
773
774 spin_lock_irqsave(&func_buf_lock, flags);
775 if (func_table[value])
776 puts_queue(vc, func_table[value]);
777 spin_unlock_irqrestore(&func_buf_lock, flags);
778
779 } else
780 pr_err("k_fn called with value=%d\n", value);
781 }
782
k_cur(struct vc_data * vc,unsigned char value,char up_flag)783 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
784 {
785 static const char cur_chars[] = "BDCA";
786
787 if (up_flag)
788 return;
789
790 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
791 }
792
k_pad(struct vc_data * vc,unsigned char value,char up_flag)793 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
794 {
795 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
796 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
797
798 if (up_flag)
799 return; /* no action, if this is a key release */
800
801 /* kludge... shift forces cursor/number keys */
802 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
803 applkey(vc, app_map[value], 1);
804 return;
805 }
806
807 if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
808
809 switch (value) {
810 case KVAL(K_PCOMMA):
811 case KVAL(K_PDOT):
812 k_fn(vc, KVAL(K_REMOVE), 0);
813 return;
814 case KVAL(K_P0):
815 k_fn(vc, KVAL(K_INSERT), 0);
816 return;
817 case KVAL(K_P1):
818 k_fn(vc, KVAL(K_SELECT), 0);
819 return;
820 case KVAL(K_P2):
821 k_cur(vc, KVAL(K_DOWN), 0);
822 return;
823 case KVAL(K_P3):
824 k_fn(vc, KVAL(K_PGDN), 0);
825 return;
826 case KVAL(K_P4):
827 k_cur(vc, KVAL(K_LEFT), 0);
828 return;
829 case KVAL(K_P6):
830 k_cur(vc, KVAL(K_RIGHT), 0);
831 return;
832 case KVAL(K_P7):
833 k_fn(vc, KVAL(K_FIND), 0);
834 return;
835 case KVAL(K_P8):
836 k_cur(vc, KVAL(K_UP), 0);
837 return;
838 case KVAL(K_P9):
839 k_fn(vc, KVAL(K_PGUP), 0);
840 return;
841 case KVAL(K_P5):
842 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
843 return;
844 }
845 }
846
847 put_queue(vc, pad_chars[value]);
848 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
849 put_queue(vc, '\n');
850 }
851
k_shift(struct vc_data * vc,unsigned char value,char up_flag)852 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
853 {
854 int old_state = shift_state;
855
856 if (rep)
857 return;
858 /*
859 * Mimic typewriter:
860 * a CapsShift key acts like Shift but undoes CapsLock
861 */
862 if (value == KVAL(K_CAPSSHIFT)) {
863 value = KVAL(K_SHIFT);
864 if (!up_flag)
865 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
866 }
867
868 if (up_flag) {
869 /*
870 * handle the case that two shift or control
871 * keys are depressed simultaneously
872 */
873 if (shift_down[value])
874 shift_down[value]--;
875 } else
876 shift_down[value]++;
877
878 if (shift_down[value])
879 shift_state |= BIT(value);
880 else
881 shift_state &= ~BIT(value);
882
883 /* kludge */
884 if (up_flag && shift_state != old_state && npadch_active) {
885 if (kbd->kbdmode == VC_UNICODE)
886 to_utf8(vc, npadch_value);
887 else
888 put_queue(vc, npadch_value & 0xff);
889 npadch_active = false;
890 }
891 }
892
k_meta(struct vc_data * vc,unsigned char value,char up_flag)893 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
894 {
895 if (up_flag)
896 return;
897
898 if (vc_kbd_mode(kbd, VC_META)) {
899 put_queue(vc, '\033');
900 put_queue(vc, value);
901 } else
902 put_queue(vc, value | BIT(7));
903 }
904
k_ascii(struct vc_data * vc,unsigned char value,char up_flag)905 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
906 {
907 unsigned int base;
908
909 if (up_flag)
910 return;
911
912 if (value < 10) {
913 /* decimal input of code, while Alt depressed */
914 base = 10;
915 } else {
916 /* hexadecimal input of code, while AltGr depressed */
917 value -= 10;
918 base = 16;
919 }
920
921 if (!npadch_active) {
922 npadch_value = 0;
923 npadch_active = true;
924 }
925
926 npadch_value = npadch_value * base + value;
927 }
928
k_lock(struct vc_data * vc,unsigned char value,char up_flag)929 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
930 {
931 if (up_flag || rep)
932 return;
933
934 chg_vc_kbd_lock(kbd, value);
935 }
936
k_slock(struct vc_data * vc,unsigned char value,char up_flag)937 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
938 {
939 k_shift(vc, value, up_flag);
940 if (up_flag || rep)
941 return;
942
943 chg_vc_kbd_slock(kbd, value);
944 /* try to make Alt, oops, AltGr and such work */
945 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
946 kbd->slockstate = 0;
947 chg_vc_kbd_slock(kbd, value);
948 }
949 }
950
951 /* by default, 300ms interval for combination release */
952 static unsigned brl_timeout = 300;
953 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
954 module_param(brl_timeout, uint, 0644);
955
956 static unsigned brl_nbchords = 1;
957 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
958 module_param(brl_nbchords, uint, 0644);
959
k_brlcommit(struct vc_data * vc,unsigned int pattern,char up_flag)960 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
961 {
962 static unsigned long chords;
963 static unsigned committed;
964
965 if (!brl_nbchords)
966 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
967 else {
968 committed |= pattern;
969 chords++;
970 if (chords == brl_nbchords) {
971 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
972 chords = 0;
973 committed = 0;
974 }
975 }
976 }
977
k_brl(struct vc_data * vc,unsigned char value,char up_flag)978 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
979 {
980 static unsigned pressed, committing;
981 static unsigned long releasestart;
982
983 if (kbd->kbdmode != VC_UNICODE) {
984 if (!up_flag)
985 pr_warn("keyboard mode must be unicode for braille patterns\n");
986 return;
987 }
988
989 if (!value) {
990 k_unicode(vc, BRL_UC_ROW, up_flag);
991 return;
992 }
993
994 if (value > 8)
995 return;
996
997 if (!up_flag) {
998 pressed |= BIT(value - 1);
999 if (!brl_timeout)
1000 committing = pressed;
1001 } else if (brl_timeout) {
1002 if (!committing ||
1003 time_after(jiffies,
1004 releasestart + msecs_to_jiffies(brl_timeout))) {
1005 committing = pressed;
1006 releasestart = jiffies;
1007 }
1008 pressed &= ~BIT(value - 1);
1009 if (!pressed && committing) {
1010 k_brlcommit(vc, committing, 0);
1011 committing = 0;
1012 }
1013 } else {
1014 if (committing) {
1015 k_brlcommit(vc, committing, 0);
1016 committing = 0;
1017 }
1018 pressed &= ~BIT(value - 1);
1019 }
1020 }
1021
1022 #if IS_ENABLED(CONFIG_INPUT_LEDS) && IS_ENABLED(CONFIG_LEDS_TRIGGERS)
1023
1024 struct kbd_led_trigger {
1025 struct led_trigger trigger;
1026 unsigned int mask;
1027 };
1028
kbd_led_trigger_activate(struct led_classdev * cdev)1029 static int kbd_led_trigger_activate(struct led_classdev *cdev)
1030 {
1031 struct kbd_led_trigger *trigger =
1032 container_of(cdev->trigger, struct kbd_led_trigger, trigger);
1033
1034 tasklet_disable(&keyboard_tasklet);
1035 if (ledstate != -1U)
1036 led_trigger_event(&trigger->trigger,
1037 ledstate & trigger->mask ?
1038 LED_FULL : LED_OFF);
1039 tasklet_enable(&keyboard_tasklet);
1040
1041 return 0;
1042 }
1043
1044 #define KBD_LED_TRIGGER(_led_bit, _name) { \
1045 .trigger = { \
1046 .name = _name, \
1047 .activate = kbd_led_trigger_activate, \
1048 }, \
1049 .mask = BIT(_led_bit), \
1050 }
1051
1052 #define KBD_LOCKSTATE_TRIGGER(_led_bit, _name) \
1053 KBD_LED_TRIGGER((_led_bit) + 8, _name)
1054
1055 static struct kbd_led_trigger kbd_led_triggers[] = {
1056 KBD_LED_TRIGGER(VC_SCROLLOCK, "kbd-scrolllock"),
1057 KBD_LED_TRIGGER(VC_NUMLOCK, "kbd-numlock"),
1058 KBD_LED_TRIGGER(VC_CAPSLOCK, "kbd-capslock"),
1059 KBD_LED_TRIGGER(VC_KANALOCK, "kbd-kanalock"),
1060
1061 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLOCK, "kbd-shiftlock"),
1062 KBD_LOCKSTATE_TRIGGER(VC_ALTGRLOCK, "kbd-altgrlock"),
1063 KBD_LOCKSTATE_TRIGGER(VC_CTRLLOCK, "kbd-ctrllock"),
1064 KBD_LOCKSTATE_TRIGGER(VC_ALTLOCK, "kbd-altlock"),
1065 KBD_LOCKSTATE_TRIGGER(VC_SHIFTLLOCK, "kbd-shiftllock"),
1066 KBD_LOCKSTATE_TRIGGER(VC_SHIFTRLOCK, "kbd-shiftrlock"),
1067 KBD_LOCKSTATE_TRIGGER(VC_CTRLLLOCK, "kbd-ctrlllock"),
1068 KBD_LOCKSTATE_TRIGGER(VC_CTRLRLOCK, "kbd-ctrlrlock"),
1069 };
1070
kbd_propagate_led_state(unsigned int old_state,unsigned int new_state)1071 static void kbd_propagate_led_state(unsigned int old_state,
1072 unsigned int new_state)
1073 {
1074 struct kbd_led_trigger *trigger;
1075 unsigned int changed = old_state ^ new_state;
1076 int i;
1077
1078 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1079 trigger = &kbd_led_triggers[i];
1080
1081 if (changed & trigger->mask)
1082 led_trigger_event(&trigger->trigger,
1083 new_state & trigger->mask ?
1084 LED_FULL : LED_OFF);
1085 }
1086 }
1087
kbd_update_leds_helper(struct input_handle * handle,void * data)1088 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1089 {
1090 unsigned int led_state = *(unsigned int *)data;
1091
1092 if (test_bit(EV_LED, handle->dev->evbit))
1093 kbd_propagate_led_state(~led_state, led_state);
1094
1095 return 0;
1096 }
1097
kbd_init_leds(void)1098 static void kbd_init_leds(void)
1099 {
1100 int error;
1101 int i;
1102
1103 for (i = 0; i < ARRAY_SIZE(kbd_led_triggers); i++) {
1104 error = led_trigger_register(&kbd_led_triggers[i].trigger);
1105 if (error)
1106 pr_err("error %d while registering trigger %s\n",
1107 error, kbd_led_triggers[i].trigger.name);
1108 }
1109 }
1110
1111 #else
1112
kbd_update_leds_helper(struct input_handle * handle,void * data)1113 static int kbd_update_leds_helper(struct input_handle *handle, void *data)
1114 {
1115 unsigned int leds = *(unsigned int *)data;
1116
1117 if (test_bit(EV_LED, handle->dev->evbit)) {
1118 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & BIT(0)));
1119 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & BIT(1)));
1120 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & BIT(2)));
1121 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1122 }
1123
1124 return 0;
1125 }
1126
kbd_propagate_led_state(unsigned int old_state,unsigned int new_state)1127 static void kbd_propagate_led_state(unsigned int old_state,
1128 unsigned int new_state)
1129 {
1130 input_handler_for_each_handle(&kbd_handler, &new_state,
1131 kbd_update_leds_helper);
1132 }
1133
kbd_init_leds(void)1134 static void kbd_init_leds(void)
1135 {
1136 }
1137
1138 #endif
1139
1140 /*
1141 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
1142 * or (ii) whatever pattern of lights people want to show using KDSETLED,
1143 * or (iii) specified bits of specified words in kernel memory.
1144 */
getledstate(void)1145 static unsigned char getledstate(void)
1146 {
1147 return ledstate & 0xff;
1148 }
1149
setledstate(struct kbd_struct * kb,unsigned int led)1150 void setledstate(struct kbd_struct *kb, unsigned int led)
1151 {
1152 unsigned long flags;
1153 spin_lock_irqsave(&led_lock, flags);
1154 if (!(led & ~7)) {
1155 ledioctl = led;
1156 kb->ledmode = LED_SHOW_IOCTL;
1157 } else
1158 kb->ledmode = LED_SHOW_FLAGS;
1159
1160 set_leds();
1161 spin_unlock_irqrestore(&led_lock, flags);
1162 }
1163
getleds(void)1164 static inline unsigned char getleds(void)
1165 {
1166 struct kbd_struct *kb = kbd_table + fg_console;
1167
1168 if (kb->ledmode == LED_SHOW_IOCTL)
1169 return ledioctl;
1170
1171 return kb->ledflagstate;
1172 }
1173
1174 /**
1175 * vt_get_leds - helper for braille console
1176 * @console: console to read
1177 * @flag: flag we want to check
1178 *
1179 * Check the status of a keyboard led flag and report it back
1180 */
vt_get_leds(unsigned int console,int flag)1181 int vt_get_leds(unsigned int console, int flag)
1182 {
1183 struct kbd_struct *kb = &kbd_table[console];
1184 int ret;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&led_lock, flags);
1188 ret = vc_kbd_led(kb, flag);
1189 spin_unlock_irqrestore(&led_lock, flags);
1190
1191 return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(vt_get_leds);
1194
1195 /**
1196 * vt_set_led_state - set LED state of a console
1197 * @console: console to set
1198 * @leds: LED bits
1199 *
1200 * Set the LEDs on a console. This is a wrapper for the VT layer
1201 * so that we can keep kbd knowledge internal
1202 */
vt_set_led_state(unsigned int console,int leds)1203 void vt_set_led_state(unsigned int console, int leds)
1204 {
1205 struct kbd_struct *kb = &kbd_table[console];
1206 setledstate(kb, leds);
1207 }
1208
1209 /**
1210 * vt_kbd_con_start - Keyboard side of console start
1211 * @console: console
1212 *
1213 * Handle console start. This is a wrapper for the VT layer
1214 * so that we can keep kbd knowledge internal
1215 *
1216 * FIXME: We eventually need to hold the kbd lock here to protect
1217 * the LED updating. We can't do it yet because fn_hold calls stop_tty
1218 * and start_tty under the kbd_event_lock, while normal tty paths
1219 * don't hold the lock. We probably need to split out an LED lock
1220 * but not during an -rc release!
1221 */
vt_kbd_con_start(unsigned int console)1222 void vt_kbd_con_start(unsigned int console)
1223 {
1224 struct kbd_struct *kb = &kbd_table[console];
1225 unsigned long flags;
1226 spin_lock_irqsave(&led_lock, flags);
1227 clr_vc_kbd_led(kb, VC_SCROLLOCK);
1228 set_leds();
1229 spin_unlock_irqrestore(&led_lock, flags);
1230 }
1231
1232 /**
1233 * vt_kbd_con_stop - Keyboard side of console stop
1234 * @console: console
1235 *
1236 * Handle console stop. This is a wrapper for the VT layer
1237 * so that we can keep kbd knowledge internal
1238 */
vt_kbd_con_stop(unsigned int console)1239 void vt_kbd_con_stop(unsigned int console)
1240 {
1241 struct kbd_struct *kb = &kbd_table[console];
1242 unsigned long flags;
1243 spin_lock_irqsave(&led_lock, flags);
1244 set_vc_kbd_led(kb, VC_SCROLLOCK);
1245 set_leds();
1246 spin_unlock_irqrestore(&led_lock, flags);
1247 }
1248
1249 /*
1250 * This is the tasklet that updates LED state of LEDs using standard
1251 * keyboard triggers. The reason we use tasklet is that we need to
1252 * handle the scenario when keyboard handler is not registered yet
1253 * but we already getting updates from the VT to update led state.
1254 */
kbd_bh(struct tasklet_struct * unused)1255 static void kbd_bh(struct tasklet_struct *unused)
1256 {
1257 unsigned int leds;
1258 unsigned long flags;
1259
1260 spin_lock_irqsave(&led_lock, flags);
1261 leds = getleds();
1262 leds |= (unsigned int)kbd->lockstate << 8;
1263 spin_unlock_irqrestore(&led_lock, flags);
1264
1265 if (vt_switch) {
1266 ledstate = ~leds;
1267 vt_switch = false;
1268 }
1269
1270 if (leds != ledstate) {
1271 kbd_propagate_led_state(ledstate, leds);
1272 ledstate = leds;
1273 }
1274 }
1275
1276 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1277 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1278 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1279 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1280
kbd_is_hw_raw(const struct input_dev * dev)1281 static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1282 {
1283 if (!test_bit(EV_MSC, dev->evbit) || !test_bit(MSC_RAW, dev->mscbit))
1284 return false;
1285
1286 return dev->id.bustype == BUS_I8042 &&
1287 dev->id.vendor == 0x0001 && dev->id.product == 0x0001;
1288 }
1289
1290 static const unsigned short x86_keycodes[256] =
1291 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1292 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1293 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1294 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1295 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1296 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1297 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1298 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1299 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1300 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1301 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1302 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1303 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1304 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1305 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1306
1307 #ifdef CONFIG_SPARC
1308 static int sparc_l1_a_state;
1309 extern void sun_do_break(void);
1310 #endif
1311
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1312 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1313 unsigned char up_flag)
1314 {
1315 int code;
1316
1317 switch (keycode) {
1318
1319 case KEY_PAUSE:
1320 put_queue(vc, 0xe1);
1321 put_queue(vc, 0x1d | up_flag);
1322 put_queue(vc, 0x45 | up_flag);
1323 break;
1324
1325 case KEY_HANGEUL:
1326 if (!up_flag)
1327 put_queue(vc, 0xf2);
1328 break;
1329
1330 case KEY_HANJA:
1331 if (!up_flag)
1332 put_queue(vc, 0xf1);
1333 break;
1334
1335 case KEY_SYSRQ:
1336 /*
1337 * Real AT keyboards (that's what we're trying
1338 * to emulate here) emit 0xe0 0x2a 0xe0 0x37 when
1339 * pressing PrtSc/SysRq alone, but simply 0x54
1340 * when pressing Alt+PrtSc/SysRq.
1341 */
1342 if (test_bit(KEY_LEFTALT, key_down) ||
1343 test_bit(KEY_RIGHTALT, key_down)) {
1344 put_queue(vc, 0x54 | up_flag);
1345 } else {
1346 put_queue(vc, 0xe0);
1347 put_queue(vc, 0x2a | up_flag);
1348 put_queue(vc, 0xe0);
1349 put_queue(vc, 0x37 | up_flag);
1350 }
1351 break;
1352
1353 default:
1354 if (keycode > 255)
1355 return -1;
1356
1357 code = x86_keycodes[keycode];
1358 if (!code)
1359 return -1;
1360
1361 if (code & 0x100)
1362 put_queue(vc, 0xe0);
1363 put_queue(vc, (code & 0x7f) | up_flag);
1364
1365 break;
1366 }
1367
1368 return 0;
1369 }
1370
1371 #else
1372
kbd_is_hw_raw(const struct input_dev * dev)1373 static inline bool kbd_is_hw_raw(const struct input_dev *dev)
1374 {
1375 return false;
1376 }
1377
emulate_raw(struct vc_data * vc,unsigned int keycode,unsigned char up_flag)1378 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1379 {
1380 if (keycode > 127)
1381 return -1;
1382
1383 put_queue(vc, keycode | up_flag);
1384 return 0;
1385 }
1386 #endif
1387
kbd_rawcode(unsigned char data)1388 static void kbd_rawcode(unsigned char data)
1389 {
1390 struct vc_data *vc = vc_cons[fg_console].d;
1391
1392 kbd = &kbd_table[vc->vc_num];
1393 if (kbd->kbdmode == VC_RAW)
1394 put_queue(vc, data);
1395 }
1396
kbd_keycode(unsigned int keycode,int down,bool hw_raw)1397 static void kbd_keycode(unsigned int keycode, int down, bool hw_raw)
1398 {
1399 struct vc_data *vc = vc_cons[fg_console].d;
1400 unsigned short keysym, *key_map;
1401 unsigned char type;
1402 bool raw_mode;
1403 struct tty_struct *tty;
1404 int shift_final;
1405 struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1406 int rc;
1407
1408 tty = vc->port.tty;
1409
1410 if (tty && (!tty->driver_data)) {
1411 /* No driver data? Strange. Okay we fix it then. */
1412 tty->driver_data = vc;
1413 }
1414
1415 kbd = &kbd_table[vc->vc_num];
1416
1417 #ifdef CONFIG_SPARC
1418 if (keycode == KEY_STOP)
1419 sparc_l1_a_state = down;
1420 #endif
1421
1422 rep = (down == 2);
1423
1424 raw_mode = (kbd->kbdmode == VC_RAW);
1425 if (raw_mode && !hw_raw)
1426 if (emulate_raw(vc, keycode, !down << 7))
1427 if (keycode < BTN_MISC && printk_ratelimit())
1428 pr_warn("can't emulate rawmode for keycode %d\n",
1429 keycode);
1430
1431 #ifdef CONFIG_SPARC
1432 if (keycode == KEY_A && sparc_l1_a_state) {
1433 sparc_l1_a_state = false;
1434 sun_do_break();
1435 }
1436 #endif
1437
1438 if (kbd->kbdmode == VC_MEDIUMRAW) {
1439 /*
1440 * This is extended medium raw mode, with keys above 127
1441 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1442 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1443 * interfere with anything else. The two bytes after 0 will
1444 * always have the up flag set not to interfere with older
1445 * applications. This allows for 16384 different keycodes,
1446 * which should be enough.
1447 */
1448 if (keycode < 128) {
1449 put_queue(vc, keycode | (!down << 7));
1450 } else {
1451 put_queue(vc, !down << 7);
1452 put_queue(vc, (keycode >> 7) | BIT(7));
1453 put_queue(vc, keycode | BIT(7));
1454 }
1455 raw_mode = true;
1456 }
1457
1458 assign_bit(keycode, key_down, down);
1459
1460 if (rep &&
1461 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1462 (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1463 /*
1464 * Don't repeat a key if the input buffers are not empty and the
1465 * characters get aren't echoed locally. This makes key repeat
1466 * usable with slow applications and under heavy loads.
1467 */
1468 return;
1469 }
1470
1471 param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1472 param.ledstate = kbd->ledflagstate;
1473 key_map = key_maps[shift_final];
1474
1475 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1476 KBD_KEYCODE, ¶m);
1477 if (rc == NOTIFY_STOP || !key_map) {
1478 atomic_notifier_call_chain(&keyboard_notifier_list,
1479 KBD_UNBOUND_KEYCODE, ¶m);
1480 do_compute_shiftstate();
1481 kbd->slockstate = 0;
1482 return;
1483 }
1484
1485 if (keycode < NR_KEYS)
1486 keysym = key_map[keycode];
1487 else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1488 keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1489 else
1490 return;
1491
1492 type = KTYP(keysym);
1493
1494 if (type < 0xf0) {
1495 param.value = keysym;
1496 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1497 KBD_UNICODE, ¶m);
1498 if (rc != NOTIFY_STOP)
1499 if (down && !raw_mode)
1500 k_unicode(vc, keysym, !down);
1501 return;
1502 }
1503
1504 type -= 0xf0;
1505
1506 if (type == KT_LETTER) {
1507 type = KT_LATIN;
1508 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1509 key_map = key_maps[shift_final ^ BIT(KG_SHIFT)];
1510 if (key_map)
1511 keysym = key_map[keycode];
1512 }
1513 }
1514
1515 param.value = keysym;
1516 rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1517 KBD_KEYSYM, ¶m);
1518 if (rc == NOTIFY_STOP)
1519 return;
1520
1521 if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1522 return;
1523
1524 (*k_handler[type])(vc, keysym & 0xff, !down);
1525
1526 param.ledstate = kbd->ledflagstate;
1527 atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, ¶m);
1528
1529 if (type != KT_SLOCK)
1530 kbd->slockstate = 0;
1531 }
1532
kbd_event(struct input_handle * handle,unsigned int event_type,unsigned int event_code,int value)1533 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1534 unsigned int event_code, int value)
1535 {
1536 /* We are called with interrupts disabled, just take the lock */
1537 spin_lock(&kbd_event_lock);
1538
1539 if (event_type == EV_MSC && event_code == MSC_RAW &&
1540 kbd_is_hw_raw(handle->dev))
1541 kbd_rawcode(value);
1542 if (event_type == EV_KEY && event_code <= KEY_MAX)
1543 kbd_keycode(event_code, value, kbd_is_hw_raw(handle->dev));
1544
1545 spin_unlock(&kbd_event_lock);
1546
1547 tasklet_schedule(&keyboard_tasklet);
1548 do_poke_blanked_console = 1;
1549 schedule_console_callback();
1550 }
1551
kbd_match(struct input_handler * handler,struct input_dev * dev)1552 static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1553 {
1554 if (test_bit(EV_SND, dev->evbit))
1555 return true;
1556
1557 if (test_bit(EV_KEY, dev->evbit)) {
1558 if (find_next_bit(dev->keybit, BTN_MISC, KEY_RESERVED) <
1559 BTN_MISC)
1560 return true;
1561 if (find_next_bit(dev->keybit, KEY_BRL_DOT10 + 1,
1562 KEY_BRL_DOT1) <= KEY_BRL_DOT10)
1563 return true;
1564 }
1565
1566 return false;
1567 }
1568
1569 /*
1570 * When a keyboard (or other input device) is found, the kbd_connect
1571 * function is called. The function then looks at the device, and if it
1572 * likes it, it can open it and get events from it. In this (kbd_connect)
1573 * function, we should decide which VT to bind that keyboard to initially.
1574 */
kbd_connect(struct input_handler * handler,struct input_dev * dev,const struct input_device_id * id)1575 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1576 const struct input_device_id *id)
1577 {
1578 struct input_handle *handle;
1579 int error;
1580
1581 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1582 if (!handle)
1583 return -ENOMEM;
1584
1585 handle->dev = dev;
1586 handle->handler = handler;
1587 handle->name = "kbd";
1588
1589 error = input_register_handle(handle);
1590 if (error)
1591 goto err_free_handle;
1592
1593 error = input_open_device(handle);
1594 if (error)
1595 goto err_unregister_handle;
1596
1597 return 0;
1598
1599 err_unregister_handle:
1600 input_unregister_handle(handle);
1601 err_free_handle:
1602 kfree(handle);
1603 return error;
1604 }
1605
kbd_disconnect(struct input_handle * handle)1606 static void kbd_disconnect(struct input_handle *handle)
1607 {
1608 input_close_device(handle);
1609 input_unregister_handle(handle);
1610 kfree(handle);
1611 }
1612
1613 /*
1614 * Start keyboard handler on the new keyboard by refreshing LED state to
1615 * match the rest of the system.
1616 */
kbd_start(struct input_handle * handle)1617 static void kbd_start(struct input_handle *handle)
1618 {
1619 tasklet_disable(&keyboard_tasklet);
1620
1621 if (ledstate != -1U)
1622 kbd_update_leds_helper(handle, &ledstate);
1623
1624 tasklet_enable(&keyboard_tasklet);
1625 }
1626
1627 static const struct input_device_id kbd_ids[] = {
1628 {
1629 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1630 .evbit = { BIT_MASK(EV_KEY) },
1631 },
1632
1633 {
1634 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1635 .evbit = { BIT_MASK(EV_SND) },
1636 },
1637
1638 { }, /* Terminating entry */
1639 };
1640
1641 MODULE_DEVICE_TABLE(input, kbd_ids);
1642
1643 static struct input_handler kbd_handler = {
1644 .event = kbd_event,
1645 .match = kbd_match,
1646 .connect = kbd_connect,
1647 .disconnect = kbd_disconnect,
1648 .start = kbd_start,
1649 .name = "kbd",
1650 .id_table = kbd_ids,
1651 };
1652
kbd_init(void)1653 int __init kbd_init(void)
1654 {
1655 int i;
1656 int error;
1657
1658 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1659 kbd_table[i].ledflagstate = kbd_defleds();
1660 kbd_table[i].default_ledflagstate = kbd_defleds();
1661 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1662 kbd_table[i].lockstate = KBD_DEFLOCK;
1663 kbd_table[i].slockstate = 0;
1664 kbd_table[i].modeflags = KBD_DEFMODE;
1665 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1666 }
1667
1668 kbd_init_leds();
1669
1670 error = input_register_handler(&kbd_handler);
1671 if (error)
1672 return error;
1673
1674 tasklet_enable(&keyboard_tasklet);
1675 tasklet_schedule(&keyboard_tasklet);
1676
1677 return 0;
1678 }
1679
1680 /* Ioctl support code */
1681
1682 /**
1683 * vt_do_diacrit - diacritical table updates
1684 * @cmd: ioctl request
1685 * @udp: pointer to user data for ioctl
1686 * @perm: permissions check computed by caller
1687 *
1688 * Update the diacritical tables atomically and safely. Lock them
1689 * against simultaneous keypresses
1690 */
vt_do_diacrit(unsigned int cmd,void __user * udp,int perm)1691 int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1692 {
1693 unsigned long flags;
1694 int asize;
1695 int ret = 0;
1696
1697 switch (cmd) {
1698 case KDGKBDIACR:
1699 {
1700 struct kbdiacrs __user *a = udp;
1701 struct kbdiacr *dia;
1702 int i;
1703
1704 dia = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacr),
1705 GFP_KERNEL);
1706 if (!dia)
1707 return -ENOMEM;
1708
1709 /* Lock the diacriticals table, make a copy and then
1710 copy it after we unlock */
1711 spin_lock_irqsave(&kbd_event_lock, flags);
1712
1713 asize = accent_table_size;
1714 for (i = 0; i < asize; i++) {
1715 dia[i].diacr = conv_uni_to_8bit(
1716 accent_table[i].diacr);
1717 dia[i].base = conv_uni_to_8bit(
1718 accent_table[i].base);
1719 dia[i].result = conv_uni_to_8bit(
1720 accent_table[i].result);
1721 }
1722 spin_unlock_irqrestore(&kbd_event_lock, flags);
1723
1724 if (put_user(asize, &a->kb_cnt))
1725 ret = -EFAULT;
1726 else if (copy_to_user(a->kbdiacr, dia,
1727 asize * sizeof(struct kbdiacr)))
1728 ret = -EFAULT;
1729 kfree(dia);
1730 return ret;
1731 }
1732 case KDGKBDIACRUC:
1733 {
1734 struct kbdiacrsuc __user *a = udp;
1735 void *buf;
1736
1737 buf = kmalloc_array(MAX_DIACR, sizeof(struct kbdiacruc),
1738 GFP_KERNEL);
1739 if (buf == NULL)
1740 return -ENOMEM;
1741
1742 /* Lock the diacriticals table, make a copy and then
1743 copy it after we unlock */
1744 spin_lock_irqsave(&kbd_event_lock, flags);
1745
1746 asize = accent_table_size;
1747 memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1748
1749 spin_unlock_irqrestore(&kbd_event_lock, flags);
1750
1751 if (put_user(asize, &a->kb_cnt))
1752 ret = -EFAULT;
1753 else if (copy_to_user(a->kbdiacruc, buf,
1754 asize*sizeof(struct kbdiacruc)))
1755 ret = -EFAULT;
1756 kfree(buf);
1757 return ret;
1758 }
1759
1760 case KDSKBDIACR:
1761 {
1762 struct kbdiacrs __user *a = udp;
1763 struct kbdiacr *dia = NULL;
1764 unsigned int ct;
1765 int i;
1766
1767 if (!perm)
1768 return -EPERM;
1769 if (get_user(ct, &a->kb_cnt))
1770 return -EFAULT;
1771 if (ct >= MAX_DIACR)
1772 return -EINVAL;
1773
1774 if (ct) {
1775
1776 dia = memdup_user(a->kbdiacr,
1777 sizeof(struct kbdiacr) * ct);
1778 if (IS_ERR(dia))
1779 return PTR_ERR(dia);
1780
1781 }
1782
1783 spin_lock_irqsave(&kbd_event_lock, flags);
1784 accent_table_size = ct;
1785 for (i = 0; i < ct; i++) {
1786 accent_table[i].diacr =
1787 conv_8bit_to_uni(dia[i].diacr);
1788 accent_table[i].base =
1789 conv_8bit_to_uni(dia[i].base);
1790 accent_table[i].result =
1791 conv_8bit_to_uni(dia[i].result);
1792 }
1793 spin_unlock_irqrestore(&kbd_event_lock, flags);
1794 kfree(dia);
1795 return 0;
1796 }
1797
1798 case KDSKBDIACRUC:
1799 {
1800 struct kbdiacrsuc __user *a = udp;
1801 unsigned int ct;
1802 void *buf = NULL;
1803
1804 if (!perm)
1805 return -EPERM;
1806
1807 if (get_user(ct, &a->kb_cnt))
1808 return -EFAULT;
1809
1810 if (ct >= MAX_DIACR)
1811 return -EINVAL;
1812
1813 if (ct) {
1814 buf = memdup_user(a->kbdiacruc,
1815 ct * sizeof(struct kbdiacruc));
1816 if (IS_ERR(buf))
1817 return PTR_ERR(buf);
1818 }
1819 spin_lock_irqsave(&kbd_event_lock, flags);
1820 if (ct)
1821 memcpy(accent_table, buf,
1822 ct * sizeof(struct kbdiacruc));
1823 accent_table_size = ct;
1824 spin_unlock_irqrestore(&kbd_event_lock, flags);
1825 kfree(buf);
1826 return 0;
1827 }
1828 }
1829 return ret;
1830 }
1831
1832 /**
1833 * vt_do_kdskbmode - set keyboard mode ioctl
1834 * @console: the console to use
1835 * @arg: the requested mode
1836 *
1837 * Update the keyboard mode bits while holding the correct locks.
1838 * Return 0 for success or an error code.
1839 */
vt_do_kdskbmode(unsigned int console,unsigned int arg)1840 int vt_do_kdskbmode(unsigned int console, unsigned int arg)
1841 {
1842 struct kbd_struct *kb = &kbd_table[console];
1843 int ret = 0;
1844 unsigned long flags;
1845
1846 spin_lock_irqsave(&kbd_event_lock, flags);
1847 switch(arg) {
1848 case K_RAW:
1849 kb->kbdmode = VC_RAW;
1850 break;
1851 case K_MEDIUMRAW:
1852 kb->kbdmode = VC_MEDIUMRAW;
1853 break;
1854 case K_XLATE:
1855 kb->kbdmode = VC_XLATE;
1856 do_compute_shiftstate();
1857 break;
1858 case K_UNICODE:
1859 kb->kbdmode = VC_UNICODE;
1860 do_compute_shiftstate();
1861 break;
1862 case K_OFF:
1863 kb->kbdmode = VC_OFF;
1864 break;
1865 default:
1866 ret = -EINVAL;
1867 }
1868 spin_unlock_irqrestore(&kbd_event_lock, flags);
1869 return ret;
1870 }
1871
1872 /**
1873 * vt_do_kdskbmeta - set keyboard meta state
1874 * @console: the console to use
1875 * @arg: the requested meta state
1876 *
1877 * Update the keyboard meta bits while holding the correct locks.
1878 * Return 0 for success or an error code.
1879 */
vt_do_kdskbmeta(unsigned int console,unsigned int arg)1880 int vt_do_kdskbmeta(unsigned int console, unsigned int arg)
1881 {
1882 struct kbd_struct *kb = &kbd_table[console];
1883 int ret = 0;
1884 unsigned long flags;
1885
1886 spin_lock_irqsave(&kbd_event_lock, flags);
1887 switch(arg) {
1888 case K_METABIT:
1889 clr_vc_kbd_mode(kb, VC_META);
1890 break;
1891 case K_ESCPREFIX:
1892 set_vc_kbd_mode(kb, VC_META);
1893 break;
1894 default:
1895 ret = -EINVAL;
1896 }
1897 spin_unlock_irqrestore(&kbd_event_lock, flags);
1898 return ret;
1899 }
1900
vt_do_kbkeycode_ioctl(int cmd,struct kbkeycode __user * user_kbkc,int perm)1901 int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1902 int perm)
1903 {
1904 struct kbkeycode tmp;
1905 int kc = 0;
1906
1907 if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1908 return -EFAULT;
1909 switch (cmd) {
1910 case KDGETKEYCODE:
1911 kc = getkeycode(tmp.scancode);
1912 if (kc >= 0)
1913 kc = put_user(kc, &user_kbkc->keycode);
1914 break;
1915 case KDSETKEYCODE:
1916 if (!perm)
1917 return -EPERM;
1918 kc = setkeycode(tmp.scancode, tmp.keycode);
1919 break;
1920 }
1921 return kc;
1922 }
1923
vt_kdgkbent(unsigned char kbdmode,unsigned char idx,unsigned char map)1924 static unsigned short vt_kdgkbent(unsigned char kbdmode, unsigned char idx,
1925 unsigned char map)
1926 {
1927 unsigned short *key_map, val;
1928 unsigned long flags;
1929
1930 /* Ensure another thread doesn't free it under us */
1931 spin_lock_irqsave(&kbd_event_lock, flags);
1932 key_map = key_maps[map];
1933 if (key_map) {
1934 val = U(key_map[idx]);
1935 if (kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1936 val = K_HOLE;
1937 } else
1938 val = idx ? K_HOLE : K_NOSUCHMAP;
1939 spin_unlock_irqrestore(&kbd_event_lock, flags);
1940
1941 return val;
1942 }
1943
vt_kdskbent(unsigned char kbdmode,unsigned char idx,unsigned char map,unsigned short val)1944 static int vt_kdskbent(unsigned char kbdmode, unsigned char idx,
1945 unsigned char map, unsigned short val)
1946 {
1947 unsigned long flags;
1948 unsigned short *key_map, *new_map, oldval;
1949
1950 if (!idx && val == K_NOSUCHMAP) {
1951 spin_lock_irqsave(&kbd_event_lock, flags);
1952 /* deallocate map */
1953 key_map = key_maps[map];
1954 if (map && key_map) {
1955 key_maps[map] = NULL;
1956 if (key_map[0] == U(K_ALLOCATED)) {
1957 kfree(key_map);
1958 keymap_count--;
1959 }
1960 }
1961 spin_unlock_irqrestore(&kbd_event_lock, flags);
1962
1963 return 0;
1964 }
1965
1966 if (KTYP(val) < NR_TYPES) {
1967 if (KVAL(val) > max_vals[KTYP(val)])
1968 return -EINVAL;
1969 } else if (kbdmode != VC_UNICODE)
1970 return -EINVAL;
1971
1972 /* ++Geert: non-PC keyboards may generate keycode zero */
1973 #if !defined(__mc68000__) && !defined(__powerpc__)
1974 /* assignment to entry 0 only tests validity of args */
1975 if (!idx)
1976 return 0;
1977 #endif
1978
1979 new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1980 if (!new_map)
1981 return -ENOMEM;
1982
1983 spin_lock_irqsave(&kbd_event_lock, flags);
1984 key_map = key_maps[map];
1985 if (key_map == NULL) {
1986 int j;
1987
1988 if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1989 !capable(CAP_SYS_RESOURCE)) {
1990 spin_unlock_irqrestore(&kbd_event_lock, flags);
1991 kfree(new_map);
1992 return -EPERM;
1993 }
1994 key_maps[map] = new_map;
1995 key_map = new_map;
1996 key_map[0] = U(K_ALLOCATED);
1997 for (j = 1; j < NR_KEYS; j++)
1998 key_map[j] = U(K_HOLE);
1999 keymap_count++;
2000 } else
2001 kfree(new_map);
2002
2003 oldval = U(key_map[idx]);
2004 if (val == oldval)
2005 goto out;
2006
2007 /* Attention Key */
2008 if ((oldval == K_SAK || val == K_SAK) && !capable(CAP_SYS_ADMIN)) {
2009 spin_unlock_irqrestore(&kbd_event_lock, flags);
2010 return -EPERM;
2011 }
2012
2013 key_map[idx] = U(val);
2014 if (!map && (KTYP(oldval) == KT_SHIFT || KTYP(val) == KT_SHIFT))
2015 do_compute_shiftstate();
2016 out:
2017 spin_unlock_irqrestore(&kbd_event_lock, flags);
2018
2019 return 0;
2020 }
2021
vt_do_kdsk_ioctl(int cmd,struct kbentry __user * user_kbe,int perm,unsigned int console)2022 int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
2023 unsigned int console)
2024 {
2025 struct kbd_struct *kb = &kbd_table[console];
2026 struct kbentry kbe;
2027
2028 if (copy_from_user(&kbe, user_kbe, sizeof(struct kbentry)))
2029 return -EFAULT;
2030
2031 switch (cmd) {
2032 case KDGKBENT:
2033 return put_user(vt_kdgkbent(kb->kbdmode, kbe.kb_index,
2034 kbe.kb_table),
2035 &user_kbe->kb_value);
2036 case KDSKBENT:
2037 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2038 return -EPERM;
2039 return vt_kdskbent(kb->kbdmode, kbe.kb_index, kbe.kb_table,
2040 kbe.kb_value);
2041 }
2042 return 0;
2043 }
2044
vt_kdskbsent(char * kbs,unsigned char cur)2045 static char *vt_kdskbsent(char *kbs, unsigned char cur)
2046 {
2047 static DECLARE_BITMAP(is_kmalloc, MAX_NR_FUNC);
2048 char *cur_f = func_table[cur];
2049
2050 if (cur_f && strlen(cur_f) >= strlen(kbs)) {
2051 strcpy(cur_f, kbs);
2052 return kbs;
2053 }
2054
2055 func_table[cur] = kbs;
2056
2057 return __test_and_set_bit(cur, is_kmalloc) ? cur_f : NULL;
2058 }
2059
vt_do_kdgkb_ioctl(int cmd,struct kbsentry __user * user_kdgkb,int perm)2060 int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
2061 {
2062 unsigned char kb_func;
2063 unsigned long flags;
2064 char *kbs;
2065 int ret;
2066
2067 if (get_user(kb_func, &user_kdgkb->kb_func))
2068 return -EFAULT;
2069
2070 kb_func = array_index_nospec(kb_func, MAX_NR_FUNC);
2071
2072 switch (cmd) {
2073 case KDGKBSENT: {
2074 /* size should have been a struct member */
2075 ssize_t len = sizeof(user_kdgkb->kb_string);
2076
2077 kbs = kmalloc(len, GFP_KERNEL);
2078 if (!kbs)
2079 return -ENOMEM;
2080
2081 spin_lock_irqsave(&func_buf_lock, flags);
2082 len = strlcpy(kbs, func_table[kb_func] ? : "", len);
2083 spin_unlock_irqrestore(&func_buf_lock, flags);
2084
2085 ret = copy_to_user(user_kdgkb->kb_string, kbs, len + 1) ?
2086 -EFAULT : 0;
2087
2088 break;
2089 }
2090 case KDSKBSENT:
2091 if (!perm || !capable(CAP_SYS_TTY_CONFIG))
2092 return -EPERM;
2093
2094 kbs = strndup_user(user_kdgkb->kb_string,
2095 sizeof(user_kdgkb->kb_string));
2096 if (IS_ERR(kbs))
2097 return PTR_ERR(kbs);
2098
2099 spin_lock_irqsave(&func_buf_lock, flags);
2100 kbs = vt_kdskbsent(kbs, kb_func);
2101 spin_unlock_irqrestore(&func_buf_lock, flags);
2102
2103 ret = 0;
2104 break;
2105 }
2106
2107 kfree(kbs);
2108
2109 return ret;
2110 }
2111
vt_do_kdskled(unsigned int console,int cmd,unsigned long arg,int perm)2112 int vt_do_kdskled(unsigned int console, int cmd, unsigned long arg, int perm)
2113 {
2114 struct kbd_struct *kb = &kbd_table[console];
2115 unsigned long flags;
2116 unsigned char ucval;
2117
2118 switch(cmd) {
2119 /* the ioctls below read/set the flags usually shown in the leds */
2120 /* don't use them - they will go away without warning */
2121 case KDGKBLED:
2122 spin_lock_irqsave(&kbd_event_lock, flags);
2123 ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
2124 spin_unlock_irqrestore(&kbd_event_lock, flags);
2125 return put_user(ucval, (char __user *)arg);
2126
2127 case KDSKBLED:
2128 if (!perm)
2129 return -EPERM;
2130 if (arg & ~0x77)
2131 return -EINVAL;
2132 spin_lock_irqsave(&led_lock, flags);
2133 kb->ledflagstate = (arg & 7);
2134 kb->default_ledflagstate = ((arg >> 4) & 7);
2135 set_leds();
2136 spin_unlock_irqrestore(&led_lock, flags);
2137 return 0;
2138
2139 /* the ioctls below only set the lights, not the functions */
2140 /* for those, see KDGKBLED and KDSKBLED above */
2141 case KDGETLED:
2142 ucval = getledstate();
2143 return put_user(ucval, (char __user *)arg);
2144
2145 case KDSETLED:
2146 if (!perm)
2147 return -EPERM;
2148 setledstate(kb, arg);
2149 return 0;
2150 }
2151 return -ENOIOCTLCMD;
2152 }
2153
vt_do_kdgkbmode(unsigned int console)2154 int vt_do_kdgkbmode(unsigned int console)
2155 {
2156 struct kbd_struct *kb = &kbd_table[console];
2157 /* This is a spot read so needs no locking */
2158 switch (kb->kbdmode) {
2159 case VC_RAW:
2160 return K_RAW;
2161 case VC_MEDIUMRAW:
2162 return K_MEDIUMRAW;
2163 case VC_UNICODE:
2164 return K_UNICODE;
2165 case VC_OFF:
2166 return K_OFF;
2167 default:
2168 return K_XLATE;
2169 }
2170 }
2171
2172 /**
2173 * vt_do_kdgkbmeta - report meta status
2174 * @console: console to report
2175 *
2176 * Report the meta flag status of this console
2177 */
vt_do_kdgkbmeta(unsigned int console)2178 int vt_do_kdgkbmeta(unsigned int console)
2179 {
2180 struct kbd_struct *kb = &kbd_table[console];
2181 /* Again a spot read so no locking */
2182 return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2183 }
2184
2185 /**
2186 * vt_reset_unicode - reset the unicode status
2187 * @console: console being reset
2188 *
2189 * Restore the unicode console state to its default
2190 */
vt_reset_unicode(unsigned int console)2191 void vt_reset_unicode(unsigned int console)
2192 {
2193 unsigned long flags;
2194
2195 spin_lock_irqsave(&kbd_event_lock, flags);
2196 kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2197 spin_unlock_irqrestore(&kbd_event_lock, flags);
2198 }
2199
2200 /**
2201 * vt_get_shift_state - shift bit state
2202 *
2203 * Report the shift bits from the keyboard state. We have to export
2204 * this to support some oddities in the vt layer.
2205 */
vt_get_shift_state(void)2206 int vt_get_shift_state(void)
2207 {
2208 /* Don't lock as this is a transient report */
2209 return shift_state;
2210 }
2211
2212 /**
2213 * vt_reset_keyboard - reset keyboard state
2214 * @console: console to reset
2215 *
2216 * Reset the keyboard bits for a console as part of a general console
2217 * reset event
2218 */
vt_reset_keyboard(unsigned int console)2219 void vt_reset_keyboard(unsigned int console)
2220 {
2221 struct kbd_struct *kb = &kbd_table[console];
2222 unsigned long flags;
2223
2224 spin_lock_irqsave(&kbd_event_lock, flags);
2225 set_vc_kbd_mode(kb, VC_REPEAT);
2226 clr_vc_kbd_mode(kb, VC_CKMODE);
2227 clr_vc_kbd_mode(kb, VC_APPLIC);
2228 clr_vc_kbd_mode(kb, VC_CRLF);
2229 kb->lockstate = 0;
2230 kb->slockstate = 0;
2231 spin_lock(&led_lock);
2232 kb->ledmode = LED_SHOW_FLAGS;
2233 kb->ledflagstate = kb->default_ledflagstate;
2234 spin_unlock(&led_lock);
2235 /* do not do set_leds here because this causes an endless tasklet loop
2236 when the keyboard hasn't been initialized yet */
2237 spin_unlock_irqrestore(&kbd_event_lock, flags);
2238 }
2239
2240 /**
2241 * vt_get_kbd_mode_bit - read keyboard status bits
2242 * @console: console to read from
2243 * @bit: mode bit to read
2244 *
2245 * Report back a vt mode bit. We do this without locking so the
2246 * caller must be sure that there are no synchronization needs
2247 */
2248
vt_get_kbd_mode_bit(unsigned int console,int bit)2249 int vt_get_kbd_mode_bit(unsigned int console, int bit)
2250 {
2251 struct kbd_struct *kb = &kbd_table[console];
2252 return vc_kbd_mode(kb, bit);
2253 }
2254
2255 /**
2256 * vt_set_kbd_mode_bit - read keyboard status bits
2257 * @console: console to read from
2258 * @bit: mode bit to read
2259 *
2260 * Set a vt mode bit. We do this without locking so the
2261 * caller must be sure that there are no synchronization needs
2262 */
2263
vt_set_kbd_mode_bit(unsigned int console,int bit)2264 void vt_set_kbd_mode_bit(unsigned int console, int bit)
2265 {
2266 struct kbd_struct *kb = &kbd_table[console];
2267 unsigned long flags;
2268
2269 spin_lock_irqsave(&kbd_event_lock, flags);
2270 set_vc_kbd_mode(kb, bit);
2271 spin_unlock_irqrestore(&kbd_event_lock, flags);
2272 }
2273
2274 /**
2275 * vt_clr_kbd_mode_bit - read keyboard status bits
2276 * @console: console to read from
2277 * @bit: mode bit to read
2278 *
2279 * Report back a vt mode bit. We do this without locking so the
2280 * caller must be sure that there are no synchronization needs
2281 */
2282
vt_clr_kbd_mode_bit(unsigned int console,int bit)2283 void vt_clr_kbd_mode_bit(unsigned int console, int bit)
2284 {
2285 struct kbd_struct *kb = &kbd_table[console];
2286 unsigned long flags;
2287
2288 spin_lock_irqsave(&kbd_event_lock, flags);
2289 clr_vc_kbd_mode(kb, bit);
2290 spin_unlock_irqrestore(&kbd_event_lock, flags);
2291 }
2292