1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * vsp1_video.c -- R-Car VSP1 Video Node
4 *
5 * Copyright (C) 2013-2015 Renesas Electronics Corporation
6 *
7 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
8 */
9
10 #include <linux/list.h>
11 #include <linux/module.h>
12 #include <linux/mutex.h>
13 #include <linux/slab.h>
14 #include <linux/v4l2-mediabus.h>
15 #include <linux/videodev2.h>
16 #include <linux/wait.h>
17
18 #include <media/media-entity.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-fh.h>
21 #include <media/v4l2-ioctl.h>
22 #include <media/v4l2-subdev.h>
23 #include <media/videobuf2-v4l2.h>
24 #include <media/videobuf2-dma-contig.h>
25
26 #include "vsp1.h"
27 #include "vsp1_brx.h"
28 #include "vsp1_dl.h"
29 #include "vsp1_entity.h"
30 #include "vsp1_hgo.h"
31 #include "vsp1_hgt.h"
32 #include "vsp1_pipe.h"
33 #include "vsp1_rwpf.h"
34 #include "vsp1_uds.h"
35 #include "vsp1_video.h"
36
37 #define VSP1_VIDEO_DEF_FORMAT V4L2_PIX_FMT_YUYV
38 #define VSP1_VIDEO_DEF_WIDTH 1024
39 #define VSP1_VIDEO_DEF_HEIGHT 768
40
41 #define VSP1_VIDEO_MAX_WIDTH 8190U
42 #define VSP1_VIDEO_MAX_HEIGHT 8190U
43
44 /* -----------------------------------------------------------------------------
45 * Helper functions
46 */
47
48 static struct v4l2_subdev *
vsp1_video_remote_subdev(struct media_pad * local,u32 * pad)49 vsp1_video_remote_subdev(struct media_pad *local, u32 *pad)
50 {
51 struct media_pad *remote;
52
53 remote = media_pad_remote_pad_first(local);
54 if (!remote || !is_media_entity_v4l2_subdev(remote->entity))
55 return NULL;
56
57 if (pad)
58 *pad = remote->index;
59
60 return media_entity_to_v4l2_subdev(remote->entity);
61 }
62
vsp1_video_verify_format(struct vsp1_video * video)63 static int vsp1_video_verify_format(struct vsp1_video *video)
64 {
65 struct v4l2_subdev_format fmt;
66 struct v4l2_subdev *subdev;
67 int ret;
68
69 subdev = vsp1_video_remote_subdev(&video->pad, &fmt.pad);
70 if (subdev == NULL)
71 return -EINVAL;
72
73 fmt.which = V4L2_SUBDEV_FORMAT_ACTIVE;
74 ret = v4l2_subdev_call(subdev, pad, get_fmt, NULL, &fmt);
75 if (ret < 0)
76 return ret == -ENOIOCTLCMD ? -EINVAL : ret;
77
78 if (video->rwpf->fmtinfo->mbus != fmt.format.code ||
79 video->rwpf->format.height != fmt.format.height ||
80 video->rwpf->format.width != fmt.format.width)
81 return -EINVAL;
82
83 return 0;
84 }
85
__vsp1_video_try_format(struct vsp1_video * video,struct v4l2_pix_format_mplane * pix,const struct vsp1_format_info ** fmtinfo)86 static int __vsp1_video_try_format(struct vsp1_video *video,
87 struct v4l2_pix_format_mplane *pix,
88 const struct vsp1_format_info **fmtinfo)
89 {
90 static const u32 xrgb_formats[][2] = {
91 { V4L2_PIX_FMT_RGB444, V4L2_PIX_FMT_XRGB444 },
92 { V4L2_PIX_FMT_RGB555, V4L2_PIX_FMT_XRGB555 },
93 { V4L2_PIX_FMT_BGR32, V4L2_PIX_FMT_XBGR32 },
94 { V4L2_PIX_FMT_RGB32, V4L2_PIX_FMT_XRGB32 },
95 };
96
97 const struct vsp1_format_info *info;
98 unsigned int width = pix->width;
99 unsigned int height = pix->height;
100 unsigned int i;
101
102 /*
103 * Backward compatibility: replace deprecated RGB formats by their XRGB
104 * equivalent. This selects the format older userspace applications want
105 * while still exposing the new format.
106 */
107 for (i = 0; i < ARRAY_SIZE(xrgb_formats); ++i) {
108 if (xrgb_formats[i][0] == pix->pixelformat) {
109 pix->pixelformat = xrgb_formats[i][1];
110 break;
111 }
112 }
113
114 /*
115 * Retrieve format information and select the default format if the
116 * requested format isn't supported.
117 */
118 info = vsp1_get_format_info(video->vsp1, pix->pixelformat);
119 if (info == NULL)
120 info = vsp1_get_format_info(video->vsp1, VSP1_VIDEO_DEF_FORMAT);
121
122 pix->pixelformat = info->fourcc;
123 pix->colorspace = V4L2_COLORSPACE_SRGB;
124 pix->field = V4L2_FIELD_NONE;
125
126 if (info->fourcc == V4L2_PIX_FMT_HSV24 ||
127 info->fourcc == V4L2_PIX_FMT_HSV32)
128 pix->hsv_enc = V4L2_HSV_ENC_256;
129
130 memset(pix->reserved, 0, sizeof(pix->reserved));
131
132 /* Align the width and height for YUV 4:2:2 and 4:2:0 formats. */
133 width = round_down(width, info->hsub);
134 height = round_down(height, info->vsub);
135
136 /* Clamp the width and height. */
137 pix->width = clamp(width, info->hsub, VSP1_VIDEO_MAX_WIDTH);
138 pix->height = clamp(height, info->vsub, VSP1_VIDEO_MAX_HEIGHT);
139
140 /*
141 * Compute and clamp the stride and image size. While not documented in
142 * the datasheet, strides not aligned to a multiple of 128 bytes result
143 * in image corruption.
144 */
145 for (i = 0; i < min(info->planes, 2U); ++i) {
146 unsigned int hsub = i > 0 ? info->hsub : 1;
147 unsigned int vsub = i > 0 ? info->vsub : 1;
148 unsigned int align = 128;
149 unsigned int bpl;
150
151 bpl = clamp_t(unsigned int, pix->plane_fmt[i].bytesperline,
152 pix->width / hsub * info->bpp[i] / 8,
153 round_down(65535U, align));
154
155 pix->plane_fmt[i].bytesperline = round_up(bpl, align);
156 pix->plane_fmt[i].sizeimage = pix->plane_fmt[i].bytesperline
157 * pix->height / vsub;
158 }
159
160 if (info->planes == 3) {
161 /* The second and third planes must have the same stride. */
162 pix->plane_fmt[2].bytesperline = pix->plane_fmt[1].bytesperline;
163 pix->plane_fmt[2].sizeimage = pix->plane_fmt[1].sizeimage;
164 }
165
166 pix->num_planes = info->planes;
167
168 if (fmtinfo)
169 *fmtinfo = info;
170
171 return 0;
172 }
173
174 /* -----------------------------------------------------------------------------
175 * VSP1 Partition Algorithm support
176 */
177
178 /**
179 * vsp1_video_calculate_partition - Calculate the active partition output window
180 *
181 * @pipe: the pipeline
182 * @partition: partition that will hold the calculated values
183 * @div_size: pre-determined maximum partition division size
184 * @index: partition index
185 */
vsp1_video_calculate_partition(struct vsp1_pipeline * pipe,struct vsp1_partition * partition,unsigned int div_size,unsigned int index)186 static void vsp1_video_calculate_partition(struct vsp1_pipeline *pipe,
187 struct vsp1_partition *partition,
188 unsigned int div_size,
189 unsigned int index)
190 {
191 const struct v4l2_mbus_framefmt *format;
192 struct vsp1_partition_window window;
193 unsigned int modulus;
194
195 /*
196 * Partitions are computed on the size before rotation, use the format
197 * at the WPF sink.
198 */
199 format = vsp1_entity_get_pad_format(&pipe->output->entity,
200 pipe->output->entity.config,
201 RWPF_PAD_SINK);
202
203 /* A single partition simply processes the output size in full. */
204 if (pipe->partitions <= 1) {
205 window.left = 0;
206 window.width = format->width;
207
208 vsp1_pipeline_propagate_partition(pipe, partition, index,
209 &window);
210 return;
211 }
212
213 /* Initialise the partition with sane starting conditions. */
214 window.left = index * div_size;
215 window.width = div_size;
216
217 modulus = format->width % div_size;
218
219 /*
220 * We need to prevent the last partition from being smaller than the
221 * *minimum* width of the hardware capabilities.
222 *
223 * If the modulus is less than half of the partition size,
224 * the penultimate partition is reduced to half, which is added
225 * to the final partition: |1234|1234|1234|12|341|
226 * to prevent this: |1234|1234|1234|1234|1|.
227 */
228 if (modulus) {
229 /*
230 * pipe->partitions is 1 based, whilst index is a 0 based index.
231 * Normalise this locally.
232 */
233 unsigned int partitions = pipe->partitions - 1;
234
235 if (modulus < div_size / 2) {
236 if (index == partitions - 1) {
237 /* Halve the penultimate partition. */
238 window.width = div_size / 2;
239 } else if (index == partitions) {
240 /* Increase the final partition. */
241 window.width = (div_size / 2) + modulus;
242 window.left -= div_size / 2;
243 }
244 } else if (index == partitions) {
245 window.width = modulus;
246 }
247 }
248
249 vsp1_pipeline_propagate_partition(pipe, partition, index, &window);
250 }
251
vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline * pipe)252 static int vsp1_video_pipeline_setup_partitions(struct vsp1_pipeline *pipe)
253 {
254 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
255 const struct v4l2_mbus_framefmt *format;
256 struct vsp1_entity *entity;
257 unsigned int div_size;
258 unsigned int i;
259
260 /*
261 * Partitions are computed on the size before rotation, use the format
262 * at the WPF sink.
263 */
264 format = vsp1_entity_get_pad_format(&pipe->output->entity,
265 pipe->output->entity.config,
266 RWPF_PAD_SINK);
267 div_size = format->width;
268
269 /*
270 * Only Gen3 hardware requires image partitioning, Gen2 will operate
271 * with a single partition that covers the whole output.
272 */
273 if (vsp1->info->gen == 3) {
274 list_for_each_entry(entity, &pipe->entities, list_pipe) {
275 unsigned int entity_max;
276
277 if (!entity->ops->max_width)
278 continue;
279
280 entity_max = entity->ops->max_width(entity, pipe);
281 if (entity_max)
282 div_size = min(div_size, entity_max);
283 }
284 }
285
286 pipe->partitions = DIV_ROUND_UP(format->width, div_size);
287 pipe->part_table = kcalloc(pipe->partitions, sizeof(*pipe->part_table),
288 GFP_KERNEL);
289 if (!pipe->part_table)
290 return -ENOMEM;
291
292 for (i = 0; i < pipe->partitions; ++i)
293 vsp1_video_calculate_partition(pipe, &pipe->part_table[i],
294 div_size, i);
295
296 return 0;
297 }
298
299 /* -----------------------------------------------------------------------------
300 * Pipeline Management
301 */
302
303 /*
304 * vsp1_video_complete_buffer - Complete the current buffer
305 * @video: the video node
306 *
307 * This function completes the current buffer by filling its sequence number,
308 * time stamp and payload size, and hands it back to the vb2 core.
309 *
310 * Return the next queued buffer or NULL if the queue is empty.
311 */
312 static struct vsp1_vb2_buffer *
vsp1_video_complete_buffer(struct vsp1_video * video)313 vsp1_video_complete_buffer(struct vsp1_video *video)
314 {
315 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
316 struct vsp1_vb2_buffer *next = NULL;
317 struct vsp1_vb2_buffer *done;
318 unsigned long flags;
319 unsigned int i;
320
321 spin_lock_irqsave(&video->irqlock, flags);
322
323 if (list_empty(&video->irqqueue)) {
324 spin_unlock_irqrestore(&video->irqlock, flags);
325 return NULL;
326 }
327
328 done = list_first_entry(&video->irqqueue,
329 struct vsp1_vb2_buffer, queue);
330
331 list_del(&done->queue);
332
333 if (!list_empty(&video->irqqueue))
334 next = list_first_entry(&video->irqqueue,
335 struct vsp1_vb2_buffer, queue);
336
337 spin_unlock_irqrestore(&video->irqlock, flags);
338
339 done->buf.sequence = pipe->sequence;
340 done->buf.vb2_buf.timestamp = ktime_get_ns();
341 for (i = 0; i < done->buf.vb2_buf.num_planes; ++i)
342 vb2_set_plane_payload(&done->buf.vb2_buf, i,
343 vb2_plane_size(&done->buf.vb2_buf, i));
344 vb2_buffer_done(&done->buf.vb2_buf, VB2_BUF_STATE_DONE);
345
346 return next;
347 }
348
vsp1_video_frame_end(struct vsp1_pipeline * pipe,struct vsp1_rwpf * rwpf)349 static void vsp1_video_frame_end(struct vsp1_pipeline *pipe,
350 struct vsp1_rwpf *rwpf)
351 {
352 struct vsp1_video *video = rwpf->video;
353 struct vsp1_vb2_buffer *buf;
354
355 buf = vsp1_video_complete_buffer(video);
356 if (buf == NULL)
357 return;
358
359 video->rwpf->mem = buf->mem;
360 pipe->buffers_ready |= 1 << video->pipe_index;
361 }
362
vsp1_video_pipeline_run_partition(struct vsp1_pipeline * pipe,struct vsp1_dl_list * dl,unsigned int partition)363 static void vsp1_video_pipeline_run_partition(struct vsp1_pipeline *pipe,
364 struct vsp1_dl_list *dl,
365 unsigned int partition)
366 {
367 struct vsp1_dl_body *dlb = vsp1_dl_list_get_body0(dl);
368 struct vsp1_entity *entity;
369
370 pipe->partition = &pipe->part_table[partition];
371
372 list_for_each_entry(entity, &pipe->entities, list_pipe)
373 vsp1_entity_configure_partition(entity, pipe, dl, dlb);
374 }
375
vsp1_video_pipeline_run(struct vsp1_pipeline * pipe)376 static void vsp1_video_pipeline_run(struct vsp1_pipeline *pipe)
377 {
378 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
379 struct vsp1_entity *entity;
380 struct vsp1_dl_body *dlb;
381 struct vsp1_dl_list *dl;
382 unsigned int partition;
383
384 dl = vsp1_dl_list_get(pipe->output->dlm);
385
386 /*
387 * If the VSP hardware isn't configured yet (which occurs either when
388 * processing the first frame or after a system suspend/resume), add the
389 * cached stream configuration to the display list to perform a full
390 * initialisation.
391 */
392 if (!pipe->configured)
393 vsp1_dl_list_add_body(dl, pipe->stream_config);
394
395 dlb = vsp1_dl_list_get_body0(dl);
396
397 list_for_each_entry(entity, &pipe->entities, list_pipe)
398 vsp1_entity_configure_frame(entity, pipe, dl, dlb);
399
400 /* Run the first partition. */
401 vsp1_video_pipeline_run_partition(pipe, dl, 0);
402
403 /* Process consecutive partitions as necessary. */
404 for (partition = 1; partition < pipe->partitions; ++partition) {
405 struct vsp1_dl_list *dl_next;
406
407 dl_next = vsp1_dl_list_get(pipe->output->dlm);
408
409 /*
410 * An incomplete chain will still function, but output only
411 * the partitions that had a dl available. The frame end
412 * interrupt will be marked on the last dl in the chain.
413 */
414 if (!dl_next) {
415 dev_err(vsp1->dev, "Failed to obtain a dl list. Frame will be incomplete\n");
416 break;
417 }
418
419 vsp1_video_pipeline_run_partition(pipe, dl_next, partition);
420 vsp1_dl_list_add_chain(dl, dl_next);
421 }
422
423 /* Complete, and commit the head display list. */
424 vsp1_dl_list_commit(dl, 0);
425 pipe->configured = true;
426
427 vsp1_pipeline_run(pipe);
428 }
429
vsp1_video_pipeline_frame_end(struct vsp1_pipeline * pipe,unsigned int completion)430 static void vsp1_video_pipeline_frame_end(struct vsp1_pipeline *pipe,
431 unsigned int completion)
432 {
433 struct vsp1_device *vsp1 = pipe->output->entity.vsp1;
434 enum vsp1_pipeline_state state;
435 unsigned long flags;
436 unsigned int i;
437
438 /* M2M Pipelines should never call here with an incomplete frame. */
439 WARN_ON_ONCE(!(completion & VSP1_DL_FRAME_END_COMPLETED));
440
441 spin_lock_irqsave(&pipe->irqlock, flags);
442
443 /* Complete buffers on all video nodes. */
444 for (i = 0; i < vsp1->info->rpf_count; ++i) {
445 if (!pipe->inputs[i])
446 continue;
447
448 vsp1_video_frame_end(pipe, pipe->inputs[i]);
449 }
450
451 vsp1_video_frame_end(pipe, pipe->output);
452
453 state = pipe->state;
454 pipe->state = VSP1_PIPELINE_STOPPED;
455
456 /*
457 * If a stop has been requested, mark the pipeline as stopped and
458 * return. Otherwise restart the pipeline if ready.
459 */
460 if (state == VSP1_PIPELINE_STOPPING)
461 wake_up(&pipe->wq);
462 else if (vsp1_pipeline_ready(pipe))
463 vsp1_video_pipeline_run(pipe);
464
465 spin_unlock_irqrestore(&pipe->irqlock, flags);
466 }
467
vsp1_video_pipeline_build_branch(struct vsp1_pipeline * pipe,struct vsp1_rwpf * input,struct vsp1_rwpf * output)468 static int vsp1_video_pipeline_build_branch(struct vsp1_pipeline *pipe,
469 struct vsp1_rwpf *input,
470 struct vsp1_rwpf *output)
471 {
472 struct media_entity_enum ent_enum;
473 struct vsp1_entity *entity;
474 struct media_pad *pad;
475 struct vsp1_brx *brx = NULL;
476 int ret;
477
478 ret = media_entity_enum_init(&ent_enum, &input->entity.vsp1->media_dev);
479 if (ret < 0)
480 return ret;
481
482 /*
483 * The main data path doesn't include the HGO or HGT, use
484 * vsp1_entity_remote_pad() to traverse the graph.
485 */
486
487 pad = vsp1_entity_remote_pad(&input->entity.pads[RWPF_PAD_SOURCE]);
488
489 while (1) {
490 if (pad == NULL) {
491 ret = -EPIPE;
492 goto out;
493 }
494
495 /* We've reached a video node, that shouldn't have happened. */
496 if (!is_media_entity_v4l2_subdev(pad->entity)) {
497 ret = -EPIPE;
498 goto out;
499 }
500
501 entity = to_vsp1_entity(
502 media_entity_to_v4l2_subdev(pad->entity));
503
504 /*
505 * A BRU or BRS is present in the pipeline, store its input pad
506 * number in the input RPF for use when configuring the RPF.
507 */
508 if (entity->type == VSP1_ENTITY_BRU ||
509 entity->type == VSP1_ENTITY_BRS) {
510 /* BRU and BRS can't be chained. */
511 if (brx) {
512 ret = -EPIPE;
513 goto out;
514 }
515
516 brx = to_brx(&entity->subdev);
517 brx->inputs[pad->index].rpf = input;
518 input->brx_input = pad->index;
519 }
520
521 /* We've reached the WPF, we're done. */
522 if (entity->type == VSP1_ENTITY_WPF)
523 break;
524
525 /* Ensure the branch has no loop. */
526 if (media_entity_enum_test_and_set(&ent_enum,
527 &entity->subdev.entity)) {
528 ret = -EPIPE;
529 goto out;
530 }
531
532 /* UDS can't be chained. */
533 if (entity->type == VSP1_ENTITY_UDS) {
534 if (pipe->uds) {
535 ret = -EPIPE;
536 goto out;
537 }
538
539 pipe->uds = entity;
540 pipe->uds_input = brx ? &brx->entity : &input->entity;
541 }
542
543 /* Follow the source link, ignoring any HGO or HGT. */
544 pad = &entity->pads[entity->source_pad];
545 pad = vsp1_entity_remote_pad(pad);
546 }
547
548 /* The last entity must be the output WPF. */
549 if (entity != &output->entity)
550 ret = -EPIPE;
551
552 out:
553 media_entity_enum_cleanup(&ent_enum);
554
555 return ret;
556 }
557
vsp1_video_pipeline_build(struct vsp1_pipeline * pipe,struct vsp1_video * video)558 static int vsp1_video_pipeline_build(struct vsp1_pipeline *pipe,
559 struct vsp1_video *video)
560 {
561 struct media_graph graph;
562 struct media_entity *entity = &video->video.entity;
563 struct media_device *mdev = entity->graph_obj.mdev;
564 unsigned int i;
565 int ret;
566
567 /* Walk the graph to locate the entities and video nodes. */
568 ret = media_graph_walk_init(&graph, mdev);
569 if (ret)
570 return ret;
571
572 media_graph_walk_start(&graph, entity);
573
574 while ((entity = media_graph_walk_next(&graph))) {
575 struct v4l2_subdev *subdev;
576 struct vsp1_rwpf *rwpf;
577 struct vsp1_entity *e;
578
579 if (!is_media_entity_v4l2_subdev(entity))
580 continue;
581
582 subdev = media_entity_to_v4l2_subdev(entity);
583 e = to_vsp1_entity(subdev);
584 list_add_tail(&e->list_pipe, &pipe->entities);
585 e->pipe = pipe;
586
587 switch (e->type) {
588 case VSP1_ENTITY_RPF:
589 rwpf = to_rwpf(subdev);
590 pipe->inputs[rwpf->entity.index] = rwpf;
591 rwpf->video->pipe_index = ++pipe->num_inputs;
592 break;
593
594 case VSP1_ENTITY_WPF:
595 rwpf = to_rwpf(subdev);
596 pipe->output = rwpf;
597 rwpf->video->pipe_index = 0;
598 break;
599
600 case VSP1_ENTITY_LIF:
601 pipe->lif = e;
602 break;
603
604 case VSP1_ENTITY_BRU:
605 case VSP1_ENTITY_BRS:
606 pipe->brx = e;
607 break;
608
609 case VSP1_ENTITY_HGO:
610 pipe->hgo = e;
611 break;
612
613 case VSP1_ENTITY_HGT:
614 pipe->hgt = e;
615 break;
616
617 default:
618 break;
619 }
620 }
621
622 media_graph_walk_cleanup(&graph);
623
624 /* We need one output and at least one input. */
625 if (pipe->num_inputs == 0 || !pipe->output)
626 return -EPIPE;
627
628 /*
629 * Follow links downstream for each input and make sure the graph
630 * contains no loop and that all branches end at the output WPF.
631 */
632 for (i = 0; i < video->vsp1->info->rpf_count; ++i) {
633 if (!pipe->inputs[i])
634 continue;
635
636 ret = vsp1_video_pipeline_build_branch(pipe, pipe->inputs[i],
637 pipe->output);
638 if (ret < 0)
639 return ret;
640 }
641
642 return 0;
643 }
644
vsp1_video_pipeline_init(struct vsp1_pipeline * pipe,struct vsp1_video * video)645 static int vsp1_video_pipeline_init(struct vsp1_pipeline *pipe,
646 struct vsp1_video *video)
647 {
648 vsp1_pipeline_init(pipe);
649
650 pipe->frame_end = vsp1_video_pipeline_frame_end;
651
652 return vsp1_video_pipeline_build(pipe, video);
653 }
654
vsp1_video_pipeline_get(struct vsp1_video * video)655 static struct vsp1_pipeline *vsp1_video_pipeline_get(struct vsp1_video *video)
656 {
657 struct vsp1_pipeline *pipe;
658 int ret;
659
660 /*
661 * Get a pipeline object for the video node. If a pipeline has already
662 * been allocated just increment its reference count and return it.
663 * Otherwise allocate a new pipeline and initialize it, it will be freed
664 * when the last reference is released.
665 */
666 if (!video->rwpf->entity.pipe) {
667 pipe = kzalloc(sizeof(*pipe), GFP_KERNEL);
668 if (!pipe)
669 return ERR_PTR(-ENOMEM);
670
671 ret = vsp1_video_pipeline_init(pipe, video);
672 if (ret < 0) {
673 vsp1_pipeline_reset(pipe);
674 kfree(pipe);
675 return ERR_PTR(ret);
676 }
677 } else {
678 pipe = video->rwpf->entity.pipe;
679 kref_get(&pipe->kref);
680 }
681
682 return pipe;
683 }
684
vsp1_video_pipeline_release(struct kref * kref)685 static void vsp1_video_pipeline_release(struct kref *kref)
686 {
687 struct vsp1_pipeline *pipe = container_of(kref, typeof(*pipe), kref);
688
689 vsp1_pipeline_reset(pipe);
690 kfree(pipe);
691 }
692
vsp1_video_pipeline_put(struct vsp1_pipeline * pipe)693 static void vsp1_video_pipeline_put(struct vsp1_pipeline *pipe)
694 {
695 struct media_device *mdev = &pipe->output->entity.vsp1->media_dev;
696
697 mutex_lock(&mdev->graph_mutex);
698 kref_put(&pipe->kref, vsp1_video_pipeline_release);
699 mutex_unlock(&mdev->graph_mutex);
700 }
701
702 /* -----------------------------------------------------------------------------
703 * videobuf2 Queue Operations
704 */
705
706 static int
vsp1_video_queue_setup(struct vb2_queue * vq,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],struct device * alloc_devs[])707 vsp1_video_queue_setup(struct vb2_queue *vq,
708 unsigned int *nbuffers, unsigned int *nplanes,
709 unsigned int sizes[], struct device *alloc_devs[])
710 {
711 struct vsp1_video *video = vb2_get_drv_priv(vq);
712 const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
713 unsigned int i;
714
715 if (*nplanes) {
716 if (*nplanes != format->num_planes)
717 return -EINVAL;
718
719 for (i = 0; i < *nplanes; i++)
720 if (sizes[i] < format->plane_fmt[i].sizeimage)
721 return -EINVAL;
722 return 0;
723 }
724
725 *nplanes = format->num_planes;
726
727 for (i = 0; i < format->num_planes; ++i)
728 sizes[i] = format->plane_fmt[i].sizeimage;
729
730 return 0;
731 }
732
vsp1_video_buffer_prepare(struct vb2_buffer * vb)733 static int vsp1_video_buffer_prepare(struct vb2_buffer *vb)
734 {
735 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
736 struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
737 struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
738 const struct v4l2_pix_format_mplane *format = &video->rwpf->format;
739 unsigned int i;
740
741 if (vb->num_planes < format->num_planes)
742 return -EINVAL;
743
744 for (i = 0; i < vb->num_planes; ++i) {
745 buf->mem.addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
746
747 if (vb2_plane_size(vb, i) < format->plane_fmt[i].sizeimage)
748 return -EINVAL;
749 }
750
751 for ( ; i < 3; ++i)
752 buf->mem.addr[i] = 0;
753
754 return 0;
755 }
756
vsp1_video_buffer_queue(struct vb2_buffer * vb)757 static void vsp1_video_buffer_queue(struct vb2_buffer *vb)
758 {
759 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
760 struct vsp1_video *video = vb2_get_drv_priv(vb->vb2_queue);
761 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
762 struct vsp1_vb2_buffer *buf = to_vsp1_vb2_buffer(vbuf);
763 unsigned long flags;
764 bool empty;
765
766 spin_lock_irqsave(&video->irqlock, flags);
767 empty = list_empty(&video->irqqueue);
768 list_add_tail(&buf->queue, &video->irqqueue);
769 spin_unlock_irqrestore(&video->irqlock, flags);
770
771 if (!empty)
772 return;
773
774 spin_lock_irqsave(&pipe->irqlock, flags);
775
776 video->rwpf->mem = buf->mem;
777 pipe->buffers_ready |= 1 << video->pipe_index;
778
779 if (vb2_is_streaming(&video->queue) &&
780 vsp1_pipeline_ready(pipe))
781 vsp1_video_pipeline_run(pipe);
782
783 spin_unlock_irqrestore(&pipe->irqlock, flags);
784 }
785
vsp1_video_setup_pipeline(struct vsp1_pipeline * pipe)786 static int vsp1_video_setup_pipeline(struct vsp1_pipeline *pipe)
787 {
788 struct vsp1_entity *entity;
789 int ret;
790
791 /* Determine this pipelines sizes for image partitioning support. */
792 ret = vsp1_video_pipeline_setup_partitions(pipe);
793 if (ret < 0)
794 return ret;
795
796 if (pipe->uds) {
797 struct vsp1_uds *uds = to_uds(&pipe->uds->subdev);
798
799 /*
800 * If a BRU or BRS is present in the pipeline before the UDS,
801 * the alpha component doesn't need to be scaled as the BRU and
802 * BRS output alpha value is fixed to 255. Otherwise we need to
803 * scale the alpha component only when available at the input
804 * RPF.
805 */
806 if (pipe->uds_input->type == VSP1_ENTITY_BRU ||
807 pipe->uds_input->type == VSP1_ENTITY_BRS) {
808 uds->scale_alpha = false;
809 } else {
810 struct vsp1_rwpf *rpf =
811 to_rwpf(&pipe->uds_input->subdev);
812
813 uds->scale_alpha = rpf->fmtinfo->alpha;
814 }
815 }
816
817 /*
818 * Compute and cache the stream configuration into a body. The cached
819 * body will be added to the display list by vsp1_video_pipeline_run()
820 * whenever the pipeline needs to be fully reconfigured.
821 */
822 pipe->stream_config = vsp1_dlm_dl_body_get(pipe->output->dlm);
823 if (!pipe->stream_config)
824 return -ENOMEM;
825
826 list_for_each_entry(entity, &pipe->entities, list_pipe) {
827 vsp1_entity_route_setup(entity, pipe, pipe->stream_config);
828 vsp1_entity_configure_stream(entity, pipe, NULL,
829 pipe->stream_config);
830 }
831
832 return 0;
833 }
834
vsp1_video_release_buffers(struct vsp1_video * video)835 static void vsp1_video_release_buffers(struct vsp1_video *video)
836 {
837 struct vsp1_vb2_buffer *buffer;
838 unsigned long flags;
839
840 /* Remove all buffers from the IRQ queue. */
841 spin_lock_irqsave(&video->irqlock, flags);
842 list_for_each_entry(buffer, &video->irqqueue, queue)
843 vb2_buffer_done(&buffer->buf.vb2_buf, VB2_BUF_STATE_ERROR);
844 INIT_LIST_HEAD(&video->irqqueue);
845 spin_unlock_irqrestore(&video->irqlock, flags);
846 }
847
vsp1_video_cleanup_pipeline(struct vsp1_pipeline * pipe)848 static void vsp1_video_cleanup_pipeline(struct vsp1_pipeline *pipe)
849 {
850 lockdep_assert_held(&pipe->lock);
851
852 /* Release any cached configuration from our output video. */
853 vsp1_dl_body_put(pipe->stream_config);
854 pipe->stream_config = NULL;
855 pipe->configured = false;
856
857 /* Release our partition table allocation. */
858 kfree(pipe->part_table);
859 pipe->part_table = NULL;
860 }
861
vsp1_video_start_streaming(struct vb2_queue * vq,unsigned int count)862 static int vsp1_video_start_streaming(struct vb2_queue *vq, unsigned int count)
863 {
864 struct vsp1_video *video = vb2_get_drv_priv(vq);
865 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
866 bool start_pipeline = false;
867 unsigned long flags;
868 int ret;
869
870 mutex_lock(&pipe->lock);
871 if (pipe->stream_count == pipe->num_inputs) {
872 ret = vsp1_video_setup_pipeline(pipe);
873 if (ret < 0) {
874 vsp1_video_release_buffers(video);
875 vsp1_video_cleanup_pipeline(pipe);
876 mutex_unlock(&pipe->lock);
877 return ret;
878 }
879
880 start_pipeline = true;
881 }
882
883 pipe->stream_count++;
884 mutex_unlock(&pipe->lock);
885
886 /*
887 * vsp1_pipeline_ready() is not sufficient to establish that all streams
888 * are prepared and the pipeline is configured, as multiple streams
889 * can race through streamon with buffers already queued; Therefore we
890 * don't even attempt to start the pipeline until the last stream has
891 * called through here.
892 */
893 if (!start_pipeline)
894 return 0;
895
896 spin_lock_irqsave(&pipe->irqlock, flags);
897 if (vsp1_pipeline_ready(pipe))
898 vsp1_video_pipeline_run(pipe);
899 spin_unlock_irqrestore(&pipe->irqlock, flags);
900
901 return 0;
902 }
903
vsp1_video_stop_streaming(struct vb2_queue * vq)904 static void vsp1_video_stop_streaming(struct vb2_queue *vq)
905 {
906 struct vsp1_video *video = vb2_get_drv_priv(vq);
907 struct vsp1_pipeline *pipe = video->rwpf->entity.pipe;
908 unsigned long flags;
909 int ret;
910
911 /*
912 * Clear the buffers ready flag to make sure the device won't be started
913 * by a QBUF on the video node on the other side of the pipeline.
914 */
915 spin_lock_irqsave(&video->irqlock, flags);
916 pipe->buffers_ready &= ~(1 << video->pipe_index);
917 spin_unlock_irqrestore(&video->irqlock, flags);
918
919 mutex_lock(&pipe->lock);
920 if (--pipe->stream_count == pipe->num_inputs) {
921 /* Stop the pipeline. */
922 ret = vsp1_pipeline_stop(pipe);
923 if (ret == -ETIMEDOUT)
924 dev_err(video->vsp1->dev, "pipeline stop timeout\n");
925
926 vsp1_video_cleanup_pipeline(pipe);
927 }
928 mutex_unlock(&pipe->lock);
929
930 video_device_pipeline_stop(&video->video);
931 vsp1_video_release_buffers(video);
932 vsp1_video_pipeline_put(pipe);
933 }
934
935 static const struct vb2_ops vsp1_video_queue_qops = {
936 .queue_setup = vsp1_video_queue_setup,
937 .buf_prepare = vsp1_video_buffer_prepare,
938 .buf_queue = vsp1_video_buffer_queue,
939 .wait_prepare = vb2_ops_wait_prepare,
940 .wait_finish = vb2_ops_wait_finish,
941 .start_streaming = vsp1_video_start_streaming,
942 .stop_streaming = vsp1_video_stop_streaming,
943 };
944
945 /* -----------------------------------------------------------------------------
946 * V4L2 ioctls
947 */
948
949 static int
vsp1_video_querycap(struct file * file,void * fh,struct v4l2_capability * cap)950 vsp1_video_querycap(struct file *file, void *fh, struct v4l2_capability *cap)
951 {
952 struct v4l2_fh *vfh = file->private_data;
953 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
954
955 cap->capabilities = V4L2_CAP_DEVICE_CAPS | V4L2_CAP_STREAMING
956 | V4L2_CAP_VIDEO_CAPTURE_MPLANE
957 | V4L2_CAP_VIDEO_OUTPUT_MPLANE;
958
959
960 strscpy(cap->driver, "vsp1", sizeof(cap->driver));
961 strscpy(cap->card, video->video.name, sizeof(cap->card));
962
963 return 0;
964 }
965
966 static int
vsp1_video_get_format(struct file * file,void * fh,struct v4l2_format * format)967 vsp1_video_get_format(struct file *file, void *fh, struct v4l2_format *format)
968 {
969 struct v4l2_fh *vfh = file->private_data;
970 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
971
972 if (format->type != video->queue.type)
973 return -EINVAL;
974
975 mutex_lock(&video->lock);
976 format->fmt.pix_mp = video->rwpf->format;
977 mutex_unlock(&video->lock);
978
979 return 0;
980 }
981
982 static int
vsp1_video_try_format(struct file * file,void * fh,struct v4l2_format * format)983 vsp1_video_try_format(struct file *file, void *fh, struct v4l2_format *format)
984 {
985 struct v4l2_fh *vfh = file->private_data;
986 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
987
988 if (format->type != video->queue.type)
989 return -EINVAL;
990
991 return __vsp1_video_try_format(video, &format->fmt.pix_mp, NULL);
992 }
993
994 static int
vsp1_video_set_format(struct file * file,void * fh,struct v4l2_format * format)995 vsp1_video_set_format(struct file *file, void *fh, struct v4l2_format *format)
996 {
997 struct v4l2_fh *vfh = file->private_data;
998 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
999 const struct vsp1_format_info *info;
1000 int ret;
1001
1002 if (format->type != video->queue.type)
1003 return -EINVAL;
1004
1005 ret = __vsp1_video_try_format(video, &format->fmt.pix_mp, &info);
1006 if (ret < 0)
1007 return ret;
1008
1009 mutex_lock(&video->lock);
1010
1011 if (vb2_is_busy(&video->queue)) {
1012 ret = -EBUSY;
1013 goto done;
1014 }
1015
1016 video->rwpf->format = format->fmt.pix_mp;
1017 video->rwpf->fmtinfo = info;
1018
1019 done:
1020 mutex_unlock(&video->lock);
1021 return ret;
1022 }
1023
1024 static int
vsp1_video_streamon(struct file * file,void * fh,enum v4l2_buf_type type)1025 vsp1_video_streamon(struct file *file, void *fh, enum v4l2_buf_type type)
1026 {
1027 struct v4l2_fh *vfh = file->private_data;
1028 struct vsp1_video *video = to_vsp1_video(vfh->vdev);
1029 struct media_device *mdev = &video->vsp1->media_dev;
1030 struct vsp1_pipeline *pipe;
1031 int ret;
1032
1033 if (vb2_queue_is_busy(&video->queue, file))
1034 return -EBUSY;
1035
1036 /*
1037 * Get a pipeline for the video node and start streaming on it. No link
1038 * touching an entity in the pipeline can be activated or deactivated
1039 * once streaming is started.
1040 */
1041 mutex_lock(&mdev->graph_mutex);
1042
1043 pipe = vsp1_video_pipeline_get(video);
1044 if (IS_ERR(pipe)) {
1045 mutex_unlock(&mdev->graph_mutex);
1046 return PTR_ERR(pipe);
1047 }
1048
1049 ret = __video_device_pipeline_start(&video->video, &pipe->pipe);
1050 if (ret < 0) {
1051 mutex_unlock(&mdev->graph_mutex);
1052 goto err_pipe;
1053 }
1054
1055 mutex_unlock(&mdev->graph_mutex);
1056
1057 /*
1058 * Verify that the configured format matches the output of the connected
1059 * subdev.
1060 */
1061 ret = vsp1_video_verify_format(video);
1062 if (ret < 0)
1063 goto err_stop;
1064
1065 /* Start the queue. */
1066 ret = vb2_streamon(&video->queue, type);
1067 if (ret < 0)
1068 goto err_stop;
1069
1070 return 0;
1071
1072 err_stop:
1073 video_device_pipeline_stop(&video->video);
1074 err_pipe:
1075 vsp1_video_pipeline_put(pipe);
1076 return ret;
1077 }
1078
1079 static const struct v4l2_ioctl_ops vsp1_video_ioctl_ops = {
1080 .vidioc_querycap = vsp1_video_querycap,
1081 .vidioc_g_fmt_vid_cap_mplane = vsp1_video_get_format,
1082 .vidioc_s_fmt_vid_cap_mplane = vsp1_video_set_format,
1083 .vidioc_try_fmt_vid_cap_mplane = vsp1_video_try_format,
1084 .vidioc_g_fmt_vid_out_mplane = vsp1_video_get_format,
1085 .vidioc_s_fmt_vid_out_mplane = vsp1_video_set_format,
1086 .vidioc_try_fmt_vid_out_mplane = vsp1_video_try_format,
1087 .vidioc_reqbufs = vb2_ioctl_reqbufs,
1088 .vidioc_querybuf = vb2_ioctl_querybuf,
1089 .vidioc_qbuf = vb2_ioctl_qbuf,
1090 .vidioc_dqbuf = vb2_ioctl_dqbuf,
1091 .vidioc_expbuf = vb2_ioctl_expbuf,
1092 .vidioc_create_bufs = vb2_ioctl_create_bufs,
1093 .vidioc_prepare_buf = vb2_ioctl_prepare_buf,
1094 .vidioc_streamon = vsp1_video_streamon,
1095 .vidioc_streamoff = vb2_ioctl_streamoff,
1096 };
1097
1098 /* -----------------------------------------------------------------------------
1099 * V4L2 File Operations
1100 */
1101
vsp1_video_open(struct file * file)1102 static int vsp1_video_open(struct file *file)
1103 {
1104 struct vsp1_video *video = video_drvdata(file);
1105 struct v4l2_fh *vfh;
1106 int ret = 0;
1107
1108 vfh = kzalloc(sizeof(*vfh), GFP_KERNEL);
1109 if (vfh == NULL)
1110 return -ENOMEM;
1111
1112 v4l2_fh_init(vfh, &video->video);
1113 v4l2_fh_add(vfh);
1114
1115 file->private_data = vfh;
1116
1117 ret = vsp1_device_get(video->vsp1);
1118 if (ret < 0) {
1119 v4l2_fh_del(vfh);
1120 v4l2_fh_exit(vfh);
1121 kfree(vfh);
1122 }
1123
1124 return ret;
1125 }
1126
vsp1_video_release(struct file * file)1127 static int vsp1_video_release(struct file *file)
1128 {
1129 struct vsp1_video *video = video_drvdata(file);
1130
1131 vb2_fop_release(file);
1132
1133 vsp1_device_put(video->vsp1);
1134
1135 return 0;
1136 }
1137
1138 static const struct v4l2_file_operations vsp1_video_fops = {
1139 .owner = THIS_MODULE,
1140 .unlocked_ioctl = video_ioctl2,
1141 .open = vsp1_video_open,
1142 .release = vsp1_video_release,
1143 .poll = vb2_fop_poll,
1144 .mmap = vb2_fop_mmap,
1145 };
1146
1147 /* -----------------------------------------------------------------------------
1148 * Suspend and Resume
1149 */
1150
vsp1_video_suspend(struct vsp1_device * vsp1)1151 void vsp1_video_suspend(struct vsp1_device *vsp1)
1152 {
1153 unsigned long flags;
1154 unsigned int i;
1155 int ret;
1156
1157 /*
1158 * To avoid increasing the system suspend time needlessly, loop over the
1159 * pipelines twice, first to set them all to the stopping state, and
1160 * then to wait for the stop to complete.
1161 */
1162 for (i = 0; i < vsp1->info->wpf_count; ++i) {
1163 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1164 struct vsp1_pipeline *pipe;
1165
1166 if (wpf == NULL)
1167 continue;
1168
1169 pipe = wpf->entity.pipe;
1170 if (pipe == NULL)
1171 continue;
1172
1173 spin_lock_irqsave(&pipe->irqlock, flags);
1174 if (pipe->state == VSP1_PIPELINE_RUNNING)
1175 pipe->state = VSP1_PIPELINE_STOPPING;
1176 spin_unlock_irqrestore(&pipe->irqlock, flags);
1177 }
1178
1179 for (i = 0; i < vsp1->info->wpf_count; ++i) {
1180 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1181 struct vsp1_pipeline *pipe;
1182
1183 if (wpf == NULL)
1184 continue;
1185
1186 pipe = wpf->entity.pipe;
1187 if (pipe == NULL)
1188 continue;
1189
1190 ret = wait_event_timeout(pipe->wq, vsp1_pipeline_stopped(pipe),
1191 msecs_to_jiffies(500));
1192 if (ret == 0)
1193 dev_warn(vsp1->dev, "pipeline %u stop timeout\n",
1194 wpf->entity.index);
1195 }
1196 }
1197
vsp1_video_resume(struct vsp1_device * vsp1)1198 void vsp1_video_resume(struct vsp1_device *vsp1)
1199 {
1200 unsigned long flags;
1201 unsigned int i;
1202
1203 /* Resume all running pipelines. */
1204 for (i = 0; i < vsp1->info->wpf_count; ++i) {
1205 struct vsp1_rwpf *wpf = vsp1->wpf[i];
1206 struct vsp1_pipeline *pipe;
1207
1208 if (wpf == NULL)
1209 continue;
1210
1211 pipe = wpf->entity.pipe;
1212 if (pipe == NULL)
1213 continue;
1214
1215 /*
1216 * The hardware may have been reset during a suspend and will
1217 * need a full reconfiguration.
1218 */
1219 pipe->configured = false;
1220
1221 spin_lock_irqsave(&pipe->irqlock, flags);
1222 if (vsp1_pipeline_ready(pipe))
1223 vsp1_video_pipeline_run(pipe);
1224 spin_unlock_irqrestore(&pipe->irqlock, flags);
1225 }
1226 }
1227
1228 /* -----------------------------------------------------------------------------
1229 * Initialization and Cleanup
1230 */
1231
vsp1_video_create(struct vsp1_device * vsp1,struct vsp1_rwpf * rwpf)1232 struct vsp1_video *vsp1_video_create(struct vsp1_device *vsp1,
1233 struct vsp1_rwpf *rwpf)
1234 {
1235 struct vsp1_video *video;
1236 const char *direction;
1237 int ret;
1238
1239 video = devm_kzalloc(vsp1->dev, sizeof(*video), GFP_KERNEL);
1240 if (!video)
1241 return ERR_PTR(-ENOMEM);
1242
1243 rwpf->video = video;
1244
1245 video->vsp1 = vsp1;
1246 video->rwpf = rwpf;
1247
1248 if (rwpf->entity.type == VSP1_ENTITY_RPF) {
1249 direction = "input";
1250 video->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1251 video->pad.flags = MEDIA_PAD_FL_SOURCE;
1252 video->video.vfl_dir = VFL_DIR_TX;
1253 video->video.device_caps = V4L2_CAP_VIDEO_OUTPUT_MPLANE |
1254 V4L2_CAP_STREAMING;
1255 } else {
1256 direction = "output";
1257 video->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1258 video->pad.flags = MEDIA_PAD_FL_SINK;
1259 video->video.vfl_dir = VFL_DIR_RX;
1260 video->video.device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
1261 V4L2_CAP_STREAMING;
1262 }
1263
1264 mutex_init(&video->lock);
1265 spin_lock_init(&video->irqlock);
1266 INIT_LIST_HEAD(&video->irqqueue);
1267
1268 /* Initialize the media entity... */
1269 ret = media_entity_pads_init(&video->video.entity, 1, &video->pad);
1270 if (ret < 0)
1271 return ERR_PTR(ret);
1272
1273 /* ... and the format ... */
1274 rwpf->format.pixelformat = VSP1_VIDEO_DEF_FORMAT;
1275 rwpf->format.width = VSP1_VIDEO_DEF_WIDTH;
1276 rwpf->format.height = VSP1_VIDEO_DEF_HEIGHT;
1277 __vsp1_video_try_format(video, &rwpf->format, &rwpf->fmtinfo);
1278
1279 /* ... and the video node... */
1280 video->video.v4l2_dev = &video->vsp1->v4l2_dev;
1281 video->video.fops = &vsp1_video_fops;
1282 snprintf(video->video.name, sizeof(video->video.name), "%s %s",
1283 rwpf->entity.subdev.name, direction);
1284 video->video.vfl_type = VFL_TYPE_VIDEO;
1285 video->video.release = video_device_release_empty;
1286 video->video.ioctl_ops = &vsp1_video_ioctl_ops;
1287
1288 video_set_drvdata(&video->video, video);
1289
1290 video->queue.type = video->type;
1291 video->queue.io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1292 video->queue.lock = &video->lock;
1293 video->queue.drv_priv = video;
1294 video->queue.buf_struct_size = sizeof(struct vsp1_vb2_buffer);
1295 video->queue.ops = &vsp1_video_queue_qops;
1296 video->queue.mem_ops = &vb2_dma_contig_memops;
1297 video->queue.timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1298 video->queue.dev = video->vsp1->bus_master;
1299 ret = vb2_queue_init(&video->queue);
1300 if (ret < 0) {
1301 dev_err(video->vsp1->dev, "failed to initialize vb2 queue\n");
1302 goto error;
1303 }
1304
1305 /* ... and register the video device. */
1306 video->video.queue = &video->queue;
1307 ret = video_register_device(&video->video, VFL_TYPE_VIDEO, -1);
1308 if (ret < 0) {
1309 dev_err(video->vsp1->dev, "failed to register video device\n");
1310 goto error;
1311 }
1312
1313 return video;
1314
1315 error:
1316 vsp1_video_cleanup(video);
1317 return ERR_PTR(ret);
1318 }
1319
vsp1_video_cleanup(struct vsp1_video * video)1320 void vsp1_video_cleanup(struct vsp1_video *video)
1321 {
1322 if (video_is_registered(&video->video))
1323 video_unregister_device(&video->video);
1324
1325 media_entity_cleanup(&video->video.entity);
1326 }
1327