1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8 /* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
86 */
87
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/init.h>
93 #include <linux/io.h>
94 #include <linux/kernel.h>
95 #include <linux/sched/signal.h>
96 #include <linux/kmod.h>
97 #include <linux/list.h>
98 #include <linux/miscdevice.h>
99 #include <linux/module.h>
100 #include <linux/mutex.h>
101 #include <linux/net.h>
102 #include <linux/poll.h>
103 #include <linux/random.h>
104 #include <linux/skbuff.h>
105 #include <linux/smp.h>
106 #include <linux/socket.h>
107 #include <linux/stddef.h>
108 #include <linux/unistd.h>
109 #include <linux/wait.h>
110 #include <linux/workqueue.h>
111 #include <net/sock.h>
112 #include <net/af_vsock.h>
113
114 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
115 static void vsock_sk_destruct(struct sock *sk);
116 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
117
118 /* Protocol family. */
119 static struct proto vsock_proto = {
120 .name = "AF_VSOCK",
121 .owner = THIS_MODULE,
122 .obj_size = sizeof(struct vsock_sock),
123 };
124
125 /* The default peer timeout indicates how long we will wait for a peer response
126 * to a control message.
127 */
128 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
129
130 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
131 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
132 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
133
134 /* Transport used for host->guest communication */
135 static const struct vsock_transport *transport_h2g;
136 /* Transport used for guest->host communication */
137 static const struct vsock_transport *transport_g2h;
138 /* Transport used for DGRAM communication */
139 static const struct vsock_transport *transport_dgram;
140 /* Transport used for local communication */
141 static const struct vsock_transport *transport_local;
142 static DEFINE_MUTEX(vsock_register_mutex);
143
144 /**** UTILS ****/
145
146 /* Each bound VSocket is stored in the bind hash table and each connected
147 * VSocket is stored in the connected hash table.
148 *
149 * Unbound sockets are all put on the same list attached to the end of the hash
150 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
151 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
152 * represents the list that addr hashes to).
153 *
154 * Specifically, we initialize the vsock_bind_table array to a size of
155 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
156 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
157 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
158 * mods with VSOCK_HASH_SIZE to ensure this.
159 */
160 #define MAX_PORT_RETRIES 24
161
162 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
163 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
164 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
165
166 /* XXX This can probably be implemented in a better way. */
167 #define VSOCK_CONN_HASH(src, dst) \
168 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
169 #define vsock_connected_sockets(src, dst) \
170 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
171 #define vsock_connected_sockets_vsk(vsk) \
172 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
173
174 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
175 EXPORT_SYMBOL_GPL(vsock_bind_table);
176 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
177 EXPORT_SYMBOL_GPL(vsock_connected_table);
178 DEFINE_SPINLOCK(vsock_table_lock);
179 EXPORT_SYMBOL_GPL(vsock_table_lock);
180
181 /* Autobind this socket to the local address if necessary. */
vsock_auto_bind(struct vsock_sock * vsk)182 static int vsock_auto_bind(struct vsock_sock *vsk)
183 {
184 struct sock *sk = sk_vsock(vsk);
185 struct sockaddr_vm local_addr;
186
187 if (vsock_addr_bound(&vsk->local_addr))
188 return 0;
189 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
190 return __vsock_bind(sk, &local_addr);
191 }
192
vsock_init_tables(void)193 static void vsock_init_tables(void)
194 {
195 int i;
196
197 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
198 INIT_LIST_HEAD(&vsock_bind_table[i]);
199
200 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
201 INIT_LIST_HEAD(&vsock_connected_table[i]);
202 }
203
__vsock_insert_bound(struct list_head * list,struct vsock_sock * vsk)204 static void __vsock_insert_bound(struct list_head *list,
205 struct vsock_sock *vsk)
206 {
207 sock_hold(&vsk->sk);
208 list_add(&vsk->bound_table, list);
209 }
210
__vsock_insert_connected(struct list_head * list,struct vsock_sock * vsk)211 static void __vsock_insert_connected(struct list_head *list,
212 struct vsock_sock *vsk)
213 {
214 sock_hold(&vsk->sk);
215 list_add(&vsk->connected_table, list);
216 }
217
__vsock_remove_bound(struct vsock_sock * vsk)218 static void __vsock_remove_bound(struct vsock_sock *vsk)
219 {
220 list_del_init(&vsk->bound_table);
221 sock_put(&vsk->sk);
222 }
223
__vsock_remove_connected(struct vsock_sock * vsk)224 static void __vsock_remove_connected(struct vsock_sock *vsk)
225 {
226 list_del_init(&vsk->connected_table);
227 sock_put(&vsk->sk);
228 }
229
__vsock_find_bound_socket(struct sockaddr_vm * addr)230 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
231 {
232 struct vsock_sock *vsk;
233
234 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
235 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
236 return sk_vsock(vsk);
237
238 if (addr->svm_port == vsk->local_addr.svm_port &&
239 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
240 addr->svm_cid == VMADDR_CID_ANY))
241 return sk_vsock(vsk);
242 }
243
244 return NULL;
245 }
246
__vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)247 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
248 struct sockaddr_vm *dst)
249 {
250 struct vsock_sock *vsk;
251
252 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
253 connected_table) {
254 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
255 dst->svm_port == vsk->local_addr.svm_port) {
256 return sk_vsock(vsk);
257 }
258 }
259
260 return NULL;
261 }
262
vsock_insert_unbound(struct vsock_sock * vsk)263 static void vsock_insert_unbound(struct vsock_sock *vsk)
264 {
265 spin_lock_bh(&vsock_table_lock);
266 __vsock_insert_bound(vsock_unbound_sockets, vsk);
267 spin_unlock_bh(&vsock_table_lock);
268 }
269
vsock_insert_connected(struct vsock_sock * vsk)270 void vsock_insert_connected(struct vsock_sock *vsk)
271 {
272 struct list_head *list = vsock_connected_sockets(
273 &vsk->remote_addr, &vsk->local_addr);
274
275 spin_lock_bh(&vsock_table_lock);
276 __vsock_insert_connected(list, vsk);
277 spin_unlock_bh(&vsock_table_lock);
278 }
279 EXPORT_SYMBOL_GPL(vsock_insert_connected);
280
vsock_remove_bound(struct vsock_sock * vsk)281 void vsock_remove_bound(struct vsock_sock *vsk)
282 {
283 spin_lock_bh(&vsock_table_lock);
284 if (__vsock_in_bound_table(vsk))
285 __vsock_remove_bound(vsk);
286 spin_unlock_bh(&vsock_table_lock);
287 }
288 EXPORT_SYMBOL_GPL(vsock_remove_bound);
289
vsock_remove_connected(struct vsock_sock * vsk)290 void vsock_remove_connected(struct vsock_sock *vsk)
291 {
292 spin_lock_bh(&vsock_table_lock);
293 if (__vsock_in_connected_table(vsk))
294 __vsock_remove_connected(vsk);
295 spin_unlock_bh(&vsock_table_lock);
296 }
297 EXPORT_SYMBOL_GPL(vsock_remove_connected);
298
vsock_find_bound_socket(struct sockaddr_vm * addr)299 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
300 {
301 struct sock *sk;
302
303 spin_lock_bh(&vsock_table_lock);
304 sk = __vsock_find_bound_socket(addr);
305 if (sk)
306 sock_hold(sk);
307
308 spin_unlock_bh(&vsock_table_lock);
309
310 return sk;
311 }
312 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
313
vsock_find_connected_socket(struct sockaddr_vm * src,struct sockaddr_vm * dst)314 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
315 struct sockaddr_vm *dst)
316 {
317 struct sock *sk;
318
319 spin_lock_bh(&vsock_table_lock);
320 sk = __vsock_find_connected_socket(src, dst);
321 if (sk)
322 sock_hold(sk);
323
324 spin_unlock_bh(&vsock_table_lock);
325
326 return sk;
327 }
328 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
329
vsock_remove_sock(struct vsock_sock * vsk)330 void vsock_remove_sock(struct vsock_sock *vsk)
331 {
332 vsock_remove_bound(vsk);
333 vsock_remove_connected(vsk);
334 }
335 EXPORT_SYMBOL_GPL(vsock_remove_sock);
336
vsock_for_each_connected_socket(struct vsock_transport * transport,void (* fn)(struct sock * sk))337 void vsock_for_each_connected_socket(struct vsock_transport *transport,
338 void (*fn)(struct sock *sk))
339 {
340 int i;
341
342 spin_lock_bh(&vsock_table_lock);
343
344 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
345 struct vsock_sock *vsk;
346 list_for_each_entry(vsk, &vsock_connected_table[i],
347 connected_table) {
348 if (vsk->transport != transport)
349 continue;
350
351 fn(sk_vsock(vsk));
352 }
353 }
354
355 spin_unlock_bh(&vsock_table_lock);
356 }
357 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
358
vsock_add_pending(struct sock * listener,struct sock * pending)359 void vsock_add_pending(struct sock *listener, struct sock *pending)
360 {
361 struct vsock_sock *vlistener;
362 struct vsock_sock *vpending;
363
364 vlistener = vsock_sk(listener);
365 vpending = vsock_sk(pending);
366
367 sock_hold(pending);
368 sock_hold(listener);
369 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
370 }
371 EXPORT_SYMBOL_GPL(vsock_add_pending);
372
vsock_remove_pending(struct sock * listener,struct sock * pending)373 void vsock_remove_pending(struct sock *listener, struct sock *pending)
374 {
375 struct vsock_sock *vpending = vsock_sk(pending);
376
377 list_del_init(&vpending->pending_links);
378 sock_put(listener);
379 sock_put(pending);
380 }
381 EXPORT_SYMBOL_GPL(vsock_remove_pending);
382
vsock_enqueue_accept(struct sock * listener,struct sock * connected)383 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
384 {
385 struct vsock_sock *vlistener;
386 struct vsock_sock *vconnected;
387
388 vlistener = vsock_sk(listener);
389 vconnected = vsock_sk(connected);
390
391 sock_hold(connected);
392 sock_hold(listener);
393 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
394 }
395 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
396
vsock_use_local_transport(unsigned int remote_cid)397 static bool vsock_use_local_transport(unsigned int remote_cid)
398 {
399 if (!transport_local)
400 return false;
401
402 if (remote_cid == VMADDR_CID_LOCAL)
403 return true;
404
405 if (transport_g2h) {
406 return remote_cid == transport_g2h->get_local_cid();
407 } else {
408 return remote_cid == VMADDR_CID_HOST;
409 }
410 }
411
vsock_deassign_transport(struct vsock_sock * vsk)412 static void vsock_deassign_transport(struct vsock_sock *vsk)
413 {
414 if (!vsk->transport)
415 return;
416
417 vsk->transport->destruct(vsk);
418 module_put(vsk->transport->module);
419 vsk->transport = NULL;
420 }
421
422 /* Assign a transport to a socket and call the .init transport callback.
423 *
424 * Note: for connection oriented socket this must be called when vsk->remote_addr
425 * is set (e.g. during the connect() or when a connection request on a listener
426 * socket is received).
427 * The vsk->remote_addr is used to decide which transport to use:
428 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
429 * g2h is not loaded, will use local transport;
430 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
431 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
432 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
433 */
vsock_assign_transport(struct vsock_sock * vsk,struct vsock_sock * psk)434 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
435 {
436 const struct vsock_transport *new_transport;
437 struct sock *sk = sk_vsock(vsk);
438 unsigned int remote_cid = vsk->remote_addr.svm_cid;
439 __u8 remote_flags;
440 int ret;
441
442 /* If the packet is coming with the source and destination CIDs higher
443 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
444 * forwarded to the host should be established. Then the host will
445 * need to forward the packets to the guest.
446 *
447 * The flag is set on the (listen) receive path (psk is not NULL). On
448 * the connect path the flag can be set by the user space application.
449 */
450 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
451 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
452 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
453
454 remote_flags = vsk->remote_addr.svm_flags;
455
456 switch (sk->sk_type) {
457 case SOCK_DGRAM:
458 new_transport = transport_dgram;
459 break;
460 case SOCK_STREAM:
461 case SOCK_SEQPACKET:
462 if (vsock_use_local_transport(remote_cid))
463 new_transport = transport_local;
464 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
465 (remote_flags & VMADDR_FLAG_TO_HOST))
466 new_transport = transport_g2h;
467 else
468 new_transport = transport_h2g;
469 break;
470 default:
471 return -ESOCKTNOSUPPORT;
472 }
473
474 if (vsk->transport) {
475 if (vsk->transport == new_transport)
476 return 0;
477
478 /* transport->release() must be called with sock lock acquired.
479 * This path can only be taken during vsock_connect(), where we
480 * have already held the sock lock. In the other cases, this
481 * function is called on a new socket which is not assigned to
482 * any transport.
483 */
484 vsk->transport->release(vsk);
485 vsock_deassign_transport(vsk);
486 }
487
488 /* We increase the module refcnt to prevent the transport unloading
489 * while there are open sockets assigned to it.
490 */
491 if (!new_transport || !try_module_get(new_transport->module))
492 return -ENODEV;
493
494 if (sk->sk_type == SOCK_SEQPACKET) {
495 if (!new_transport->seqpacket_allow ||
496 !new_transport->seqpacket_allow(remote_cid)) {
497 module_put(new_transport->module);
498 return -ESOCKTNOSUPPORT;
499 }
500 }
501
502 ret = new_transport->init(vsk, psk);
503 if (ret) {
504 module_put(new_transport->module);
505 return ret;
506 }
507
508 vsk->transport = new_transport;
509
510 return 0;
511 }
512 EXPORT_SYMBOL_GPL(vsock_assign_transport);
513
vsock_find_cid(unsigned int cid)514 bool vsock_find_cid(unsigned int cid)
515 {
516 if (transport_g2h && cid == transport_g2h->get_local_cid())
517 return true;
518
519 if (transport_h2g && cid == VMADDR_CID_HOST)
520 return true;
521
522 if (transport_local && cid == VMADDR_CID_LOCAL)
523 return true;
524
525 return false;
526 }
527 EXPORT_SYMBOL_GPL(vsock_find_cid);
528
vsock_dequeue_accept(struct sock * listener)529 static struct sock *vsock_dequeue_accept(struct sock *listener)
530 {
531 struct vsock_sock *vlistener;
532 struct vsock_sock *vconnected;
533
534 vlistener = vsock_sk(listener);
535
536 if (list_empty(&vlistener->accept_queue))
537 return NULL;
538
539 vconnected = list_entry(vlistener->accept_queue.next,
540 struct vsock_sock, accept_queue);
541
542 list_del_init(&vconnected->accept_queue);
543 sock_put(listener);
544 /* The caller will need a reference on the connected socket so we let
545 * it call sock_put().
546 */
547
548 return sk_vsock(vconnected);
549 }
550
vsock_is_accept_queue_empty(struct sock * sk)551 static bool vsock_is_accept_queue_empty(struct sock *sk)
552 {
553 struct vsock_sock *vsk = vsock_sk(sk);
554 return list_empty(&vsk->accept_queue);
555 }
556
vsock_is_pending(struct sock * sk)557 static bool vsock_is_pending(struct sock *sk)
558 {
559 struct vsock_sock *vsk = vsock_sk(sk);
560 return !list_empty(&vsk->pending_links);
561 }
562
vsock_send_shutdown(struct sock * sk,int mode)563 static int vsock_send_shutdown(struct sock *sk, int mode)
564 {
565 struct vsock_sock *vsk = vsock_sk(sk);
566
567 if (!vsk->transport)
568 return -ENODEV;
569
570 return vsk->transport->shutdown(vsk, mode);
571 }
572
vsock_pending_work(struct work_struct * work)573 static void vsock_pending_work(struct work_struct *work)
574 {
575 struct sock *sk;
576 struct sock *listener;
577 struct vsock_sock *vsk;
578 bool cleanup;
579
580 vsk = container_of(work, struct vsock_sock, pending_work.work);
581 sk = sk_vsock(vsk);
582 listener = vsk->listener;
583 cleanup = true;
584
585 lock_sock(listener);
586 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
587
588 if (vsock_is_pending(sk)) {
589 vsock_remove_pending(listener, sk);
590
591 sk_acceptq_removed(listener);
592 } else if (!vsk->rejected) {
593 /* We are not on the pending list and accept() did not reject
594 * us, so we must have been accepted by our user process. We
595 * just need to drop our references to the sockets and be on
596 * our way.
597 */
598 cleanup = false;
599 goto out;
600 }
601
602 /* We need to remove ourself from the global connected sockets list so
603 * incoming packets can't find this socket, and to reduce the reference
604 * count.
605 */
606 vsock_remove_connected(vsk);
607
608 sk->sk_state = TCP_CLOSE;
609
610 out:
611 release_sock(sk);
612 release_sock(listener);
613 if (cleanup)
614 sock_put(sk);
615
616 sock_put(sk);
617 sock_put(listener);
618 }
619
620 /**** SOCKET OPERATIONS ****/
621
__vsock_bind_connectible(struct vsock_sock * vsk,struct sockaddr_vm * addr)622 static int __vsock_bind_connectible(struct vsock_sock *vsk,
623 struct sockaddr_vm *addr)
624 {
625 static u32 port;
626 struct sockaddr_vm new_addr;
627
628 if (!port)
629 port = LAST_RESERVED_PORT + 1 +
630 prandom_u32_max(U32_MAX - LAST_RESERVED_PORT);
631
632 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
633
634 if (addr->svm_port == VMADDR_PORT_ANY) {
635 bool found = false;
636 unsigned int i;
637
638 for (i = 0; i < MAX_PORT_RETRIES; i++) {
639 if (port <= LAST_RESERVED_PORT)
640 port = LAST_RESERVED_PORT + 1;
641
642 new_addr.svm_port = port++;
643
644 if (!__vsock_find_bound_socket(&new_addr)) {
645 found = true;
646 break;
647 }
648 }
649
650 if (!found)
651 return -EADDRNOTAVAIL;
652 } else {
653 /* If port is in reserved range, ensure caller
654 * has necessary privileges.
655 */
656 if (addr->svm_port <= LAST_RESERVED_PORT &&
657 !capable(CAP_NET_BIND_SERVICE)) {
658 return -EACCES;
659 }
660
661 if (__vsock_find_bound_socket(&new_addr))
662 return -EADDRINUSE;
663 }
664
665 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
666
667 /* Remove connection oriented sockets from the unbound list and add them
668 * to the hash table for easy lookup by its address. The unbound list
669 * is simply an extra entry at the end of the hash table, a trick used
670 * by AF_UNIX.
671 */
672 __vsock_remove_bound(vsk);
673 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
674
675 return 0;
676 }
677
__vsock_bind_dgram(struct vsock_sock * vsk,struct sockaddr_vm * addr)678 static int __vsock_bind_dgram(struct vsock_sock *vsk,
679 struct sockaddr_vm *addr)
680 {
681 return vsk->transport->dgram_bind(vsk, addr);
682 }
683
__vsock_bind(struct sock * sk,struct sockaddr_vm * addr)684 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
685 {
686 struct vsock_sock *vsk = vsock_sk(sk);
687 int retval;
688
689 /* First ensure this socket isn't already bound. */
690 if (vsock_addr_bound(&vsk->local_addr))
691 return -EINVAL;
692
693 /* Now bind to the provided address or select appropriate values if
694 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
695 * like AF_INET prevents binding to a non-local IP address (in most
696 * cases), we only allow binding to a local CID.
697 */
698 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
699 return -EADDRNOTAVAIL;
700
701 switch (sk->sk_socket->type) {
702 case SOCK_STREAM:
703 case SOCK_SEQPACKET:
704 spin_lock_bh(&vsock_table_lock);
705 retval = __vsock_bind_connectible(vsk, addr);
706 spin_unlock_bh(&vsock_table_lock);
707 break;
708
709 case SOCK_DGRAM:
710 retval = __vsock_bind_dgram(vsk, addr);
711 break;
712
713 default:
714 retval = -EINVAL;
715 break;
716 }
717
718 return retval;
719 }
720
721 static void vsock_connect_timeout(struct work_struct *work);
722
__vsock_create(struct net * net,struct socket * sock,struct sock * parent,gfp_t priority,unsigned short type,int kern)723 static struct sock *__vsock_create(struct net *net,
724 struct socket *sock,
725 struct sock *parent,
726 gfp_t priority,
727 unsigned short type,
728 int kern)
729 {
730 struct sock *sk;
731 struct vsock_sock *psk;
732 struct vsock_sock *vsk;
733
734 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
735 if (!sk)
736 return NULL;
737
738 sock_init_data(sock, sk);
739
740 /* sk->sk_type is normally set in sock_init_data, but only if sock is
741 * non-NULL. We make sure that our sockets always have a type by
742 * setting it here if needed.
743 */
744 if (!sock)
745 sk->sk_type = type;
746
747 vsk = vsock_sk(sk);
748 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
749 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
750
751 sk->sk_destruct = vsock_sk_destruct;
752 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
753 sock_reset_flag(sk, SOCK_DONE);
754
755 INIT_LIST_HEAD(&vsk->bound_table);
756 INIT_LIST_HEAD(&vsk->connected_table);
757 vsk->listener = NULL;
758 INIT_LIST_HEAD(&vsk->pending_links);
759 INIT_LIST_HEAD(&vsk->accept_queue);
760 vsk->rejected = false;
761 vsk->sent_request = false;
762 vsk->ignore_connecting_rst = false;
763 vsk->peer_shutdown = 0;
764 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
765 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
766
767 psk = parent ? vsock_sk(parent) : NULL;
768 if (parent) {
769 vsk->trusted = psk->trusted;
770 vsk->owner = get_cred(psk->owner);
771 vsk->connect_timeout = psk->connect_timeout;
772 vsk->buffer_size = psk->buffer_size;
773 vsk->buffer_min_size = psk->buffer_min_size;
774 vsk->buffer_max_size = psk->buffer_max_size;
775 security_sk_clone(parent, sk);
776 } else {
777 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
778 vsk->owner = get_current_cred();
779 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
780 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
781 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
782 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
783 }
784
785 return sk;
786 }
787
sock_type_connectible(u16 type)788 static bool sock_type_connectible(u16 type)
789 {
790 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
791 }
792
__vsock_release(struct sock * sk,int level)793 static void __vsock_release(struct sock *sk, int level)
794 {
795 if (sk) {
796 struct sock *pending;
797 struct vsock_sock *vsk;
798
799 vsk = vsock_sk(sk);
800 pending = NULL; /* Compiler warning. */
801
802 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
803 * version to avoid the warning "possible recursive locking
804 * detected". When "level" is 0, lock_sock_nested(sk, level)
805 * is the same as lock_sock(sk).
806 */
807 lock_sock_nested(sk, level);
808
809 if (vsk->transport)
810 vsk->transport->release(vsk);
811 else if (sock_type_connectible(sk->sk_type))
812 vsock_remove_sock(vsk);
813
814 sock_orphan(sk);
815 sk->sk_shutdown = SHUTDOWN_MASK;
816
817 skb_queue_purge(&sk->sk_receive_queue);
818
819 /* Clean up any sockets that never were accepted. */
820 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
821 __vsock_release(pending, SINGLE_DEPTH_NESTING);
822 sock_put(pending);
823 }
824
825 release_sock(sk);
826 sock_put(sk);
827 }
828 }
829
vsock_sk_destruct(struct sock * sk)830 static void vsock_sk_destruct(struct sock *sk)
831 {
832 struct vsock_sock *vsk = vsock_sk(sk);
833
834 vsock_deassign_transport(vsk);
835
836 /* When clearing these addresses, there's no need to set the family and
837 * possibly register the address family with the kernel.
838 */
839 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
840 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
841
842 put_cred(vsk->owner);
843 }
844
vsock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)845 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
846 {
847 int err;
848
849 err = sock_queue_rcv_skb(sk, skb);
850 if (err)
851 kfree_skb(skb);
852
853 return err;
854 }
855
vsock_create_connected(struct sock * parent)856 struct sock *vsock_create_connected(struct sock *parent)
857 {
858 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
859 parent->sk_type, 0);
860 }
861 EXPORT_SYMBOL_GPL(vsock_create_connected);
862
vsock_stream_has_data(struct vsock_sock * vsk)863 s64 vsock_stream_has_data(struct vsock_sock *vsk)
864 {
865 return vsk->transport->stream_has_data(vsk);
866 }
867 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
868
vsock_connectible_has_data(struct vsock_sock * vsk)869 static s64 vsock_connectible_has_data(struct vsock_sock *vsk)
870 {
871 struct sock *sk = sk_vsock(vsk);
872
873 if (sk->sk_type == SOCK_SEQPACKET)
874 return vsk->transport->seqpacket_has_data(vsk);
875 else
876 return vsock_stream_has_data(vsk);
877 }
878
vsock_stream_has_space(struct vsock_sock * vsk)879 s64 vsock_stream_has_space(struct vsock_sock *vsk)
880 {
881 return vsk->transport->stream_has_space(vsk);
882 }
883 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
884
vsock_data_ready(struct sock * sk)885 void vsock_data_ready(struct sock *sk)
886 {
887 struct vsock_sock *vsk = vsock_sk(sk);
888
889 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
890 sock_flag(sk, SOCK_DONE))
891 sk->sk_data_ready(sk);
892 }
893 EXPORT_SYMBOL_GPL(vsock_data_ready);
894
vsock_release(struct socket * sock)895 static int vsock_release(struct socket *sock)
896 {
897 __vsock_release(sock->sk, 0);
898 sock->sk = NULL;
899 sock->state = SS_FREE;
900
901 return 0;
902 }
903
904 static int
vsock_bind(struct socket * sock,struct sockaddr * addr,int addr_len)905 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
906 {
907 int err;
908 struct sock *sk;
909 struct sockaddr_vm *vm_addr;
910
911 sk = sock->sk;
912
913 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
914 return -EINVAL;
915
916 lock_sock(sk);
917 err = __vsock_bind(sk, vm_addr);
918 release_sock(sk);
919
920 return err;
921 }
922
vsock_getname(struct socket * sock,struct sockaddr * addr,int peer)923 static int vsock_getname(struct socket *sock,
924 struct sockaddr *addr, int peer)
925 {
926 int err;
927 struct sock *sk;
928 struct vsock_sock *vsk;
929 struct sockaddr_vm *vm_addr;
930
931 sk = sock->sk;
932 vsk = vsock_sk(sk);
933 err = 0;
934
935 lock_sock(sk);
936
937 if (peer) {
938 if (sock->state != SS_CONNECTED) {
939 err = -ENOTCONN;
940 goto out;
941 }
942 vm_addr = &vsk->remote_addr;
943 } else {
944 vm_addr = &vsk->local_addr;
945 }
946
947 if (!vm_addr) {
948 err = -EINVAL;
949 goto out;
950 }
951
952 /* sys_getsockname() and sys_getpeername() pass us a
953 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
954 * that macro is defined in socket.c instead of .h, so we hardcode its
955 * value here.
956 */
957 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
958 memcpy(addr, vm_addr, sizeof(*vm_addr));
959 err = sizeof(*vm_addr);
960
961 out:
962 release_sock(sk);
963 return err;
964 }
965
vsock_shutdown(struct socket * sock,int mode)966 static int vsock_shutdown(struct socket *sock, int mode)
967 {
968 int err;
969 struct sock *sk;
970
971 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
972 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
973 * here like the other address families do. Note also that the
974 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
975 * which is what we want.
976 */
977 mode++;
978
979 if ((mode & ~SHUTDOWN_MASK) || !mode)
980 return -EINVAL;
981
982 /* If this is a connection oriented socket and it is not connected then
983 * bail out immediately. If it is a DGRAM socket then we must first
984 * kick the socket so that it wakes up from any sleeping calls, for
985 * example recv(), and then afterwards return the error.
986 */
987
988 sk = sock->sk;
989
990 lock_sock(sk);
991 if (sock->state == SS_UNCONNECTED) {
992 err = -ENOTCONN;
993 if (sock_type_connectible(sk->sk_type))
994 goto out;
995 } else {
996 sock->state = SS_DISCONNECTING;
997 err = 0;
998 }
999
1000 /* Receive and send shutdowns are treated alike. */
1001 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1002 if (mode) {
1003 sk->sk_shutdown |= mode;
1004 sk->sk_state_change(sk);
1005
1006 if (sock_type_connectible(sk->sk_type)) {
1007 sock_reset_flag(sk, SOCK_DONE);
1008 vsock_send_shutdown(sk, mode);
1009 }
1010 }
1011
1012 out:
1013 release_sock(sk);
1014 return err;
1015 }
1016
vsock_poll(struct file * file,struct socket * sock,poll_table * wait)1017 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1018 poll_table *wait)
1019 {
1020 struct sock *sk;
1021 __poll_t mask;
1022 struct vsock_sock *vsk;
1023
1024 sk = sock->sk;
1025 vsk = vsock_sk(sk);
1026
1027 poll_wait(file, sk_sleep(sk), wait);
1028 mask = 0;
1029
1030 if (sk->sk_err)
1031 /* Signify that there has been an error on this socket. */
1032 mask |= EPOLLERR;
1033
1034 /* INET sockets treat local write shutdown and peer write shutdown as a
1035 * case of EPOLLHUP set.
1036 */
1037 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1038 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1039 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1040 mask |= EPOLLHUP;
1041 }
1042
1043 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1044 vsk->peer_shutdown & SEND_SHUTDOWN) {
1045 mask |= EPOLLRDHUP;
1046 }
1047
1048 if (sock->type == SOCK_DGRAM) {
1049 /* For datagram sockets we can read if there is something in
1050 * the queue and write as long as the socket isn't shutdown for
1051 * sending.
1052 */
1053 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1054 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1055 mask |= EPOLLIN | EPOLLRDNORM;
1056 }
1057
1058 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1059 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1060
1061 } else if (sock_type_connectible(sk->sk_type)) {
1062 const struct vsock_transport *transport;
1063
1064 lock_sock(sk);
1065
1066 transport = vsk->transport;
1067
1068 /* Listening sockets that have connections in their accept
1069 * queue can be read.
1070 */
1071 if (sk->sk_state == TCP_LISTEN
1072 && !vsock_is_accept_queue_empty(sk))
1073 mask |= EPOLLIN | EPOLLRDNORM;
1074
1075 /* If there is something in the queue then we can read. */
1076 if (transport && transport->stream_is_active(vsk) &&
1077 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1078 bool data_ready_now = false;
1079 int target = sock_rcvlowat(sk, 0, INT_MAX);
1080 int ret = transport->notify_poll_in(
1081 vsk, target, &data_ready_now);
1082 if (ret < 0) {
1083 mask |= EPOLLERR;
1084 } else {
1085 if (data_ready_now)
1086 mask |= EPOLLIN | EPOLLRDNORM;
1087
1088 }
1089 }
1090
1091 /* Sockets whose connections have been closed, reset, or
1092 * terminated should also be considered read, and we check the
1093 * shutdown flag for that.
1094 */
1095 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1096 vsk->peer_shutdown & SEND_SHUTDOWN) {
1097 mask |= EPOLLIN | EPOLLRDNORM;
1098 }
1099
1100 /* Connected sockets that can produce data can be written. */
1101 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1102 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1103 bool space_avail_now = false;
1104 int ret = transport->notify_poll_out(
1105 vsk, 1, &space_avail_now);
1106 if (ret < 0) {
1107 mask |= EPOLLERR;
1108 } else {
1109 if (space_avail_now)
1110 /* Remove EPOLLWRBAND since INET
1111 * sockets are not setting it.
1112 */
1113 mask |= EPOLLOUT | EPOLLWRNORM;
1114
1115 }
1116 }
1117 }
1118
1119 /* Simulate INET socket poll behaviors, which sets
1120 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1121 * but local send is not shutdown.
1122 */
1123 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1124 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1125 mask |= EPOLLOUT | EPOLLWRNORM;
1126
1127 }
1128
1129 release_sock(sk);
1130 }
1131
1132 return mask;
1133 }
1134
vsock_dgram_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1135 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1136 size_t len)
1137 {
1138 int err;
1139 struct sock *sk;
1140 struct vsock_sock *vsk;
1141 struct sockaddr_vm *remote_addr;
1142 const struct vsock_transport *transport;
1143
1144 if (msg->msg_flags & MSG_OOB)
1145 return -EOPNOTSUPP;
1146
1147 /* For now, MSG_DONTWAIT is always assumed... */
1148 err = 0;
1149 sk = sock->sk;
1150 vsk = vsock_sk(sk);
1151
1152 lock_sock(sk);
1153
1154 transport = vsk->transport;
1155
1156 err = vsock_auto_bind(vsk);
1157 if (err)
1158 goto out;
1159
1160
1161 /* If the provided message contains an address, use that. Otherwise
1162 * fall back on the socket's remote handle (if it has been connected).
1163 */
1164 if (msg->msg_name &&
1165 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1166 &remote_addr) == 0) {
1167 /* Ensure this address is of the right type and is a valid
1168 * destination.
1169 */
1170
1171 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1172 remote_addr->svm_cid = transport->get_local_cid();
1173
1174 if (!vsock_addr_bound(remote_addr)) {
1175 err = -EINVAL;
1176 goto out;
1177 }
1178 } else if (sock->state == SS_CONNECTED) {
1179 remote_addr = &vsk->remote_addr;
1180
1181 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1182 remote_addr->svm_cid = transport->get_local_cid();
1183
1184 /* XXX Should connect() or this function ensure remote_addr is
1185 * bound?
1186 */
1187 if (!vsock_addr_bound(&vsk->remote_addr)) {
1188 err = -EINVAL;
1189 goto out;
1190 }
1191 } else {
1192 err = -EINVAL;
1193 goto out;
1194 }
1195
1196 if (!transport->dgram_allow(remote_addr->svm_cid,
1197 remote_addr->svm_port)) {
1198 err = -EINVAL;
1199 goto out;
1200 }
1201
1202 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1203
1204 out:
1205 release_sock(sk);
1206 return err;
1207 }
1208
vsock_dgram_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1209 static int vsock_dgram_connect(struct socket *sock,
1210 struct sockaddr *addr, int addr_len, int flags)
1211 {
1212 int err;
1213 struct sock *sk;
1214 struct vsock_sock *vsk;
1215 struct sockaddr_vm *remote_addr;
1216
1217 sk = sock->sk;
1218 vsk = vsock_sk(sk);
1219
1220 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1221 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1222 lock_sock(sk);
1223 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1224 VMADDR_PORT_ANY);
1225 sock->state = SS_UNCONNECTED;
1226 release_sock(sk);
1227 return 0;
1228 } else if (err != 0)
1229 return -EINVAL;
1230
1231 lock_sock(sk);
1232
1233 err = vsock_auto_bind(vsk);
1234 if (err)
1235 goto out;
1236
1237 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1238 remote_addr->svm_port)) {
1239 err = -EINVAL;
1240 goto out;
1241 }
1242
1243 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1244 sock->state = SS_CONNECTED;
1245
1246 out:
1247 release_sock(sk);
1248 return err;
1249 }
1250
vsock_dgram_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)1251 static int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1252 size_t len, int flags)
1253 {
1254 struct vsock_sock *vsk = vsock_sk(sock->sk);
1255
1256 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1257 }
1258
1259 static const struct proto_ops vsock_dgram_ops = {
1260 .family = PF_VSOCK,
1261 .owner = THIS_MODULE,
1262 .release = vsock_release,
1263 .bind = vsock_bind,
1264 .connect = vsock_dgram_connect,
1265 .socketpair = sock_no_socketpair,
1266 .accept = sock_no_accept,
1267 .getname = vsock_getname,
1268 .poll = vsock_poll,
1269 .ioctl = sock_no_ioctl,
1270 .listen = sock_no_listen,
1271 .shutdown = vsock_shutdown,
1272 .sendmsg = vsock_dgram_sendmsg,
1273 .recvmsg = vsock_dgram_recvmsg,
1274 .mmap = sock_no_mmap,
1275 .sendpage = sock_no_sendpage,
1276 };
1277
vsock_transport_cancel_pkt(struct vsock_sock * vsk)1278 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1279 {
1280 const struct vsock_transport *transport = vsk->transport;
1281
1282 if (!transport || !transport->cancel_pkt)
1283 return -EOPNOTSUPP;
1284
1285 return transport->cancel_pkt(vsk);
1286 }
1287
vsock_connect_timeout(struct work_struct * work)1288 static void vsock_connect_timeout(struct work_struct *work)
1289 {
1290 struct sock *sk;
1291 struct vsock_sock *vsk;
1292
1293 vsk = container_of(work, struct vsock_sock, connect_work.work);
1294 sk = sk_vsock(vsk);
1295
1296 lock_sock(sk);
1297 if (sk->sk_state == TCP_SYN_SENT &&
1298 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1299 sk->sk_state = TCP_CLOSE;
1300 sk->sk_socket->state = SS_UNCONNECTED;
1301 sk->sk_err = ETIMEDOUT;
1302 sk_error_report(sk);
1303 vsock_transport_cancel_pkt(vsk);
1304 }
1305 release_sock(sk);
1306
1307 sock_put(sk);
1308 }
1309
vsock_connect(struct socket * sock,struct sockaddr * addr,int addr_len,int flags)1310 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1311 int addr_len, int flags)
1312 {
1313 int err;
1314 struct sock *sk;
1315 struct vsock_sock *vsk;
1316 const struct vsock_transport *transport;
1317 struct sockaddr_vm *remote_addr;
1318 long timeout;
1319 DEFINE_WAIT(wait);
1320
1321 err = 0;
1322 sk = sock->sk;
1323 vsk = vsock_sk(sk);
1324
1325 lock_sock(sk);
1326
1327 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1328 switch (sock->state) {
1329 case SS_CONNECTED:
1330 err = -EISCONN;
1331 goto out;
1332 case SS_DISCONNECTING:
1333 err = -EINVAL;
1334 goto out;
1335 case SS_CONNECTING:
1336 /* This continues on so we can move sock into the SS_CONNECTED
1337 * state once the connection has completed (at which point err
1338 * will be set to zero also). Otherwise, we will either wait
1339 * for the connection or return -EALREADY should this be a
1340 * non-blocking call.
1341 */
1342 err = -EALREADY;
1343 if (flags & O_NONBLOCK)
1344 goto out;
1345 break;
1346 default:
1347 if ((sk->sk_state == TCP_LISTEN) ||
1348 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1349 err = -EINVAL;
1350 goto out;
1351 }
1352
1353 /* Set the remote address that we are connecting to. */
1354 memcpy(&vsk->remote_addr, remote_addr,
1355 sizeof(vsk->remote_addr));
1356
1357 err = vsock_assign_transport(vsk, NULL);
1358 if (err)
1359 goto out;
1360
1361 transport = vsk->transport;
1362
1363 /* The hypervisor and well-known contexts do not have socket
1364 * endpoints.
1365 */
1366 if (!transport ||
1367 !transport->stream_allow(remote_addr->svm_cid,
1368 remote_addr->svm_port)) {
1369 err = -ENETUNREACH;
1370 goto out;
1371 }
1372
1373 err = vsock_auto_bind(vsk);
1374 if (err)
1375 goto out;
1376
1377 sk->sk_state = TCP_SYN_SENT;
1378
1379 err = transport->connect(vsk);
1380 if (err < 0)
1381 goto out;
1382
1383 /* Mark sock as connecting and set the error code to in
1384 * progress in case this is a non-blocking connect.
1385 */
1386 sock->state = SS_CONNECTING;
1387 err = -EINPROGRESS;
1388 }
1389
1390 /* The receive path will handle all communication until we are able to
1391 * enter the connected state. Here we wait for the connection to be
1392 * completed or a notification of an error.
1393 */
1394 timeout = vsk->connect_timeout;
1395 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1396
1397 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1398 if (flags & O_NONBLOCK) {
1399 /* If we're not going to block, we schedule a timeout
1400 * function to generate a timeout on the connection
1401 * attempt, in case the peer doesn't respond in a
1402 * timely manner. We hold on to the socket until the
1403 * timeout fires.
1404 */
1405 sock_hold(sk);
1406
1407 /* If the timeout function is already scheduled,
1408 * reschedule it, then ungrab the socket refcount to
1409 * keep it balanced.
1410 */
1411 if (mod_delayed_work(system_wq, &vsk->connect_work,
1412 timeout))
1413 sock_put(sk);
1414
1415 /* Skip ahead to preserve error code set above. */
1416 goto out_wait;
1417 }
1418
1419 release_sock(sk);
1420 timeout = schedule_timeout(timeout);
1421 lock_sock(sk);
1422
1423 if (signal_pending(current)) {
1424 err = sock_intr_errno(timeout);
1425 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1426 sock->state = SS_UNCONNECTED;
1427 vsock_transport_cancel_pkt(vsk);
1428 vsock_remove_connected(vsk);
1429 goto out_wait;
1430 } else if (timeout == 0) {
1431 err = -ETIMEDOUT;
1432 sk->sk_state = TCP_CLOSE;
1433 sock->state = SS_UNCONNECTED;
1434 vsock_transport_cancel_pkt(vsk);
1435 goto out_wait;
1436 }
1437
1438 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1439 }
1440
1441 if (sk->sk_err) {
1442 err = -sk->sk_err;
1443 sk->sk_state = TCP_CLOSE;
1444 sock->state = SS_UNCONNECTED;
1445 } else {
1446 err = 0;
1447 }
1448
1449 out_wait:
1450 finish_wait(sk_sleep(sk), &wait);
1451 out:
1452 release_sock(sk);
1453 return err;
1454 }
1455
vsock_accept(struct socket * sock,struct socket * newsock,int flags,bool kern)1456 static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1457 bool kern)
1458 {
1459 struct sock *listener;
1460 int err;
1461 struct sock *connected;
1462 struct vsock_sock *vconnected;
1463 long timeout;
1464 DEFINE_WAIT(wait);
1465
1466 err = 0;
1467 listener = sock->sk;
1468
1469 lock_sock(listener);
1470
1471 if (!sock_type_connectible(sock->type)) {
1472 err = -EOPNOTSUPP;
1473 goto out;
1474 }
1475
1476 if (listener->sk_state != TCP_LISTEN) {
1477 err = -EINVAL;
1478 goto out;
1479 }
1480
1481 /* Wait for children sockets to appear; these are the new sockets
1482 * created upon connection establishment.
1483 */
1484 timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1485 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1486
1487 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1488 listener->sk_err == 0) {
1489 release_sock(listener);
1490 timeout = schedule_timeout(timeout);
1491 finish_wait(sk_sleep(listener), &wait);
1492 lock_sock(listener);
1493
1494 if (signal_pending(current)) {
1495 err = sock_intr_errno(timeout);
1496 goto out;
1497 } else if (timeout == 0) {
1498 err = -EAGAIN;
1499 goto out;
1500 }
1501
1502 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1503 }
1504 finish_wait(sk_sleep(listener), &wait);
1505
1506 if (listener->sk_err)
1507 err = -listener->sk_err;
1508
1509 if (connected) {
1510 sk_acceptq_removed(listener);
1511
1512 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1513 vconnected = vsock_sk(connected);
1514
1515 /* If the listener socket has received an error, then we should
1516 * reject this socket and return. Note that we simply mark the
1517 * socket rejected, drop our reference, and let the cleanup
1518 * function handle the cleanup; the fact that we found it in
1519 * the listener's accept queue guarantees that the cleanup
1520 * function hasn't run yet.
1521 */
1522 if (err) {
1523 vconnected->rejected = true;
1524 } else {
1525 newsock->state = SS_CONNECTED;
1526 sock_graft(connected, newsock);
1527 }
1528
1529 release_sock(connected);
1530 sock_put(connected);
1531 }
1532
1533 out:
1534 release_sock(listener);
1535 return err;
1536 }
1537
vsock_listen(struct socket * sock,int backlog)1538 static int vsock_listen(struct socket *sock, int backlog)
1539 {
1540 int err;
1541 struct sock *sk;
1542 struct vsock_sock *vsk;
1543
1544 sk = sock->sk;
1545
1546 lock_sock(sk);
1547
1548 if (!sock_type_connectible(sk->sk_type)) {
1549 err = -EOPNOTSUPP;
1550 goto out;
1551 }
1552
1553 if (sock->state != SS_UNCONNECTED) {
1554 err = -EINVAL;
1555 goto out;
1556 }
1557
1558 vsk = vsock_sk(sk);
1559
1560 if (!vsock_addr_bound(&vsk->local_addr)) {
1561 err = -EINVAL;
1562 goto out;
1563 }
1564
1565 sk->sk_max_ack_backlog = backlog;
1566 sk->sk_state = TCP_LISTEN;
1567
1568 err = 0;
1569
1570 out:
1571 release_sock(sk);
1572 return err;
1573 }
1574
vsock_update_buffer_size(struct vsock_sock * vsk,const struct vsock_transport * transport,u64 val)1575 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1576 const struct vsock_transport *transport,
1577 u64 val)
1578 {
1579 if (val > vsk->buffer_max_size)
1580 val = vsk->buffer_max_size;
1581
1582 if (val < vsk->buffer_min_size)
1583 val = vsk->buffer_min_size;
1584
1585 if (val != vsk->buffer_size &&
1586 transport && transport->notify_buffer_size)
1587 transport->notify_buffer_size(vsk, &val);
1588
1589 vsk->buffer_size = val;
1590 }
1591
vsock_connectible_setsockopt(struct socket * sock,int level,int optname,sockptr_t optval,unsigned int optlen)1592 static int vsock_connectible_setsockopt(struct socket *sock,
1593 int level,
1594 int optname,
1595 sockptr_t optval,
1596 unsigned int optlen)
1597 {
1598 int err;
1599 struct sock *sk;
1600 struct vsock_sock *vsk;
1601 const struct vsock_transport *transport;
1602 u64 val;
1603
1604 if (level != AF_VSOCK)
1605 return -ENOPROTOOPT;
1606
1607 #define COPY_IN(_v) \
1608 do { \
1609 if (optlen < sizeof(_v)) { \
1610 err = -EINVAL; \
1611 goto exit; \
1612 } \
1613 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1614 err = -EFAULT; \
1615 goto exit; \
1616 } \
1617 } while (0)
1618
1619 err = 0;
1620 sk = sock->sk;
1621 vsk = vsock_sk(sk);
1622
1623 lock_sock(sk);
1624
1625 transport = vsk->transport;
1626
1627 switch (optname) {
1628 case SO_VM_SOCKETS_BUFFER_SIZE:
1629 COPY_IN(val);
1630 vsock_update_buffer_size(vsk, transport, val);
1631 break;
1632
1633 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1634 COPY_IN(val);
1635 vsk->buffer_max_size = val;
1636 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1637 break;
1638
1639 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1640 COPY_IN(val);
1641 vsk->buffer_min_size = val;
1642 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1643 break;
1644
1645 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1646 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1647 struct __kernel_sock_timeval tv;
1648
1649 err = sock_copy_user_timeval(&tv, optval, optlen,
1650 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1651 if (err)
1652 break;
1653 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1654 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1655 vsk->connect_timeout = tv.tv_sec * HZ +
1656 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1657 if (vsk->connect_timeout == 0)
1658 vsk->connect_timeout =
1659 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1660
1661 } else {
1662 err = -ERANGE;
1663 }
1664 break;
1665 }
1666
1667 default:
1668 err = -ENOPROTOOPT;
1669 break;
1670 }
1671
1672 #undef COPY_IN
1673
1674 exit:
1675 release_sock(sk);
1676 return err;
1677 }
1678
vsock_connectible_getsockopt(struct socket * sock,int level,int optname,char __user * optval,int __user * optlen)1679 static int vsock_connectible_getsockopt(struct socket *sock,
1680 int level, int optname,
1681 char __user *optval,
1682 int __user *optlen)
1683 {
1684 struct sock *sk = sock->sk;
1685 struct vsock_sock *vsk = vsock_sk(sk);
1686
1687 union {
1688 u64 val64;
1689 struct old_timeval32 tm32;
1690 struct __kernel_old_timeval tm;
1691 struct __kernel_sock_timeval stm;
1692 } v;
1693
1694 int lv = sizeof(v.val64);
1695 int len;
1696
1697 if (level != AF_VSOCK)
1698 return -ENOPROTOOPT;
1699
1700 if (get_user(len, optlen))
1701 return -EFAULT;
1702
1703 memset(&v, 0, sizeof(v));
1704
1705 switch (optname) {
1706 case SO_VM_SOCKETS_BUFFER_SIZE:
1707 v.val64 = vsk->buffer_size;
1708 break;
1709
1710 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1711 v.val64 = vsk->buffer_max_size;
1712 break;
1713
1714 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1715 v.val64 = vsk->buffer_min_size;
1716 break;
1717
1718 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1719 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1720 lv = sock_get_timeout(vsk->connect_timeout, &v,
1721 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1722 break;
1723
1724 default:
1725 return -ENOPROTOOPT;
1726 }
1727
1728 if (len < lv)
1729 return -EINVAL;
1730 if (len > lv)
1731 len = lv;
1732 if (copy_to_user(optval, &v, len))
1733 return -EFAULT;
1734
1735 if (put_user(len, optlen))
1736 return -EFAULT;
1737
1738 return 0;
1739 }
1740
vsock_connectible_sendmsg(struct socket * sock,struct msghdr * msg,size_t len)1741 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1742 size_t len)
1743 {
1744 struct sock *sk;
1745 struct vsock_sock *vsk;
1746 const struct vsock_transport *transport;
1747 ssize_t total_written;
1748 long timeout;
1749 int err;
1750 struct vsock_transport_send_notify_data send_data;
1751 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1752
1753 sk = sock->sk;
1754 vsk = vsock_sk(sk);
1755 total_written = 0;
1756 err = 0;
1757
1758 if (msg->msg_flags & MSG_OOB)
1759 return -EOPNOTSUPP;
1760
1761 lock_sock(sk);
1762
1763 transport = vsk->transport;
1764
1765 /* Callers should not provide a destination with connection oriented
1766 * sockets.
1767 */
1768 if (msg->msg_namelen) {
1769 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1770 goto out;
1771 }
1772
1773 /* Send data only if both sides are not shutdown in the direction. */
1774 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1775 vsk->peer_shutdown & RCV_SHUTDOWN) {
1776 err = -EPIPE;
1777 goto out;
1778 }
1779
1780 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1781 !vsock_addr_bound(&vsk->local_addr)) {
1782 err = -ENOTCONN;
1783 goto out;
1784 }
1785
1786 if (!vsock_addr_bound(&vsk->remote_addr)) {
1787 err = -EDESTADDRREQ;
1788 goto out;
1789 }
1790
1791 /* Wait for room in the produce queue to enqueue our user's data. */
1792 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1793
1794 err = transport->notify_send_init(vsk, &send_data);
1795 if (err < 0)
1796 goto out;
1797
1798 while (total_written < len) {
1799 ssize_t written;
1800
1801 add_wait_queue(sk_sleep(sk), &wait);
1802 while (vsock_stream_has_space(vsk) == 0 &&
1803 sk->sk_err == 0 &&
1804 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1805 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1806
1807 /* Don't wait for non-blocking sockets. */
1808 if (timeout == 0) {
1809 err = -EAGAIN;
1810 remove_wait_queue(sk_sleep(sk), &wait);
1811 goto out_err;
1812 }
1813
1814 err = transport->notify_send_pre_block(vsk, &send_data);
1815 if (err < 0) {
1816 remove_wait_queue(sk_sleep(sk), &wait);
1817 goto out_err;
1818 }
1819
1820 release_sock(sk);
1821 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1822 lock_sock(sk);
1823 if (signal_pending(current)) {
1824 err = sock_intr_errno(timeout);
1825 remove_wait_queue(sk_sleep(sk), &wait);
1826 goto out_err;
1827 } else if (timeout == 0) {
1828 err = -EAGAIN;
1829 remove_wait_queue(sk_sleep(sk), &wait);
1830 goto out_err;
1831 }
1832 }
1833 remove_wait_queue(sk_sleep(sk), &wait);
1834
1835 /* These checks occur both as part of and after the loop
1836 * conditional since we need to check before and after
1837 * sleeping.
1838 */
1839 if (sk->sk_err) {
1840 err = -sk->sk_err;
1841 goto out_err;
1842 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1843 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1844 err = -EPIPE;
1845 goto out_err;
1846 }
1847
1848 err = transport->notify_send_pre_enqueue(vsk, &send_data);
1849 if (err < 0)
1850 goto out_err;
1851
1852 /* Note that enqueue will only write as many bytes as are free
1853 * in the produce queue, so we don't need to ensure len is
1854 * smaller than the queue size. It is the caller's
1855 * responsibility to check how many bytes we were able to send.
1856 */
1857
1858 if (sk->sk_type == SOCK_SEQPACKET) {
1859 written = transport->seqpacket_enqueue(vsk,
1860 msg, len - total_written);
1861 } else {
1862 written = transport->stream_enqueue(vsk,
1863 msg, len - total_written);
1864 }
1865 if (written < 0) {
1866 err = -ENOMEM;
1867 goto out_err;
1868 }
1869
1870 total_written += written;
1871
1872 err = transport->notify_send_post_enqueue(
1873 vsk, written, &send_data);
1874 if (err < 0)
1875 goto out_err;
1876
1877 }
1878
1879 out_err:
1880 if (total_written > 0) {
1881 /* Return number of written bytes only if:
1882 * 1) SOCK_STREAM socket.
1883 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1884 */
1885 if (sk->sk_type == SOCK_STREAM || total_written == len)
1886 err = total_written;
1887 }
1888 out:
1889 release_sock(sk);
1890 return err;
1891 }
1892
vsock_connectible_wait_data(struct sock * sk,struct wait_queue_entry * wait,long timeout,struct vsock_transport_recv_notify_data * recv_data,size_t target)1893 static int vsock_connectible_wait_data(struct sock *sk,
1894 struct wait_queue_entry *wait,
1895 long timeout,
1896 struct vsock_transport_recv_notify_data *recv_data,
1897 size_t target)
1898 {
1899 const struct vsock_transport *transport;
1900 struct vsock_sock *vsk;
1901 s64 data;
1902 int err;
1903
1904 vsk = vsock_sk(sk);
1905 err = 0;
1906 transport = vsk->transport;
1907
1908 while (1) {
1909 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1910 data = vsock_connectible_has_data(vsk);
1911 if (data != 0)
1912 break;
1913
1914 if (sk->sk_err != 0 ||
1915 (sk->sk_shutdown & RCV_SHUTDOWN) ||
1916 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1917 break;
1918 }
1919
1920 /* Don't wait for non-blocking sockets. */
1921 if (timeout == 0) {
1922 err = -EAGAIN;
1923 break;
1924 }
1925
1926 if (recv_data) {
1927 err = transport->notify_recv_pre_block(vsk, target, recv_data);
1928 if (err < 0)
1929 break;
1930 }
1931
1932 release_sock(sk);
1933 timeout = schedule_timeout(timeout);
1934 lock_sock(sk);
1935
1936 if (signal_pending(current)) {
1937 err = sock_intr_errno(timeout);
1938 break;
1939 } else if (timeout == 0) {
1940 err = -EAGAIN;
1941 break;
1942 }
1943 }
1944
1945 finish_wait(sk_sleep(sk), wait);
1946
1947 if (err)
1948 return err;
1949
1950 /* Internal transport error when checking for available
1951 * data. XXX This should be changed to a connection
1952 * reset in a later change.
1953 */
1954 if (data < 0)
1955 return -ENOMEM;
1956
1957 return data;
1958 }
1959
__vsock_stream_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)1960 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1961 size_t len, int flags)
1962 {
1963 struct vsock_transport_recv_notify_data recv_data;
1964 const struct vsock_transport *transport;
1965 struct vsock_sock *vsk;
1966 ssize_t copied;
1967 size_t target;
1968 long timeout;
1969 int err;
1970
1971 DEFINE_WAIT(wait);
1972
1973 vsk = vsock_sk(sk);
1974 transport = vsk->transport;
1975
1976 /* We must not copy less than target bytes into the user's buffer
1977 * before returning successfully, so we wait for the consume queue to
1978 * have that much data to consume before dequeueing. Note that this
1979 * makes it impossible to handle cases where target is greater than the
1980 * queue size.
1981 */
1982 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1983 if (target >= transport->stream_rcvhiwat(vsk)) {
1984 err = -ENOMEM;
1985 goto out;
1986 }
1987 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1988 copied = 0;
1989
1990 err = transport->notify_recv_init(vsk, target, &recv_data);
1991 if (err < 0)
1992 goto out;
1993
1994
1995 while (1) {
1996 ssize_t read;
1997
1998 err = vsock_connectible_wait_data(sk, &wait, timeout,
1999 &recv_data, target);
2000 if (err <= 0)
2001 break;
2002
2003 err = transport->notify_recv_pre_dequeue(vsk, target,
2004 &recv_data);
2005 if (err < 0)
2006 break;
2007
2008 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2009 if (read < 0) {
2010 err = -ENOMEM;
2011 break;
2012 }
2013
2014 copied += read;
2015
2016 err = transport->notify_recv_post_dequeue(vsk, target, read,
2017 !(flags & MSG_PEEK), &recv_data);
2018 if (err < 0)
2019 goto out;
2020
2021 if (read >= target || flags & MSG_PEEK)
2022 break;
2023
2024 target -= read;
2025 }
2026
2027 if (sk->sk_err)
2028 err = -sk->sk_err;
2029 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2030 err = 0;
2031
2032 if (copied > 0)
2033 err = copied;
2034
2035 out:
2036 return err;
2037 }
2038
__vsock_seqpacket_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags)2039 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2040 size_t len, int flags)
2041 {
2042 const struct vsock_transport *transport;
2043 struct vsock_sock *vsk;
2044 ssize_t msg_len;
2045 long timeout;
2046 int err = 0;
2047 DEFINE_WAIT(wait);
2048
2049 vsk = vsock_sk(sk);
2050 transport = vsk->transport;
2051
2052 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2053
2054 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2055 if (err <= 0)
2056 goto out;
2057
2058 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2059
2060 if (msg_len < 0) {
2061 err = -ENOMEM;
2062 goto out;
2063 }
2064
2065 if (sk->sk_err) {
2066 err = -sk->sk_err;
2067 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2068 err = 0;
2069 } else {
2070 /* User sets MSG_TRUNC, so return real length of
2071 * packet.
2072 */
2073 if (flags & MSG_TRUNC)
2074 err = msg_len;
2075 else
2076 err = len - msg_data_left(msg);
2077
2078 /* Always set MSG_TRUNC if real length of packet is
2079 * bigger than user's buffer.
2080 */
2081 if (msg_len > len)
2082 msg->msg_flags |= MSG_TRUNC;
2083 }
2084
2085 out:
2086 return err;
2087 }
2088
2089 static int
vsock_connectible_recvmsg(struct socket * sock,struct msghdr * msg,size_t len,int flags)2090 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2091 int flags)
2092 {
2093 struct sock *sk;
2094 struct vsock_sock *vsk;
2095 const struct vsock_transport *transport;
2096 int err;
2097
2098 sk = sock->sk;
2099 vsk = vsock_sk(sk);
2100 err = 0;
2101
2102 lock_sock(sk);
2103
2104 transport = vsk->transport;
2105
2106 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2107 /* Recvmsg is supposed to return 0 if a peer performs an
2108 * orderly shutdown. Differentiate between that case and when a
2109 * peer has not connected or a local shutdown occurred with the
2110 * SOCK_DONE flag.
2111 */
2112 if (sock_flag(sk, SOCK_DONE))
2113 err = 0;
2114 else
2115 err = -ENOTCONN;
2116
2117 goto out;
2118 }
2119
2120 if (flags & MSG_OOB) {
2121 err = -EOPNOTSUPP;
2122 goto out;
2123 }
2124
2125 /* We don't check peer_shutdown flag here since peer may actually shut
2126 * down, but there can be data in the queue that a local socket can
2127 * receive.
2128 */
2129 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2130 err = 0;
2131 goto out;
2132 }
2133
2134 /* It is valid on Linux to pass in a zero-length receive buffer. This
2135 * is not an error. We may as well bail out now.
2136 */
2137 if (!len) {
2138 err = 0;
2139 goto out;
2140 }
2141
2142 if (sk->sk_type == SOCK_STREAM)
2143 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2144 else
2145 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2146
2147 out:
2148 release_sock(sk);
2149 return err;
2150 }
2151
vsock_set_rcvlowat(struct sock * sk,int val)2152 static int vsock_set_rcvlowat(struct sock *sk, int val)
2153 {
2154 const struct vsock_transport *transport;
2155 struct vsock_sock *vsk;
2156
2157 vsk = vsock_sk(sk);
2158
2159 if (val > vsk->buffer_size)
2160 return -EINVAL;
2161
2162 transport = vsk->transport;
2163
2164 if (transport && transport->set_rcvlowat)
2165 return transport->set_rcvlowat(vsk, val);
2166
2167 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2168 return 0;
2169 }
2170
2171 static const struct proto_ops vsock_stream_ops = {
2172 .family = PF_VSOCK,
2173 .owner = THIS_MODULE,
2174 .release = vsock_release,
2175 .bind = vsock_bind,
2176 .connect = vsock_connect,
2177 .socketpair = sock_no_socketpair,
2178 .accept = vsock_accept,
2179 .getname = vsock_getname,
2180 .poll = vsock_poll,
2181 .ioctl = sock_no_ioctl,
2182 .listen = vsock_listen,
2183 .shutdown = vsock_shutdown,
2184 .setsockopt = vsock_connectible_setsockopt,
2185 .getsockopt = vsock_connectible_getsockopt,
2186 .sendmsg = vsock_connectible_sendmsg,
2187 .recvmsg = vsock_connectible_recvmsg,
2188 .mmap = sock_no_mmap,
2189 .sendpage = sock_no_sendpage,
2190 .set_rcvlowat = vsock_set_rcvlowat,
2191 };
2192
2193 static const struct proto_ops vsock_seqpacket_ops = {
2194 .family = PF_VSOCK,
2195 .owner = THIS_MODULE,
2196 .release = vsock_release,
2197 .bind = vsock_bind,
2198 .connect = vsock_connect,
2199 .socketpair = sock_no_socketpair,
2200 .accept = vsock_accept,
2201 .getname = vsock_getname,
2202 .poll = vsock_poll,
2203 .ioctl = sock_no_ioctl,
2204 .listen = vsock_listen,
2205 .shutdown = vsock_shutdown,
2206 .setsockopt = vsock_connectible_setsockopt,
2207 .getsockopt = vsock_connectible_getsockopt,
2208 .sendmsg = vsock_connectible_sendmsg,
2209 .recvmsg = vsock_connectible_recvmsg,
2210 .mmap = sock_no_mmap,
2211 .sendpage = sock_no_sendpage,
2212 };
2213
vsock_create(struct net * net,struct socket * sock,int protocol,int kern)2214 static int vsock_create(struct net *net, struct socket *sock,
2215 int protocol, int kern)
2216 {
2217 struct vsock_sock *vsk;
2218 struct sock *sk;
2219 int ret;
2220
2221 if (!sock)
2222 return -EINVAL;
2223
2224 if (protocol && protocol != PF_VSOCK)
2225 return -EPROTONOSUPPORT;
2226
2227 switch (sock->type) {
2228 case SOCK_DGRAM:
2229 sock->ops = &vsock_dgram_ops;
2230 break;
2231 case SOCK_STREAM:
2232 sock->ops = &vsock_stream_ops;
2233 break;
2234 case SOCK_SEQPACKET:
2235 sock->ops = &vsock_seqpacket_ops;
2236 break;
2237 default:
2238 return -ESOCKTNOSUPPORT;
2239 }
2240
2241 sock->state = SS_UNCONNECTED;
2242
2243 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2244 if (!sk)
2245 return -ENOMEM;
2246
2247 vsk = vsock_sk(sk);
2248
2249 if (sock->type == SOCK_DGRAM) {
2250 ret = vsock_assign_transport(vsk, NULL);
2251 if (ret < 0) {
2252 sock_put(sk);
2253 return ret;
2254 }
2255 }
2256
2257 vsock_insert_unbound(vsk);
2258
2259 return 0;
2260 }
2261
2262 static const struct net_proto_family vsock_family_ops = {
2263 .family = AF_VSOCK,
2264 .create = vsock_create,
2265 .owner = THIS_MODULE,
2266 };
2267
vsock_dev_do_ioctl(struct file * filp,unsigned int cmd,void __user * ptr)2268 static long vsock_dev_do_ioctl(struct file *filp,
2269 unsigned int cmd, void __user *ptr)
2270 {
2271 u32 __user *p = ptr;
2272 u32 cid = VMADDR_CID_ANY;
2273 int retval = 0;
2274
2275 switch (cmd) {
2276 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2277 /* To be compatible with the VMCI behavior, we prioritize the
2278 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2279 */
2280 if (transport_g2h)
2281 cid = transport_g2h->get_local_cid();
2282 else if (transport_h2g)
2283 cid = transport_h2g->get_local_cid();
2284
2285 if (put_user(cid, p) != 0)
2286 retval = -EFAULT;
2287 break;
2288
2289 default:
2290 retval = -ENOIOCTLCMD;
2291 }
2292
2293 return retval;
2294 }
2295
vsock_dev_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2296 static long vsock_dev_ioctl(struct file *filp,
2297 unsigned int cmd, unsigned long arg)
2298 {
2299 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2300 }
2301
2302 #ifdef CONFIG_COMPAT
vsock_dev_compat_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2303 static long vsock_dev_compat_ioctl(struct file *filp,
2304 unsigned int cmd, unsigned long arg)
2305 {
2306 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2307 }
2308 #endif
2309
2310 static const struct file_operations vsock_device_ops = {
2311 .owner = THIS_MODULE,
2312 .unlocked_ioctl = vsock_dev_ioctl,
2313 #ifdef CONFIG_COMPAT
2314 .compat_ioctl = vsock_dev_compat_ioctl,
2315 #endif
2316 .open = nonseekable_open,
2317 };
2318
2319 static struct miscdevice vsock_device = {
2320 .name = "vsock",
2321 .fops = &vsock_device_ops,
2322 };
2323
vsock_init(void)2324 static int __init vsock_init(void)
2325 {
2326 int err = 0;
2327
2328 vsock_init_tables();
2329
2330 vsock_proto.owner = THIS_MODULE;
2331 vsock_device.minor = MISC_DYNAMIC_MINOR;
2332 err = misc_register(&vsock_device);
2333 if (err) {
2334 pr_err("Failed to register misc device\n");
2335 goto err_reset_transport;
2336 }
2337
2338 err = proto_register(&vsock_proto, 1); /* we want our slab */
2339 if (err) {
2340 pr_err("Cannot register vsock protocol\n");
2341 goto err_deregister_misc;
2342 }
2343
2344 err = sock_register(&vsock_family_ops);
2345 if (err) {
2346 pr_err("could not register af_vsock (%d) address family: %d\n",
2347 AF_VSOCK, err);
2348 goto err_unregister_proto;
2349 }
2350
2351 return 0;
2352
2353 err_unregister_proto:
2354 proto_unregister(&vsock_proto);
2355 err_deregister_misc:
2356 misc_deregister(&vsock_device);
2357 err_reset_transport:
2358 return err;
2359 }
2360
vsock_exit(void)2361 static void __exit vsock_exit(void)
2362 {
2363 misc_deregister(&vsock_device);
2364 sock_unregister(AF_VSOCK);
2365 proto_unregister(&vsock_proto);
2366 }
2367
vsock_core_get_transport(struct vsock_sock * vsk)2368 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2369 {
2370 return vsk->transport;
2371 }
2372 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2373
vsock_core_register(const struct vsock_transport * t,int features)2374 int vsock_core_register(const struct vsock_transport *t, int features)
2375 {
2376 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2377 int err = mutex_lock_interruptible(&vsock_register_mutex);
2378
2379 if (err)
2380 return err;
2381
2382 t_h2g = transport_h2g;
2383 t_g2h = transport_g2h;
2384 t_dgram = transport_dgram;
2385 t_local = transport_local;
2386
2387 if (features & VSOCK_TRANSPORT_F_H2G) {
2388 if (t_h2g) {
2389 err = -EBUSY;
2390 goto err_busy;
2391 }
2392 t_h2g = t;
2393 }
2394
2395 if (features & VSOCK_TRANSPORT_F_G2H) {
2396 if (t_g2h) {
2397 err = -EBUSY;
2398 goto err_busy;
2399 }
2400 t_g2h = t;
2401 }
2402
2403 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2404 if (t_dgram) {
2405 err = -EBUSY;
2406 goto err_busy;
2407 }
2408 t_dgram = t;
2409 }
2410
2411 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2412 if (t_local) {
2413 err = -EBUSY;
2414 goto err_busy;
2415 }
2416 t_local = t;
2417 }
2418
2419 transport_h2g = t_h2g;
2420 transport_g2h = t_g2h;
2421 transport_dgram = t_dgram;
2422 transport_local = t_local;
2423
2424 err_busy:
2425 mutex_unlock(&vsock_register_mutex);
2426 return err;
2427 }
2428 EXPORT_SYMBOL_GPL(vsock_core_register);
2429
vsock_core_unregister(const struct vsock_transport * t)2430 void vsock_core_unregister(const struct vsock_transport *t)
2431 {
2432 mutex_lock(&vsock_register_mutex);
2433
2434 if (transport_h2g == t)
2435 transport_h2g = NULL;
2436
2437 if (transport_g2h == t)
2438 transport_g2h = NULL;
2439
2440 if (transport_dgram == t)
2441 transport_dgram = NULL;
2442
2443 if (transport_local == t)
2444 transport_local = NULL;
2445
2446 mutex_unlock(&vsock_register_mutex);
2447 }
2448 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2449
2450 module_init(vsock_init);
2451 module_exit(vsock_exit);
2452
2453 MODULE_AUTHOR("VMware, Inc.");
2454 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2455 MODULE_VERSION("1.0.2.0-k");
2456 MODULE_LICENSE("GPL v2");
2457