1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 *
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 */
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/highmem.h>
18 #include <linux/hrtimer.h>
19 #include <linux/kernel.h>
20 #include <linux/kvm_host.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/mm.h>
25 #include <linux/objtool.h>
26 #include <linux/sched.h>
27 #include <linux/sched/smt.h>
28 #include <linux/slab.h>
29 #include <linux/tboot.h>
30 #include <linux/trace_events.h>
31 #include <linux/entry-kvm.h>
32
33 #include <asm/apic.h>
34 #include <asm/asm.h>
35 #include <asm/cpu.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/debugreg.h>
38 #include <asm/desc.h>
39 #include <asm/fpu/api.h>
40 #include <asm/fpu/xstate.h>
41 #include <asm/idtentry.h>
42 #include <asm/io.h>
43 #include <asm/irq_remapping.h>
44 #include <asm/reboot.h>
45 #include <asm/perf_event.h>
46 #include <asm/mmu_context.h>
47 #include <asm/mshyperv.h>
48 #include <asm/mwait.h>
49 #include <asm/spec-ctrl.h>
50 #include <asm/vmx.h>
51
52 #include "capabilities.h"
53 #include "cpuid.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68 #include "smm.h"
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 #ifdef MODULE
74 static const struct x86_cpu_id vmx_cpu_id[] = {
75 X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
76 {}
77 };
78 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
79 #endif
80
81 bool __read_mostly enable_vpid = 1;
82 module_param_named(vpid, enable_vpid, bool, 0444);
83
84 static bool __read_mostly enable_vnmi = 1;
85 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
86
87 bool __read_mostly flexpriority_enabled = 1;
88 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
89
90 bool __read_mostly enable_ept = 1;
91 module_param_named(ept, enable_ept, bool, S_IRUGO);
92
93 bool __read_mostly enable_unrestricted_guest = 1;
94 module_param_named(unrestricted_guest,
95 enable_unrestricted_guest, bool, S_IRUGO);
96
97 bool __read_mostly enable_ept_ad_bits = 1;
98 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
99
100 static bool __read_mostly emulate_invalid_guest_state = true;
101 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
102
103 static bool __read_mostly fasteoi = 1;
104 module_param(fasteoi, bool, S_IRUGO);
105
106 module_param(enable_apicv, bool, S_IRUGO);
107
108 bool __read_mostly enable_ipiv = true;
109 module_param(enable_ipiv, bool, 0444);
110
111 /*
112 * If nested=1, nested virtualization is supported, i.e., guests may use
113 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
114 * use VMX instructions.
115 */
116 static bool __read_mostly nested = 1;
117 module_param(nested, bool, S_IRUGO);
118
119 bool __read_mostly enable_pml = 1;
120 module_param_named(pml, enable_pml, bool, S_IRUGO);
121
122 static bool __read_mostly error_on_inconsistent_vmcs_config = true;
123 module_param(error_on_inconsistent_vmcs_config, bool, 0444);
124
125 static bool __read_mostly dump_invalid_vmcs = 0;
126 module_param(dump_invalid_vmcs, bool, 0644);
127
128 #define MSR_BITMAP_MODE_X2APIC 1
129 #define MSR_BITMAP_MODE_X2APIC_APICV 2
130
131 #define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
132
133 /* Guest_tsc -> host_tsc conversion requires 64-bit division. */
134 static int __read_mostly cpu_preemption_timer_multi;
135 static bool __read_mostly enable_preemption_timer = 1;
136 #ifdef CONFIG_X86_64
137 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
138 #endif
139
140 extern bool __read_mostly allow_smaller_maxphyaddr;
141 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
142
143 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
144 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
145 #define KVM_VM_CR0_ALWAYS_ON \
146 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
147
148 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
149 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
150 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
151
152 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
153
154 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
155 RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
156 RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
157 RTIT_STATUS_BYTECNT))
158
159 /*
160 * List of MSRs that can be directly passed to the guest.
161 * In addition to these x2apic and PT MSRs are handled specially.
162 */
163 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
164 MSR_IA32_SPEC_CTRL,
165 MSR_IA32_PRED_CMD,
166 MSR_IA32_FLUSH_CMD,
167 MSR_IA32_TSC,
168 #ifdef CONFIG_X86_64
169 MSR_FS_BASE,
170 MSR_GS_BASE,
171 MSR_KERNEL_GS_BASE,
172 MSR_IA32_XFD,
173 MSR_IA32_XFD_ERR,
174 #endif
175 MSR_IA32_SYSENTER_CS,
176 MSR_IA32_SYSENTER_ESP,
177 MSR_IA32_SYSENTER_EIP,
178 MSR_CORE_C1_RES,
179 MSR_CORE_C3_RESIDENCY,
180 MSR_CORE_C6_RESIDENCY,
181 MSR_CORE_C7_RESIDENCY,
182 };
183
184 /*
185 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
186 * ple_gap: upper bound on the amount of time between two successive
187 * executions of PAUSE in a loop. Also indicate if ple enabled.
188 * According to test, this time is usually smaller than 128 cycles.
189 * ple_window: upper bound on the amount of time a guest is allowed to execute
190 * in a PAUSE loop. Tests indicate that most spinlocks are held for
191 * less than 2^12 cycles
192 * Time is measured based on a counter that runs at the same rate as the TSC,
193 * refer SDM volume 3b section 21.6.13 & 22.1.3.
194 */
195 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
196 module_param(ple_gap, uint, 0444);
197
198 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
199 module_param(ple_window, uint, 0444);
200
201 /* Default doubles per-vcpu window every exit. */
202 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
203 module_param(ple_window_grow, uint, 0444);
204
205 /* Default resets per-vcpu window every exit to ple_window. */
206 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
207 module_param(ple_window_shrink, uint, 0444);
208
209 /* Default is to compute the maximum so we can never overflow. */
210 static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
211 module_param(ple_window_max, uint, 0444);
212
213 /* Default is SYSTEM mode, 1 for host-guest mode */
214 int __read_mostly pt_mode = PT_MODE_SYSTEM;
215 module_param(pt_mode, int, S_IRUGO);
216
217 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
218 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
219 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
220
221 /* Storage for pre module init parameter parsing */
222 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
223
224 static const struct {
225 const char *option;
226 bool for_parse;
227 } vmentry_l1d_param[] = {
228 [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
229 [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
230 [VMENTER_L1D_FLUSH_COND] = {"cond", true},
231 [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
232 [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
233 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
234 };
235
236 #define L1D_CACHE_ORDER 4
237 static void *vmx_l1d_flush_pages;
238
vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)239 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
240 {
241 struct page *page;
242 unsigned int i;
243
244 if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
245 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
246 return 0;
247 }
248
249 if (!enable_ept) {
250 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
251 return 0;
252 }
253
254 if (host_arch_capabilities & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
255 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
256 return 0;
257 }
258
259 /* If set to auto use the default l1tf mitigation method */
260 if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
261 switch (l1tf_mitigation) {
262 case L1TF_MITIGATION_OFF:
263 l1tf = VMENTER_L1D_FLUSH_NEVER;
264 break;
265 case L1TF_MITIGATION_FLUSH_NOWARN:
266 case L1TF_MITIGATION_FLUSH:
267 case L1TF_MITIGATION_FLUSH_NOSMT:
268 l1tf = VMENTER_L1D_FLUSH_COND;
269 break;
270 case L1TF_MITIGATION_FULL:
271 case L1TF_MITIGATION_FULL_FORCE:
272 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
273 break;
274 }
275 } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
276 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
277 }
278
279 if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
280 !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
281 /*
282 * This allocation for vmx_l1d_flush_pages is not tied to a VM
283 * lifetime and so should not be charged to a memcg.
284 */
285 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
286 if (!page)
287 return -ENOMEM;
288 vmx_l1d_flush_pages = page_address(page);
289
290 /*
291 * Initialize each page with a different pattern in
292 * order to protect against KSM in the nested
293 * virtualization case.
294 */
295 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
296 memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
297 PAGE_SIZE);
298 }
299 }
300
301 l1tf_vmx_mitigation = l1tf;
302
303 if (l1tf != VMENTER_L1D_FLUSH_NEVER)
304 static_branch_enable(&vmx_l1d_should_flush);
305 else
306 static_branch_disable(&vmx_l1d_should_flush);
307
308 if (l1tf == VMENTER_L1D_FLUSH_COND)
309 static_branch_enable(&vmx_l1d_flush_cond);
310 else
311 static_branch_disable(&vmx_l1d_flush_cond);
312 return 0;
313 }
314
vmentry_l1d_flush_parse(const char * s)315 static int vmentry_l1d_flush_parse(const char *s)
316 {
317 unsigned int i;
318
319 if (s) {
320 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
321 if (vmentry_l1d_param[i].for_parse &&
322 sysfs_streq(s, vmentry_l1d_param[i].option))
323 return i;
324 }
325 }
326 return -EINVAL;
327 }
328
vmentry_l1d_flush_set(const char * s,const struct kernel_param * kp)329 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
330 {
331 int l1tf, ret;
332
333 l1tf = vmentry_l1d_flush_parse(s);
334 if (l1tf < 0)
335 return l1tf;
336
337 if (!boot_cpu_has(X86_BUG_L1TF))
338 return 0;
339
340 /*
341 * Has vmx_init() run already? If not then this is the pre init
342 * parameter parsing. In that case just store the value and let
343 * vmx_init() do the proper setup after enable_ept has been
344 * established.
345 */
346 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
347 vmentry_l1d_flush_param = l1tf;
348 return 0;
349 }
350
351 mutex_lock(&vmx_l1d_flush_mutex);
352 ret = vmx_setup_l1d_flush(l1tf);
353 mutex_unlock(&vmx_l1d_flush_mutex);
354 return ret;
355 }
356
vmentry_l1d_flush_get(char * s,const struct kernel_param * kp)357 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
358 {
359 if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
360 return sysfs_emit(s, "???\n");
361
362 return sysfs_emit(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
363 }
364
vmx_disable_fb_clear(struct vcpu_vmx * vmx)365 static __always_inline void vmx_disable_fb_clear(struct vcpu_vmx *vmx)
366 {
367 u64 msr;
368
369 if (!vmx->disable_fb_clear)
370 return;
371
372 msr = __rdmsr(MSR_IA32_MCU_OPT_CTRL);
373 msr |= FB_CLEAR_DIS;
374 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, msr);
375 /* Cache the MSR value to avoid reading it later */
376 vmx->msr_ia32_mcu_opt_ctrl = msr;
377 }
378
vmx_enable_fb_clear(struct vcpu_vmx * vmx)379 static __always_inline void vmx_enable_fb_clear(struct vcpu_vmx *vmx)
380 {
381 if (!vmx->disable_fb_clear)
382 return;
383
384 vmx->msr_ia32_mcu_opt_ctrl &= ~FB_CLEAR_DIS;
385 native_wrmsrl(MSR_IA32_MCU_OPT_CTRL, vmx->msr_ia32_mcu_opt_ctrl);
386 }
387
vmx_update_fb_clear_dis(struct kvm_vcpu * vcpu,struct vcpu_vmx * vmx)388 static void vmx_update_fb_clear_dis(struct kvm_vcpu *vcpu, struct vcpu_vmx *vmx)
389 {
390 /*
391 * Disable VERW's behavior of clearing CPU buffers for the guest if the
392 * CPU isn't affected by MDS/TAA, and the host hasn't forcefully enabled
393 * the mitigation. Disabling the clearing behavior provides a
394 * performance boost for guests that aren't aware that manually clearing
395 * CPU buffers is unnecessary, at the cost of MSR accesses on VM-Entry
396 * and VM-Exit.
397 */
398 vmx->disable_fb_clear = !cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF) &&
399 (host_arch_capabilities & ARCH_CAP_FB_CLEAR_CTRL) &&
400 !boot_cpu_has_bug(X86_BUG_MDS) &&
401 !boot_cpu_has_bug(X86_BUG_TAA);
402
403 /*
404 * If guest will not execute VERW, there is no need to set FB_CLEAR_DIS
405 * at VMEntry. Skip the MSR read/write when a guest has no use case to
406 * execute VERW.
407 */
408 if ((vcpu->arch.arch_capabilities & ARCH_CAP_FB_CLEAR) ||
409 ((vcpu->arch.arch_capabilities & ARCH_CAP_MDS_NO) &&
410 (vcpu->arch.arch_capabilities & ARCH_CAP_TAA_NO) &&
411 (vcpu->arch.arch_capabilities & ARCH_CAP_PSDP_NO) &&
412 (vcpu->arch.arch_capabilities & ARCH_CAP_FBSDP_NO) &&
413 (vcpu->arch.arch_capabilities & ARCH_CAP_SBDR_SSDP_NO)))
414 vmx->disable_fb_clear = false;
415 }
416
417 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
418 .set = vmentry_l1d_flush_set,
419 .get = vmentry_l1d_flush_get,
420 };
421 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
422
423 static u32 vmx_segment_access_rights(struct kvm_segment *var);
424
425 void vmx_vmexit(void);
426
427 #define vmx_insn_failed(fmt...) \
428 do { \
429 WARN_ONCE(1, fmt); \
430 pr_warn_ratelimited(fmt); \
431 } while (0)
432
vmread_error(unsigned long field)433 noinline void vmread_error(unsigned long field)
434 {
435 vmx_insn_failed("vmread failed: field=%lx\n", field);
436 }
437
438 #ifndef CONFIG_CC_HAS_ASM_GOTO_OUTPUT
vmread_error_trampoline2(unsigned long field,bool fault)439 noinstr void vmread_error_trampoline2(unsigned long field, bool fault)
440 {
441 if (fault) {
442 kvm_spurious_fault();
443 } else {
444 instrumentation_begin();
445 vmread_error(field);
446 instrumentation_end();
447 }
448 }
449 #endif
450
vmwrite_error(unsigned long field,unsigned long value)451 noinline void vmwrite_error(unsigned long field, unsigned long value)
452 {
453 vmx_insn_failed("vmwrite failed: field=%lx val=%lx err=%u\n",
454 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
455 }
456
vmclear_error(struct vmcs * vmcs,u64 phys_addr)457 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
458 {
459 vmx_insn_failed("vmclear failed: %p/%llx err=%u\n",
460 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
461 }
462
vmptrld_error(struct vmcs * vmcs,u64 phys_addr)463 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
464 {
465 vmx_insn_failed("vmptrld failed: %p/%llx err=%u\n",
466 vmcs, phys_addr, vmcs_read32(VM_INSTRUCTION_ERROR));
467 }
468
invvpid_error(unsigned long ext,u16 vpid,gva_t gva)469 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
470 {
471 vmx_insn_failed("invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
472 ext, vpid, gva);
473 }
474
invept_error(unsigned long ext,u64 eptp,gpa_t gpa)475 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
476 {
477 vmx_insn_failed("invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
478 ext, eptp, gpa);
479 }
480
481 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
482 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
483 /*
484 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
485 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
486 */
487 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
488
489 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
490 static DEFINE_SPINLOCK(vmx_vpid_lock);
491
492 struct vmcs_config vmcs_config __ro_after_init;
493 struct vmx_capability vmx_capability __ro_after_init;
494
495 #define VMX_SEGMENT_FIELD(seg) \
496 [VCPU_SREG_##seg] = { \
497 .selector = GUEST_##seg##_SELECTOR, \
498 .base = GUEST_##seg##_BASE, \
499 .limit = GUEST_##seg##_LIMIT, \
500 .ar_bytes = GUEST_##seg##_AR_BYTES, \
501 }
502
503 static const struct kvm_vmx_segment_field {
504 unsigned selector;
505 unsigned base;
506 unsigned limit;
507 unsigned ar_bytes;
508 } kvm_vmx_segment_fields[] = {
509 VMX_SEGMENT_FIELD(CS),
510 VMX_SEGMENT_FIELD(DS),
511 VMX_SEGMENT_FIELD(ES),
512 VMX_SEGMENT_FIELD(FS),
513 VMX_SEGMENT_FIELD(GS),
514 VMX_SEGMENT_FIELD(SS),
515 VMX_SEGMENT_FIELD(TR),
516 VMX_SEGMENT_FIELD(LDTR),
517 };
518
vmx_segment_cache_clear(struct vcpu_vmx * vmx)519 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
520 {
521 vmx->segment_cache.bitmask = 0;
522 }
523
524 static unsigned long host_idt_base;
525
526 #if IS_ENABLED(CONFIG_HYPERV)
527 static struct kvm_x86_ops vmx_x86_ops __initdata;
528
529 static bool __read_mostly enlightened_vmcs = true;
530 module_param(enlightened_vmcs, bool, 0444);
531
hv_enable_l2_tlb_flush(struct kvm_vcpu * vcpu)532 static int hv_enable_l2_tlb_flush(struct kvm_vcpu *vcpu)
533 {
534 struct hv_enlightened_vmcs *evmcs;
535 struct hv_partition_assist_pg **p_hv_pa_pg =
536 &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
537 /*
538 * Synthetic VM-Exit is not enabled in current code and so All
539 * evmcs in singe VM shares same assist page.
540 */
541 if (!*p_hv_pa_pg)
542 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
543
544 if (!*p_hv_pa_pg)
545 return -ENOMEM;
546
547 evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
548
549 evmcs->partition_assist_page =
550 __pa(*p_hv_pa_pg);
551 evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
552 evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
553
554 return 0;
555 }
556
hv_init_evmcs(void)557 static __init void hv_init_evmcs(void)
558 {
559 int cpu;
560
561 if (!enlightened_vmcs)
562 return;
563
564 /*
565 * Enlightened VMCS usage should be recommended and the host needs
566 * to support eVMCS v1 or above.
567 */
568 if (ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
569 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
570 KVM_EVMCS_VERSION) {
571
572 /* Check that we have assist pages on all online CPUs */
573 for_each_online_cpu(cpu) {
574 if (!hv_get_vp_assist_page(cpu)) {
575 enlightened_vmcs = false;
576 break;
577 }
578 }
579
580 if (enlightened_vmcs) {
581 pr_info("Using Hyper-V Enlightened VMCS\n");
582 static_branch_enable(&__kvm_is_using_evmcs);
583 }
584
585 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
586 vmx_x86_ops.enable_l2_tlb_flush
587 = hv_enable_l2_tlb_flush;
588
589 } else {
590 enlightened_vmcs = false;
591 }
592 }
593
hv_reset_evmcs(void)594 static void hv_reset_evmcs(void)
595 {
596 struct hv_vp_assist_page *vp_ap;
597
598 if (!kvm_is_using_evmcs())
599 return;
600
601 /*
602 * KVM should enable eVMCS if and only if all CPUs have a VP assist
603 * page, and should reject CPU onlining if eVMCS is enabled the CPU
604 * doesn't have a VP assist page allocated.
605 */
606 vp_ap = hv_get_vp_assist_page(smp_processor_id());
607 if (WARN_ON_ONCE(!vp_ap))
608 return;
609
610 /*
611 * Reset everything to support using non-enlightened VMCS access later
612 * (e.g. when we reload the module with enlightened_vmcs=0)
613 */
614 vp_ap->nested_control.features.directhypercall = 0;
615 vp_ap->current_nested_vmcs = 0;
616 vp_ap->enlighten_vmentry = 0;
617 }
618
619 #else /* IS_ENABLED(CONFIG_HYPERV) */
hv_init_evmcs(void)620 static void hv_init_evmcs(void) {}
hv_reset_evmcs(void)621 static void hv_reset_evmcs(void) {}
622 #endif /* IS_ENABLED(CONFIG_HYPERV) */
623
624 /*
625 * Comment's format: document - errata name - stepping - processor name.
626 * Refer from
627 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
628 */
629 static u32 vmx_preemption_cpu_tfms[] = {
630 /* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
631 0x000206E6,
632 /* 323056.pdf - AAX65 - C2 - Xeon L3406 */
633 /* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
634 /* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
635 0x00020652,
636 /* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
637 0x00020655,
638 /* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
639 /* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
640 /*
641 * 320767.pdf - AAP86 - B1 -
642 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
643 */
644 0x000106E5,
645 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
646 0x000106A0,
647 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
648 0x000106A1,
649 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
650 0x000106A4,
651 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
652 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
653 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
654 0x000106A5,
655 /* Xeon E3-1220 V2 */
656 0x000306A8,
657 };
658
cpu_has_broken_vmx_preemption_timer(void)659 static inline bool cpu_has_broken_vmx_preemption_timer(void)
660 {
661 u32 eax = cpuid_eax(0x00000001), i;
662
663 /* Clear the reserved bits */
664 eax &= ~(0x3U << 14 | 0xfU << 28);
665 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
666 if (eax == vmx_preemption_cpu_tfms[i])
667 return true;
668
669 return false;
670 }
671
cpu_need_virtualize_apic_accesses(struct kvm_vcpu * vcpu)672 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
673 {
674 return flexpriority_enabled && lapic_in_kernel(vcpu);
675 }
676
possible_passthrough_msr_slot(u32 msr)677 static int possible_passthrough_msr_slot(u32 msr)
678 {
679 u32 i;
680
681 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
682 if (vmx_possible_passthrough_msrs[i] == msr)
683 return i;
684
685 return -ENOENT;
686 }
687
is_valid_passthrough_msr(u32 msr)688 static bool is_valid_passthrough_msr(u32 msr)
689 {
690 bool r;
691
692 switch (msr) {
693 case 0x800 ... 0x8ff:
694 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
695 return true;
696 case MSR_IA32_RTIT_STATUS:
697 case MSR_IA32_RTIT_OUTPUT_BASE:
698 case MSR_IA32_RTIT_OUTPUT_MASK:
699 case MSR_IA32_RTIT_CR3_MATCH:
700 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
701 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
702 case MSR_LBR_SELECT:
703 case MSR_LBR_TOS:
704 case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
705 case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
706 case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
707 case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
708 case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
709 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
710 return true;
711 }
712
713 r = possible_passthrough_msr_slot(msr) != -ENOENT;
714
715 WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
716
717 return r;
718 }
719
vmx_find_uret_msr(struct vcpu_vmx * vmx,u32 msr)720 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
721 {
722 int i;
723
724 i = kvm_find_user_return_msr(msr);
725 if (i >= 0)
726 return &vmx->guest_uret_msrs[i];
727 return NULL;
728 }
729
vmx_set_guest_uret_msr(struct vcpu_vmx * vmx,struct vmx_uret_msr * msr,u64 data)730 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
731 struct vmx_uret_msr *msr, u64 data)
732 {
733 unsigned int slot = msr - vmx->guest_uret_msrs;
734 int ret = 0;
735
736 if (msr->load_into_hardware) {
737 preempt_disable();
738 ret = kvm_set_user_return_msr(slot, data, msr->mask);
739 preempt_enable();
740 }
741 if (!ret)
742 msr->data = data;
743 return ret;
744 }
745
746 /*
747 * Disable VMX and clear CR4.VMXE (even if VMXOFF faults)
748 *
749 * Note, VMXOFF causes a #UD if the CPU is !post-VMXON, but it's impossible to
750 * atomically track post-VMXON state, e.g. this may be called in NMI context.
751 * Eat all faults as all other faults on VMXOFF faults are mode related, i.e.
752 * faults are guaranteed to be due to the !post-VMXON check unless the CPU is
753 * magically in RM, VM86, compat mode, or at CPL>0.
754 */
kvm_cpu_vmxoff(void)755 static int kvm_cpu_vmxoff(void)
756 {
757 asm goto("1: vmxoff\n\t"
758 _ASM_EXTABLE(1b, %l[fault])
759 ::: "cc", "memory" : fault);
760
761 cr4_clear_bits(X86_CR4_VMXE);
762 return 0;
763
764 fault:
765 cr4_clear_bits(X86_CR4_VMXE);
766 return -EIO;
767 }
768
vmx_emergency_disable(void)769 static void vmx_emergency_disable(void)
770 {
771 int cpu = raw_smp_processor_id();
772 struct loaded_vmcs *v;
773
774 kvm_rebooting = true;
775
776 /*
777 * Note, CR4.VMXE can be _cleared_ in NMI context, but it can only be
778 * set in task context. If this races with VMX is disabled by an NMI,
779 * VMCLEAR and VMXOFF may #UD, but KVM will eat those faults due to
780 * kvm_rebooting set.
781 */
782 if (!(__read_cr4() & X86_CR4_VMXE))
783 return;
784
785 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
786 loaded_vmcss_on_cpu_link)
787 vmcs_clear(v->vmcs);
788
789 kvm_cpu_vmxoff();
790 }
791
__loaded_vmcs_clear(void * arg)792 static void __loaded_vmcs_clear(void *arg)
793 {
794 struct loaded_vmcs *loaded_vmcs = arg;
795 int cpu = raw_smp_processor_id();
796
797 if (loaded_vmcs->cpu != cpu)
798 return; /* vcpu migration can race with cpu offline */
799 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
800 per_cpu(current_vmcs, cpu) = NULL;
801
802 vmcs_clear(loaded_vmcs->vmcs);
803 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
804 vmcs_clear(loaded_vmcs->shadow_vmcs);
805
806 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
807
808 /*
809 * Ensure all writes to loaded_vmcs, including deleting it from its
810 * current percpu list, complete before setting loaded_vmcs->cpu to
811 * -1, otherwise a different cpu can see loaded_vmcs->cpu == -1 first
812 * and add loaded_vmcs to its percpu list before it's deleted from this
813 * cpu's list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
814 */
815 smp_wmb();
816
817 loaded_vmcs->cpu = -1;
818 loaded_vmcs->launched = 0;
819 }
820
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)821 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
822 {
823 int cpu = loaded_vmcs->cpu;
824
825 if (cpu != -1)
826 smp_call_function_single(cpu,
827 __loaded_vmcs_clear, loaded_vmcs, 1);
828 }
829
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)830 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
831 unsigned field)
832 {
833 bool ret;
834 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
835
836 if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
837 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
838 vmx->segment_cache.bitmask = 0;
839 }
840 ret = vmx->segment_cache.bitmask & mask;
841 vmx->segment_cache.bitmask |= mask;
842 return ret;
843 }
844
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)845 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
846 {
847 u16 *p = &vmx->segment_cache.seg[seg].selector;
848
849 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
850 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
851 return *p;
852 }
853
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)854 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
855 {
856 ulong *p = &vmx->segment_cache.seg[seg].base;
857
858 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
859 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
860 return *p;
861 }
862
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)863 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
864 {
865 u32 *p = &vmx->segment_cache.seg[seg].limit;
866
867 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
868 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
869 return *p;
870 }
871
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)872 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
873 {
874 u32 *p = &vmx->segment_cache.seg[seg].ar;
875
876 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
877 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
878 return *p;
879 }
880
vmx_update_exception_bitmap(struct kvm_vcpu * vcpu)881 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
882 {
883 u32 eb;
884
885 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
886 (1u << DB_VECTOR) | (1u << AC_VECTOR);
887 /*
888 * Guest access to VMware backdoor ports could legitimately
889 * trigger #GP because of TSS I/O permission bitmap.
890 * We intercept those #GP and allow access to them anyway
891 * as VMware does.
892 */
893 if (enable_vmware_backdoor)
894 eb |= (1u << GP_VECTOR);
895 if ((vcpu->guest_debug &
896 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
897 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
898 eb |= 1u << BP_VECTOR;
899 if (to_vmx(vcpu)->rmode.vm86_active)
900 eb = ~0;
901 if (!vmx_need_pf_intercept(vcpu))
902 eb &= ~(1u << PF_VECTOR);
903
904 /* When we are running a nested L2 guest and L1 specified for it a
905 * certain exception bitmap, we must trap the same exceptions and pass
906 * them to L1. When running L2, we will only handle the exceptions
907 * specified above if L1 did not want them.
908 */
909 if (is_guest_mode(vcpu))
910 eb |= get_vmcs12(vcpu)->exception_bitmap;
911 else {
912 int mask = 0, match = 0;
913
914 if (enable_ept && (eb & (1u << PF_VECTOR))) {
915 /*
916 * If EPT is enabled, #PF is currently only intercepted
917 * if MAXPHYADDR is smaller on the guest than on the
918 * host. In that case we only care about present,
919 * non-reserved faults. For vmcs02, however, PFEC_MASK
920 * and PFEC_MATCH are set in prepare_vmcs02_rare.
921 */
922 mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
923 match = PFERR_PRESENT_MASK;
924 }
925 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
926 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
927 }
928
929 /*
930 * Disabling xfd interception indicates that dynamic xfeatures
931 * might be used in the guest. Always trap #NM in this case
932 * to save guest xfd_err timely.
933 */
934 if (vcpu->arch.xfd_no_write_intercept)
935 eb |= (1u << NM_VECTOR);
936
937 vmcs_write32(EXCEPTION_BITMAP, eb);
938 }
939
940 /*
941 * Check if MSR is intercepted for currently loaded MSR bitmap.
942 */
msr_write_intercepted(struct vcpu_vmx * vmx,u32 msr)943 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
944 {
945 if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
946 return true;
947
948 return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap, msr);
949 }
950
__vmx_vcpu_run_flags(struct vcpu_vmx * vmx)951 unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx)
952 {
953 unsigned int flags = 0;
954
955 if (vmx->loaded_vmcs->launched)
956 flags |= VMX_RUN_VMRESUME;
957
958 /*
959 * If writes to the SPEC_CTRL MSR aren't intercepted, the guest is free
960 * to change it directly without causing a vmexit. In that case read
961 * it after vmexit and store it in vmx->spec_ctrl.
962 */
963 if (!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL))
964 flags |= VMX_RUN_SAVE_SPEC_CTRL;
965
966 return flags;
967 }
968
clear_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit)969 static __always_inline void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
970 unsigned long entry, unsigned long exit)
971 {
972 vm_entry_controls_clearbit(vmx, entry);
973 vm_exit_controls_clearbit(vmx, exit);
974 }
975
vmx_find_loadstore_msr_slot(struct vmx_msrs * m,u32 msr)976 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
977 {
978 unsigned int i;
979
980 for (i = 0; i < m->nr; ++i) {
981 if (m->val[i].index == msr)
982 return i;
983 }
984 return -ENOENT;
985 }
986
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)987 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
988 {
989 int i;
990 struct msr_autoload *m = &vmx->msr_autoload;
991
992 switch (msr) {
993 case MSR_EFER:
994 if (cpu_has_load_ia32_efer()) {
995 clear_atomic_switch_msr_special(vmx,
996 VM_ENTRY_LOAD_IA32_EFER,
997 VM_EXIT_LOAD_IA32_EFER);
998 return;
999 }
1000 break;
1001 case MSR_CORE_PERF_GLOBAL_CTRL:
1002 if (cpu_has_load_perf_global_ctrl()) {
1003 clear_atomic_switch_msr_special(vmx,
1004 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1005 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1006 return;
1007 }
1008 break;
1009 }
1010 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1011 if (i < 0)
1012 goto skip_guest;
1013 --m->guest.nr;
1014 m->guest.val[i] = m->guest.val[m->guest.nr];
1015 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1016
1017 skip_guest:
1018 i = vmx_find_loadstore_msr_slot(&m->host, msr);
1019 if (i < 0)
1020 return;
1021
1022 --m->host.nr;
1023 m->host.val[i] = m->host.val[m->host.nr];
1024 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1025 }
1026
add_atomic_switch_msr_special(struct vcpu_vmx * vmx,unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1027 static __always_inline void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1028 unsigned long entry, unsigned long exit,
1029 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1030 u64 guest_val, u64 host_val)
1031 {
1032 vmcs_write64(guest_val_vmcs, guest_val);
1033 if (host_val_vmcs != HOST_IA32_EFER)
1034 vmcs_write64(host_val_vmcs, host_val);
1035 vm_entry_controls_setbit(vmx, entry);
1036 vm_exit_controls_setbit(vmx, exit);
1037 }
1038
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val,bool entry_only)1039 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1040 u64 guest_val, u64 host_val, bool entry_only)
1041 {
1042 int i, j = 0;
1043 struct msr_autoload *m = &vmx->msr_autoload;
1044
1045 switch (msr) {
1046 case MSR_EFER:
1047 if (cpu_has_load_ia32_efer()) {
1048 add_atomic_switch_msr_special(vmx,
1049 VM_ENTRY_LOAD_IA32_EFER,
1050 VM_EXIT_LOAD_IA32_EFER,
1051 GUEST_IA32_EFER,
1052 HOST_IA32_EFER,
1053 guest_val, host_val);
1054 return;
1055 }
1056 break;
1057 case MSR_CORE_PERF_GLOBAL_CTRL:
1058 if (cpu_has_load_perf_global_ctrl()) {
1059 add_atomic_switch_msr_special(vmx,
1060 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1061 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1062 GUEST_IA32_PERF_GLOBAL_CTRL,
1063 HOST_IA32_PERF_GLOBAL_CTRL,
1064 guest_val, host_val);
1065 return;
1066 }
1067 break;
1068 case MSR_IA32_PEBS_ENABLE:
1069 /* PEBS needs a quiescent period after being disabled (to write
1070 * a record). Disabling PEBS through VMX MSR swapping doesn't
1071 * provide that period, so a CPU could write host's record into
1072 * guest's memory.
1073 */
1074 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1075 }
1076
1077 i = vmx_find_loadstore_msr_slot(&m->guest, msr);
1078 if (!entry_only)
1079 j = vmx_find_loadstore_msr_slot(&m->host, msr);
1080
1081 if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
1082 (j < 0 && m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
1083 printk_once(KERN_WARNING "Not enough msr switch entries. "
1084 "Can't add msr %x\n", msr);
1085 return;
1086 }
1087 if (i < 0) {
1088 i = m->guest.nr++;
1089 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
1090 }
1091 m->guest.val[i].index = msr;
1092 m->guest.val[i].value = guest_val;
1093
1094 if (entry_only)
1095 return;
1096
1097 if (j < 0) {
1098 j = m->host.nr++;
1099 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
1100 }
1101 m->host.val[j].index = msr;
1102 m->host.val[j].value = host_val;
1103 }
1104
update_transition_efer(struct vcpu_vmx * vmx)1105 static bool update_transition_efer(struct vcpu_vmx *vmx)
1106 {
1107 u64 guest_efer = vmx->vcpu.arch.efer;
1108 u64 ignore_bits = 0;
1109 int i;
1110
1111 /* Shadow paging assumes NX to be available. */
1112 if (!enable_ept)
1113 guest_efer |= EFER_NX;
1114
1115 /*
1116 * LMA and LME handled by hardware; SCE meaningless outside long mode.
1117 */
1118 ignore_bits |= EFER_SCE;
1119 #ifdef CONFIG_X86_64
1120 ignore_bits |= EFER_LMA | EFER_LME;
1121 /* SCE is meaningful only in long mode on Intel */
1122 if (guest_efer & EFER_LMA)
1123 ignore_bits &= ~(u64)EFER_SCE;
1124 #endif
1125
1126 /*
1127 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1128 * On CPUs that support "load IA32_EFER", always switch EFER
1129 * atomically, since it's faster than switching it manually.
1130 */
1131 if (cpu_has_load_ia32_efer() ||
1132 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1133 if (!(guest_efer & EFER_LMA))
1134 guest_efer &= ~EFER_LME;
1135 if (guest_efer != host_efer)
1136 add_atomic_switch_msr(vmx, MSR_EFER,
1137 guest_efer, host_efer, false);
1138 else
1139 clear_atomic_switch_msr(vmx, MSR_EFER);
1140 return false;
1141 }
1142
1143 i = kvm_find_user_return_msr(MSR_EFER);
1144 if (i < 0)
1145 return false;
1146
1147 clear_atomic_switch_msr(vmx, MSR_EFER);
1148
1149 guest_efer &= ~ignore_bits;
1150 guest_efer |= host_efer & ignore_bits;
1151
1152 vmx->guest_uret_msrs[i].data = guest_efer;
1153 vmx->guest_uret_msrs[i].mask = ~ignore_bits;
1154
1155 return true;
1156 }
1157
1158 #ifdef CONFIG_X86_32
1159 /*
1160 * On 32-bit kernels, VM exits still load the FS and GS bases from the
1161 * VMCS rather than the segment table. KVM uses this helper to figure
1162 * out the current bases to poke them into the VMCS before entry.
1163 */
segment_base(u16 selector)1164 static unsigned long segment_base(u16 selector)
1165 {
1166 struct desc_struct *table;
1167 unsigned long v;
1168
1169 if (!(selector & ~SEGMENT_RPL_MASK))
1170 return 0;
1171
1172 table = get_current_gdt_ro();
1173
1174 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
1175 u16 ldt_selector = kvm_read_ldt();
1176
1177 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
1178 return 0;
1179
1180 table = (struct desc_struct *)segment_base(ldt_selector);
1181 }
1182 v = get_desc_base(&table[selector >> 3]);
1183 return v;
1184 }
1185 #endif
1186
pt_can_write_msr(struct vcpu_vmx * vmx)1187 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1188 {
1189 return vmx_pt_mode_is_host_guest() &&
1190 !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1191 }
1192
pt_output_base_valid(struct kvm_vcpu * vcpu,u64 base)1193 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1194 {
1195 /* The base must be 128-byte aligned and a legal physical address. */
1196 return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1197 }
1198
pt_load_msr(struct pt_ctx * ctx,u32 addr_range)1199 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1200 {
1201 u32 i;
1202
1203 wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1204 wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1205 wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1206 wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1207 for (i = 0; i < addr_range; i++) {
1208 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1209 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1210 }
1211 }
1212
pt_save_msr(struct pt_ctx * ctx,u32 addr_range)1213 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1214 {
1215 u32 i;
1216
1217 rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1218 rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1219 rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1220 rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1221 for (i = 0; i < addr_range; i++) {
1222 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1223 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1224 }
1225 }
1226
pt_guest_enter(struct vcpu_vmx * vmx)1227 static void pt_guest_enter(struct vcpu_vmx *vmx)
1228 {
1229 if (vmx_pt_mode_is_system())
1230 return;
1231
1232 /*
1233 * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1234 * Save host state before VM entry.
1235 */
1236 rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1237 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1238 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1239 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1240 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1241 }
1242 }
1243
pt_guest_exit(struct vcpu_vmx * vmx)1244 static void pt_guest_exit(struct vcpu_vmx *vmx)
1245 {
1246 if (vmx_pt_mode_is_system())
1247 return;
1248
1249 if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1250 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1251 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1252 }
1253
1254 /*
1255 * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1256 * i.e. RTIT_CTL is always cleared on VM-Exit. Restore it if necessary.
1257 */
1258 if (vmx->pt_desc.host.ctl)
1259 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1260 }
1261
vmx_set_host_fs_gs(struct vmcs_host_state * host,u16 fs_sel,u16 gs_sel,unsigned long fs_base,unsigned long gs_base)1262 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1263 unsigned long fs_base, unsigned long gs_base)
1264 {
1265 if (unlikely(fs_sel != host->fs_sel)) {
1266 if (!(fs_sel & 7))
1267 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1268 else
1269 vmcs_write16(HOST_FS_SELECTOR, 0);
1270 host->fs_sel = fs_sel;
1271 }
1272 if (unlikely(gs_sel != host->gs_sel)) {
1273 if (!(gs_sel & 7))
1274 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1275 else
1276 vmcs_write16(HOST_GS_SELECTOR, 0);
1277 host->gs_sel = gs_sel;
1278 }
1279 if (unlikely(fs_base != host->fs_base)) {
1280 vmcs_writel(HOST_FS_BASE, fs_base);
1281 host->fs_base = fs_base;
1282 }
1283 if (unlikely(gs_base != host->gs_base)) {
1284 vmcs_writel(HOST_GS_BASE, gs_base);
1285 host->gs_base = gs_base;
1286 }
1287 }
1288
vmx_prepare_switch_to_guest(struct kvm_vcpu * vcpu)1289 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1290 {
1291 struct vcpu_vmx *vmx = to_vmx(vcpu);
1292 struct vmcs_host_state *host_state;
1293 #ifdef CONFIG_X86_64
1294 int cpu = raw_smp_processor_id();
1295 #endif
1296 unsigned long fs_base, gs_base;
1297 u16 fs_sel, gs_sel;
1298 int i;
1299
1300 vmx->req_immediate_exit = false;
1301
1302 /*
1303 * Note that guest MSRs to be saved/restored can also be changed
1304 * when guest state is loaded. This happens when guest transitions
1305 * to/from long-mode by setting MSR_EFER.LMA.
1306 */
1307 if (!vmx->guest_uret_msrs_loaded) {
1308 vmx->guest_uret_msrs_loaded = true;
1309 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1310 if (!vmx->guest_uret_msrs[i].load_into_hardware)
1311 continue;
1312
1313 kvm_set_user_return_msr(i,
1314 vmx->guest_uret_msrs[i].data,
1315 vmx->guest_uret_msrs[i].mask);
1316 }
1317 }
1318
1319 if (vmx->nested.need_vmcs12_to_shadow_sync)
1320 nested_sync_vmcs12_to_shadow(vcpu);
1321
1322 if (vmx->guest_state_loaded)
1323 return;
1324
1325 host_state = &vmx->loaded_vmcs->host_state;
1326
1327 /*
1328 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1329 * allow segment selectors with cpl > 0 or ti == 1.
1330 */
1331 host_state->ldt_sel = kvm_read_ldt();
1332
1333 #ifdef CONFIG_X86_64
1334 savesegment(ds, host_state->ds_sel);
1335 savesegment(es, host_state->es_sel);
1336
1337 gs_base = cpu_kernelmode_gs_base(cpu);
1338 if (likely(is_64bit_mm(current->mm))) {
1339 current_save_fsgs();
1340 fs_sel = current->thread.fsindex;
1341 gs_sel = current->thread.gsindex;
1342 fs_base = current->thread.fsbase;
1343 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1344 } else {
1345 savesegment(fs, fs_sel);
1346 savesegment(gs, gs_sel);
1347 fs_base = read_msr(MSR_FS_BASE);
1348 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1349 }
1350
1351 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1352 #else
1353 savesegment(fs, fs_sel);
1354 savesegment(gs, gs_sel);
1355 fs_base = segment_base(fs_sel);
1356 gs_base = segment_base(gs_sel);
1357 #endif
1358
1359 vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1360 vmx->guest_state_loaded = true;
1361 }
1362
vmx_prepare_switch_to_host(struct vcpu_vmx * vmx)1363 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1364 {
1365 struct vmcs_host_state *host_state;
1366
1367 if (!vmx->guest_state_loaded)
1368 return;
1369
1370 host_state = &vmx->loaded_vmcs->host_state;
1371
1372 ++vmx->vcpu.stat.host_state_reload;
1373
1374 #ifdef CONFIG_X86_64
1375 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1376 #endif
1377 if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1378 kvm_load_ldt(host_state->ldt_sel);
1379 #ifdef CONFIG_X86_64
1380 load_gs_index(host_state->gs_sel);
1381 #else
1382 loadsegment(gs, host_state->gs_sel);
1383 #endif
1384 }
1385 if (host_state->fs_sel & 7)
1386 loadsegment(fs, host_state->fs_sel);
1387 #ifdef CONFIG_X86_64
1388 if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1389 loadsegment(ds, host_state->ds_sel);
1390 loadsegment(es, host_state->es_sel);
1391 }
1392 #endif
1393 invalidate_tss_limit();
1394 #ifdef CONFIG_X86_64
1395 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1396 #endif
1397 load_fixmap_gdt(raw_smp_processor_id());
1398 vmx->guest_state_loaded = false;
1399 vmx->guest_uret_msrs_loaded = false;
1400 }
1401
1402 #ifdef CONFIG_X86_64
vmx_read_guest_kernel_gs_base(struct vcpu_vmx * vmx)1403 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1404 {
1405 preempt_disable();
1406 if (vmx->guest_state_loaded)
1407 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1408 preempt_enable();
1409 return vmx->msr_guest_kernel_gs_base;
1410 }
1411
vmx_write_guest_kernel_gs_base(struct vcpu_vmx * vmx,u64 data)1412 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1413 {
1414 preempt_disable();
1415 if (vmx->guest_state_loaded)
1416 wrmsrl(MSR_KERNEL_GS_BASE, data);
1417 preempt_enable();
1418 vmx->msr_guest_kernel_gs_base = data;
1419 }
1420 #endif
1421
vmx_vcpu_load_vmcs(struct kvm_vcpu * vcpu,int cpu,struct loaded_vmcs * buddy)1422 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1423 struct loaded_vmcs *buddy)
1424 {
1425 struct vcpu_vmx *vmx = to_vmx(vcpu);
1426 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1427 struct vmcs *prev;
1428
1429 if (!already_loaded) {
1430 loaded_vmcs_clear(vmx->loaded_vmcs);
1431 local_irq_disable();
1432
1433 /*
1434 * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1435 * this cpu's percpu list, otherwise it may not yet be deleted
1436 * from its previous cpu's percpu list. Pairs with the
1437 * smb_wmb() in __loaded_vmcs_clear().
1438 */
1439 smp_rmb();
1440
1441 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1442 &per_cpu(loaded_vmcss_on_cpu, cpu));
1443 local_irq_enable();
1444 }
1445
1446 prev = per_cpu(current_vmcs, cpu);
1447 if (prev != vmx->loaded_vmcs->vmcs) {
1448 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1449 vmcs_load(vmx->loaded_vmcs->vmcs);
1450
1451 /*
1452 * No indirect branch prediction barrier needed when switching
1453 * the active VMCS within a vCPU, unless IBRS is advertised to
1454 * the vCPU. To minimize the number of IBPBs executed, KVM
1455 * performs IBPB on nested VM-Exit (a single nested transition
1456 * may switch the active VMCS multiple times).
1457 */
1458 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1459 indirect_branch_prediction_barrier();
1460 }
1461
1462 if (!already_loaded) {
1463 void *gdt = get_current_gdt_ro();
1464
1465 /*
1466 * Flush all EPTP/VPID contexts, the new pCPU may have stale
1467 * TLB entries from its previous association with the vCPU.
1468 */
1469 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1470
1471 /*
1472 * Linux uses per-cpu TSS and GDT, so set these when switching
1473 * processors. See 22.2.4.
1474 */
1475 vmcs_writel(HOST_TR_BASE,
1476 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1477 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
1478
1479 if (IS_ENABLED(CONFIG_IA32_EMULATION) || IS_ENABLED(CONFIG_X86_32)) {
1480 /* 22.2.3 */
1481 vmcs_writel(HOST_IA32_SYSENTER_ESP,
1482 (unsigned long)(cpu_entry_stack(cpu) + 1));
1483 }
1484
1485 vmx->loaded_vmcs->cpu = cpu;
1486 }
1487 }
1488
1489 /*
1490 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1491 * vcpu mutex is already taken.
1492 */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1493 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1494 {
1495 struct vcpu_vmx *vmx = to_vmx(vcpu);
1496
1497 vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1498
1499 vmx_vcpu_pi_load(vcpu, cpu);
1500
1501 vmx->host_debugctlmsr = get_debugctlmsr();
1502 }
1503
vmx_vcpu_put(struct kvm_vcpu * vcpu)1504 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1505 {
1506 vmx_vcpu_pi_put(vcpu);
1507
1508 vmx_prepare_switch_to_host(to_vmx(vcpu));
1509 }
1510
vmx_emulation_required(struct kvm_vcpu * vcpu)1511 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1512 {
1513 return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1514 }
1515
vmx_get_rflags(struct kvm_vcpu * vcpu)1516 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1517 {
1518 struct vcpu_vmx *vmx = to_vmx(vcpu);
1519 unsigned long rflags, save_rflags;
1520
1521 if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1522 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1523 rflags = vmcs_readl(GUEST_RFLAGS);
1524 if (vmx->rmode.vm86_active) {
1525 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1526 save_rflags = vmx->rmode.save_rflags;
1527 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1528 }
1529 vmx->rflags = rflags;
1530 }
1531 return vmx->rflags;
1532 }
1533
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1534 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1535 {
1536 struct vcpu_vmx *vmx = to_vmx(vcpu);
1537 unsigned long old_rflags;
1538
1539 /*
1540 * Unlike CR0 and CR4, RFLAGS handling requires checking if the vCPU
1541 * is an unrestricted guest in order to mark L2 as needing emulation
1542 * if L1 runs L2 as a restricted guest.
1543 */
1544 if (is_unrestricted_guest(vcpu)) {
1545 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1546 vmx->rflags = rflags;
1547 vmcs_writel(GUEST_RFLAGS, rflags);
1548 return;
1549 }
1550
1551 old_rflags = vmx_get_rflags(vcpu);
1552 vmx->rflags = rflags;
1553 if (vmx->rmode.vm86_active) {
1554 vmx->rmode.save_rflags = rflags;
1555 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1556 }
1557 vmcs_writel(GUEST_RFLAGS, rflags);
1558
1559 if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1560 vmx->emulation_required = vmx_emulation_required(vcpu);
1561 }
1562
vmx_get_if_flag(struct kvm_vcpu * vcpu)1563 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1564 {
1565 return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1566 }
1567
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu)1568 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1569 {
1570 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1571 int ret = 0;
1572
1573 if (interruptibility & GUEST_INTR_STATE_STI)
1574 ret |= KVM_X86_SHADOW_INT_STI;
1575 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1576 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1577
1578 return ret;
1579 }
1580
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1581 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1582 {
1583 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1584 u32 interruptibility = interruptibility_old;
1585
1586 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1587
1588 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1589 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1590 else if (mask & KVM_X86_SHADOW_INT_STI)
1591 interruptibility |= GUEST_INTR_STATE_STI;
1592
1593 if ((interruptibility != interruptibility_old))
1594 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1595 }
1596
vmx_rtit_ctl_check(struct kvm_vcpu * vcpu,u64 data)1597 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1598 {
1599 struct vcpu_vmx *vmx = to_vmx(vcpu);
1600 unsigned long value;
1601
1602 /*
1603 * Any MSR write that attempts to change bits marked reserved will
1604 * case a #GP fault.
1605 */
1606 if (data & vmx->pt_desc.ctl_bitmask)
1607 return 1;
1608
1609 /*
1610 * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1611 * result in a #GP unless the same write also clears TraceEn.
1612 */
1613 if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1614 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1615 return 1;
1616
1617 /*
1618 * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1619 * and FabricEn would cause #GP, if
1620 * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1621 */
1622 if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1623 !(data & RTIT_CTL_FABRIC_EN) &&
1624 !intel_pt_validate_cap(vmx->pt_desc.caps,
1625 PT_CAP_single_range_output))
1626 return 1;
1627
1628 /*
1629 * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1630 * utilize encodings marked reserved will cause a #GP fault.
1631 */
1632 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1633 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1634 !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1635 RTIT_CTL_MTC_RANGE_OFFSET, &value))
1636 return 1;
1637 value = intel_pt_validate_cap(vmx->pt_desc.caps,
1638 PT_CAP_cycle_thresholds);
1639 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1640 !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1641 RTIT_CTL_CYC_THRESH_OFFSET, &value))
1642 return 1;
1643 value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1644 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1645 !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1646 RTIT_CTL_PSB_FREQ_OFFSET, &value))
1647 return 1;
1648
1649 /*
1650 * If ADDRx_CFG is reserved or the encodings is >2 will
1651 * cause a #GP fault.
1652 */
1653 value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1654 if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1655 return 1;
1656 value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1657 if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1658 return 1;
1659 value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1660 if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1661 return 1;
1662 value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1663 if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1664 return 1;
1665
1666 return 0;
1667 }
1668
vmx_can_emulate_instruction(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)1669 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
1670 void *insn, int insn_len)
1671 {
1672 /*
1673 * Emulation of instructions in SGX enclaves is impossible as RIP does
1674 * not point at the failing instruction, and even if it did, the code
1675 * stream is inaccessible. Inject #UD instead of exiting to userspace
1676 * so that guest userspace can't DoS the guest simply by triggering
1677 * emulation (enclaves are CPL3 only).
1678 */
1679 if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1680 kvm_queue_exception(vcpu, UD_VECTOR);
1681 return false;
1682 }
1683 return true;
1684 }
1685
skip_emulated_instruction(struct kvm_vcpu * vcpu)1686 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1687 {
1688 union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1689 unsigned long rip, orig_rip;
1690 u32 instr_len;
1691
1692 /*
1693 * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1694 * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1695 * set when EPT misconfig occurs. In practice, real hardware updates
1696 * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1697 * (namely Hyper-V) don't set it due to it being undefined behavior,
1698 * i.e. we end up advancing IP with some random value.
1699 */
1700 if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1701 exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1702 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1703
1704 /*
1705 * Emulating an enclave's instructions isn't supported as KVM
1706 * cannot access the enclave's memory or its true RIP, e.g. the
1707 * vmcs.GUEST_RIP points at the exit point of the enclave, not
1708 * the RIP that actually triggered the VM-Exit. But, because
1709 * most instructions that cause VM-Exit will #UD in an enclave,
1710 * most instruction-based VM-Exits simply do not occur.
1711 *
1712 * There are a few exceptions, notably the debug instructions
1713 * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1714 * and generate #DB/#BP as expected, which KVM might intercept.
1715 * But again, the CPU does the dirty work and saves an instr
1716 * length of zero so VMMs don't shoot themselves in the foot.
1717 * WARN if KVM tries to skip a non-zero length instruction on
1718 * a VM-Exit from an enclave.
1719 */
1720 if (!instr_len)
1721 goto rip_updated;
1722
1723 WARN_ONCE(exit_reason.enclave_mode,
1724 "skipping instruction after SGX enclave VM-Exit");
1725
1726 orig_rip = kvm_rip_read(vcpu);
1727 rip = orig_rip + instr_len;
1728 #ifdef CONFIG_X86_64
1729 /*
1730 * We need to mask out the high 32 bits of RIP if not in 64-bit
1731 * mode, but just finding out that we are in 64-bit mode is
1732 * quite expensive. Only do it if there was a carry.
1733 */
1734 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1735 rip = (u32)rip;
1736 #endif
1737 kvm_rip_write(vcpu, rip);
1738 } else {
1739 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1740 return 0;
1741 }
1742
1743 rip_updated:
1744 /* skipping an emulated instruction also counts */
1745 vmx_set_interrupt_shadow(vcpu, 0);
1746
1747 return 1;
1748 }
1749
1750 /*
1751 * Recognizes a pending MTF VM-exit and records the nested state for later
1752 * delivery.
1753 */
vmx_update_emulated_instruction(struct kvm_vcpu * vcpu)1754 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1755 {
1756 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1757 struct vcpu_vmx *vmx = to_vmx(vcpu);
1758
1759 if (!is_guest_mode(vcpu))
1760 return;
1761
1762 /*
1763 * Per the SDM, MTF takes priority over debug-trap exceptions besides
1764 * TSS T-bit traps and ICEBP (INT1). KVM doesn't emulate T-bit traps
1765 * or ICEBP (in the emulator proper), and skipping of ICEBP after an
1766 * intercepted #DB deliberately avoids single-step #DB and MTF updates
1767 * as ICEBP is higher priority than both. As instruction emulation is
1768 * completed at this point (i.e. KVM is at the instruction boundary),
1769 * any #DB exception pending delivery must be a debug-trap of lower
1770 * priority than MTF. Record the pending MTF state to be delivered in
1771 * vmx_check_nested_events().
1772 */
1773 if (nested_cpu_has_mtf(vmcs12) &&
1774 (!vcpu->arch.exception.pending ||
1775 vcpu->arch.exception.vector == DB_VECTOR) &&
1776 (!vcpu->arch.exception_vmexit.pending ||
1777 vcpu->arch.exception_vmexit.vector == DB_VECTOR)) {
1778 vmx->nested.mtf_pending = true;
1779 kvm_make_request(KVM_REQ_EVENT, vcpu);
1780 } else {
1781 vmx->nested.mtf_pending = false;
1782 }
1783 }
1784
vmx_skip_emulated_instruction(struct kvm_vcpu * vcpu)1785 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1786 {
1787 vmx_update_emulated_instruction(vcpu);
1788 return skip_emulated_instruction(vcpu);
1789 }
1790
vmx_clear_hlt(struct kvm_vcpu * vcpu)1791 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1792 {
1793 /*
1794 * Ensure that we clear the HLT state in the VMCS. We don't need to
1795 * explicitly skip the instruction because if the HLT state is set,
1796 * then the instruction is already executing and RIP has already been
1797 * advanced.
1798 */
1799 if (kvm_hlt_in_guest(vcpu->kvm) &&
1800 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1801 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1802 }
1803
vmx_inject_exception(struct kvm_vcpu * vcpu)1804 static void vmx_inject_exception(struct kvm_vcpu *vcpu)
1805 {
1806 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1807 u32 intr_info = ex->vector | INTR_INFO_VALID_MASK;
1808 struct vcpu_vmx *vmx = to_vmx(vcpu);
1809
1810 kvm_deliver_exception_payload(vcpu, ex);
1811
1812 if (ex->has_error_code) {
1813 /*
1814 * Despite the error code being architecturally defined as 32
1815 * bits, and the VMCS field being 32 bits, Intel CPUs and thus
1816 * VMX don't actually supporting setting bits 31:16. Hardware
1817 * will (should) never provide a bogus error code, but AMD CPUs
1818 * do generate error codes with bits 31:16 set, and so KVM's
1819 * ABI lets userspace shove in arbitrary 32-bit values. Drop
1820 * the upper bits to avoid VM-Fail, losing information that
1821 * does't really exist is preferable to killing the VM.
1822 */
1823 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, (u16)ex->error_code);
1824 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1825 }
1826
1827 if (vmx->rmode.vm86_active) {
1828 int inc_eip = 0;
1829 if (kvm_exception_is_soft(ex->vector))
1830 inc_eip = vcpu->arch.event_exit_inst_len;
1831 kvm_inject_realmode_interrupt(vcpu, ex->vector, inc_eip);
1832 return;
1833 }
1834
1835 WARN_ON_ONCE(vmx->emulation_required);
1836
1837 if (kvm_exception_is_soft(ex->vector)) {
1838 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1839 vmx->vcpu.arch.event_exit_inst_len);
1840 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1841 } else
1842 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1843
1844 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1845
1846 vmx_clear_hlt(vcpu);
1847 }
1848
vmx_setup_uret_msr(struct vcpu_vmx * vmx,unsigned int msr,bool load_into_hardware)1849 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1850 bool load_into_hardware)
1851 {
1852 struct vmx_uret_msr *uret_msr;
1853
1854 uret_msr = vmx_find_uret_msr(vmx, msr);
1855 if (!uret_msr)
1856 return;
1857
1858 uret_msr->load_into_hardware = load_into_hardware;
1859 }
1860
1861 /*
1862 * Configuring user return MSRs to automatically save, load, and restore MSRs
1863 * that need to be shoved into hardware when running the guest. Note, omitting
1864 * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1865 * loaded into hardware when running the guest.
1866 */
vmx_setup_uret_msrs(struct vcpu_vmx * vmx)1867 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1868 {
1869 #ifdef CONFIG_X86_64
1870 bool load_syscall_msrs;
1871
1872 /*
1873 * The SYSCALL MSRs are only needed on long mode guests, and only
1874 * when EFER.SCE is set.
1875 */
1876 load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1877 (vmx->vcpu.arch.efer & EFER_SCE);
1878
1879 vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1880 vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1881 vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1882 #endif
1883 vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1884
1885 vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1886 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1887 guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1888
1889 /*
1890 * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1891 * kernel and old userspace. If those guests run on a tsx=off host, do
1892 * allow guests to use TSX_CTRL, but don't change the value in hardware
1893 * so that TSX remains always disabled.
1894 */
1895 vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1896
1897 /*
1898 * The set of MSRs to load may have changed, reload MSRs before the
1899 * next VM-Enter.
1900 */
1901 vmx->guest_uret_msrs_loaded = false;
1902 }
1903
vmx_get_l2_tsc_offset(struct kvm_vcpu * vcpu)1904 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1905 {
1906 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1907
1908 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1909 return vmcs12->tsc_offset;
1910
1911 return 0;
1912 }
1913
vmx_get_l2_tsc_multiplier(struct kvm_vcpu * vcpu)1914 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1915 {
1916 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1917
1918 if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1919 nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1920 return vmcs12->tsc_multiplier;
1921
1922 return kvm_caps.default_tsc_scaling_ratio;
1923 }
1924
vmx_write_tsc_offset(struct kvm_vcpu * vcpu)1925 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu)
1926 {
1927 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
1928 }
1929
vmx_write_tsc_multiplier(struct kvm_vcpu * vcpu)1930 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1931 {
1932 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
1933 }
1934
1935 /*
1936 * Userspace is allowed to set any supported IA32_FEATURE_CONTROL regardless of
1937 * guest CPUID. Note, KVM allows userspace to set "VMX in SMX" to maintain
1938 * backwards compatibility even though KVM doesn't support emulating SMX. And
1939 * because userspace set "VMX in SMX", the guest must also be allowed to set it,
1940 * e.g. if the MSR is left unlocked and the guest does a RMW operation.
1941 */
1942 #define KVM_SUPPORTED_FEATURE_CONTROL (FEAT_CTL_LOCKED | \
1943 FEAT_CTL_VMX_ENABLED_INSIDE_SMX | \
1944 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX | \
1945 FEAT_CTL_SGX_LC_ENABLED | \
1946 FEAT_CTL_SGX_ENABLED | \
1947 FEAT_CTL_LMCE_ENABLED)
1948
is_vmx_feature_control_msr_valid(struct vcpu_vmx * vmx,struct msr_data * msr)1949 static inline bool is_vmx_feature_control_msr_valid(struct vcpu_vmx *vmx,
1950 struct msr_data *msr)
1951 {
1952 uint64_t valid_bits;
1953
1954 /*
1955 * Ensure KVM_SUPPORTED_FEATURE_CONTROL is updated when new bits are
1956 * exposed to the guest.
1957 */
1958 WARN_ON_ONCE(vmx->msr_ia32_feature_control_valid_bits &
1959 ~KVM_SUPPORTED_FEATURE_CONTROL);
1960
1961 if (!msr->host_initiated &&
1962 (vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED))
1963 return false;
1964
1965 if (msr->host_initiated)
1966 valid_bits = KVM_SUPPORTED_FEATURE_CONTROL;
1967 else
1968 valid_bits = vmx->msr_ia32_feature_control_valid_bits;
1969
1970 return !(msr->data & ~valid_bits);
1971 }
1972
vmx_get_msr_feature(struct kvm_msr_entry * msr)1973 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1974 {
1975 switch (msr->index) {
1976 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
1977 if (!nested)
1978 return 1;
1979 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1980 default:
1981 return KVM_MSR_RET_INVALID;
1982 }
1983 }
1984
1985 /*
1986 * Reads an msr value (of 'msr_info->index') into 'msr_info->data'.
1987 * Returns 0 on success, non-0 otherwise.
1988 * Assumes vcpu_load() was already called.
1989 */
vmx_get_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1990 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1991 {
1992 struct vcpu_vmx *vmx = to_vmx(vcpu);
1993 struct vmx_uret_msr *msr;
1994 u32 index;
1995
1996 switch (msr_info->index) {
1997 #ifdef CONFIG_X86_64
1998 case MSR_FS_BASE:
1999 msr_info->data = vmcs_readl(GUEST_FS_BASE);
2000 break;
2001 case MSR_GS_BASE:
2002 msr_info->data = vmcs_readl(GUEST_GS_BASE);
2003 break;
2004 case MSR_KERNEL_GS_BASE:
2005 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
2006 break;
2007 #endif
2008 case MSR_EFER:
2009 return kvm_get_msr_common(vcpu, msr_info);
2010 case MSR_IA32_TSX_CTRL:
2011 if (!msr_info->host_initiated &&
2012 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2013 return 1;
2014 goto find_uret_msr;
2015 case MSR_IA32_UMWAIT_CONTROL:
2016 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2017 return 1;
2018
2019 msr_info->data = vmx->msr_ia32_umwait_control;
2020 break;
2021 case MSR_IA32_SPEC_CTRL:
2022 if (!msr_info->host_initiated &&
2023 !guest_has_spec_ctrl_msr(vcpu))
2024 return 1;
2025
2026 msr_info->data = to_vmx(vcpu)->spec_ctrl;
2027 break;
2028 case MSR_IA32_SYSENTER_CS:
2029 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2030 break;
2031 case MSR_IA32_SYSENTER_EIP:
2032 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
2033 break;
2034 case MSR_IA32_SYSENTER_ESP:
2035 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
2036 break;
2037 case MSR_IA32_BNDCFGS:
2038 if (!kvm_mpx_supported() ||
2039 (!msr_info->host_initiated &&
2040 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2041 return 1;
2042 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
2043 break;
2044 case MSR_IA32_MCG_EXT_CTL:
2045 if (!msr_info->host_initiated &&
2046 !(vmx->msr_ia32_feature_control &
2047 FEAT_CTL_LMCE_ENABLED))
2048 return 1;
2049 msr_info->data = vcpu->arch.mcg_ext_ctl;
2050 break;
2051 case MSR_IA32_FEAT_CTL:
2052 msr_info->data = vmx->msr_ia32_feature_control;
2053 break;
2054 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2055 if (!msr_info->host_initiated &&
2056 !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
2057 return 1;
2058 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
2059 [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
2060 break;
2061 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2062 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2063 return 1;
2064 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
2065 &msr_info->data))
2066 return 1;
2067 /*
2068 * Enlightened VMCS v1 doesn't have certain VMCS fields but
2069 * instead of just ignoring the features, different Hyper-V
2070 * versions are either trying to use them and fail or do some
2071 * sanity checking and refuse to boot. Filter all unsupported
2072 * features out.
2073 */
2074 if (!msr_info->host_initiated && guest_cpuid_has_evmcs(vcpu))
2075 nested_evmcs_filter_control_msr(vcpu, msr_info->index,
2076 &msr_info->data);
2077 break;
2078 case MSR_IA32_RTIT_CTL:
2079 if (!vmx_pt_mode_is_host_guest())
2080 return 1;
2081 msr_info->data = vmx->pt_desc.guest.ctl;
2082 break;
2083 case MSR_IA32_RTIT_STATUS:
2084 if (!vmx_pt_mode_is_host_guest())
2085 return 1;
2086 msr_info->data = vmx->pt_desc.guest.status;
2087 break;
2088 case MSR_IA32_RTIT_CR3_MATCH:
2089 if (!vmx_pt_mode_is_host_guest() ||
2090 !intel_pt_validate_cap(vmx->pt_desc.caps,
2091 PT_CAP_cr3_filtering))
2092 return 1;
2093 msr_info->data = vmx->pt_desc.guest.cr3_match;
2094 break;
2095 case MSR_IA32_RTIT_OUTPUT_BASE:
2096 if (!vmx_pt_mode_is_host_guest() ||
2097 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2098 PT_CAP_topa_output) &&
2099 !intel_pt_validate_cap(vmx->pt_desc.caps,
2100 PT_CAP_single_range_output)))
2101 return 1;
2102 msr_info->data = vmx->pt_desc.guest.output_base;
2103 break;
2104 case MSR_IA32_RTIT_OUTPUT_MASK:
2105 if (!vmx_pt_mode_is_host_guest() ||
2106 (!intel_pt_validate_cap(vmx->pt_desc.caps,
2107 PT_CAP_topa_output) &&
2108 !intel_pt_validate_cap(vmx->pt_desc.caps,
2109 PT_CAP_single_range_output)))
2110 return 1;
2111 msr_info->data = vmx->pt_desc.guest.output_mask;
2112 break;
2113 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2114 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2115 if (!vmx_pt_mode_is_host_guest() ||
2116 (index >= 2 * vmx->pt_desc.num_address_ranges))
2117 return 1;
2118 if (index % 2)
2119 msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
2120 else
2121 msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
2122 break;
2123 case MSR_IA32_DEBUGCTLMSR:
2124 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
2125 break;
2126 default:
2127 find_uret_msr:
2128 msr = vmx_find_uret_msr(vmx, msr_info->index);
2129 if (msr) {
2130 msr_info->data = msr->data;
2131 break;
2132 }
2133 return kvm_get_msr_common(vcpu, msr_info);
2134 }
2135
2136 return 0;
2137 }
2138
nested_vmx_truncate_sysenter_addr(struct kvm_vcpu * vcpu,u64 data)2139 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
2140 u64 data)
2141 {
2142 #ifdef CONFIG_X86_64
2143 if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
2144 return (u32)data;
2145 #endif
2146 return (unsigned long)data;
2147 }
2148
vmx_get_supported_debugctl(struct kvm_vcpu * vcpu,bool host_initiated)2149 static u64 vmx_get_supported_debugctl(struct kvm_vcpu *vcpu, bool host_initiated)
2150 {
2151 u64 debugctl = 0;
2152
2153 if (boot_cpu_has(X86_FEATURE_BUS_LOCK_DETECT) &&
2154 (host_initiated || guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)))
2155 debugctl |= DEBUGCTLMSR_BUS_LOCK_DETECT;
2156
2157 if ((kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT) &&
2158 (host_initiated || intel_pmu_lbr_is_enabled(vcpu)))
2159 debugctl |= DEBUGCTLMSR_LBR | DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
2160
2161 return debugctl;
2162 }
2163
2164 /*
2165 * Writes msr value into the appropriate "register".
2166 * Returns 0 on success, non-0 otherwise.
2167 * Assumes vcpu_load() was already called.
2168 */
vmx_set_msr(struct kvm_vcpu * vcpu,struct msr_data * msr_info)2169 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2170 {
2171 struct vcpu_vmx *vmx = to_vmx(vcpu);
2172 struct vmx_uret_msr *msr;
2173 int ret = 0;
2174 u32 msr_index = msr_info->index;
2175 u64 data = msr_info->data;
2176 u32 index;
2177
2178 switch (msr_index) {
2179 case MSR_EFER:
2180 ret = kvm_set_msr_common(vcpu, msr_info);
2181 break;
2182 #ifdef CONFIG_X86_64
2183 case MSR_FS_BASE:
2184 vmx_segment_cache_clear(vmx);
2185 vmcs_writel(GUEST_FS_BASE, data);
2186 break;
2187 case MSR_GS_BASE:
2188 vmx_segment_cache_clear(vmx);
2189 vmcs_writel(GUEST_GS_BASE, data);
2190 break;
2191 case MSR_KERNEL_GS_BASE:
2192 vmx_write_guest_kernel_gs_base(vmx, data);
2193 break;
2194 case MSR_IA32_XFD:
2195 ret = kvm_set_msr_common(vcpu, msr_info);
2196 /*
2197 * Always intercepting WRMSR could incur non-negligible
2198 * overhead given xfd might be changed frequently in
2199 * guest context switch. Disable write interception
2200 * upon the first write with a non-zero value (indicating
2201 * potential usage on dynamic xfeatures). Also update
2202 * exception bitmap to trap #NM for proper virtualization
2203 * of guest xfd_err.
2204 */
2205 if (!ret && data) {
2206 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_XFD,
2207 MSR_TYPE_RW);
2208 vcpu->arch.xfd_no_write_intercept = true;
2209 vmx_update_exception_bitmap(vcpu);
2210 }
2211 break;
2212 #endif
2213 case MSR_IA32_SYSENTER_CS:
2214 if (is_guest_mode(vcpu))
2215 get_vmcs12(vcpu)->guest_sysenter_cs = data;
2216 vmcs_write32(GUEST_SYSENTER_CS, data);
2217 break;
2218 case MSR_IA32_SYSENTER_EIP:
2219 if (is_guest_mode(vcpu)) {
2220 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2221 get_vmcs12(vcpu)->guest_sysenter_eip = data;
2222 }
2223 vmcs_writel(GUEST_SYSENTER_EIP, data);
2224 break;
2225 case MSR_IA32_SYSENTER_ESP:
2226 if (is_guest_mode(vcpu)) {
2227 data = nested_vmx_truncate_sysenter_addr(vcpu, data);
2228 get_vmcs12(vcpu)->guest_sysenter_esp = data;
2229 }
2230 vmcs_writel(GUEST_SYSENTER_ESP, data);
2231 break;
2232 case MSR_IA32_DEBUGCTLMSR: {
2233 u64 invalid;
2234
2235 invalid = data & ~vmx_get_supported_debugctl(vcpu, msr_info->host_initiated);
2236 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
2237 kvm_pr_unimpl_wrmsr(vcpu, msr_index, data);
2238 data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2239 invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
2240 }
2241
2242 if (invalid)
2243 return 1;
2244
2245 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
2246 VM_EXIT_SAVE_DEBUG_CONTROLS)
2247 get_vmcs12(vcpu)->guest_ia32_debugctl = data;
2248
2249 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2250 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2251 (data & DEBUGCTLMSR_LBR))
2252 intel_pmu_create_guest_lbr_event(vcpu);
2253 return 0;
2254 }
2255 case MSR_IA32_BNDCFGS:
2256 if (!kvm_mpx_supported() ||
2257 (!msr_info->host_initiated &&
2258 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2259 return 1;
2260 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2261 (data & MSR_IA32_BNDCFGS_RSVD))
2262 return 1;
2263
2264 if (is_guest_mode(vcpu) &&
2265 ((vmx->nested.msrs.entry_ctls_high & VM_ENTRY_LOAD_BNDCFGS) ||
2266 (vmx->nested.msrs.exit_ctls_high & VM_EXIT_CLEAR_BNDCFGS)))
2267 get_vmcs12(vcpu)->guest_bndcfgs = data;
2268
2269 vmcs_write64(GUEST_BNDCFGS, data);
2270 break;
2271 case MSR_IA32_UMWAIT_CONTROL:
2272 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2273 return 1;
2274
2275 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2276 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2277 return 1;
2278
2279 vmx->msr_ia32_umwait_control = data;
2280 break;
2281 case MSR_IA32_SPEC_CTRL:
2282 if (!msr_info->host_initiated &&
2283 !guest_has_spec_ctrl_msr(vcpu))
2284 return 1;
2285
2286 if (kvm_spec_ctrl_test_value(data))
2287 return 1;
2288
2289 vmx->spec_ctrl = data;
2290 if (!data)
2291 break;
2292
2293 /*
2294 * For non-nested:
2295 * When it's written (to non-zero) for the first time, pass
2296 * it through.
2297 *
2298 * For nested:
2299 * The handling of the MSR bitmap for L2 guests is done in
2300 * nested_vmx_prepare_msr_bitmap. We should not touch the
2301 * vmcs02.msr_bitmap here since it gets completely overwritten
2302 * in the merging. We update the vmcs01 here for L1 as well
2303 * since it will end up touching the MSR anyway now.
2304 */
2305 vmx_disable_intercept_for_msr(vcpu,
2306 MSR_IA32_SPEC_CTRL,
2307 MSR_TYPE_RW);
2308 break;
2309 case MSR_IA32_TSX_CTRL:
2310 if (!msr_info->host_initiated &&
2311 !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2312 return 1;
2313 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2314 return 1;
2315 goto find_uret_msr;
2316 case MSR_IA32_CR_PAT:
2317 ret = kvm_set_msr_common(vcpu, msr_info);
2318 if (ret)
2319 break;
2320
2321 if (is_guest_mode(vcpu) &&
2322 get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2323 get_vmcs12(vcpu)->guest_ia32_pat = data;
2324
2325 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
2326 vmcs_write64(GUEST_IA32_PAT, data);
2327 break;
2328 case MSR_IA32_MCG_EXT_CTL:
2329 if ((!msr_info->host_initiated &&
2330 !(to_vmx(vcpu)->msr_ia32_feature_control &
2331 FEAT_CTL_LMCE_ENABLED)) ||
2332 (data & ~MCG_EXT_CTL_LMCE_EN))
2333 return 1;
2334 vcpu->arch.mcg_ext_ctl = data;
2335 break;
2336 case MSR_IA32_FEAT_CTL:
2337 if (!is_vmx_feature_control_msr_valid(vmx, msr_info))
2338 return 1;
2339
2340 vmx->msr_ia32_feature_control = data;
2341 if (msr_info->host_initiated && data == 0)
2342 vmx_leave_nested(vcpu);
2343
2344 /* SGX may be enabled/disabled by guest's firmware */
2345 vmx_write_encls_bitmap(vcpu, NULL);
2346 break;
2347 case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2348 /*
2349 * On real hardware, the LE hash MSRs are writable before
2350 * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2351 * at which point SGX related bits in IA32_FEATURE_CONTROL
2352 * become writable.
2353 *
2354 * KVM does not emulate SGX activation for simplicity, so
2355 * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2356 * is unlocked. This is technically not architectural
2357 * behavior, but it's close enough.
2358 */
2359 if (!msr_info->host_initiated &&
2360 (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2361 ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2362 !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2363 return 1;
2364 vmx->msr_ia32_sgxlepubkeyhash
2365 [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2366 break;
2367 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
2368 if (!msr_info->host_initiated)
2369 return 1; /* they are read-only */
2370 if (!guest_can_use(vcpu, X86_FEATURE_VMX))
2371 return 1;
2372 return vmx_set_vmx_msr(vcpu, msr_index, data);
2373 case MSR_IA32_RTIT_CTL:
2374 if (!vmx_pt_mode_is_host_guest() ||
2375 vmx_rtit_ctl_check(vcpu, data) ||
2376 vmx->nested.vmxon)
2377 return 1;
2378 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2379 vmx->pt_desc.guest.ctl = data;
2380 pt_update_intercept_for_msr(vcpu);
2381 break;
2382 case MSR_IA32_RTIT_STATUS:
2383 if (!pt_can_write_msr(vmx))
2384 return 1;
2385 if (data & MSR_IA32_RTIT_STATUS_MASK)
2386 return 1;
2387 vmx->pt_desc.guest.status = data;
2388 break;
2389 case MSR_IA32_RTIT_CR3_MATCH:
2390 if (!pt_can_write_msr(vmx))
2391 return 1;
2392 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2393 PT_CAP_cr3_filtering))
2394 return 1;
2395 vmx->pt_desc.guest.cr3_match = data;
2396 break;
2397 case MSR_IA32_RTIT_OUTPUT_BASE:
2398 if (!pt_can_write_msr(vmx))
2399 return 1;
2400 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2401 PT_CAP_topa_output) &&
2402 !intel_pt_validate_cap(vmx->pt_desc.caps,
2403 PT_CAP_single_range_output))
2404 return 1;
2405 if (!pt_output_base_valid(vcpu, data))
2406 return 1;
2407 vmx->pt_desc.guest.output_base = data;
2408 break;
2409 case MSR_IA32_RTIT_OUTPUT_MASK:
2410 if (!pt_can_write_msr(vmx))
2411 return 1;
2412 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2413 PT_CAP_topa_output) &&
2414 !intel_pt_validate_cap(vmx->pt_desc.caps,
2415 PT_CAP_single_range_output))
2416 return 1;
2417 vmx->pt_desc.guest.output_mask = data;
2418 break;
2419 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2420 if (!pt_can_write_msr(vmx))
2421 return 1;
2422 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2423 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2424 return 1;
2425 if (is_noncanonical_address(data, vcpu))
2426 return 1;
2427 if (index % 2)
2428 vmx->pt_desc.guest.addr_b[index / 2] = data;
2429 else
2430 vmx->pt_desc.guest.addr_a[index / 2] = data;
2431 break;
2432 case MSR_IA32_PERF_CAPABILITIES:
2433 if (data && !vcpu_to_pmu(vcpu)->version)
2434 return 1;
2435 if (data & PMU_CAP_LBR_FMT) {
2436 if ((data & PMU_CAP_LBR_FMT) !=
2437 (kvm_caps.supported_perf_cap & PMU_CAP_LBR_FMT))
2438 return 1;
2439 if (!cpuid_model_is_consistent(vcpu))
2440 return 1;
2441 }
2442 if (data & PERF_CAP_PEBS_FORMAT) {
2443 if ((data & PERF_CAP_PEBS_MASK) !=
2444 (kvm_caps.supported_perf_cap & PERF_CAP_PEBS_MASK))
2445 return 1;
2446 if (!guest_cpuid_has(vcpu, X86_FEATURE_DS))
2447 return 1;
2448 if (!guest_cpuid_has(vcpu, X86_FEATURE_DTES64))
2449 return 1;
2450 if (!cpuid_model_is_consistent(vcpu))
2451 return 1;
2452 }
2453 ret = kvm_set_msr_common(vcpu, msr_info);
2454 break;
2455
2456 default:
2457 find_uret_msr:
2458 msr = vmx_find_uret_msr(vmx, msr_index);
2459 if (msr)
2460 ret = vmx_set_guest_uret_msr(vmx, msr, data);
2461 else
2462 ret = kvm_set_msr_common(vcpu, msr_info);
2463 }
2464
2465 /* FB_CLEAR may have changed, also update the FB_CLEAR_DIS behavior */
2466 if (msr_index == MSR_IA32_ARCH_CAPABILITIES)
2467 vmx_update_fb_clear_dis(vcpu, vmx);
2468
2469 return ret;
2470 }
2471
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2472 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2473 {
2474 unsigned long guest_owned_bits;
2475
2476 kvm_register_mark_available(vcpu, reg);
2477
2478 switch (reg) {
2479 case VCPU_REGS_RSP:
2480 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2481 break;
2482 case VCPU_REGS_RIP:
2483 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2484 break;
2485 case VCPU_EXREG_PDPTR:
2486 if (enable_ept)
2487 ept_save_pdptrs(vcpu);
2488 break;
2489 case VCPU_EXREG_CR0:
2490 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2491
2492 vcpu->arch.cr0 &= ~guest_owned_bits;
2493 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2494 break;
2495 case VCPU_EXREG_CR3:
2496 /*
2497 * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2498 * CR3 is loaded into hardware, not the guest's CR3.
2499 */
2500 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2501 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2502 break;
2503 case VCPU_EXREG_CR4:
2504 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2505
2506 vcpu->arch.cr4 &= ~guest_owned_bits;
2507 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2508 break;
2509 default:
2510 KVM_BUG_ON(1, vcpu->kvm);
2511 break;
2512 }
2513 }
2514
2515 /*
2516 * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2517 * directly instead of going through cpu_has(), to ensure KVM is trapping
2518 * ENCLS whenever it's supported in hardware. It does not matter whether
2519 * the host OS supports or has enabled SGX.
2520 */
cpu_has_sgx(void)2521 static bool cpu_has_sgx(void)
2522 {
2523 return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2524 }
2525
2526 /*
2527 * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2528 * can't be used due to errata where VM Exit may incorrectly clear
2529 * IA32_PERF_GLOBAL_CTRL[34:32]. Work around the errata by using the
2530 * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2531 */
cpu_has_perf_global_ctrl_bug(void)2532 static bool cpu_has_perf_global_ctrl_bug(void)
2533 {
2534 if (boot_cpu_data.x86 == 0x6) {
2535 switch (boot_cpu_data.x86_model) {
2536 case INTEL_FAM6_NEHALEM_EP: /* AAK155 */
2537 case INTEL_FAM6_NEHALEM: /* AAP115 */
2538 case INTEL_FAM6_WESTMERE: /* AAT100 */
2539 case INTEL_FAM6_WESTMERE_EP: /* BC86,AAY89,BD102 */
2540 case INTEL_FAM6_NEHALEM_EX: /* BA97 */
2541 return true;
2542 default:
2543 break;
2544 }
2545 }
2546
2547 return false;
2548 }
2549
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2550 static int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, u32 msr, u32 *result)
2551 {
2552 u32 vmx_msr_low, vmx_msr_high;
2553 u32 ctl = ctl_min | ctl_opt;
2554
2555 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2556
2557 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2558 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2559
2560 /* Ensure minimum (required) set of control bits are supported. */
2561 if (ctl_min & ~ctl)
2562 return -EIO;
2563
2564 *result = ctl;
2565 return 0;
2566 }
2567
adjust_vmx_controls64(u64 ctl_opt,u32 msr)2568 static u64 adjust_vmx_controls64(u64 ctl_opt, u32 msr)
2569 {
2570 u64 allowed;
2571
2572 rdmsrl(msr, allowed);
2573
2574 return ctl_opt & allowed;
2575 }
2576
setup_vmcs_config(struct vmcs_config * vmcs_conf,struct vmx_capability * vmx_cap)2577 static int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2578 struct vmx_capability *vmx_cap)
2579 {
2580 u32 vmx_msr_low, vmx_msr_high;
2581 u32 _pin_based_exec_control = 0;
2582 u32 _cpu_based_exec_control = 0;
2583 u32 _cpu_based_2nd_exec_control = 0;
2584 u64 _cpu_based_3rd_exec_control = 0;
2585 u32 _vmexit_control = 0;
2586 u32 _vmentry_control = 0;
2587 u64 misc_msr;
2588 int i;
2589
2590 /*
2591 * LOAD/SAVE_DEBUG_CONTROLS are absent because both are mandatory.
2592 * SAVE_IA32_PAT and SAVE_IA32_EFER are absent because KVM always
2593 * intercepts writes to PAT and EFER, i.e. never enables those controls.
2594 */
2595 struct {
2596 u32 entry_control;
2597 u32 exit_control;
2598 } const vmcs_entry_exit_pairs[] = {
2599 { VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL },
2600 { VM_ENTRY_LOAD_IA32_PAT, VM_EXIT_LOAD_IA32_PAT },
2601 { VM_ENTRY_LOAD_IA32_EFER, VM_EXIT_LOAD_IA32_EFER },
2602 { VM_ENTRY_LOAD_BNDCFGS, VM_EXIT_CLEAR_BNDCFGS },
2603 { VM_ENTRY_LOAD_IA32_RTIT_CTL, VM_EXIT_CLEAR_IA32_RTIT_CTL },
2604 };
2605
2606 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2607
2608 if (adjust_vmx_controls(KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL,
2609 KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL,
2610 MSR_IA32_VMX_PROCBASED_CTLS,
2611 &_cpu_based_exec_control))
2612 return -EIO;
2613 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2614 if (adjust_vmx_controls(KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL,
2615 KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL,
2616 MSR_IA32_VMX_PROCBASED_CTLS2,
2617 &_cpu_based_2nd_exec_control))
2618 return -EIO;
2619 }
2620 #ifndef CONFIG_X86_64
2621 if (!(_cpu_based_2nd_exec_control &
2622 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2623 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2624 #endif
2625
2626 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2627 _cpu_based_2nd_exec_control &= ~(
2628 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2629 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2630 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2631
2632 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2633 &vmx_cap->ept, &vmx_cap->vpid);
2634
2635 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
2636 vmx_cap->ept) {
2637 pr_warn_once("EPT CAP should not exist if not support "
2638 "1-setting enable EPT VM-execution control\n");
2639
2640 if (error_on_inconsistent_vmcs_config)
2641 return -EIO;
2642
2643 vmx_cap->ept = 0;
2644 }
2645 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2646 vmx_cap->vpid) {
2647 pr_warn_once("VPID CAP should not exist if not support "
2648 "1-setting enable VPID VM-execution control\n");
2649
2650 if (error_on_inconsistent_vmcs_config)
2651 return -EIO;
2652
2653 vmx_cap->vpid = 0;
2654 }
2655
2656 if (!cpu_has_sgx())
2657 _cpu_based_2nd_exec_control &= ~SECONDARY_EXEC_ENCLS_EXITING;
2658
2659 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
2660 _cpu_based_3rd_exec_control =
2661 adjust_vmx_controls64(KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL,
2662 MSR_IA32_VMX_PROCBASED_CTLS3);
2663
2664 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_EXIT_CONTROLS,
2665 KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS,
2666 MSR_IA32_VMX_EXIT_CTLS,
2667 &_vmexit_control))
2668 return -EIO;
2669
2670 if (adjust_vmx_controls(KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL,
2671 KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL,
2672 MSR_IA32_VMX_PINBASED_CTLS,
2673 &_pin_based_exec_control))
2674 return -EIO;
2675
2676 if (cpu_has_broken_vmx_preemption_timer())
2677 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2678 if (!(_cpu_based_2nd_exec_control &
2679 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2680 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2681
2682 if (adjust_vmx_controls(KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS,
2683 KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS,
2684 MSR_IA32_VMX_ENTRY_CTLS,
2685 &_vmentry_control))
2686 return -EIO;
2687
2688 for (i = 0; i < ARRAY_SIZE(vmcs_entry_exit_pairs); i++) {
2689 u32 n_ctrl = vmcs_entry_exit_pairs[i].entry_control;
2690 u32 x_ctrl = vmcs_entry_exit_pairs[i].exit_control;
2691
2692 if (!(_vmentry_control & n_ctrl) == !(_vmexit_control & x_ctrl))
2693 continue;
2694
2695 pr_warn_once("Inconsistent VM-Entry/VM-Exit pair, entry = %x, exit = %x\n",
2696 _vmentry_control & n_ctrl, _vmexit_control & x_ctrl);
2697
2698 if (error_on_inconsistent_vmcs_config)
2699 return -EIO;
2700
2701 _vmentry_control &= ~n_ctrl;
2702 _vmexit_control &= ~x_ctrl;
2703 }
2704
2705 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2706
2707 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2708 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2709 return -EIO;
2710
2711 #ifdef CONFIG_X86_64
2712 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2713 if (vmx_msr_high & (1u<<16))
2714 return -EIO;
2715 #endif
2716
2717 /* Require Write-Back (WB) memory type for VMCS accesses. */
2718 if (((vmx_msr_high >> 18) & 15) != 6)
2719 return -EIO;
2720
2721 rdmsrl(MSR_IA32_VMX_MISC, misc_msr);
2722
2723 vmcs_conf->size = vmx_msr_high & 0x1fff;
2724 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2725
2726 vmcs_conf->revision_id = vmx_msr_low;
2727
2728 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2729 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2730 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2731 vmcs_conf->cpu_based_3rd_exec_ctrl = _cpu_based_3rd_exec_control;
2732 vmcs_conf->vmexit_ctrl = _vmexit_control;
2733 vmcs_conf->vmentry_ctrl = _vmentry_control;
2734 vmcs_conf->misc = misc_msr;
2735
2736 #if IS_ENABLED(CONFIG_HYPERV)
2737 if (enlightened_vmcs)
2738 evmcs_sanitize_exec_ctrls(vmcs_conf);
2739 #endif
2740
2741 return 0;
2742 }
2743
__kvm_is_vmx_supported(void)2744 static bool __kvm_is_vmx_supported(void)
2745 {
2746 int cpu = smp_processor_id();
2747
2748 if (!(cpuid_ecx(1) & feature_bit(VMX))) {
2749 pr_err("VMX not supported by CPU %d\n", cpu);
2750 return false;
2751 }
2752
2753 if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2754 !this_cpu_has(X86_FEATURE_VMX)) {
2755 pr_err("VMX not enabled (by BIOS) in MSR_IA32_FEAT_CTL on CPU %d\n", cpu);
2756 return false;
2757 }
2758
2759 return true;
2760 }
2761
kvm_is_vmx_supported(void)2762 static bool kvm_is_vmx_supported(void)
2763 {
2764 bool supported;
2765
2766 migrate_disable();
2767 supported = __kvm_is_vmx_supported();
2768 migrate_enable();
2769
2770 return supported;
2771 }
2772
vmx_check_processor_compat(void)2773 static int vmx_check_processor_compat(void)
2774 {
2775 int cpu = raw_smp_processor_id();
2776 struct vmcs_config vmcs_conf;
2777 struct vmx_capability vmx_cap;
2778
2779 if (!__kvm_is_vmx_supported())
2780 return -EIO;
2781
2782 if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0) {
2783 pr_err("Failed to setup VMCS config on CPU %d\n", cpu);
2784 return -EIO;
2785 }
2786 if (nested)
2787 nested_vmx_setup_ctls_msrs(&vmcs_conf, vmx_cap.ept);
2788 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config))) {
2789 pr_err("Inconsistent VMCS config on CPU %d\n", cpu);
2790 return -EIO;
2791 }
2792 return 0;
2793 }
2794
kvm_cpu_vmxon(u64 vmxon_pointer)2795 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2796 {
2797 u64 msr;
2798
2799 cr4_set_bits(X86_CR4_VMXE);
2800
2801 asm goto("1: vmxon %[vmxon_pointer]\n\t"
2802 _ASM_EXTABLE(1b, %l[fault])
2803 : : [vmxon_pointer] "m"(vmxon_pointer)
2804 : : fault);
2805 return 0;
2806
2807 fault:
2808 WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2809 rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2810 cr4_clear_bits(X86_CR4_VMXE);
2811
2812 return -EFAULT;
2813 }
2814
vmx_hardware_enable(void)2815 static int vmx_hardware_enable(void)
2816 {
2817 int cpu = raw_smp_processor_id();
2818 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2819 int r;
2820
2821 if (cr4_read_shadow() & X86_CR4_VMXE)
2822 return -EBUSY;
2823
2824 /*
2825 * This can happen if we hot-added a CPU but failed to allocate
2826 * VP assist page for it.
2827 */
2828 if (kvm_is_using_evmcs() && !hv_get_vp_assist_page(cpu))
2829 return -EFAULT;
2830
2831 intel_pt_handle_vmx(1);
2832
2833 r = kvm_cpu_vmxon(phys_addr);
2834 if (r) {
2835 intel_pt_handle_vmx(0);
2836 return r;
2837 }
2838
2839 if (enable_ept)
2840 ept_sync_global();
2841
2842 return 0;
2843 }
2844
vmclear_local_loaded_vmcss(void)2845 static void vmclear_local_loaded_vmcss(void)
2846 {
2847 int cpu = raw_smp_processor_id();
2848 struct loaded_vmcs *v, *n;
2849
2850 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2851 loaded_vmcss_on_cpu_link)
2852 __loaded_vmcs_clear(v);
2853 }
2854
vmx_hardware_disable(void)2855 static void vmx_hardware_disable(void)
2856 {
2857 vmclear_local_loaded_vmcss();
2858
2859 if (kvm_cpu_vmxoff())
2860 kvm_spurious_fault();
2861
2862 hv_reset_evmcs();
2863
2864 intel_pt_handle_vmx(0);
2865 }
2866
alloc_vmcs_cpu(bool shadow,int cpu,gfp_t flags)2867 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2868 {
2869 int node = cpu_to_node(cpu);
2870 struct page *pages;
2871 struct vmcs *vmcs;
2872
2873 pages = __alloc_pages_node(node, flags, 0);
2874 if (!pages)
2875 return NULL;
2876 vmcs = page_address(pages);
2877 memset(vmcs, 0, vmcs_config.size);
2878
2879 /* KVM supports Enlightened VMCS v1 only */
2880 if (kvm_is_using_evmcs())
2881 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2882 else
2883 vmcs->hdr.revision_id = vmcs_config.revision_id;
2884
2885 if (shadow)
2886 vmcs->hdr.shadow_vmcs = 1;
2887 return vmcs;
2888 }
2889
free_vmcs(struct vmcs * vmcs)2890 void free_vmcs(struct vmcs *vmcs)
2891 {
2892 free_page((unsigned long)vmcs);
2893 }
2894
2895 /*
2896 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2897 */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2898 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2899 {
2900 if (!loaded_vmcs->vmcs)
2901 return;
2902 loaded_vmcs_clear(loaded_vmcs);
2903 free_vmcs(loaded_vmcs->vmcs);
2904 loaded_vmcs->vmcs = NULL;
2905 if (loaded_vmcs->msr_bitmap)
2906 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2907 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2908 }
2909
alloc_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2910 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2911 {
2912 loaded_vmcs->vmcs = alloc_vmcs(false);
2913 if (!loaded_vmcs->vmcs)
2914 return -ENOMEM;
2915
2916 vmcs_clear(loaded_vmcs->vmcs);
2917
2918 loaded_vmcs->shadow_vmcs = NULL;
2919 loaded_vmcs->hv_timer_soft_disabled = false;
2920 loaded_vmcs->cpu = -1;
2921 loaded_vmcs->launched = 0;
2922
2923 if (cpu_has_vmx_msr_bitmap()) {
2924 loaded_vmcs->msr_bitmap = (unsigned long *)
2925 __get_free_page(GFP_KERNEL_ACCOUNT);
2926 if (!loaded_vmcs->msr_bitmap)
2927 goto out_vmcs;
2928 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2929 }
2930
2931 memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2932 memset(&loaded_vmcs->controls_shadow, 0,
2933 sizeof(struct vmcs_controls_shadow));
2934
2935 return 0;
2936
2937 out_vmcs:
2938 free_loaded_vmcs(loaded_vmcs);
2939 return -ENOMEM;
2940 }
2941
free_kvm_area(void)2942 static void free_kvm_area(void)
2943 {
2944 int cpu;
2945
2946 for_each_possible_cpu(cpu) {
2947 free_vmcs(per_cpu(vmxarea, cpu));
2948 per_cpu(vmxarea, cpu) = NULL;
2949 }
2950 }
2951
alloc_kvm_area(void)2952 static __init int alloc_kvm_area(void)
2953 {
2954 int cpu;
2955
2956 for_each_possible_cpu(cpu) {
2957 struct vmcs *vmcs;
2958
2959 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2960 if (!vmcs) {
2961 free_kvm_area();
2962 return -ENOMEM;
2963 }
2964
2965 /*
2966 * When eVMCS is enabled, alloc_vmcs_cpu() sets
2967 * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2968 * revision_id reported by MSR_IA32_VMX_BASIC.
2969 *
2970 * However, even though not explicitly documented by
2971 * TLFS, VMXArea passed as VMXON argument should
2972 * still be marked with revision_id reported by
2973 * physical CPU.
2974 */
2975 if (kvm_is_using_evmcs())
2976 vmcs->hdr.revision_id = vmcs_config.revision_id;
2977
2978 per_cpu(vmxarea, cpu) = vmcs;
2979 }
2980 return 0;
2981 }
2982
fix_pmode_seg(struct kvm_vcpu * vcpu,int seg,struct kvm_segment * save)2983 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2984 struct kvm_segment *save)
2985 {
2986 if (!emulate_invalid_guest_state) {
2987 /*
2988 * CS and SS RPL should be equal during guest entry according
2989 * to VMX spec, but in reality it is not always so. Since vcpu
2990 * is in the middle of the transition from real mode to
2991 * protected mode it is safe to assume that RPL 0 is a good
2992 * default value.
2993 */
2994 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2995 save->selector &= ~SEGMENT_RPL_MASK;
2996 save->dpl = save->selector & SEGMENT_RPL_MASK;
2997 save->s = 1;
2998 }
2999 __vmx_set_segment(vcpu, save, seg);
3000 }
3001
enter_pmode(struct kvm_vcpu * vcpu)3002 static void enter_pmode(struct kvm_vcpu *vcpu)
3003 {
3004 unsigned long flags;
3005 struct vcpu_vmx *vmx = to_vmx(vcpu);
3006
3007 /*
3008 * Update real mode segment cache. It may be not up-to-date if segment
3009 * register was written while vcpu was in a guest mode.
3010 */
3011 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3012 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3013 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3014 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3015 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3016 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3017
3018 vmx->rmode.vm86_active = 0;
3019
3020 __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3021
3022 flags = vmcs_readl(GUEST_RFLAGS);
3023 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3024 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3025 vmcs_writel(GUEST_RFLAGS, flags);
3026
3027 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3028 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3029
3030 vmx_update_exception_bitmap(vcpu);
3031
3032 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3033 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3034 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3035 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3036 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3037 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3038 }
3039
fix_rmode_seg(int seg,struct kvm_segment * save)3040 static void fix_rmode_seg(int seg, struct kvm_segment *save)
3041 {
3042 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3043 struct kvm_segment var = *save;
3044
3045 var.dpl = 0x3;
3046 if (seg == VCPU_SREG_CS)
3047 var.type = 0x3;
3048
3049 if (!emulate_invalid_guest_state) {
3050 var.selector = var.base >> 4;
3051 var.base = var.base & 0xffff0;
3052 var.limit = 0xffff;
3053 var.g = 0;
3054 var.db = 0;
3055 var.present = 1;
3056 var.s = 1;
3057 var.l = 0;
3058 var.unusable = 0;
3059 var.type = 0x3;
3060 var.avl = 0;
3061 if (save->base & 0xf)
3062 pr_warn_once("segment base is not paragraph aligned "
3063 "when entering protected mode (seg=%d)", seg);
3064 }
3065
3066 vmcs_write16(sf->selector, var.selector);
3067 vmcs_writel(sf->base, var.base);
3068 vmcs_write32(sf->limit, var.limit);
3069 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3070 }
3071
enter_rmode(struct kvm_vcpu * vcpu)3072 static void enter_rmode(struct kvm_vcpu *vcpu)
3073 {
3074 unsigned long flags;
3075 struct vcpu_vmx *vmx = to_vmx(vcpu);
3076 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
3077
3078 /*
3079 * KVM should never use VM86 to virtualize Real Mode when L2 is active,
3080 * as using VM86 is unnecessary if unrestricted guest is enabled, and
3081 * if unrestricted guest is disabled, VM-Enter (from L1) with CR0.PG=0
3082 * should VM-Fail and KVM should reject userspace attempts to stuff
3083 * CR0.PG=0 when L2 is active.
3084 */
3085 WARN_ON_ONCE(is_guest_mode(vcpu));
3086
3087 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3088 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3089 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3090 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3091 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3092 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3093 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3094
3095 vmx->rmode.vm86_active = 1;
3096
3097 vmx_segment_cache_clear(vmx);
3098
3099 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
3100 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3101 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3102
3103 flags = vmcs_readl(GUEST_RFLAGS);
3104 vmx->rmode.save_rflags = flags;
3105
3106 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3107
3108 vmcs_writel(GUEST_RFLAGS, flags);
3109 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3110 vmx_update_exception_bitmap(vcpu);
3111
3112 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3113 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3114 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3115 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3116 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3117 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3118 }
3119
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)3120 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3121 {
3122 struct vcpu_vmx *vmx = to_vmx(vcpu);
3123
3124 /* Nothing to do if hardware doesn't support EFER. */
3125 if (!vmx_find_uret_msr(vmx, MSR_EFER))
3126 return 0;
3127
3128 vcpu->arch.efer = efer;
3129 #ifdef CONFIG_X86_64
3130 if (efer & EFER_LMA)
3131 vm_entry_controls_setbit(vmx, VM_ENTRY_IA32E_MODE);
3132 else
3133 vm_entry_controls_clearbit(vmx, VM_ENTRY_IA32E_MODE);
3134 #else
3135 if (KVM_BUG_ON(efer & EFER_LMA, vcpu->kvm))
3136 return 1;
3137 #endif
3138
3139 vmx_setup_uret_msrs(vmx);
3140 return 0;
3141 }
3142
3143 #ifdef CONFIG_X86_64
3144
enter_lmode(struct kvm_vcpu * vcpu)3145 static void enter_lmode(struct kvm_vcpu *vcpu)
3146 {
3147 u32 guest_tr_ar;
3148
3149 vmx_segment_cache_clear(to_vmx(vcpu));
3150
3151 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3152 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3153 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3154 __func__);
3155 vmcs_write32(GUEST_TR_AR_BYTES,
3156 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3157 | VMX_AR_TYPE_BUSY_64_TSS);
3158 }
3159 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3160 }
3161
exit_lmode(struct kvm_vcpu * vcpu)3162 static void exit_lmode(struct kvm_vcpu *vcpu)
3163 {
3164 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3165 }
3166
3167 #endif
3168
vmx_flush_tlb_all(struct kvm_vcpu * vcpu)3169 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
3170 {
3171 struct vcpu_vmx *vmx = to_vmx(vcpu);
3172
3173 /*
3174 * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
3175 * the CPU is not required to invalidate guest-physical mappings on
3176 * VM-Entry, even if VPID is disabled. Guest-physical mappings are
3177 * associated with the root EPT structure and not any particular VPID
3178 * (INVVPID also isn't required to invalidate guest-physical mappings).
3179 */
3180 if (enable_ept) {
3181 ept_sync_global();
3182 } else if (enable_vpid) {
3183 if (cpu_has_vmx_invvpid_global()) {
3184 vpid_sync_vcpu_global();
3185 } else {
3186 vpid_sync_vcpu_single(vmx->vpid);
3187 vpid_sync_vcpu_single(vmx->nested.vpid02);
3188 }
3189 }
3190 }
3191
vmx_get_current_vpid(struct kvm_vcpu * vcpu)3192 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
3193 {
3194 if (is_guest_mode(vcpu))
3195 return nested_get_vpid02(vcpu);
3196 return to_vmx(vcpu)->vpid;
3197 }
3198
vmx_flush_tlb_current(struct kvm_vcpu * vcpu)3199 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
3200 {
3201 struct kvm_mmu *mmu = vcpu->arch.mmu;
3202 u64 root_hpa = mmu->root.hpa;
3203
3204 /* No flush required if the current context is invalid. */
3205 if (!VALID_PAGE(root_hpa))
3206 return;
3207
3208 if (enable_ept)
3209 ept_sync_context(construct_eptp(vcpu, root_hpa,
3210 mmu->root_role.level));
3211 else
3212 vpid_sync_context(vmx_get_current_vpid(vcpu));
3213 }
3214
vmx_flush_tlb_gva(struct kvm_vcpu * vcpu,gva_t addr)3215 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
3216 {
3217 /*
3218 * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
3219 * vmx_flush_tlb_guest() for an explanation of why this is ok.
3220 */
3221 vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
3222 }
3223
vmx_flush_tlb_guest(struct kvm_vcpu * vcpu)3224 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
3225 {
3226 /*
3227 * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
3228 * vpid couldn't be allocated for this vCPU. VM-Enter and VM-Exit are
3229 * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
3230 * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
3231 * i.e. no explicit INVVPID is necessary.
3232 */
3233 vpid_sync_context(vmx_get_current_vpid(vcpu));
3234 }
3235
vmx_ept_load_pdptrs(struct kvm_vcpu * vcpu)3236 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
3237 {
3238 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3239
3240 if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
3241 return;
3242
3243 if (is_pae_paging(vcpu)) {
3244 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3245 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3246 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3247 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3248 }
3249 }
3250
ept_save_pdptrs(struct kvm_vcpu * vcpu)3251 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3252 {
3253 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3254
3255 if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
3256 return;
3257
3258 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3259 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3260 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3261 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3262
3263 kvm_register_mark_available(vcpu, VCPU_EXREG_PDPTR);
3264 }
3265
3266 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
3267 CPU_BASED_CR3_STORE_EXITING)
3268
vmx_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3269 static bool vmx_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3270 {
3271 if (is_guest_mode(vcpu))
3272 return nested_guest_cr0_valid(vcpu, cr0);
3273
3274 if (to_vmx(vcpu)->nested.vmxon)
3275 return nested_host_cr0_valid(vcpu, cr0);
3276
3277 return true;
3278 }
3279
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)3280 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3281 {
3282 struct vcpu_vmx *vmx = to_vmx(vcpu);
3283 unsigned long hw_cr0, old_cr0_pg;
3284 u32 tmp;
3285
3286 old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3287
3288 hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3289 if (enable_unrestricted_guest)
3290 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3291 else {
3292 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3293 if (!enable_ept)
3294 hw_cr0 |= X86_CR0_WP;
3295
3296 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3297 enter_pmode(vcpu);
3298
3299 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3300 enter_rmode(vcpu);
3301 }
3302
3303 vmcs_writel(CR0_READ_SHADOW, cr0);
3304 vmcs_writel(GUEST_CR0, hw_cr0);
3305 vcpu->arch.cr0 = cr0;
3306 kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3307
3308 #ifdef CONFIG_X86_64
3309 if (vcpu->arch.efer & EFER_LME) {
3310 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3311 enter_lmode(vcpu);
3312 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3313 exit_lmode(vcpu);
3314 }
3315 #endif
3316
3317 if (enable_ept && !enable_unrestricted_guest) {
3318 /*
3319 * Ensure KVM has an up-to-date snapshot of the guest's CR3. If
3320 * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3321 * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3322 * KVM's CR3 is installed.
3323 */
3324 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3325 vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3326
3327 /*
3328 * When running with EPT but not unrestricted guest, KVM must
3329 * intercept CR3 accesses when paging is _disabled_. This is
3330 * necessary because restricted guests can't actually run with
3331 * paging disabled, and so KVM stuffs its own CR3 in order to
3332 * run the guest when identity mapped page tables.
3333 *
3334 * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3335 * update, it may be stale with respect to CR3 interception,
3336 * e.g. after nested VM-Enter.
3337 *
3338 * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3339 * stores to forward them to L1, even if KVM does not need to
3340 * intercept them to preserve its identity mapped page tables.
3341 */
3342 if (!(cr0 & X86_CR0_PG)) {
3343 exec_controls_setbit(vmx, CR3_EXITING_BITS);
3344 } else if (!is_guest_mode(vcpu)) {
3345 exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3346 } else {
3347 tmp = exec_controls_get(vmx);
3348 tmp &= ~CR3_EXITING_BITS;
3349 tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3350 exec_controls_set(vmx, tmp);
3351 }
3352
3353 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3354 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3355 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3356
3357 /*
3358 * When !CR0_PG -> CR0_PG, vcpu->arch.cr3 becomes active, but
3359 * GUEST_CR3 is still vmx->ept_identity_map_addr if EPT + !URG.
3360 */
3361 if (!(old_cr0_pg & X86_CR0_PG) && (cr0 & X86_CR0_PG))
3362 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
3363 }
3364
3365 /* depends on vcpu->arch.cr0 to be set to a new value */
3366 vmx->emulation_required = vmx_emulation_required(vcpu);
3367 }
3368
vmx_get_max_ept_level(void)3369 static int vmx_get_max_ept_level(void)
3370 {
3371 if (cpu_has_vmx_ept_5levels())
3372 return 5;
3373 return 4;
3374 }
3375
construct_eptp(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3376 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3377 {
3378 u64 eptp = VMX_EPTP_MT_WB;
3379
3380 eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3381
3382 if (enable_ept_ad_bits &&
3383 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3384 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3385 eptp |= root_hpa;
3386
3387 return eptp;
3388 }
3389
vmx_load_mmu_pgd(struct kvm_vcpu * vcpu,hpa_t root_hpa,int root_level)3390 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3391 int root_level)
3392 {
3393 struct kvm *kvm = vcpu->kvm;
3394 bool update_guest_cr3 = true;
3395 unsigned long guest_cr3;
3396 u64 eptp;
3397
3398 if (enable_ept) {
3399 eptp = construct_eptp(vcpu, root_hpa, root_level);
3400 vmcs_write64(EPT_POINTER, eptp);
3401
3402 hv_track_root_tdp(vcpu, root_hpa);
3403
3404 if (!enable_unrestricted_guest && !is_paging(vcpu))
3405 guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3406 else if (kvm_register_is_dirty(vcpu, VCPU_EXREG_CR3))
3407 guest_cr3 = vcpu->arch.cr3;
3408 else /* vmcs.GUEST_CR3 is already up-to-date. */
3409 update_guest_cr3 = false;
3410 vmx_ept_load_pdptrs(vcpu);
3411 } else {
3412 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3413 }
3414
3415 if (update_guest_cr3)
3416 vmcs_writel(GUEST_CR3, guest_cr3);
3417 }
3418
3419
vmx_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3420 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3421 {
3422 /*
3423 * We operate under the default treatment of SMM, so VMX cannot be
3424 * enabled under SMM. Note, whether or not VMXE is allowed at all,
3425 * i.e. is a reserved bit, is handled by common x86 code.
3426 */
3427 if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3428 return false;
3429
3430 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3431 return false;
3432
3433 return true;
3434 }
3435
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3436 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3437 {
3438 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3439 struct vcpu_vmx *vmx = to_vmx(vcpu);
3440 unsigned long hw_cr4;
3441
3442 /*
3443 * Pass through host's Machine Check Enable value to hw_cr4, which
3444 * is in force while we are in guest mode. Do not let guests control
3445 * this bit, even if host CR4.MCE == 0.
3446 */
3447 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3448 if (enable_unrestricted_guest)
3449 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3450 else if (vmx->rmode.vm86_active)
3451 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3452 else
3453 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3454
3455 if (vmx_umip_emulated()) {
3456 if (cr4 & X86_CR4_UMIP) {
3457 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3458 hw_cr4 &= ~X86_CR4_UMIP;
3459 } else if (!is_guest_mode(vcpu) ||
3460 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3461 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3462 }
3463 }
3464
3465 vcpu->arch.cr4 = cr4;
3466 kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3467
3468 if (!enable_unrestricted_guest) {
3469 if (enable_ept) {
3470 if (!is_paging(vcpu)) {
3471 hw_cr4 &= ~X86_CR4_PAE;
3472 hw_cr4 |= X86_CR4_PSE;
3473 } else if (!(cr4 & X86_CR4_PAE)) {
3474 hw_cr4 &= ~X86_CR4_PAE;
3475 }
3476 }
3477
3478 /*
3479 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3480 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3481 * to be manually disabled when guest switches to non-paging
3482 * mode.
3483 *
3484 * If !enable_unrestricted_guest, the CPU is always running
3485 * with CR0.PG=1 and CR4 needs to be modified.
3486 * If enable_unrestricted_guest, the CPU automatically
3487 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3488 */
3489 if (!is_paging(vcpu))
3490 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3491 }
3492
3493 vmcs_writel(CR4_READ_SHADOW, cr4);
3494 vmcs_writel(GUEST_CR4, hw_cr4);
3495
3496 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3497 kvm_update_cpuid_runtime(vcpu);
3498 }
3499
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3500 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3501 {
3502 struct vcpu_vmx *vmx = to_vmx(vcpu);
3503 u32 ar;
3504
3505 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3506 *var = vmx->rmode.segs[seg];
3507 if (seg == VCPU_SREG_TR
3508 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3509 return;
3510 var->base = vmx_read_guest_seg_base(vmx, seg);
3511 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3512 return;
3513 }
3514 var->base = vmx_read_guest_seg_base(vmx, seg);
3515 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3516 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3517 ar = vmx_read_guest_seg_ar(vmx, seg);
3518 var->unusable = (ar >> 16) & 1;
3519 var->type = ar & 15;
3520 var->s = (ar >> 4) & 1;
3521 var->dpl = (ar >> 5) & 3;
3522 /*
3523 * Some userspaces do not preserve unusable property. Since usable
3524 * segment has to be present according to VMX spec we can use present
3525 * property to amend userspace bug by making unusable segment always
3526 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3527 * segment as unusable.
3528 */
3529 var->present = !var->unusable;
3530 var->avl = (ar >> 12) & 1;
3531 var->l = (ar >> 13) & 1;
3532 var->db = (ar >> 14) & 1;
3533 var->g = (ar >> 15) & 1;
3534 }
3535
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3536 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3537 {
3538 struct kvm_segment s;
3539
3540 if (to_vmx(vcpu)->rmode.vm86_active) {
3541 vmx_get_segment(vcpu, &s, seg);
3542 return s.base;
3543 }
3544 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3545 }
3546
vmx_get_cpl(struct kvm_vcpu * vcpu)3547 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3548 {
3549 struct vcpu_vmx *vmx = to_vmx(vcpu);
3550
3551 if (unlikely(vmx->rmode.vm86_active))
3552 return 0;
3553 else {
3554 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3555 return VMX_AR_DPL(ar);
3556 }
3557 }
3558
vmx_segment_access_rights(struct kvm_segment * var)3559 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3560 {
3561 u32 ar;
3562
3563 ar = var->type & 15;
3564 ar |= (var->s & 1) << 4;
3565 ar |= (var->dpl & 3) << 5;
3566 ar |= (var->present & 1) << 7;
3567 ar |= (var->avl & 1) << 12;
3568 ar |= (var->l & 1) << 13;
3569 ar |= (var->db & 1) << 14;
3570 ar |= (var->g & 1) << 15;
3571 ar |= (var->unusable || !var->present) << 16;
3572
3573 return ar;
3574 }
3575
__vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3576 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3577 {
3578 struct vcpu_vmx *vmx = to_vmx(vcpu);
3579 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3580
3581 vmx_segment_cache_clear(vmx);
3582
3583 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3584 vmx->rmode.segs[seg] = *var;
3585 if (seg == VCPU_SREG_TR)
3586 vmcs_write16(sf->selector, var->selector);
3587 else if (var->s)
3588 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3589 return;
3590 }
3591
3592 vmcs_writel(sf->base, var->base);
3593 vmcs_write32(sf->limit, var->limit);
3594 vmcs_write16(sf->selector, var->selector);
3595
3596 /*
3597 * Fix the "Accessed" bit in AR field of segment registers for older
3598 * qemu binaries.
3599 * IA32 arch specifies that at the time of processor reset the
3600 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3601 * is setting it to 0 in the userland code. This causes invalid guest
3602 * state vmexit when "unrestricted guest" mode is turned on.
3603 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3604 * tree. Newer qemu binaries with that qemu fix would not need this
3605 * kvm hack.
3606 */
3607 if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3608 var->type |= 0x1; /* Accessed */
3609
3610 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3611 }
3612
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3613 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3614 {
3615 __vmx_set_segment(vcpu, var, seg);
3616
3617 to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3618 }
3619
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3620 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3621 {
3622 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3623
3624 *db = (ar >> 14) & 1;
3625 *l = (ar >> 13) & 1;
3626 }
3627
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3628 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3629 {
3630 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3631 dt->address = vmcs_readl(GUEST_IDTR_BASE);
3632 }
3633
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3634 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3635 {
3636 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3637 vmcs_writel(GUEST_IDTR_BASE, dt->address);
3638 }
3639
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3640 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3641 {
3642 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3643 dt->address = vmcs_readl(GUEST_GDTR_BASE);
3644 }
3645
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3646 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3647 {
3648 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3649 vmcs_writel(GUEST_GDTR_BASE, dt->address);
3650 }
3651
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3652 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3653 {
3654 struct kvm_segment var;
3655 u32 ar;
3656
3657 vmx_get_segment(vcpu, &var, seg);
3658 var.dpl = 0x3;
3659 if (seg == VCPU_SREG_CS)
3660 var.type = 0x3;
3661 ar = vmx_segment_access_rights(&var);
3662
3663 if (var.base != (var.selector << 4))
3664 return false;
3665 if (var.limit != 0xffff)
3666 return false;
3667 if (ar != 0xf3)
3668 return false;
3669
3670 return true;
3671 }
3672
code_segment_valid(struct kvm_vcpu * vcpu)3673 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3674 {
3675 struct kvm_segment cs;
3676 unsigned int cs_rpl;
3677
3678 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3679 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3680
3681 if (cs.unusable)
3682 return false;
3683 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3684 return false;
3685 if (!cs.s)
3686 return false;
3687 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3688 if (cs.dpl > cs_rpl)
3689 return false;
3690 } else {
3691 if (cs.dpl != cs_rpl)
3692 return false;
3693 }
3694 if (!cs.present)
3695 return false;
3696
3697 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3698 return true;
3699 }
3700
stack_segment_valid(struct kvm_vcpu * vcpu)3701 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3702 {
3703 struct kvm_segment ss;
3704 unsigned int ss_rpl;
3705
3706 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3707 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3708
3709 if (ss.unusable)
3710 return true;
3711 if (ss.type != 3 && ss.type != 7)
3712 return false;
3713 if (!ss.s)
3714 return false;
3715 if (ss.dpl != ss_rpl) /* DPL != RPL */
3716 return false;
3717 if (!ss.present)
3718 return false;
3719
3720 return true;
3721 }
3722
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3723 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3724 {
3725 struct kvm_segment var;
3726 unsigned int rpl;
3727
3728 vmx_get_segment(vcpu, &var, seg);
3729 rpl = var.selector & SEGMENT_RPL_MASK;
3730
3731 if (var.unusable)
3732 return true;
3733 if (!var.s)
3734 return false;
3735 if (!var.present)
3736 return false;
3737 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3738 if (var.dpl < rpl) /* DPL < RPL */
3739 return false;
3740 }
3741
3742 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3743 * rights flags
3744 */
3745 return true;
3746 }
3747
tr_valid(struct kvm_vcpu * vcpu)3748 static bool tr_valid(struct kvm_vcpu *vcpu)
3749 {
3750 struct kvm_segment tr;
3751
3752 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3753
3754 if (tr.unusable)
3755 return false;
3756 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3757 return false;
3758 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3759 return false;
3760 if (!tr.present)
3761 return false;
3762
3763 return true;
3764 }
3765
ldtr_valid(struct kvm_vcpu * vcpu)3766 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3767 {
3768 struct kvm_segment ldtr;
3769
3770 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3771
3772 if (ldtr.unusable)
3773 return true;
3774 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
3775 return false;
3776 if (ldtr.type != 2)
3777 return false;
3778 if (!ldtr.present)
3779 return false;
3780
3781 return true;
3782 }
3783
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3784 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3785 {
3786 struct kvm_segment cs, ss;
3787
3788 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3789 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3790
3791 return ((cs.selector & SEGMENT_RPL_MASK) ==
3792 (ss.selector & SEGMENT_RPL_MASK));
3793 }
3794
3795 /*
3796 * Check if guest state is valid. Returns true if valid, false if
3797 * not.
3798 * We assume that registers are always usable
3799 */
__vmx_guest_state_valid(struct kvm_vcpu * vcpu)3800 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3801 {
3802 /* real mode guest state checks */
3803 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3804 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3805 return false;
3806 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3807 return false;
3808 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3809 return false;
3810 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3811 return false;
3812 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3813 return false;
3814 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3815 return false;
3816 } else {
3817 /* protected mode guest state checks */
3818 if (!cs_ss_rpl_check(vcpu))
3819 return false;
3820 if (!code_segment_valid(vcpu))
3821 return false;
3822 if (!stack_segment_valid(vcpu))
3823 return false;
3824 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3825 return false;
3826 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3827 return false;
3828 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3829 return false;
3830 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3831 return false;
3832 if (!tr_valid(vcpu))
3833 return false;
3834 if (!ldtr_valid(vcpu))
3835 return false;
3836 }
3837 /* TODO:
3838 * - Add checks on RIP
3839 * - Add checks on RFLAGS
3840 */
3841
3842 return true;
3843 }
3844
init_rmode_tss(struct kvm * kvm,void __user * ua)3845 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3846 {
3847 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3848 u16 data;
3849 int i;
3850
3851 for (i = 0; i < 3; i++) {
3852 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3853 return -EFAULT;
3854 }
3855
3856 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3857 if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3858 return -EFAULT;
3859
3860 data = ~0;
3861 if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3862 return -EFAULT;
3863
3864 return 0;
3865 }
3866
init_rmode_identity_map(struct kvm * kvm)3867 static int init_rmode_identity_map(struct kvm *kvm)
3868 {
3869 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3870 int i, r = 0;
3871 void __user *uaddr;
3872 u32 tmp;
3873
3874 /* Protect kvm_vmx->ept_identity_pagetable_done. */
3875 mutex_lock(&kvm->slots_lock);
3876
3877 if (likely(kvm_vmx->ept_identity_pagetable_done))
3878 goto out;
3879
3880 if (!kvm_vmx->ept_identity_map_addr)
3881 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3882
3883 uaddr = __x86_set_memory_region(kvm,
3884 IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3885 kvm_vmx->ept_identity_map_addr,
3886 PAGE_SIZE);
3887 if (IS_ERR(uaddr)) {
3888 r = PTR_ERR(uaddr);
3889 goto out;
3890 }
3891
3892 /* Set up identity-mapping pagetable for EPT in real mode */
3893 for (i = 0; i < (PAGE_SIZE / sizeof(tmp)); i++) {
3894 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3895 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3896 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3897 r = -EFAULT;
3898 goto out;
3899 }
3900 }
3901 kvm_vmx->ept_identity_pagetable_done = true;
3902
3903 out:
3904 mutex_unlock(&kvm->slots_lock);
3905 return r;
3906 }
3907
seg_setup(int seg)3908 static void seg_setup(int seg)
3909 {
3910 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3911 unsigned int ar;
3912
3913 vmcs_write16(sf->selector, 0);
3914 vmcs_writel(sf->base, 0);
3915 vmcs_write32(sf->limit, 0xffff);
3916 ar = 0x93;
3917 if (seg == VCPU_SREG_CS)
3918 ar |= 0x08; /* code segment */
3919
3920 vmcs_write32(sf->ar_bytes, ar);
3921 }
3922
allocate_vpid(void)3923 int allocate_vpid(void)
3924 {
3925 int vpid;
3926
3927 if (!enable_vpid)
3928 return 0;
3929 spin_lock(&vmx_vpid_lock);
3930 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3931 if (vpid < VMX_NR_VPIDS)
3932 __set_bit(vpid, vmx_vpid_bitmap);
3933 else
3934 vpid = 0;
3935 spin_unlock(&vmx_vpid_lock);
3936 return vpid;
3937 }
3938
free_vpid(int vpid)3939 void free_vpid(int vpid)
3940 {
3941 if (!enable_vpid || vpid == 0)
3942 return;
3943 spin_lock(&vmx_vpid_lock);
3944 __clear_bit(vpid, vmx_vpid_bitmap);
3945 spin_unlock(&vmx_vpid_lock);
3946 }
3947
vmx_msr_bitmap_l01_changed(struct vcpu_vmx * vmx)3948 static void vmx_msr_bitmap_l01_changed(struct vcpu_vmx *vmx)
3949 {
3950 /*
3951 * When KVM is a nested hypervisor on top of Hyper-V and uses
3952 * 'Enlightened MSR Bitmap' feature L0 needs to know that MSR
3953 * bitmap has changed.
3954 */
3955 if (kvm_is_using_evmcs()) {
3956 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
3957
3958 if (evmcs->hv_enlightenments_control.msr_bitmap)
3959 evmcs->hv_clean_fields &=
3960 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
3961 }
3962
3963 vmx->nested.force_msr_bitmap_recalc = true;
3964 }
3965
vmx_disable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)3966 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3967 {
3968 struct vcpu_vmx *vmx = to_vmx(vcpu);
3969 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3970
3971 if (!cpu_has_vmx_msr_bitmap())
3972 return;
3973
3974 vmx_msr_bitmap_l01_changed(vmx);
3975
3976 /*
3977 * Mark the desired intercept state in shadow bitmap, this is needed
3978 * for resync when the MSR filters change.
3979 */
3980 if (is_valid_passthrough_msr(msr)) {
3981 int idx = possible_passthrough_msr_slot(msr);
3982
3983 if (idx != -ENOENT) {
3984 if (type & MSR_TYPE_R)
3985 clear_bit(idx, vmx->shadow_msr_intercept.read);
3986 if (type & MSR_TYPE_W)
3987 clear_bit(idx, vmx->shadow_msr_intercept.write);
3988 }
3989 }
3990
3991 if ((type & MSR_TYPE_R) &&
3992 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3993 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3994 type &= ~MSR_TYPE_R;
3995 }
3996
3997 if ((type & MSR_TYPE_W) &&
3998 !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3999 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4000 type &= ~MSR_TYPE_W;
4001 }
4002
4003 if (type & MSR_TYPE_R)
4004 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
4005
4006 if (type & MSR_TYPE_W)
4007 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
4008 }
4009
vmx_enable_intercept_for_msr(struct kvm_vcpu * vcpu,u32 msr,int type)4010 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
4011 {
4012 struct vcpu_vmx *vmx = to_vmx(vcpu);
4013 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
4014
4015 if (!cpu_has_vmx_msr_bitmap())
4016 return;
4017
4018 vmx_msr_bitmap_l01_changed(vmx);
4019
4020 /*
4021 * Mark the desired intercept state in shadow bitmap, this is needed
4022 * for resync when the MSR filter changes.
4023 */
4024 if (is_valid_passthrough_msr(msr)) {
4025 int idx = possible_passthrough_msr_slot(msr);
4026
4027 if (idx != -ENOENT) {
4028 if (type & MSR_TYPE_R)
4029 set_bit(idx, vmx->shadow_msr_intercept.read);
4030 if (type & MSR_TYPE_W)
4031 set_bit(idx, vmx->shadow_msr_intercept.write);
4032 }
4033 }
4034
4035 if (type & MSR_TYPE_R)
4036 vmx_set_msr_bitmap_read(msr_bitmap, msr);
4037
4038 if (type & MSR_TYPE_W)
4039 vmx_set_msr_bitmap_write(msr_bitmap, msr);
4040 }
4041
vmx_update_msr_bitmap_x2apic(struct kvm_vcpu * vcpu)4042 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
4043 {
4044 /*
4045 * x2APIC indices for 64-bit accesses into the RDMSR and WRMSR halves
4046 * of the MSR bitmap. KVM emulates APIC registers up through 0x3f0,
4047 * i.e. MSR 0x83f, and so only needs to dynamically manipulate 64 bits.
4048 */
4049 const int read_idx = APIC_BASE_MSR / BITS_PER_LONG_LONG;
4050 const int write_idx = read_idx + (0x800 / sizeof(u64));
4051 struct vcpu_vmx *vmx = to_vmx(vcpu);
4052 u64 *msr_bitmap = (u64 *)vmx->vmcs01.msr_bitmap;
4053 u8 mode;
4054
4055 if (!cpu_has_vmx_msr_bitmap() || WARN_ON_ONCE(!lapic_in_kernel(vcpu)))
4056 return;
4057
4058 if (cpu_has_secondary_exec_ctrls() &&
4059 (secondary_exec_controls_get(vmx) &
4060 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
4061 mode = MSR_BITMAP_MODE_X2APIC;
4062 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
4063 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
4064 } else {
4065 mode = 0;
4066 }
4067
4068 if (mode == vmx->x2apic_msr_bitmap_mode)
4069 return;
4070
4071 vmx->x2apic_msr_bitmap_mode = mode;
4072
4073 /*
4074 * Reset the bitmap for MSRs 0x800 - 0x83f. Leave AMD's uber-extended
4075 * registers (0x840 and above) intercepted, KVM doesn't support them.
4076 * Intercept all writes by default and poke holes as needed. Pass
4077 * through reads for all valid registers by default in x2APIC+APICv
4078 * mode, only the current timer count needs on-demand emulation by KVM.
4079 */
4080 if (mode & MSR_BITMAP_MODE_X2APIC_APICV)
4081 msr_bitmap[read_idx] = ~kvm_lapic_readable_reg_mask(vcpu->arch.apic);
4082 else
4083 msr_bitmap[read_idx] = ~0ull;
4084 msr_bitmap[write_idx] = ~0ull;
4085
4086 /*
4087 * TPR reads and writes can be virtualized even if virtual interrupt
4088 * delivery is not in use.
4089 */
4090 vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
4091 !(mode & MSR_BITMAP_MODE_X2APIC));
4092
4093 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
4094 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
4095 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
4096 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
4097 if (enable_ipiv)
4098 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_ICR), MSR_TYPE_RW);
4099 }
4100 }
4101
pt_update_intercept_for_msr(struct kvm_vcpu * vcpu)4102 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
4103 {
4104 struct vcpu_vmx *vmx = to_vmx(vcpu);
4105 bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
4106 u32 i;
4107
4108 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
4109 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
4110 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
4111 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
4112 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
4113 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
4114 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
4115 }
4116 }
4117
vmx_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)4118 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
4119 {
4120 struct vcpu_vmx *vmx = to_vmx(vcpu);
4121 void *vapic_page;
4122 u32 vppr;
4123 int rvi;
4124
4125 if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
4126 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
4127 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
4128 return false;
4129
4130 rvi = vmx_get_rvi();
4131
4132 vapic_page = vmx->nested.virtual_apic_map.hva;
4133 vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
4134
4135 return ((rvi & 0xf0) > (vppr & 0xf0));
4136 }
4137
vmx_msr_filter_changed(struct kvm_vcpu * vcpu)4138 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
4139 {
4140 struct vcpu_vmx *vmx = to_vmx(vcpu);
4141 u32 i;
4142
4143 /*
4144 * Redo intercept permissions for MSRs that KVM is passing through to
4145 * the guest. Disabling interception will check the new MSR filter and
4146 * ensure that KVM enables interception if usersepace wants to filter
4147 * the MSR. MSRs that KVM is already intercepting don't need to be
4148 * refreshed since KVM is going to intercept them regardless of what
4149 * userspace wants.
4150 */
4151 for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
4152 u32 msr = vmx_possible_passthrough_msrs[i];
4153
4154 if (!test_bit(i, vmx->shadow_msr_intercept.read))
4155 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_R);
4156
4157 if (!test_bit(i, vmx->shadow_msr_intercept.write))
4158 vmx_disable_intercept_for_msr(vcpu, msr, MSR_TYPE_W);
4159 }
4160
4161 /* PT MSRs can be passed through iff PT is exposed to the guest. */
4162 if (vmx_pt_mode_is_host_guest())
4163 pt_update_intercept_for_msr(vcpu);
4164 }
4165
kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu * vcpu,int pi_vec)4166 static inline void kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
4167 int pi_vec)
4168 {
4169 #ifdef CONFIG_SMP
4170 if (vcpu->mode == IN_GUEST_MODE) {
4171 /*
4172 * The vector of the virtual has already been set in the PIR.
4173 * Send a notification event to deliver the virtual interrupt
4174 * unless the vCPU is the currently running vCPU, i.e. the
4175 * event is being sent from a fastpath VM-Exit handler, in
4176 * which case the PIR will be synced to the vIRR before
4177 * re-entering the guest.
4178 *
4179 * When the target is not the running vCPU, the following
4180 * possibilities emerge:
4181 *
4182 * Case 1: vCPU stays in non-root mode. Sending a notification
4183 * event posts the interrupt to the vCPU.
4184 *
4185 * Case 2: vCPU exits to root mode and is still runnable. The
4186 * PIR will be synced to the vIRR before re-entering the guest.
4187 * Sending a notification event is ok as the host IRQ handler
4188 * will ignore the spurious event.
4189 *
4190 * Case 3: vCPU exits to root mode and is blocked. vcpu_block()
4191 * has already synced PIR to vIRR and never blocks the vCPU if
4192 * the vIRR is not empty. Therefore, a blocked vCPU here does
4193 * not wait for any requested interrupts in PIR, and sending a
4194 * notification event also results in a benign, spurious event.
4195 */
4196
4197 if (vcpu != kvm_get_running_vcpu())
4198 __apic_send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
4199 return;
4200 }
4201 #endif
4202 /*
4203 * The vCPU isn't in the guest; wake the vCPU in case it is blocking,
4204 * otherwise do nothing as KVM will grab the highest priority pending
4205 * IRQ via ->sync_pir_to_irr() in vcpu_enter_guest().
4206 */
4207 kvm_vcpu_wake_up(vcpu);
4208 }
4209
vmx_deliver_nested_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4210 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4211 int vector)
4212 {
4213 struct vcpu_vmx *vmx = to_vmx(vcpu);
4214
4215 if (is_guest_mode(vcpu) &&
4216 vector == vmx->nested.posted_intr_nv) {
4217 /*
4218 * If a posted intr is not recognized by hardware,
4219 * we will accomplish it in the next vmentry.
4220 */
4221 vmx->nested.pi_pending = true;
4222 kvm_make_request(KVM_REQ_EVENT, vcpu);
4223
4224 /*
4225 * This pairs with the smp_mb_*() after setting vcpu->mode in
4226 * vcpu_enter_guest() to guarantee the vCPU sees the event
4227 * request if triggering a posted interrupt "fails" because
4228 * vcpu->mode != IN_GUEST_MODE. The extra barrier is needed as
4229 * the smb_wmb() in kvm_make_request() only ensures everything
4230 * done before making the request is visible when the request
4231 * is visible, it doesn't ensure ordering between the store to
4232 * vcpu->requests and the load from vcpu->mode.
4233 */
4234 smp_mb__after_atomic();
4235
4236 /* the PIR and ON have been set by L1. */
4237 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_NESTED_VECTOR);
4238 return 0;
4239 }
4240 return -1;
4241 }
4242 /*
4243 * Send interrupt to vcpu via posted interrupt way.
4244 * 1. If target vcpu is running(non-root mode), send posted interrupt
4245 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4246 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4247 * interrupt from PIR in next vmentry.
4248 */
vmx_deliver_posted_interrupt(struct kvm_vcpu * vcpu,int vector)4249 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4250 {
4251 struct vcpu_vmx *vmx = to_vmx(vcpu);
4252 int r;
4253
4254 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4255 if (!r)
4256 return 0;
4257
4258 /* Note, this is called iff the local APIC is in-kernel. */
4259 if (!vcpu->arch.apic->apicv_active)
4260 return -1;
4261
4262 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4263 return 0;
4264
4265 /* If a previous notification has sent the IPI, nothing to do. */
4266 if (pi_test_and_set_on(&vmx->pi_desc))
4267 return 0;
4268
4269 /*
4270 * The implied barrier in pi_test_and_set_on() pairs with the smp_mb_*()
4271 * after setting vcpu->mode in vcpu_enter_guest(), thus the vCPU is
4272 * guaranteed to see PID.ON=1 and sync the PIR to IRR if triggering a
4273 * posted interrupt "fails" because vcpu->mode != IN_GUEST_MODE.
4274 */
4275 kvm_vcpu_trigger_posted_interrupt(vcpu, POSTED_INTR_VECTOR);
4276 return 0;
4277 }
4278
vmx_deliver_interrupt(struct kvm_lapic * apic,int delivery_mode,int trig_mode,int vector)4279 static void vmx_deliver_interrupt(struct kvm_lapic *apic, int delivery_mode,
4280 int trig_mode, int vector)
4281 {
4282 struct kvm_vcpu *vcpu = apic->vcpu;
4283
4284 if (vmx_deliver_posted_interrupt(vcpu, vector)) {
4285 kvm_lapic_set_irr(vector, apic);
4286 kvm_make_request(KVM_REQ_EVENT, vcpu);
4287 kvm_vcpu_kick(vcpu);
4288 } else {
4289 trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode,
4290 trig_mode, vector);
4291 }
4292 }
4293
4294 /*
4295 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4296 * will not change in the lifetime of the guest.
4297 * Note that host-state that does change is set elsewhere. E.g., host-state
4298 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4299 */
vmx_set_constant_host_state(struct vcpu_vmx * vmx)4300 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4301 {
4302 u32 low32, high32;
4303 unsigned long tmpl;
4304 unsigned long cr0, cr3, cr4;
4305
4306 cr0 = read_cr0();
4307 WARN_ON(cr0 & X86_CR0_TS);
4308 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
4309
4310 /*
4311 * Save the most likely value for this task's CR3 in the VMCS.
4312 * We can't use __get_current_cr3_fast() because we're not atomic.
4313 */
4314 cr3 = __read_cr3();
4315 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
4316 vmx->loaded_vmcs->host_state.cr3 = cr3;
4317
4318 /* Save the most likely value for this task's CR4 in the VMCS. */
4319 cr4 = cr4_read_shadow();
4320 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4321 vmx->loaded_vmcs->host_state.cr4 = cr4;
4322
4323 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
4324 #ifdef CONFIG_X86_64
4325 /*
4326 * Load null selectors, so we can avoid reloading them in
4327 * vmx_prepare_switch_to_host(), in case userspace uses
4328 * the null selectors too (the expected case).
4329 */
4330 vmcs_write16(HOST_DS_SELECTOR, 0);
4331 vmcs_write16(HOST_ES_SELECTOR, 0);
4332 #else
4333 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4334 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4335 #endif
4336 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4337 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4338
4339 vmcs_writel(HOST_IDTR_BASE, host_idt_base); /* 22.2.4 */
4340
4341 vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4342
4343 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4344 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4345
4346 /*
4347 * SYSENTER is used for 32-bit system calls on either 32-bit or
4348 * 64-bit kernels. It is always zero If neither is allowed, otherwise
4349 * vmx_vcpu_load_vmcs loads it with the per-CPU entry stack (and may
4350 * have already done so!).
4351 */
4352 if (!IS_ENABLED(CONFIG_IA32_EMULATION) && !IS_ENABLED(CONFIG_X86_32))
4353 vmcs_writel(HOST_IA32_SYSENTER_ESP, 0);
4354
4355 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4356 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4357
4358 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4359 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4360 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4361 }
4362
4363 if (cpu_has_load_ia32_efer())
4364 vmcs_write64(HOST_IA32_EFER, host_efer);
4365 }
4366
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)4367 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4368 {
4369 struct kvm_vcpu *vcpu = &vmx->vcpu;
4370
4371 vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4372 ~vcpu->arch.cr4_guest_rsvd_bits;
4373 if (!enable_ept) {
4374 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_TLBFLUSH_BITS;
4375 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PDPTR_BITS;
4376 }
4377 if (is_guest_mode(&vmx->vcpu))
4378 vcpu->arch.cr4_guest_owned_bits &=
4379 ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4380 vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4381 }
4382
vmx_pin_based_exec_ctrl(struct vcpu_vmx * vmx)4383 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4384 {
4385 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4386
4387 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4388 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4389
4390 if (!enable_vnmi)
4391 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4392
4393 if (!enable_preemption_timer)
4394 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4395
4396 return pin_based_exec_ctrl;
4397 }
4398
vmx_vmentry_ctrl(void)4399 static u32 vmx_vmentry_ctrl(void)
4400 {
4401 u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4402
4403 if (vmx_pt_mode_is_system())
4404 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4405 VM_ENTRY_LOAD_IA32_RTIT_CTL);
4406 /*
4407 * IA32e mode, and loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically.
4408 */
4409 vmentry_ctrl &= ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
4410 VM_ENTRY_LOAD_IA32_EFER |
4411 VM_ENTRY_IA32E_MODE);
4412
4413 if (cpu_has_perf_global_ctrl_bug())
4414 vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4415
4416 return vmentry_ctrl;
4417 }
4418
vmx_vmexit_ctrl(void)4419 static u32 vmx_vmexit_ctrl(void)
4420 {
4421 u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4422
4423 /*
4424 * Not used by KVM and never set in vmcs01 or vmcs02, but emulated for
4425 * nested virtualization and thus allowed to be set in vmcs12.
4426 */
4427 vmexit_ctrl &= ~(VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER |
4428 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER);
4429
4430 if (vmx_pt_mode_is_system())
4431 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4432 VM_EXIT_CLEAR_IA32_RTIT_CTL);
4433
4434 if (cpu_has_perf_global_ctrl_bug())
4435 vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4436
4437 /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4438 return vmexit_ctrl &
4439 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4440 }
4441
vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)4442 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4443 {
4444 struct vcpu_vmx *vmx = to_vmx(vcpu);
4445
4446 if (is_guest_mode(vcpu)) {
4447 vmx->nested.update_vmcs01_apicv_status = true;
4448 return;
4449 }
4450
4451 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4452
4453 if (kvm_vcpu_apicv_active(vcpu)) {
4454 secondary_exec_controls_setbit(vmx,
4455 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4456 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4457 if (enable_ipiv)
4458 tertiary_exec_controls_setbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4459 } else {
4460 secondary_exec_controls_clearbit(vmx,
4461 SECONDARY_EXEC_APIC_REGISTER_VIRT |
4462 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4463 if (enable_ipiv)
4464 tertiary_exec_controls_clearbit(vmx, TERTIARY_EXEC_IPI_VIRT);
4465 }
4466
4467 vmx_update_msr_bitmap_x2apic(vcpu);
4468 }
4469
vmx_exec_control(struct vcpu_vmx * vmx)4470 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4471 {
4472 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4473
4474 /*
4475 * Not used by KVM, but fully supported for nesting, i.e. are allowed in
4476 * vmcs12 and propagated to vmcs02 when set in vmcs12.
4477 */
4478 exec_control &= ~(CPU_BASED_RDTSC_EXITING |
4479 CPU_BASED_USE_IO_BITMAPS |
4480 CPU_BASED_MONITOR_TRAP_FLAG |
4481 CPU_BASED_PAUSE_EXITING);
4482
4483 /* INTR_WINDOW_EXITING and NMI_WINDOW_EXITING are toggled dynamically */
4484 exec_control &= ~(CPU_BASED_INTR_WINDOW_EXITING |
4485 CPU_BASED_NMI_WINDOW_EXITING);
4486
4487 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4488 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4489
4490 if (!cpu_need_tpr_shadow(&vmx->vcpu))
4491 exec_control &= ~CPU_BASED_TPR_SHADOW;
4492
4493 #ifdef CONFIG_X86_64
4494 if (exec_control & CPU_BASED_TPR_SHADOW)
4495 exec_control &= ~(CPU_BASED_CR8_LOAD_EXITING |
4496 CPU_BASED_CR8_STORE_EXITING);
4497 else
4498 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4499 CPU_BASED_CR8_LOAD_EXITING;
4500 #endif
4501 /* No need to intercept CR3 access or INVPLG when using EPT. */
4502 if (enable_ept)
4503 exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4504 CPU_BASED_CR3_STORE_EXITING |
4505 CPU_BASED_INVLPG_EXITING);
4506 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4507 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4508 CPU_BASED_MONITOR_EXITING);
4509 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4510 exec_control &= ~CPU_BASED_HLT_EXITING;
4511 return exec_control;
4512 }
4513
vmx_tertiary_exec_control(struct vcpu_vmx * vmx)4514 static u64 vmx_tertiary_exec_control(struct vcpu_vmx *vmx)
4515 {
4516 u64 exec_control = vmcs_config.cpu_based_3rd_exec_ctrl;
4517
4518 /*
4519 * IPI virtualization relies on APICv. Disable IPI virtualization if
4520 * APICv is inhibited.
4521 */
4522 if (!enable_ipiv || !kvm_vcpu_apicv_active(&vmx->vcpu))
4523 exec_control &= ~TERTIARY_EXEC_IPI_VIRT;
4524
4525 return exec_control;
4526 }
4527
4528 /*
4529 * Adjust a single secondary execution control bit to intercept/allow an
4530 * instruction in the guest. This is usually done based on whether or not a
4531 * feature has been exposed to the guest in order to correctly emulate faults.
4532 */
4533 static inline void
vmx_adjust_secondary_exec_control(struct vcpu_vmx * vmx,u32 * exec_control,u32 control,bool enabled,bool exiting)4534 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4535 u32 control, bool enabled, bool exiting)
4536 {
4537 /*
4538 * If the control is for an opt-in feature, clear the control if the
4539 * feature is not exposed to the guest, i.e. not enabled. If the
4540 * control is opt-out, i.e. an exiting control, clear the control if
4541 * the feature _is_ exposed to the guest, i.e. exiting/interception is
4542 * disabled for the associated instruction. Note, the caller is
4543 * responsible presetting exec_control to set all supported bits.
4544 */
4545 if (enabled == exiting)
4546 *exec_control &= ~control;
4547
4548 /*
4549 * Update the nested MSR settings so that a nested VMM can/can't set
4550 * controls for features that are/aren't exposed to the guest.
4551 */
4552 if (nested) {
4553 /*
4554 * All features that can be added or removed to VMX MSRs must
4555 * be supported in the first place for nested virtualization.
4556 */
4557 if (WARN_ON_ONCE(!(vmcs_config.nested.secondary_ctls_high & control)))
4558 enabled = false;
4559
4560 if (enabled)
4561 vmx->nested.msrs.secondary_ctls_high |= control;
4562 else
4563 vmx->nested.msrs.secondary_ctls_high &= ~control;
4564 }
4565 }
4566
4567 /*
4568 * Wrapper macro for the common case of adjusting a secondary execution control
4569 * based on a single guest CPUID bit, with a dedicated feature bit. This also
4570 * verifies that the control is actually supported by KVM and hardware.
4571 */
4572 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4573 ({ \
4574 struct kvm_vcpu *__vcpu = &(vmx)->vcpu; \
4575 bool __enabled; \
4576 \
4577 if (cpu_has_vmx_##name()) { \
4578 if (kvm_is_governed_feature(X86_FEATURE_##feat_name)) \
4579 __enabled = guest_can_use(__vcpu, X86_FEATURE_##feat_name); \
4580 else \
4581 __enabled = guest_cpuid_has(__vcpu, X86_FEATURE_##feat_name); \
4582 vmx_adjust_secondary_exec_control(vmx, exec_control, SECONDARY_EXEC_##ctrl_name,\
4583 __enabled, exiting); \
4584 } \
4585 })
4586
4587 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4588 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4589 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4590
4591 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4592 vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4593
vmx_secondary_exec_control(struct vcpu_vmx * vmx)4594 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4595 {
4596 struct kvm_vcpu *vcpu = &vmx->vcpu;
4597
4598 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4599
4600 if (vmx_pt_mode_is_system())
4601 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4602 if (!cpu_need_virtualize_apic_accesses(vcpu))
4603 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4604 if (vmx->vpid == 0)
4605 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4606 if (!enable_ept) {
4607 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4608 enable_unrestricted_guest = 0;
4609 }
4610 if (!enable_unrestricted_guest)
4611 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4612 if (kvm_pause_in_guest(vmx->vcpu.kvm))
4613 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4614 if (!kvm_vcpu_apicv_active(vcpu))
4615 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4616 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4617 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4618
4619 /*
4620 * KVM doesn't support VMFUNC for L1, but the control is set in KVM's
4621 * base configuration as KVM emulates VMFUNC[EPTP_SWITCHING] for L2.
4622 */
4623 exec_control &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
4624
4625 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4626 * in vmx_set_cr4. */
4627 exec_control &= ~SECONDARY_EXEC_DESC;
4628
4629 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4630 (handle_vmptrld).
4631 We can NOT enable shadow_vmcs here because we don't have yet
4632 a current VMCS12
4633 */
4634 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4635
4636 /*
4637 * PML is enabled/disabled when dirty logging of memsmlots changes, but
4638 * it needs to be set here when dirty logging is already active, e.g.
4639 * if this vCPU was created after dirty logging was enabled.
4640 */
4641 if (!enable_pml || !atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
4642 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4643
4644 vmx_adjust_sec_exec_feature(vmx, &exec_control, xsaves, XSAVES);
4645
4646 /*
4647 * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4648 * feature is exposed to the guest. This creates a virtualization hole
4649 * if both are supported in hardware but only one is exposed to the
4650 * guest, but letting the guest execute RDTSCP or RDPID when either one
4651 * is advertised is preferable to emulating the advertised instruction
4652 * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4653 */
4654 if (cpu_has_vmx_rdtscp()) {
4655 bool rdpid_or_rdtscp_enabled =
4656 guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4657 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4658
4659 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4660 SECONDARY_EXEC_ENABLE_RDTSCP,
4661 rdpid_or_rdtscp_enabled, false);
4662 }
4663
4664 vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4665
4666 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4667 vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4668
4669 vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4670 ENABLE_USR_WAIT_PAUSE, false);
4671
4672 if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4673 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4674
4675 if (!kvm_notify_vmexit_enabled(vcpu->kvm))
4676 exec_control &= ~SECONDARY_EXEC_NOTIFY_VM_EXITING;
4677
4678 return exec_control;
4679 }
4680
vmx_get_pid_table_order(struct kvm * kvm)4681 static inline int vmx_get_pid_table_order(struct kvm *kvm)
4682 {
4683 return get_order(kvm->arch.max_vcpu_ids * sizeof(*to_kvm_vmx(kvm)->pid_table));
4684 }
4685
vmx_alloc_ipiv_pid_table(struct kvm * kvm)4686 static int vmx_alloc_ipiv_pid_table(struct kvm *kvm)
4687 {
4688 struct page *pages;
4689 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4690
4691 if (!irqchip_in_kernel(kvm) || !enable_ipiv)
4692 return 0;
4693
4694 if (kvm_vmx->pid_table)
4695 return 0;
4696
4697 pages = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO,
4698 vmx_get_pid_table_order(kvm));
4699 if (!pages)
4700 return -ENOMEM;
4701
4702 kvm_vmx->pid_table = (void *)page_address(pages);
4703 return 0;
4704 }
4705
vmx_vcpu_precreate(struct kvm * kvm)4706 static int vmx_vcpu_precreate(struct kvm *kvm)
4707 {
4708 return vmx_alloc_ipiv_pid_table(kvm);
4709 }
4710
4711 #define VMX_XSS_EXIT_BITMAP 0
4712
init_vmcs(struct vcpu_vmx * vmx)4713 static void init_vmcs(struct vcpu_vmx *vmx)
4714 {
4715 struct kvm *kvm = vmx->vcpu.kvm;
4716 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
4717
4718 if (nested)
4719 nested_vmx_set_vmcs_shadowing_bitmap();
4720
4721 if (cpu_has_vmx_msr_bitmap())
4722 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4723
4724 vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4725
4726 /* Control */
4727 pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4728
4729 exec_controls_set(vmx, vmx_exec_control(vmx));
4730
4731 if (cpu_has_secondary_exec_ctrls())
4732 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4733
4734 if (cpu_has_tertiary_exec_ctrls())
4735 tertiary_exec_controls_set(vmx, vmx_tertiary_exec_control(vmx));
4736
4737 if (enable_apicv && lapic_in_kernel(&vmx->vcpu)) {
4738 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4739 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4740 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4741 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4742
4743 vmcs_write16(GUEST_INTR_STATUS, 0);
4744
4745 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4746 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4747 }
4748
4749 if (vmx_can_use_ipiv(&vmx->vcpu)) {
4750 vmcs_write64(PID_POINTER_TABLE, __pa(kvm_vmx->pid_table));
4751 vmcs_write16(LAST_PID_POINTER_INDEX, kvm->arch.max_vcpu_ids - 1);
4752 }
4753
4754 if (!kvm_pause_in_guest(kvm)) {
4755 vmcs_write32(PLE_GAP, ple_gap);
4756 vmx->ple_window = ple_window;
4757 vmx->ple_window_dirty = true;
4758 }
4759
4760 if (kvm_notify_vmexit_enabled(kvm))
4761 vmcs_write32(NOTIFY_WINDOW, kvm->arch.notify_window);
4762
4763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4764 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4765 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4766
4767 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4768 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
4769 vmx_set_constant_host_state(vmx);
4770 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4771 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4772
4773 if (cpu_has_vmx_vmfunc())
4774 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4775
4776 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4777 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4778 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4779 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4780 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4781
4782 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4783 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4784
4785 vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4786
4787 /* 22.2.1, 20.8.1 */
4788 vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4789
4790 vmx->vcpu.arch.cr0_guest_owned_bits = vmx_l1_guest_owned_cr0_bits();
4791 vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4792
4793 set_cr4_guest_host_mask(vmx);
4794
4795 if (vmx->vpid != 0)
4796 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4797
4798 if (cpu_has_vmx_xsaves())
4799 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4800
4801 if (enable_pml) {
4802 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4803 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4804 }
4805
4806 vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4807
4808 if (vmx_pt_mode_is_host_guest()) {
4809 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4810 /* Bit[6~0] are forced to 1, writes are ignored. */
4811 vmx->pt_desc.guest.output_mask = 0x7F;
4812 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4813 }
4814
4815 vmcs_write32(GUEST_SYSENTER_CS, 0);
4816 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4817 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4818 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4819
4820 if (cpu_has_vmx_tpr_shadow()) {
4821 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4822 if (cpu_need_tpr_shadow(&vmx->vcpu))
4823 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4824 __pa(vmx->vcpu.arch.apic->regs));
4825 vmcs_write32(TPR_THRESHOLD, 0);
4826 }
4827
4828 vmx_setup_uret_msrs(vmx);
4829 }
4830
__vmx_vcpu_reset(struct kvm_vcpu * vcpu)4831 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4832 {
4833 struct vcpu_vmx *vmx = to_vmx(vcpu);
4834
4835 init_vmcs(vmx);
4836
4837 if (nested)
4838 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4839
4840 vcpu_setup_sgx_lepubkeyhash(vcpu);
4841
4842 vmx->nested.posted_intr_nv = -1;
4843 vmx->nested.vmxon_ptr = INVALID_GPA;
4844 vmx->nested.current_vmptr = INVALID_GPA;
4845 vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4846
4847 vcpu->arch.microcode_version = 0x100000000ULL;
4848 vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4849
4850 /*
4851 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4852 * or POSTED_INTR_WAKEUP_VECTOR.
4853 */
4854 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4855 vmx->pi_desc.sn = 1;
4856 }
4857
vmx_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)4858 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4859 {
4860 struct vcpu_vmx *vmx = to_vmx(vcpu);
4861
4862 if (!init_event)
4863 __vmx_vcpu_reset(vcpu);
4864
4865 vmx->rmode.vm86_active = 0;
4866 vmx->spec_ctrl = 0;
4867
4868 vmx->msr_ia32_umwait_control = 0;
4869
4870 vmx->hv_deadline_tsc = -1;
4871 kvm_set_cr8(vcpu, 0);
4872
4873 vmx_segment_cache_clear(vmx);
4874 kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4875
4876 seg_setup(VCPU_SREG_CS);
4877 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4878 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4879
4880 seg_setup(VCPU_SREG_DS);
4881 seg_setup(VCPU_SREG_ES);
4882 seg_setup(VCPU_SREG_FS);
4883 seg_setup(VCPU_SREG_GS);
4884 seg_setup(VCPU_SREG_SS);
4885
4886 vmcs_write16(GUEST_TR_SELECTOR, 0);
4887 vmcs_writel(GUEST_TR_BASE, 0);
4888 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4889 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4890
4891 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4892 vmcs_writel(GUEST_LDTR_BASE, 0);
4893 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4894 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4895
4896 vmcs_writel(GUEST_GDTR_BASE, 0);
4897 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4898
4899 vmcs_writel(GUEST_IDTR_BASE, 0);
4900 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4901
4902 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4903 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4904 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4905 if (kvm_mpx_supported())
4906 vmcs_write64(GUEST_BNDCFGS, 0);
4907
4908 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4909
4910 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4911
4912 vpid_sync_context(vmx->vpid);
4913
4914 vmx_update_fb_clear_dis(vcpu, vmx);
4915 }
4916
vmx_enable_irq_window(struct kvm_vcpu * vcpu)4917 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4918 {
4919 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4920 }
4921
vmx_enable_nmi_window(struct kvm_vcpu * vcpu)4922 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4923 {
4924 if (!enable_vnmi ||
4925 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4926 vmx_enable_irq_window(vcpu);
4927 return;
4928 }
4929
4930 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4931 }
4932
vmx_inject_irq(struct kvm_vcpu * vcpu,bool reinjected)4933 static void vmx_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
4934 {
4935 struct vcpu_vmx *vmx = to_vmx(vcpu);
4936 uint32_t intr;
4937 int irq = vcpu->arch.interrupt.nr;
4938
4939 trace_kvm_inj_virq(irq, vcpu->arch.interrupt.soft, reinjected);
4940
4941 ++vcpu->stat.irq_injections;
4942 if (vmx->rmode.vm86_active) {
4943 int inc_eip = 0;
4944 if (vcpu->arch.interrupt.soft)
4945 inc_eip = vcpu->arch.event_exit_inst_len;
4946 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4947 return;
4948 }
4949 intr = irq | INTR_INFO_VALID_MASK;
4950 if (vcpu->arch.interrupt.soft) {
4951 intr |= INTR_TYPE_SOFT_INTR;
4952 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4953 vmx->vcpu.arch.event_exit_inst_len);
4954 } else
4955 intr |= INTR_TYPE_EXT_INTR;
4956 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4957
4958 vmx_clear_hlt(vcpu);
4959 }
4960
vmx_inject_nmi(struct kvm_vcpu * vcpu)4961 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4962 {
4963 struct vcpu_vmx *vmx = to_vmx(vcpu);
4964
4965 if (!enable_vnmi) {
4966 /*
4967 * Tracking the NMI-blocked state in software is built upon
4968 * finding the next open IRQ window. This, in turn, depends on
4969 * well-behaving guests: They have to keep IRQs disabled at
4970 * least as long as the NMI handler runs. Otherwise we may
4971 * cause NMI nesting, maybe breaking the guest. But as this is
4972 * highly unlikely, we can live with the residual risk.
4973 */
4974 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4975 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4976 }
4977
4978 ++vcpu->stat.nmi_injections;
4979 vmx->loaded_vmcs->nmi_known_unmasked = false;
4980
4981 if (vmx->rmode.vm86_active) {
4982 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4983 return;
4984 }
4985
4986 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4987 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4988
4989 vmx_clear_hlt(vcpu);
4990 }
4991
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4992 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4993 {
4994 struct vcpu_vmx *vmx = to_vmx(vcpu);
4995 bool masked;
4996
4997 if (!enable_vnmi)
4998 return vmx->loaded_vmcs->soft_vnmi_blocked;
4999 if (vmx->loaded_vmcs->nmi_known_unmasked)
5000 return false;
5001 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5002 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5003 return masked;
5004 }
5005
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)5006 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5007 {
5008 struct vcpu_vmx *vmx = to_vmx(vcpu);
5009
5010 if (!enable_vnmi) {
5011 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
5012 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
5013 vmx->loaded_vmcs->vnmi_blocked_time = 0;
5014 }
5015 } else {
5016 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
5017 if (masked)
5018 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5019 GUEST_INTR_STATE_NMI);
5020 else
5021 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5022 GUEST_INTR_STATE_NMI);
5023 }
5024 }
5025
vmx_nmi_blocked(struct kvm_vcpu * vcpu)5026 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
5027 {
5028 if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5029 return false;
5030
5031 if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
5032 return true;
5033
5034 return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5035 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
5036 GUEST_INTR_STATE_NMI));
5037 }
5038
vmx_nmi_allowed(struct kvm_vcpu * vcpu,bool for_injection)5039 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5040 {
5041 if (to_vmx(vcpu)->nested.nested_run_pending)
5042 return -EBUSY;
5043
5044 /* An NMI must not be injected into L2 if it's supposed to VM-Exit. */
5045 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
5046 return -EBUSY;
5047
5048 return !vmx_nmi_blocked(vcpu);
5049 }
5050
vmx_interrupt_blocked(struct kvm_vcpu * vcpu)5051 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
5052 {
5053 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5054 return false;
5055
5056 return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
5057 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5058 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5059 }
5060
vmx_interrupt_allowed(struct kvm_vcpu * vcpu,bool for_injection)5061 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
5062 {
5063 if (to_vmx(vcpu)->nested.nested_run_pending)
5064 return -EBUSY;
5065
5066 /*
5067 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
5068 * e.g. if the IRQ arrived asynchronously after checking nested events.
5069 */
5070 if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
5071 return -EBUSY;
5072
5073 return !vmx_interrupt_blocked(vcpu);
5074 }
5075
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)5076 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5077 {
5078 void __user *ret;
5079
5080 if (enable_unrestricted_guest)
5081 return 0;
5082
5083 mutex_lock(&kvm->slots_lock);
5084 ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5085 PAGE_SIZE * 3);
5086 mutex_unlock(&kvm->slots_lock);
5087
5088 if (IS_ERR(ret))
5089 return PTR_ERR(ret);
5090
5091 to_kvm_vmx(kvm)->tss_addr = addr;
5092
5093 return init_rmode_tss(kvm, ret);
5094 }
5095
vmx_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5096 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
5097 {
5098 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
5099 return 0;
5100 }
5101
rmode_exception(struct kvm_vcpu * vcpu,int vec)5102 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5103 {
5104 switch (vec) {
5105 case BP_VECTOR:
5106 /*
5107 * Update instruction length as we may reinject the exception
5108 * from user space while in guest debugging mode.
5109 */
5110 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5111 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5112 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5113 return false;
5114 fallthrough;
5115 case DB_VECTOR:
5116 return !(vcpu->guest_debug &
5117 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
5118 case DE_VECTOR:
5119 case OF_VECTOR:
5120 case BR_VECTOR:
5121 case UD_VECTOR:
5122 case DF_VECTOR:
5123 case SS_VECTOR:
5124 case GP_VECTOR:
5125 case MF_VECTOR:
5126 return true;
5127 }
5128 return false;
5129 }
5130
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)5131 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5132 int vec, u32 err_code)
5133 {
5134 /*
5135 * Instruction with address size override prefix opcode 0x67
5136 * Cause the #SS fault with 0 error code in VM86 mode.
5137 */
5138 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5139 if (kvm_emulate_instruction(vcpu, 0)) {
5140 if (vcpu->arch.halt_request) {
5141 vcpu->arch.halt_request = 0;
5142 return kvm_emulate_halt_noskip(vcpu);
5143 }
5144 return 1;
5145 }
5146 return 0;
5147 }
5148
5149 /*
5150 * Forward all other exceptions that are valid in real mode.
5151 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5152 * the required debugging infrastructure rework.
5153 */
5154 kvm_queue_exception(vcpu, vec);
5155 return 1;
5156 }
5157
handle_machine_check(struct kvm_vcpu * vcpu)5158 static int handle_machine_check(struct kvm_vcpu *vcpu)
5159 {
5160 /* handled by vmx_vcpu_run() */
5161 return 1;
5162 }
5163
5164 /*
5165 * If the host has split lock detection disabled, then #AC is
5166 * unconditionally injected into the guest, which is the pre split lock
5167 * detection behaviour.
5168 *
5169 * If the host has split lock detection enabled then #AC is
5170 * only injected into the guest when:
5171 * - Guest CPL == 3 (user mode)
5172 * - Guest has #AC detection enabled in CR0
5173 * - Guest EFLAGS has AC bit set
5174 */
vmx_guest_inject_ac(struct kvm_vcpu * vcpu)5175 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
5176 {
5177 if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
5178 return true;
5179
5180 return vmx_get_cpl(vcpu) == 3 && kvm_is_cr0_bit_set(vcpu, X86_CR0_AM) &&
5181 (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
5182 }
5183
handle_exception_nmi(struct kvm_vcpu * vcpu)5184 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
5185 {
5186 struct vcpu_vmx *vmx = to_vmx(vcpu);
5187 struct kvm_run *kvm_run = vcpu->run;
5188 u32 intr_info, ex_no, error_code;
5189 unsigned long cr2, dr6;
5190 u32 vect_info;
5191
5192 vect_info = vmx->idt_vectoring_info;
5193 intr_info = vmx_get_intr_info(vcpu);
5194
5195 /*
5196 * Machine checks are handled by handle_exception_irqoff(), or by
5197 * vmx_vcpu_run() if a #MC occurs on VM-Entry. NMIs are handled by
5198 * vmx_vcpu_enter_exit().
5199 */
5200 if (is_machine_check(intr_info) || is_nmi(intr_info))
5201 return 1;
5202
5203 /*
5204 * Queue the exception here instead of in handle_nm_fault_irqoff().
5205 * This ensures the nested_vmx check is not skipped so vmexit can
5206 * be reflected to L1 (when it intercepts #NM) before reaching this
5207 * point.
5208 */
5209 if (is_nm_fault(intr_info)) {
5210 kvm_queue_exception(vcpu, NM_VECTOR);
5211 return 1;
5212 }
5213
5214 if (is_invalid_opcode(intr_info))
5215 return handle_ud(vcpu);
5216
5217 error_code = 0;
5218 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5219 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5220
5221 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
5222 WARN_ON_ONCE(!enable_vmware_backdoor);
5223
5224 /*
5225 * VMware backdoor emulation on #GP interception only handles
5226 * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
5227 * error code on #GP.
5228 */
5229 if (error_code) {
5230 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
5231 return 1;
5232 }
5233 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
5234 }
5235
5236 /*
5237 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5238 * MMIO, it is better to report an internal error.
5239 * See the comments in vmx_handle_exit.
5240 */
5241 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5242 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5243 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5244 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5245 vcpu->run->internal.ndata = 4;
5246 vcpu->run->internal.data[0] = vect_info;
5247 vcpu->run->internal.data[1] = intr_info;
5248 vcpu->run->internal.data[2] = error_code;
5249 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
5250 return 0;
5251 }
5252
5253 if (is_page_fault(intr_info)) {
5254 cr2 = vmx_get_exit_qual(vcpu);
5255 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
5256 /*
5257 * EPT will cause page fault only if we need to
5258 * detect illegal GPAs.
5259 */
5260 WARN_ON_ONCE(!allow_smaller_maxphyaddr);
5261 kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
5262 return 1;
5263 } else
5264 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
5265 }
5266
5267 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5268
5269 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5270 return handle_rmode_exception(vcpu, ex_no, error_code);
5271
5272 switch (ex_no) {
5273 case DB_VECTOR:
5274 dr6 = vmx_get_exit_qual(vcpu);
5275 if (!(vcpu->guest_debug &
5276 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5277 /*
5278 * If the #DB was due to ICEBP, a.k.a. INT1, skip the
5279 * instruction. ICEBP generates a trap-like #DB, but
5280 * despite its interception control being tied to #DB,
5281 * is an instruction intercept, i.e. the VM-Exit occurs
5282 * on the ICEBP itself. Use the inner "skip" helper to
5283 * avoid single-step #DB and MTF updates, as ICEBP is
5284 * higher priority. Note, skipping ICEBP still clears
5285 * STI and MOVSS blocking.
5286 *
5287 * For all other #DBs, set vmcs.PENDING_DBG_EXCEPTIONS.BS
5288 * if single-step is enabled in RFLAGS and STI or MOVSS
5289 * blocking is active, as the CPU doesn't set the bit
5290 * on VM-Exit due to #DB interception. VM-Entry has a
5291 * consistency check that a single-step #DB is pending
5292 * in this scenario as the previous instruction cannot
5293 * have toggled RFLAGS.TF 0=>1 (because STI and POP/MOV
5294 * don't modify RFLAGS), therefore the one instruction
5295 * delay when activating single-step breakpoints must
5296 * have already expired. Note, the CPU sets/clears BS
5297 * as appropriate for all other VM-Exits types.
5298 */
5299 if (is_icebp(intr_info))
5300 WARN_ON(!skip_emulated_instruction(vcpu));
5301 else if ((vmx_get_rflags(vcpu) & X86_EFLAGS_TF) &&
5302 (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5303 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)))
5304 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
5305 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS) | DR6_BS);
5306
5307 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
5308 return 1;
5309 }
5310 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
5311 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5312 fallthrough;
5313 case BP_VECTOR:
5314 /*
5315 * Update instruction length as we may reinject #BP from
5316 * user space while in guest debugging mode. Reading it for
5317 * #DB as well causes no harm, it is not used in that case.
5318 */
5319 vmx->vcpu.arch.event_exit_inst_len =
5320 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5321 kvm_run->exit_reason = KVM_EXIT_DEBUG;
5322 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5323 kvm_run->debug.arch.exception = ex_no;
5324 break;
5325 case AC_VECTOR:
5326 if (vmx_guest_inject_ac(vcpu)) {
5327 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5328 return 1;
5329 }
5330
5331 /*
5332 * Handle split lock. Depending on detection mode this will
5333 * either warn and disable split lock detection for this
5334 * task or force SIGBUS on it.
5335 */
5336 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
5337 return 1;
5338 fallthrough;
5339 default:
5340 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5341 kvm_run->ex.exception = ex_no;
5342 kvm_run->ex.error_code = error_code;
5343 break;
5344 }
5345 return 0;
5346 }
5347
handle_external_interrupt(struct kvm_vcpu * vcpu)5348 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
5349 {
5350 ++vcpu->stat.irq_exits;
5351 return 1;
5352 }
5353
handle_triple_fault(struct kvm_vcpu * vcpu)5354 static int handle_triple_fault(struct kvm_vcpu *vcpu)
5355 {
5356 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5357 vcpu->mmio_needed = 0;
5358 return 0;
5359 }
5360
handle_io(struct kvm_vcpu * vcpu)5361 static int handle_io(struct kvm_vcpu *vcpu)
5362 {
5363 unsigned long exit_qualification;
5364 int size, in, string;
5365 unsigned port;
5366
5367 exit_qualification = vmx_get_exit_qual(vcpu);
5368 string = (exit_qualification & 16) != 0;
5369
5370 ++vcpu->stat.io_exits;
5371
5372 if (string)
5373 return kvm_emulate_instruction(vcpu, 0);
5374
5375 port = exit_qualification >> 16;
5376 size = (exit_qualification & 7) + 1;
5377 in = (exit_qualification & 8) != 0;
5378
5379 return kvm_fast_pio(vcpu, size, port, in);
5380 }
5381
5382 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)5383 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5384 {
5385 /*
5386 * Patch in the VMCALL instruction:
5387 */
5388 hypercall[0] = 0x0f;
5389 hypercall[1] = 0x01;
5390 hypercall[2] = 0xc1;
5391 }
5392
5393 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)5394 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5395 {
5396 if (is_guest_mode(vcpu)) {
5397 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5398 unsigned long orig_val = val;
5399
5400 /*
5401 * We get here when L2 changed cr0 in a way that did not change
5402 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5403 * but did change L0 shadowed bits. So we first calculate the
5404 * effective cr0 value that L1 would like to write into the
5405 * hardware. It consists of the L2-owned bits from the new
5406 * value combined with the L1-owned bits from L1's guest_cr0.
5407 */
5408 val = (val & ~vmcs12->cr0_guest_host_mask) |
5409 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5410
5411 if (kvm_set_cr0(vcpu, val))
5412 return 1;
5413 vmcs_writel(CR0_READ_SHADOW, orig_val);
5414 return 0;
5415 } else {
5416 return kvm_set_cr0(vcpu, val);
5417 }
5418 }
5419
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)5420 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5421 {
5422 if (is_guest_mode(vcpu)) {
5423 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5424 unsigned long orig_val = val;
5425
5426 /* analogously to handle_set_cr0 */
5427 val = (val & ~vmcs12->cr4_guest_host_mask) |
5428 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5429 if (kvm_set_cr4(vcpu, val))
5430 return 1;
5431 vmcs_writel(CR4_READ_SHADOW, orig_val);
5432 return 0;
5433 } else
5434 return kvm_set_cr4(vcpu, val);
5435 }
5436
handle_desc(struct kvm_vcpu * vcpu)5437 static int handle_desc(struct kvm_vcpu *vcpu)
5438 {
5439 /*
5440 * UMIP emulation relies on intercepting writes to CR4.UMIP, i.e. this
5441 * and other code needs to be updated if UMIP can be guest owned.
5442 */
5443 BUILD_BUG_ON(KVM_POSSIBLE_CR4_GUEST_BITS & X86_CR4_UMIP);
5444
5445 WARN_ON_ONCE(!kvm_is_cr4_bit_set(vcpu, X86_CR4_UMIP));
5446 return kvm_emulate_instruction(vcpu, 0);
5447 }
5448
handle_cr(struct kvm_vcpu * vcpu)5449 static int handle_cr(struct kvm_vcpu *vcpu)
5450 {
5451 unsigned long exit_qualification, val;
5452 int cr;
5453 int reg;
5454 int err;
5455 int ret;
5456
5457 exit_qualification = vmx_get_exit_qual(vcpu);
5458 cr = exit_qualification & 15;
5459 reg = (exit_qualification >> 8) & 15;
5460 switch ((exit_qualification >> 4) & 3) {
5461 case 0: /* mov to cr */
5462 val = kvm_register_read(vcpu, reg);
5463 trace_kvm_cr_write(cr, val);
5464 switch (cr) {
5465 case 0:
5466 err = handle_set_cr0(vcpu, val);
5467 return kvm_complete_insn_gp(vcpu, err);
5468 case 3:
5469 WARN_ON_ONCE(enable_unrestricted_guest);
5470
5471 err = kvm_set_cr3(vcpu, val);
5472 return kvm_complete_insn_gp(vcpu, err);
5473 case 4:
5474 err = handle_set_cr4(vcpu, val);
5475 return kvm_complete_insn_gp(vcpu, err);
5476 case 8: {
5477 u8 cr8_prev = kvm_get_cr8(vcpu);
5478 u8 cr8 = (u8)val;
5479 err = kvm_set_cr8(vcpu, cr8);
5480 ret = kvm_complete_insn_gp(vcpu, err);
5481 if (lapic_in_kernel(vcpu))
5482 return ret;
5483 if (cr8_prev <= cr8)
5484 return ret;
5485 /*
5486 * TODO: we might be squashing a
5487 * KVM_GUESTDBG_SINGLESTEP-triggered
5488 * KVM_EXIT_DEBUG here.
5489 */
5490 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5491 return 0;
5492 }
5493 }
5494 break;
5495 case 2: /* clts */
5496 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5497 return -EIO;
5498 case 1: /*mov from cr*/
5499 switch (cr) {
5500 case 3:
5501 WARN_ON_ONCE(enable_unrestricted_guest);
5502
5503 val = kvm_read_cr3(vcpu);
5504 kvm_register_write(vcpu, reg, val);
5505 trace_kvm_cr_read(cr, val);
5506 return kvm_skip_emulated_instruction(vcpu);
5507 case 8:
5508 val = kvm_get_cr8(vcpu);
5509 kvm_register_write(vcpu, reg, val);
5510 trace_kvm_cr_read(cr, val);
5511 return kvm_skip_emulated_instruction(vcpu);
5512 }
5513 break;
5514 case 3: /* lmsw */
5515 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5516 trace_kvm_cr_write(0, (kvm_read_cr0_bits(vcpu, ~0xful) | val));
5517 kvm_lmsw(vcpu, val);
5518
5519 return kvm_skip_emulated_instruction(vcpu);
5520 default:
5521 break;
5522 }
5523 vcpu->run->exit_reason = 0;
5524 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5525 (int)(exit_qualification >> 4) & 3, cr);
5526 return 0;
5527 }
5528
handle_dr(struct kvm_vcpu * vcpu)5529 static int handle_dr(struct kvm_vcpu *vcpu)
5530 {
5531 unsigned long exit_qualification;
5532 int dr, dr7, reg;
5533 int err = 1;
5534
5535 exit_qualification = vmx_get_exit_qual(vcpu);
5536 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5537
5538 /* First, if DR does not exist, trigger UD */
5539 if (!kvm_require_dr(vcpu, dr))
5540 return 1;
5541
5542 if (vmx_get_cpl(vcpu) > 0)
5543 goto out;
5544
5545 dr7 = vmcs_readl(GUEST_DR7);
5546 if (dr7 & DR7_GD) {
5547 /*
5548 * As the vm-exit takes precedence over the debug trap, we
5549 * need to emulate the latter, either for the host or the
5550 * guest debugging itself.
5551 */
5552 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5553 vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5554 vcpu->run->debug.arch.dr7 = dr7;
5555 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5556 vcpu->run->debug.arch.exception = DB_VECTOR;
5557 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5558 return 0;
5559 } else {
5560 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5561 return 1;
5562 }
5563 }
5564
5565 if (vcpu->guest_debug == 0) {
5566 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5567
5568 /*
5569 * No more DR vmexits; force a reload of the debug registers
5570 * and reenter on this instruction. The next vmexit will
5571 * retrieve the full state of the debug registers.
5572 */
5573 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5574 return 1;
5575 }
5576
5577 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5578 if (exit_qualification & TYPE_MOV_FROM_DR) {
5579 unsigned long val;
5580
5581 kvm_get_dr(vcpu, dr, &val);
5582 kvm_register_write(vcpu, reg, val);
5583 err = 0;
5584 } else {
5585 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5586 }
5587
5588 out:
5589 return kvm_complete_insn_gp(vcpu, err);
5590 }
5591
vmx_sync_dirty_debug_regs(struct kvm_vcpu * vcpu)5592 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5593 {
5594 get_debugreg(vcpu->arch.db[0], 0);
5595 get_debugreg(vcpu->arch.db[1], 1);
5596 get_debugreg(vcpu->arch.db[2], 2);
5597 get_debugreg(vcpu->arch.db[3], 3);
5598 get_debugreg(vcpu->arch.dr6, 6);
5599 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5600
5601 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5602 exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5603
5604 /*
5605 * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5606 * a stale dr6 from the guest.
5607 */
5608 set_debugreg(DR6_RESERVED, 6);
5609 }
5610
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)5611 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5612 {
5613 vmcs_writel(GUEST_DR7, val);
5614 }
5615
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)5616 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5617 {
5618 kvm_apic_update_ppr(vcpu);
5619 return 1;
5620 }
5621
handle_interrupt_window(struct kvm_vcpu * vcpu)5622 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5623 {
5624 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5625
5626 kvm_make_request(KVM_REQ_EVENT, vcpu);
5627
5628 ++vcpu->stat.irq_window_exits;
5629 return 1;
5630 }
5631
handle_invlpg(struct kvm_vcpu * vcpu)5632 static int handle_invlpg(struct kvm_vcpu *vcpu)
5633 {
5634 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5635
5636 kvm_mmu_invlpg(vcpu, exit_qualification);
5637 return kvm_skip_emulated_instruction(vcpu);
5638 }
5639
handle_apic_access(struct kvm_vcpu * vcpu)5640 static int handle_apic_access(struct kvm_vcpu *vcpu)
5641 {
5642 if (likely(fasteoi)) {
5643 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5644 int access_type, offset;
5645
5646 access_type = exit_qualification & APIC_ACCESS_TYPE;
5647 offset = exit_qualification & APIC_ACCESS_OFFSET;
5648 /*
5649 * Sane guest uses MOV to write EOI, with written value
5650 * not cared. So make a short-circuit here by avoiding
5651 * heavy instruction emulation.
5652 */
5653 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5654 (offset == APIC_EOI)) {
5655 kvm_lapic_set_eoi(vcpu);
5656 return kvm_skip_emulated_instruction(vcpu);
5657 }
5658 }
5659 return kvm_emulate_instruction(vcpu, 0);
5660 }
5661
handle_apic_eoi_induced(struct kvm_vcpu * vcpu)5662 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5663 {
5664 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5665 int vector = exit_qualification & 0xff;
5666
5667 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5668 kvm_apic_set_eoi_accelerated(vcpu, vector);
5669 return 1;
5670 }
5671
handle_apic_write(struct kvm_vcpu * vcpu)5672 static int handle_apic_write(struct kvm_vcpu *vcpu)
5673 {
5674 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5675
5676 /*
5677 * APIC-write VM-Exit is trap-like, KVM doesn't need to advance RIP and
5678 * hardware has done any necessary aliasing, offset adjustments, etc...
5679 * for the access. I.e. the correct value has already been written to
5680 * the vAPIC page for the correct 16-byte chunk. KVM needs only to
5681 * retrieve the register value and emulate the access.
5682 */
5683 u32 offset = exit_qualification & 0xff0;
5684
5685 kvm_apic_write_nodecode(vcpu, offset);
5686 return 1;
5687 }
5688
handle_task_switch(struct kvm_vcpu * vcpu)5689 static int handle_task_switch(struct kvm_vcpu *vcpu)
5690 {
5691 struct vcpu_vmx *vmx = to_vmx(vcpu);
5692 unsigned long exit_qualification;
5693 bool has_error_code = false;
5694 u32 error_code = 0;
5695 u16 tss_selector;
5696 int reason, type, idt_v, idt_index;
5697
5698 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5699 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5700 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5701
5702 exit_qualification = vmx_get_exit_qual(vcpu);
5703
5704 reason = (u32)exit_qualification >> 30;
5705 if (reason == TASK_SWITCH_GATE && idt_v) {
5706 switch (type) {
5707 case INTR_TYPE_NMI_INTR:
5708 vcpu->arch.nmi_injected = false;
5709 vmx_set_nmi_mask(vcpu, true);
5710 break;
5711 case INTR_TYPE_EXT_INTR:
5712 case INTR_TYPE_SOFT_INTR:
5713 kvm_clear_interrupt_queue(vcpu);
5714 break;
5715 case INTR_TYPE_HARD_EXCEPTION:
5716 if (vmx->idt_vectoring_info &
5717 VECTORING_INFO_DELIVER_CODE_MASK) {
5718 has_error_code = true;
5719 error_code =
5720 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5721 }
5722 fallthrough;
5723 case INTR_TYPE_SOFT_EXCEPTION:
5724 kvm_clear_exception_queue(vcpu);
5725 break;
5726 default:
5727 break;
5728 }
5729 }
5730 tss_selector = exit_qualification;
5731
5732 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5733 type != INTR_TYPE_EXT_INTR &&
5734 type != INTR_TYPE_NMI_INTR))
5735 WARN_ON(!skip_emulated_instruction(vcpu));
5736
5737 /*
5738 * TODO: What about debug traps on tss switch?
5739 * Are we supposed to inject them and update dr6?
5740 */
5741 return kvm_task_switch(vcpu, tss_selector,
5742 type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5743 reason, has_error_code, error_code);
5744 }
5745
handle_ept_violation(struct kvm_vcpu * vcpu)5746 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5747 {
5748 unsigned long exit_qualification;
5749 gpa_t gpa;
5750 u64 error_code;
5751
5752 exit_qualification = vmx_get_exit_qual(vcpu);
5753
5754 /*
5755 * EPT violation happened while executing iret from NMI,
5756 * "blocked by NMI" bit has to be set before next VM entry.
5757 * There are errata that may cause this bit to not be set:
5758 * AAK134, BY25.
5759 */
5760 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5761 enable_vnmi &&
5762 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5763 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5764
5765 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5766 trace_kvm_page_fault(vcpu, gpa, exit_qualification);
5767
5768 /* Is it a read fault? */
5769 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5770 ? PFERR_USER_MASK : 0;
5771 /* Is it a write fault? */
5772 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5773 ? PFERR_WRITE_MASK : 0;
5774 /* Is it a fetch fault? */
5775 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5776 ? PFERR_FETCH_MASK : 0;
5777 /* ept page table entry is present? */
5778 error_code |= (exit_qualification & EPT_VIOLATION_RWX_MASK)
5779 ? PFERR_PRESENT_MASK : 0;
5780
5781 error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5782 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5783
5784 vcpu->arch.exit_qualification = exit_qualification;
5785
5786 /*
5787 * Check that the GPA doesn't exceed physical memory limits, as that is
5788 * a guest page fault. We have to emulate the instruction here, because
5789 * if the illegal address is that of a paging structure, then
5790 * EPT_VIOLATION_ACC_WRITE bit is set. Alternatively, if supported we
5791 * would also use advanced VM-exit information for EPT violations to
5792 * reconstruct the page fault error code.
5793 */
5794 if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5795 return kvm_emulate_instruction(vcpu, 0);
5796
5797 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5798 }
5799
handle_ept_misconfig(struct kvm_vcpu * vcpu)5800 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5801 {
5802 gpa_t gpa;
5803
5804 if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0))
5805 return 1;
5806
5807 /*
5808 * A nested guest cannot optimize MMIO vmexits, because we have an
5809 * nGPA here instead of the required GPA.
5810 */
5811 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5812 if (!is_guest_mode(vcpu) &&
5813 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5814 trace_kvm_fast_mmio(gpa);
5815 return kvm_skip_emulated_instruction(vcpu);
5816 }
5817
5818 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5819 }
5820
handle_nmi_window(struct kvm_vcpu * vcpu)5821 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5822 {
5823 if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5824 return -EIO;
5825
5826 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5827 ++vcpu->stat.nmi_window_exits;
5828 kvm_make_request(KVM_REQ_EVENT, vcpu);
5829
5830 return 1;
5831 }
5832
vmx_emulation_required_with_pending_exception(struct kvm_vcpu * vcpu)5833 static bool vmx_emulation_required_with_pending_exception(struct kvm_vcpu *vcpu)
5834 {
5835 struct vcpu_vmx *vmx = to_vmx(vcpu);
5836
5837 return vmx->emulation_required && !vmx->rmode.vm86_active &&
5838 (kvm_is_exception_pending(vcpu) || vcpu->arch.exception.injected);
5839 }
5840
handle_invalid_guest_state(struct kvm_vcpu * vcpu)5841 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5842 {
5843 struct vcpu_vmx *vmx = to_vmx(vcpu);
5844 bool intr_window_requested;
5845 unsigned count = 130;
5846
5847 intr_window_requested = exec_controls_get(vmx) &
5848 CPU_BASED_INTR_WINDOW_EXITING;
5849
5850 while (vmx->emulation_required && count-- != 0) {
5851 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5852 return handle_interrupt_window(&vmx->vcpu);
5853
5854 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5855 return 1;
5856
5857 if (!kvm_emulate_instruction(vcpu, 0))
5858 return 0;
5859
5860 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5861 kvm_prepare_emulation_failure_exit(vcpu);
5862 return 0;
5863 }
5864
5865 if (vcpu->arch.halt_request) {
5866 vcpu->arch.halt_request = 0;
5867 return kvm_emulate_halt_noskip(vcpu);
5868 }
5869
5870 /*
5871 * Note, return 1 and not 0, vcpu_run() will invoke
5872 * xfer_to_guest_mode() which will create a proper return
5873 * code.
5874 */
5875 if (__xfer_to_guest_mode_work_pending())
5876 return 1;
5877 }
5878
5879 return 1;
5880 }
5881
vmx_vcpu_pre_run(struct kvm_vcpu * vcpu)5882 static int vmx_vcpu_pre_run(struct kvm_vcpu *vcpu)
5883 {
5884 if (vmx_emulation_required_with_pending_exception(vcpu)) {
5885 kvm_prepare_emulation_failure_exit(vcpu);
5886 return 0;
5887 }
5888
5889 return 1;
5890 }
5891
grow_ple_window(struct kvm_vcpu * vcpu)5892 static void grow_ple_window(struct kvm_vcpu *vcpu)
5893 {
5894 struct vcpu_vmx *vmx = to_vmx(vcpu);
5895 unsigned int old = vmx->ple_window;
5896
5897 vmx->ple_window = __grow_ple_window(old, ple_window,
5898 ple_window_grow,
5899 ple_window_max);
5900
5901 if (vmx->ple_window != old) {
5902 vmx->ple_window_dirty = true;
5903 trace_kvm_ple_window_update(vcpu->vcpu_id,
5904 vmx->ple_window, old);
5905 }
5906 }
5907
shrink_ple_window(struct kvm_vcpu * vcpu)5908 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5909 {
5910 struct vcpu_vmx *vmx = to_vmx(vcpu);
5911 unsigned int old = vmx->ple_window;
5912
5913 vmx->ple_window = __shrink_ple_window(old, ple_window,
5914 ple_window_shrink,
5915 ple_window);
5916
5917 if (vmx->ple_window != old) {
5918 vmx->ple_window_dirty = true;
5919 trace_kvm_ple_window_update(vcpu->vcpu_id,
5920 vmx->ple_window, old);
5921 }
5922 }
5923
5924 /*
5925 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5926 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5927 */
handle_pause(struct kvm_vcpu * vcpu)5928 static int handle_pause(struct kvm_vcpu *vcpu)
5929 {
5930 if (!kvm_pause_in_guest(vcpu->kvm))
5931 grow_ple_window(vcpu);
5932
5933 /*
5934 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5935 * VM-execution control is ignored if CPL > 0. OTOH, KVM
5936 * never set PAUSE_EXITING and just set PLE if supported,
5937 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5938 */
5939 kvm_vcpu_on_spin(vcpu, true);
5940 return kvm_skip_emulated_instruction(vcpu);
5941 }
5942
handle_monitor_trap(struct kvm_vcpu * vcpu)5943 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5944 {
5945 return 1;
5946 }
5947
handle_invpcid(struct kvm_vcpu * vcpu)5948 static int handle_invpcid(struct kvm_vcpu *vcpu)
5949 {
5950 u32 vmx_instruction_info;
5951 unsigned long type;
5952 gva_t gva;
5953 struct {
5954 u64 pcid;
5955 u64 gla;
5956 } operand;
5957 int gpr_index;
5958
5959 if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5960 kvm_queue_exception(vcpu, UD_VECTOR);
5961 return 1;
5962 }
5963
5964 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5965 gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5966 type = kvm_register_read(vcpu, gpr_index);
5967
5968 /* According to the Intel instruction reference, the memory operand
5969 * is read even if it isn't needed (e.g., for type==all)
5970 */
5971 if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5972 vmx_instruction_info, false,
5973 sizeof(operand), &gva))
5974 return 1;
5975
5976 return kvm_handle_invpcid(vcpu, type, gva);
5977 }
5978
handle_pml_full(struct kvm_vcpu * vcpu)5979 static int handle_pml_full(struct kvm_vcpu *vcpu)
5980 {
5981 unsigned long exit_qualification;
5982
5983 trace_kvm_pml_full(vcpu->vcpu_id);
5984
5985 exit_qualification = vmx_get_exit_qual(vcpu);
5986
5987 /*
5988 * PML buffer FULL happened while executing iret from NMI,
5989 * "blocked by NMI" bit has to be set before next VM entry.
5990 */
5991 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5992 enable_vnmi &&
5993 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5994 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5995 GUEST_INTR_STATE_NMI);
5996
5997 /*
5998 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5999 * here.., and there's no userspace involvement needed for PML.
6000 */
6001 return 1;
6002 }
6003
handle_fastpath_preemption_timer(struct kvm_vcpu * vcpu)6004 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
6005 {
6006 struct vcpu_vmx *vmx = to_vmx(vcpu);
6007
6008 if (!vmx->req_immediate_exit &&
6009 !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
6010 kvm_lapic_expired_hv_timer(vcpu);
6011 return EXIT_FASTPATH_REENTER_GUEST;
6012 }
6013
6014 return EXIT_FASTPATH_NONE;
6015 }
6016
handle_preemption_timer(struct kvm_vcpu * vcpu)6017 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
6018 {
6019 handle_fastpath_preemption_timer(vcpu);
6020 return 1;
6021 }
6022
6023 /*
6024 * When nested=0, all VMX instruction VM Exits filter here. The handlers
6025 * are overwritten by nested_vmx_setup() when nested=1.
6026 */
handle_vmx_instruction(struct kvm_vcpu * vcpu)6027 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
6028 {
6029 kvm_queue_exception(vcpu, UD_VECTOR);
6030 return 1;
6031 }
6032
6033 #ifndef CONFIG_X86_SGX_KVM
handle_encls(struct kvm_vcpu * vcpu)6034 static int handle_encls(struct kvm_vcpu *vcpu)
6035 {
6036 /*
6037 * SGX virtualization is disabled. There is no software enable bit for
6038 * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
6039 * the guest from executing ENCLS (when SGX is supported by hardware).
6040 */
6041 kvm_queue_exception(vcpu, UD_VECTOR);
6042 return 1;
6043 }
6044 #endif /* CONFIG_X86_SGX_KVM */
6045
handle_bus_lock_vmexit(struct kvm_vcpu * vcpu)6046 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
6047 {
6048 /*
6049 * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
6050 * VM-Exits. Unconditionally set the flag here and leave the handling to
6051 * vmx_handle_exit().
6052 */
6053 to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
6054 return 1;
6055 }
6056
handle_notify(struct kvm_vcpu * vcpu)6057 static int handle_notify(struct kvm_vcpu *vcpu)
6058 {
6059 unsigned long exit_qual = vmx_get_exit_qual(vcpu);
6060 bool context_invalid = exit_qual & NOTIFY_VM_CONTEXT_INVALID;
6061
6062 ++vcpu->stat.notify_window_exits;
6063
6064 /*
6065 * Notify VM exit happened while executing iret from NMI,
6066 * "blocked by NMI" bit has to be set before next VM entry.
6067 */
6068 if (enable_vnmi && (exit_qual & INTR_INFO_UNBLOCK_NMI))
6069 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6070 GUEST_INTR_STATE_NMI);
6071
6072 if (vcpu->kvm->arch.notify_vmexit_flags & KVM_X86_NOTIFY_VMEXIT_USER ||
6073 context_invalid) {
6074 vcpu->run->exit_reason = KVM_EXIT_NOTIFY;
6075 vcpu->run->notify.flags = context_invalid ?
6076 KVM_NOTIFY_CONTEXT_INVALID : 0;
6077 return 0;
6078 }
6079
6080 return 1;
6081 }
6082
6083 /*
6084 * The exit handlers return 1 if the exit was handled fully and guest execution
6085 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6086 * to be done to userspace and return 0.
6087 */
6088 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6089 [EXIT_REASON_EXCEPTION_NMI] = handle_exception_nmi,
6090 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
6091 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
6092 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6093 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6094 [EXIT_REASON_CR_ACCESS] = handle_cr,
6095 [EXIT_REASON_DR_ACCESS] = handle_dr,
6096 [EXIT_REASON_CPUID] = kvm_emulate_cpuid,
6097 [EXIT_REASON_MSR_READ] = kvm_emulate_rdmsr,
6098 [EXIT_REASON_MSR_WRITE] = kvm_emulate_wrmsr,
6099 [EXIT_REASON_INTERRUPT_WINDOW] = handle_interrupt_window,
6100 [EXIT_REASON_HLT] = kvm_emulate_halt,
6101 [EXIT_REASON_INVD] = kvm_emulate_invd,
6102 [EXIT_REASON_INVLPG] = handle_invlpg,
6103 [EXIT_REASON_RDPMC] = kvm_emulate_rdpmc,
6104 [EXIT_REASON_VMCALL] = kvm_emulate_hypercall,
6105 [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
6106 [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
6107 [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
6108 [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
6109 [EXIT_REASON_VMREAD] = handle_vmx_instruction,
6110 [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
6111 [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
6112 [EXIT_REASON_VMOFF] = handle_vmx_instruction,
6113 [EXIT_REASON_VMON] = handle_vmx_instruction,
6114 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6115 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
6116 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
6117 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
6118 [EXIT_REASON_WBINVD] = kvm_emulate_wbinvd,
6119 [EXIT_REASON_XSETBV] = kvm_emulate_xsetbv,
6120 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
6121 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
6122 [EXIT_REASON_GDTR_IDTR] = handle_desc,
6123 [EXIT_REASON_LDTR_TR] = handle_desc,
6124 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6125 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
6126 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
6127 [EXIT_REASON_MWAIT_INSTRUCTION] = kvm_emulate_mwait,
6128 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
6129 [EXIT_REASON_MONITOR_INSTRUCTION] = kvm_emulate_monitor,
6130 [EXIT_REASON_INVEPT] = handle_vmx_instruction,
6131 [EXIT_REASON_INVVPID] = handle_vmx_instruction,
6132 [EXIT_REASON_RDRAND] = kvm_handle_invalid_op,
6133 [EXIT_REASON_RDSEED] = kvm_handle_invalid_op,
6134 [EXIT_REASON_PML_FULL] = handle_pml_full,
6135 [EXIT_REASON_INVPCID] = handle_invpcid,
6136 [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
6137 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6138 [EXIT_REASON_ENCLS] = handle_encls,
6139 [EXIT_REASON_BUS_LOCK] = handle_bus_lock_vmexit,
6140 [EXIT_REASON_NOTIFY] = handle_notify,
6141 };
6142
6143 static const int kvm_vmx_max_exit_handlers =
6144 ARRAY_SIZE(kvm_vmx_exit_handlers);
6145
vmx_get_exit_info(struct kvm_vcpu * vcpu,u32 * reason,u64 * info1,u64 * info2,u32 * intr_info,u32 * error_code)6146 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
6147 u64 *info1, u64 *info2,
6148 u32 *intr_info, u32 *error_code)
6149 {
6150 struct vcpu_vmx *vmx = to_vmx(vcpu);
6151
6152 *reason = vmx->exit_reason.full;
6153 *info1 = vmx_get_exit_qual(vcpu);
6154 if (!(vmx->exit_reason.failed_vmentry)) {
6155 *info2 = vmx->idt_vectoring_info;
6156 *intr_info = vmx_get_intr_info(vcpu);
6157 if (is_exception_with_error_code(*intr_info))
6158 *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6159 else
6160 *error_code = 0;
6161 } else {
6162 *info2 = 0;
6163 *intr_info = 0;
6164 *error_code = 0;
6165 }
6166 }
6167
vmx_destroy_pml_buffer(struct vcpu_vmx * vmx)6168 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
6169 {
6170 if (vmx->pml_pg) {
6171 __free_page(vmx->pml_pg);
6172 vmx->pml_pg = NULL;
6173 }
6174 }
6175
vmx_flush_pml_buffer(struct kvm_vcpu * vcpu)6176 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
6177 {
6178 struct vcpu_vmx *vmx = to_vmx(vcpu);
6179 u64 *pml_buf;
6180 u16 pml_idx;
6181
6182 pml_idx = vmcs_read16(GUEST_PML_INDEX);
6183
6184 /* Do nothing if PML buffer is empty */
6185 if (pml_idx == (PML_ENTITY_NUM - 1))
6186 return;
6187
6188 /* PML index always points to next available PML buffer entity */
6189 if (pml_idx >= PML_ENTITY_NUM)
6190 pml_idx = 0;
6191 else
6192 pml_idx++;
6193
6194 pml_buf = page_address(vmx->pml_pg);
6195 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
6196 u64 gpa;
6197
6198 gpa = pml_buf[pml_idx];
6199 WARN_ON(gpa & (PAGE_SIZE - 1));
6200 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
6201 }
6202
6203 /* reset PML index */
6204 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6205 }
6206
vmx_dump_sel(char * name,uint32_t sel)6207 static void vmx_dump_sel(char *name, uint32_t sel)
6208 {
6209 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
6210 name, vmcs_read16(sel),
6211 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
6212 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
6213 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
6214 }
6215
vmx_dump_dtsel(char * name,uint32_t limit)6216 static void vmx_dump_dtsel(char *name, uint32_t limit)
6217 {
6218 pr_err("%s limit=0x%08x, base=0x%016lx\n",
6219 name, vmcs_read32(limit),
6220 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
6221 }
6222
vmx_dump_msrs(char * name,struct vmx_msrs * m)6223 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
6224 {
6225 unsigned int i;
6226 struct vmx_msr_entry *e;
6227
6228 pr_err("MSR %s:\n", name);
6229 for (i = 0, e = m->val; i < m->nr; ++i, ++e)
6230 pr_err(" %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
6231 }
6232
dump_vmcs(struct kvm_vcpu * vcpu)6233 void dump_vmcs(struct kvm_vcpu *vcpu)
6234 {
6235 struct vcpu_vmx *vmx = to_vmx(vcpu);
6236 u32 vmentry_ctl, vmexit_ctl;
6237 u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
6238 u64 tertiary_exec_control;
6239 unsigned long cr4;
6240 int efer_slot;
6241
6242 if (!dump_invalid_vmcs) {
6243 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
6244 return;
6245 }
6246
6247 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
6248 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
6249 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6250 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
6251 cr4 = vmcs_readl(GUEST_CR4);
6252
6253 if (cpu_has_secondary_exec_ctrls())
6254 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6255 else
6256 secondary_exec_control = 0;
6257
6258 if (cpu_has_tertiary_exec_ctrls())
6259 tertiary_exec_control = vmcs_read64(TERTIARY_VM_EXEC_CONTROL);
6260 else
6261 tertiary_exec_control = 0;
6262
6263 pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
6264 vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
6265 pr_err("*** Guest State ***\n");
6266 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6267 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
6268 vmcs_readl(CR0_GUEST_HOST_MASK));
6269 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
6270 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
6271 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
6272 if (cpu_has_vmx_ept()) {
6273 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
6274 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
6275 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
6276 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
6277 }
6278 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
6279 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
6280 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
6281 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
6282 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6283 vmcs_readl(GUEST_SYSENTER_ESP),
6284 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
6285 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
6286 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
6287 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
6288 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
6289 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
6290 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
6291 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
6292 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
6293 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
6294 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
6295 efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
6296 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
6297 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
6298 else if (efer_slot >= 0)
6299 pr_err("EFER= 0x%016llx (autoload)\n",
6300 vmx->msr_autoload.guest.val[efer_slot].value);
6301 else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
6302 pr_err("EFER= 0x%016llx (effective)\n",
6303 vcpu->arch.efer | (EFER_LMA | EFER_LME));
6304 else
6305 pr_err("EFER= 0x%016llx (effective)\n",
6306 vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
6307 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
6308 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
6309 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
6310 vmcs_read64(GUEST_IA32_DEBUGCTL),
6311 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
6312 if (cpu_has_load_perf_global_ctrl() &&
6313 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
6314 pr_err("PerfGlobCtl = 0x%016llx\n",
6315 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
6316 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
6317 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
6318 pr_err("Interruptibility = %08x ActivityState = %08x\n",
6319 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
6320 vmcs_read32(GUEST_ACTIVITY_STATE));
6321 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
6322 pr_err("InterruptStatus = %04x\n",
6323 vmcs_read16(GUEST_INTR_STATUS));
6324 if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
6325 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
6326 if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
6327 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
6328
6329 pr_err("*** Host State ***\n");
6330 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
6331 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
6332 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
6333 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
6334 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
6335 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
6336 vmcs_read16(HOST_TR_SELECTOR));
6337 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
6338 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
6339 vmcs_readl(HOST_TR_BASE));
6340 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
6341 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
6342 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
6343 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
6344 vmcs_readl(HOST_CR4));
6345 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
6346 vmcs_readl(HOST_IA32_SYSENTER_ESP),
6347 vmcs_read32(HOST_IA32_SYSENTER_CS),
6348 vmcs_readl(HOST_IA32_SYSENTER_EIP));
6349 if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
6350 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
6351 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
6352 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
6353 if (cpu_has_load_perf_global_ctrl() &&
6354 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
6355 pr_err("PerfGlobCtl = 0x%016llx\n",
6356 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
6357 if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
6358 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
6359
6360 pr_err("*** Control State ***\n");
6361 pr_err("CPUBased=0x%08x SecondaryExec=0x%08x TertiaryExec=0x%016llx\n",
6362 cpu_based_exec_ctrl, secondary_exec_control, tertiary_exec_control);
6363 pr_err("PinBased=0x%08x EntryControls=%08x ExitControls=%08x\n",
6364 pin_based_exec_ctrl, vmentry_ctl, vmexit_ctl);
6365 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
6366 vmcs_read32(EXCEPTION_BITMAP),
6367 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
6368 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
6369 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
6370 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6371 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
6372 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
6373 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
6374 vmcs_read32(VM_EXIT_INTR_INFO),
6375 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
6376 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
6377 pr_err(" reason=%08x qualification=%016lx\n",
6378 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
6379 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
6380 vmcs_read32(IDT_VECTORING_INFO_FIELD),
6381 vmcs_read32(IDT_VECTORING_ERROR_CODE));
6382 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
6383 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
6384 pr_err("TSC Multiplier = 0x%016llx\n",
6385 vmcs_read64(TSC_MULTIPLIER));
6386 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
6387 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
6388 u16 status = vmcs_read16(GUEST_INTR_STATUS);
6389 pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
6390 }
6391 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
6392 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
6393 pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
6394 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
6395 }
6396 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
6397 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
6398 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
6399 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
6400 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
6401 pr_err("PLE Gap=%08x Window=%08x\n",
6402 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
6403 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
6404 pr_err("Virtual processor ID = 0x%04x\n",
6405 vmcs_read16(VIRTUAL_PROCESSOR_ID));
6406 }
6407
6408 /*
6409 * The guest has exited. See if we can fix it or if we need userspace
6410 * assistance.
6411 */
__vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6412 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6413 {
6414 struct vcpu_vmx *vmx = to_vmx(vcpu);
6415 union vmx_exit_reason exit_reason = vmx->exit_reason;
6416 u32 vectoring_info = vmx->idt_vectoring_info;
6417 u16 exit_handler_index;
6418
6419 /*
6420 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
6421 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
6422 * querying dirty_bitmap, we only need to kick all vcpus out of guest
6423 * mode as if vcpus is in root mode, the PML buffer must has been
6424 * flushed already. Note, PML is never enabled in hardware while
6425 * running L2.
6426 */
6427 if (enable_pml && !is_guest_mode(vcpu))
6428 vmx_flush_pml_buffer(vcpu);
6429
6430 /*
6431 * KVM should never reach this point with a pending nested VM-Enter.
6432 * More specifically, short-circuiting VM-Entry to emulate L2 due to
6433 * invalid guest state should never happen as that means KVM knowingly
6434 * allowed a nested VM-Enter with an invalid vmcs12. More below.
6435 */
6436 if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
6437 return -EIO;
6438
6439 if (is_guest_mode(vcpu)) {
6440 /*
6441 * PML is never enabled when running L2, bail immediately if a
6442 * PML full exit occurs as something is horribly wrong.
6443 */
6444 if (exit_reason.basic == EXIT_REASON_PML_FULL)
6445 goto unexpected_vmexit;
6446
6447 /*
6448 * The host physical addresses of some pages of guest memory
6449 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
6450 * Page). The CPU may write to these pages via their host
6451 * physical address while L2 is running, bypassing any
6452 * address-translation-based dirty tracking (e.g. EPT write
6453 * protection).
6454 *
6455 * Mark them dirty on every exit from L2 to prevent them from
6456 * getting out of sync with dirty tracking.
6457 */
6458 nested_mark_vmcs12_pages_dirty(vcpu);
6459
6460 /*
6461 * Synthesize a triple fault if L2 state is invalid. In normal
6462 * operation, nested VM-Enter rejects any attempt to enter L2
6463 * with invalid state. However, those checks are skipped if
6464 * state is being stuffed via RSM or KVM_SET_NESTED_STATE. If
6465 * L2 state is invalid, it means either L1 modified SMRAM state
6466 * or userspace provided bad state. Synthesize TRIPLE_FAULT as
6467 * doing so is architecturally allowed in the RSM case, and is
6468 * the least awful solution for the userspace case without
6469 * risking false positives.
6470 */
6471 if (vmx->emulation_required) {
6472 nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
6473 return 1;
6474 }
6475
6476 if (nested_vmx_reflect_vmexit(vcpu))
6477 return 1;
6478 }
6479
6480 /* If guest state is invalid, start emulating. L2 is handled above. */
6481 if (vmx->emulation_required)
6482 return handle_invalid_guest_state(vcpu);
6483
6484 if (exit_reason.failed_vmentry) {
6485 dump_vmcs(vcpu);
6486 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6487 vcpu->run->fail_entry.hardware_entry_failure_reason
6488 = exit_reason.full;
6489 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6490 return 0;
6491 }
6492
6493 if (unlikely(vmx->fail)) {
6494 dump_vmcs(vcpu);
6495 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6496 vcpu->run->fail_entry.hardware_entry_failure_reason
6497 = vmcs_read32(VM_INSTRUCTION_ERROR);
6498 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
6499 return 0;
6500 }
6501
6502 /*
6503 * Note:
6504 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6505 * delivery event since it indicates guest is accessing MMIO.
6506 * The vm-exit can be triggered again after return to guest that
6507 * will cause infinite loop.
6508 */
6509 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6510 (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
6511 exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
6512 exit_reason.basic != EXIT_REASON_PML_FULL &&
6513 exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
6514 exit_reason.basic != EXIT_REASON_TASK_SWITCH &&
6515 exit_reason.basic != EXIT_REASON_NOTIFY)) {
6516 int ndata = 3;
6517
6518 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6519 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6520 vcpu->run->internal.data[0] = vectoring_info;
6521 vcpu->run->internal.data[1] = exit_reason.full;
6522 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
6523 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
6524 vcpu->run->internal.data[ndata++] =
6525 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6526 }
6527 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
6528 vcpu->run->internal.ndata = ndata;
6529 return 0;
6530 }
6531
6532 if (unlikely(!enable_vnmi &&
6533 vmx->loaded_vmcs->soft_vnmi_blocked)) {
6534 if (!vmx_interrupt_blocked(vcpu)) {
6535 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6536 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
6537 vcpu->arch.nmi_pending) {
6538 /*
6539 * This CPU don't support us in finding the end of an
6540 * NMI-blocked window if the guest runs with IRQs
6541 * disabled. So we pull the trigger after 1 s of
6542 * futile waiting, but inform the user about this.
6543 */
6544 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6545 "state on VCPU %d after 1 s timeout\n",
6546 __func__, vcpu->vcpu_id);
6547 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6548 }
6549 }
6550
6551 if (exit_fastpath != EXIT_FASTPATH_NONE)
6552 return 1;
6553
6554 if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6555 goto unexpected_vmexit;
6556 #ifdef CONFIG_RETPOLINE
6557 if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6558 return kvm_emulate_wrmsr(vcpu);
6559 else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6560 return handle_preemption_timer(vcpu);
6561 else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6562 return handle_interrupt_window(vcpu);
6563 else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6564 return handle_external_interrupt(vcpu);
6565 else if (exit_reason.basic == EXIT_REASON_HLT)
6566 return kvm_emulate_halt(vcpu);
6567 else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6568 return handle_ept_misconfig(vcpu);
6569 #endif
6570
6571 exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6572 kvm_vmx_max_exit_handlers);
6573 if (!kvm_vmx_exit_handlers[exit_handler_index])
6574 goto unexpected_vmexit;
6575
6576 return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6577
6578 unexpected_vmexit:
6579 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6580 exit_reason.full);
6581 dump_vmcs(vcpu);
6582 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6583 vcpu->run->internal.suberror =
6584 KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6585 vcpu->run->internal.ndata = 2;
6586 vcpu->run->internal.data[0] = exit_reason.full;
6587 vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6588 return 0;
6589 }
6590
vmx_handle_exit(struct kvm_vcpu * vcpu,fastpath_t exit_fastpath)6591 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6592 {
6593 int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6594
6595 /*
6596 * Exit to user space when bus lock detected to inform that there is
6597 * a bus lock in guest.
6598 */
6599 if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6600 if (ret > 0)
6601 vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6602
6603 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6604 return 0;
6605 }
6606 return ret;
6607 }
6608
6609 /*
6610 * Software based L1D cache flush which is used when microcode providing
6611 * the cache control MSR is not loaded.
6612 *
6613 * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6614 * flush it is required to read in 64 KiB because the replacement algorithm
6615 * is not exactly LRU. This could be sized at runtime via topology
6616 * information but as all relevant affected CPUs have 32KiB L1D cache size
6617 * there is no point in doing so.
6618 */
vmx_l1d_flush(struct kvm_vcpu * vcpu)6619 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6620 {
6621 int size = PAGE_SIZE << L1D_CACHE_ORDER;
6622
6623 /*
6624 * This code is only executed when the flush mode is 'cond' or
6625 * 'always'
6626 */
6627 if (static_branch_likely(&vmx_l1d_flush_cond)) {
6628 bool flush_l1d;
6629
6630 /*
6631 * Clear the per-vcpu flush bit, it gets set again
6632 * either from vcpu_run() or from one of the unsafe
6633 * VMEXIT handlers.
6634 */
6635 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6636 vcpu->arch.l1tf_flush_l1d = false;
6637
6638 /*
6639 * Clear the per-cpu flush bit, it gets set again from
6640 * the interrupt handlers.
6641 */
6642 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6643 kvm_clear_cpu_l1tf_flush_l1d();
6644
6645 if (!flush_l1d)
6646 return;
6647 }
6648
6649 vcpu->stat.l1d_flush++;
6650
6651 if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6652 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6653 return;
6654 }
6655
6656 asm volatile(
6657 /* First ensure the pages are in the TLB */
6658 "xorl %%eax, %%eax\n"
6659 ".Lpopulate_tlb:\n\t"
6660 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6661 "addl $4096, %%eax\n\t"
6662 "cmpl %%eax, %[size]\n\t"
6663 "jne .Lpopulate_tlb\n\t"
6664 "xorl %%eax, %%eax\n\t"
6665 "cpuid\n\t"
6666 /* Now fill the cache */
6667 "xorl %%eax, %%eax\n"
6668 ".Lfill_cache:\n"
6669 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6670 "addl $64, %%eax\n\t"
6671 "cmpl %%eax, %[size]\n\t"
6672 "jne .Lfill_cache\n\t"
6673 "lfence\n"
6674 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6675 [size] "r" (size)
6676 : "eax", "ebx", "ecx", "edx");
6677 }
6678
vmx_update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)6679 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6680 {
6681 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6682 int tpr_threshold;
6683
6684 if (is_guest_mode(vcpu) &&
6685 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6686 return;
6687
6688 tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6689 if (is_guest_mode(vcpu))
6690 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6691 else
6692 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6693 }
6694
vmx_set_virtual_apic_mode(struct kvm_vcpu * vcpu)6695 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6696 {
6697 struct vcpu_vmx *vmx = to_vmx(vcpu);
6698 u32 sec_exec_control;
6699
6700 if (!lapic_in_kernel(vcpu))
6701 return;
6702
6703 if (!flexpriority_enabled &&
6704 !cpu_has_vmx_virtualize_x2apic_mode())
6705 return;
6706
6707 /* Postpone execution until vmcs01 is the current VMCS. */
6708 if (is_guest_mode(vcpu)) {
6709 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6710 return;
6711 }
6712
6713 sec_exec_control = secondary_exec_controls_get(vmx);
6714 sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6715 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6716
6717 switch (kvm_get_apic_mode(vcpu)) {
6718 case LAPIC_MODE_INVALID:
6719 WARN_ONCE(true, "Invalid local APIC state");
6720 break;
6721 case LAPIC_MODE_DISABLED:
6722 break;
6723 case LAPIC_MODE_XAPIC:
6724 if (flexpriority_enabled) {
6725 sec_exec_control |=
6726 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6727 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6728
6729 /*
6730 * Flush the TLB, reloading the APIC access page will
6731 * only do so if its physical address has changed, but
6732 * the guest may have inserted a non-APIC mapping into
6733 * the TLB while the APIC access page was disabled.
6734 */
6735 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6736 }
6737 break;
6738 case LAPIC_MODE_X2APIC:
6739 if (cpu_has_vmx_virtualize_x2apic_mode())
6740 sec_exec_control |=
6741 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6742 break;
6743 }
6744 secondary_exec_controls_set(vmx, sec_exec_control);
6745
6746 vmx_update_msr_bitmap_x2apic(vcpu);
6747 }
6748
vmx_set_apic_access_page_addr(struct kvm_vcpu * vcpu)6749 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6750 {
6751 const gfn_t gfn = APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT;
6752 struct kvm *kvm = vcpu->kvm;
6753 struct kvm_memslots *slots = kvm_memslots(kvm);
6754 struct kvm_memory_slot *slot;
6755 unsigned long mmu_seq;
6756 kvm_pfn_t pfn;
6757
6758 /* Defer reload until vmcs01 is the current VMCS. */
6759 if (is_guest_mode(vcpu)) {
6760 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6761 return;
6762 }
6763
6764 if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6765 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6766 return;
6767
6768 /*
6769 * Grab the memslot so that the hva lookup for the mmu_notifier retry
6770 * is guaranteed to use the same memslot as the pfn lookup, i.e. rely
6771 * on the pfn lookup's validation of the memslot to ensure a valid hva
6772 * is used for the retry check.
6773 */
6774 slot = id_to_memslot(slots, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT);
6775 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
6776 return;
6777
6778 /*
6779 * Ensure that the mmu_notifier sequence count is read before KVM
6780 * retrieves the pfn from the primary MMU. Note, the memslot is
6781 * protected by SRCU, not the mmu_notifier. Pairs with the smp_wmb()
6782 * in kvm_mmu_invalidate_end().
6783 */
6784 mmu_seq = kvm->mmu_invalidate_seq;
6785 smp_rmb();
6786
6787 /*
6788 * No need to retry if the memslot does not exist or is invalid. KVM
6789 * controls the APIC-access page memslot, and only deletes the memslot
6790 * if APICv is permanently inhibited, i.e. the memslot won't reappear.
6791 */
6792 pfn = gfn_to_pfn_memslot(slot, gfn);
6793 if (is_error_noslot_pfn(pfn))
6794 return;
6795
6796 read_lock(&vcpu->kvm->mmu_lock);
6797 if (mmu_invalidate_retry_hva(kvm, mmu_seq,
6798 gfn_to_hva_memslot(slot, gfn))) {
6799 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6800 read_unlock(&vcpu->kvm->mmu_lock);
6801 goto out;
6802 }
6803
6804 vmcs_write64(APIC_ACCESS_ADDR, pfn_to_hpa(pfn));
6805 read_unlock(&vcpu->kvm->mmu_lock);
6806
6807 /*
6808 * No need for a manual TLB flush at this point, KVM has already done a
6809 * flush if there were SPTEs pointing at the previous page.
6810 */
6811 out:
6812 /*
6813 * Do not pin apic access page in memory, the MMU notifier
6814 * will call us again if it is migrated or swapped out.
6815 */
6816 kvm_release_pfn_clean(pfn);
6817 }
6818
vmx_hwapic_isr_update(int max_isr)6819 static void vmx_hwapic_isr_update(int max_isr)
6820 {
6821 u16 status;
6822 u8 old;
6823
6824 if (max_isr == -1)
6825 max_isr = 0;
6826
6827 status = vmcs_read16(GUEST_INTR_STATUS);
6828 old = status >> 8;
6829 if (max_isr != old) {
6830 status &= 0xff;
6831 status |= max_isr << 8;
6832 vmcs_write16(GUEST_INTR_STATUS, status);
6833 }
6834 }
6835
vmx_set_rvi(int vector)6836 static void vmx_set_rvi(int vector)
6837 {
6838 u16 status;
6839 u8 old;
6840
6841 if (vector == -1)
6842 vector = 0;
6843
6844 status = vmcs_read16(GUEST_INTR_STATUS);
6845 old = (u8)status & 0xff;
6846 if ((u8)vector != old) {
6847 status &= ~0xff;
6848 status |= (u8)vector;
6849 vmcs_write16(GUEST_INTR_STATUS, status);
6850 }
6851 }
6852
vmx_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)6853 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6854 {
6855 /*
6856 * When running L2, updating RVI is only relevant when
6857 * vmcs12 virtual-interrupt-delivery enabled.
6858 * However, it can be enabled only when L1 also
6859 * intercepts external-interrupts and in that case
6860 * we should not update vmcs02 RVI but instead intercept
6861 * interrupt. Therefore, do nothing when running L2.
6862 */
6863 if (!is_guest_mode(vcpu))
6864 vmx_set_rvi(max_irr);
6865 }
6866
vmx_sync_pir_to_irr(struct kvm_vcpu * vcpu)6867 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6868 {
6869 struct vcpu_vmx *vmx = to_vmx(vcpu);
6870 int max_irr;
6871 bool got_posted_interrupt;
6872
6873 if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6874 return -EIO;
6875
6876 if (pi_test_on(&vmx->pi_desc)) {
6877 pi_clear_on(&vmx->pi_desc);
6878 /*
6879 * IOMMU can write to PID.ON, so the barrier matters even on UP.
6880 * But on x86 this is just a compiler barrier anyway.
6881 */
6882 smp_mb__after_atomic();
6883 got_posted_interrupt =
6884 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6885 } else {
6886 max_irr = kvm_lapic_find_highest_irr(vcpu);
6887 got_posted_interrupt = false;
6888 }
6889
6890 /*
6891 * Newly recognized interrupts are injected via either virtual interrupt
6892 * delivery (RVI) or KVM_REQ_EVENT. Virtual interrupt delivery is
6893 * disabled in two cases:
6894 *
6895 * 1) If L2 is running and the vCPU has a new pending interrupt. If L1
6896 * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6897 * VM-Exit to L1. If L1 doesn't want to exit, the interrupt is injected
6898 * into L2, but KVM doesn't use virtual interrupt delivery to inject
6899 * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6900 *
6901 * 2) If APICv is disabled for this vCPU, assigned devices may still
6902 * attempt to post interrupts. The posted interrupt vector will cause
6903 * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6904 */
6905 if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6906 vmx_set_rvi(max_irr);
6907 else if (got_posted_interrupt)
6908 kvm_make_request(KVM_REQ_EVENT, vcpu);
6909
6910 return max_irr;
6911 }
6912
vmx_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)6913 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6914 {
6915 if (!kvm_vcpu_apicv_active(vcpu))
6916 return;
6917
6918 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6919 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6920 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6921 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6922 }
6923
vmx_apicv_pre_state_restore(struct kvm_vcpu * vcpu)6924 static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu)
6925 {
6926 struct vcpu_vmx *vmx = to_vmx(vcpu);
6927
6928 pi_clear_on(&vmx->pi_desc);
6929 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6930 }
6931
6932 void vmx_do_interrupt_irqoff(unsigned long entry);
6933 void vmx_do_nmi_irqoff(void);
6934
handle_nm_fault_irqoff(struct kvm_vcpu * vcpu)6935 static void handle_nm_fault_irqoff(struct kvm_vcpu *vcpu)
6936 {
6937 /*
6938 * Save xfd_err to guest_fpu before interrupt is enabled, so the
6939 * MSR value is not clobbered by the host activity before the guest
6940 * has chance to consume it.
6941 *
6942 * Do not blindly read xfd_err here, since this exception might
6943 * be caused by L1 interception on a platform which doesn't
6944 * support xfd at all.
6945 *
6946 * Do it conditionally upon guest_fpu::xfd. xfd_err matters
6947 * only when xfd contains a non-zero value.
6948 *
6949 * Queuing exception is done in vmx_handle_exit. See comment there.
6950 */
6951 if (vcpu->arch.guest_fpu.fpstate->xfd)
6952 rdmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
6953 }
6954
handle_exception_irqoff(struct vcpu_vmx * vmx)6955 static void handle_exception_irqoff(struct vcpu_vmx *vmx)
6956 {
6957 u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6958
6959 /* if exit due to PF check for async PF */
6960 if (is_page_fault(intr_info))
6961 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6962 /* if exit due to NM, handle before interrupts are enabled */
6963 else if (is_nm_fault(intr_info))
6964 handle_nm_fault_irqoff(&vmx->vcpu);
6965 /* Handle machine checks before interrupts are enabled */
6966 else if (is_machine_check(intr_info))
6967 kvm_machine_check();
6968 }
6969
handle_external_interrupt_irqoff(struct kvm_vcpu * vcpu)6970 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6971 {
6972 u32 intr_info = vmx_get_intr_info(vcpu);
6973 unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6974 gate_desc *desc = (gate_desc *)host_idt_base + vector;
6975
6976 if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6977 "unexpected VM-Exit interrupt info: 0x%x", intr_info))
6978 return;
6979
6980 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
6981 vmx_do_interrupt_irqoff(gate_offset(desc));
6982 kvm_after_interrupt(vcpu);
6983
6984 vcpu->arch.at_instruction_boundary = true;
6985 }
6986
vmx_handle_exit_irqoff(struct kvm_vcpu * vcpu)6987 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6988 {
6989 struct vcpu_vmx *vmx = to_vmx(vcpu);
6990
6991 if (vmx->emulation_required)
6992 return;
6993
6994 if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6995 handle_external_interrupt_irqoff(vcpu);
6996 else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6997 handle_exception_irqoff(vmx);
6998 }
6999
7000 /*
7001 * The kvm parameter can be NULL (module initialization, or invocation before
7002 * VM creation). Be sure to check the kvm parameter before using it.
7003 */
vmx_has_emulated_msr(struct kvm * kvm,u32 index)7004 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
7005 {
7006 switch (index) {
7007 case MSR_IA32_SMBASE:
7008 if (!IS_ENABLED(CONFIG_KVM_SMM))
7009 return false;
7010 /*
7011 * We cannot do SMM unless we can run the guest in big
7012 * real mode.
7013 */
7014 return enable_unrestricted_guest || emulate_invalid_guest_state;
7015 case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
7016 return nested;
7017 case MSR_AMD64_VIRT_SPEC_CTRL:
7018 case MSR_AMD64_TSC_RATIO:
7019 /* This is AMD only. */
7020 return false;
7021 default:
7022 return true;
7023 }
7024 }
7025
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)7026 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
7027 {
7028 u32 exit_intr_info;
7029 bool unblock_nmi;
7030 u8 vector;
7031 bool idtv_info_valid;
7032
7033 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7034
7035 if (enable_vnmi) {
7036 if (vmx->loaded_vmcs->nmi_known_unmasked)
7037 return;
7038
7039 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
7040 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
7041 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
7042 /*
7043 * SDM 3: 27.7.1.2 (September 2008)
7044 * Re-set bit "block by NMI" before VM entry if vmexit caused by
7045 * a guest IRET fault.
7046 * SDM 3: 23.2.2 (September 2008)
7047 * Bit 12 is undefined in any of the following cases:
7048 * If the VM exit sets the valid bit in the IDT-vectoring
7049 * information field.
7050 * If the VM exit is due to a double fault.
7051 */
7052 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
7053 vector != DF_VECTOR && !idtv_info_valid)
7054 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7055 GUEST_INTR_STATE_NMI);
7056 else
7057 vmx->loaded_vmcs->nmi_known_unmasked =
7058 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
7059 & GUEST_INTR_STATE_NMI);
7060 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
7061 vmx->loaded_vmcs->vnmi_blocked_time +=
7062 ktime_to_ns(ktime_sub(ktime_get(),
7063 vmx->loaded_vmcs->entry_time));
7064 }
7065
__vmx_complete_interrupts(struct kvm_vcpu * vcpu,u32 idt_vectoring_info,int instr_len_field,int error_code_field)7066 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
7067 u32 idt_vectoring_info,
7068 int instr_len_field,
7069 int error_code_field)
7070 {
7071 u8 vector;
7072 int type;
7073 bool idtv_info_valid;
7074
7075 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
7076
7077 vcpu->arch.nmi_injected = false;
7078 kvm_clear_exception_queue(vcpu);
7079 kvm_clear_interrupt_queue(vcpu);
7080
7081 if (!idtv_info_valid)
7082 return;
7083
7084 kvm_make_request(KVM_REQ_EVENT, vcpu);
7085
7086 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
7087 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
7088
7089 switch (type) {
7090 case INTR_TYPE_NMI_INTR:
7091 vcpu->arch.nmi_injected = true;
7092 /*
7093 * SDM 3: 27.7.1.2 (September 2008)
7094 * Clear bit "block by NMI" before VM entry if a NMI
7095 * delivery faulted.
7096 */
7097 vmx_set_nmi_mask(vcpu, false);
7098 break;
7099 case INTR_TYPE_SOFT_EXCEPTION:
7100 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7101 fallthrough;
7102 case INTR_TYPE_HARD_EXCEPTION:
7103 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
7104 u32 err = vmcs_read32(error_code_field);
7105 kvm_requeue_exception_e(vcpu, vector, err);
7106 } else
7107 kvm_requeue_exception(vcpu, vector);
7108 break;
7109 case INTR_TYPE_SOFT_INTR:
7110 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
7111 fallthrough;
7112 case INTR_TYPE_EXT_INTR:
7113 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
7114 break;
7115 default:
7116 break;
7117 }
7118 }
7119
vmx_complete_interrupts(struct vcpu_vmx * vmx)7120 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
7121 {
7122 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
7123 VM_EXIT_INSTRUCTION_LEN,
7124 IDT_VECTORING_ERROR_CODE);
7125 }
7126
vmx_cancel_injection(struct kvm_vcpu * vcpu)7127 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
7128 {
7129 __vmx_complete_interrupts(vcpu,
7130 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
7131 VM_ENTRY_INSTRUCTION_LEN,
7132 VM_ENTRY_EXCEPTION_ERROR_CODE);
7133
7134 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
7135 }
7136
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)7137 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
7138 {
7139 int i, nr_msrs;
7140 struct perf_guest_switch_msr *msrs;
7141 struct kvm_pmu *pmu = vcpu_to_pmu(&vmx->vcpu);
7142
7143 pmu->host_cross_mapped_mask = 0;
7144 if (pmu->pebs_enable & pmu->global_ctrl)
7145 intel_pmu_cross_mapped_check(pmu);
7146
7147 /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
7148 msrs = perf_guest_get_msrs(&nr_msrs, (void *)pmu);
7149 if (!msrs)
7150 return;
7151
7152 for (i = 0; i < nr_msrs; i++)
7153 if (msrs[i].host == msrs[i].guest)
7154 clear_atomic_switch_msr(vmx, msrs[i].msr);
7155 else
7156 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
7157 msrs[i].host, false);
7158 }
7159
vmx_update_hv_timer(struct kvm_vcpu * vcpu)7160 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
7161 {
7162 struct vcpu_vmx *vmx = to_vmx(vcpu);
7163 u64 tscl;
7164 u32 delta_tsc;
7165
7166 if (vmx->req_immediate_exit) {
7167 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
7168 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7169 } else if (vmx->hv_deadline_tsc != -1) {
7170 tscl = rdtsc();
7171 if (vmx->hv_deadline_tsc > tscl)
7172 /* set_hv_timer ensures the delta fits in 32-bits */
7173 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
7174 cpu_preemption_timer_multi);
7175 else
7176 delta_tsc = 0;
7177
7178 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
7179 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
7180 } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
7181 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
7182 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
7183 }
7184 }
7185
vmx_update_host_rsp(struct vcpu_vmx * vmx,unsigned long host_rsp)7186 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
7187 {
7188 if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
7189 vmx->loaded_vmcs->host_state.rsp = host_rsp;
7190 vmcs_writel(HOST_RSP, host_rsp);
7191 }
7192 }
7193
vmx_spec_ctrl_restore_host(struct vcpu_vmx * vmx,unsigned int flags)7194 void noinstr vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx,
7195 unsigned int flags)
7196 {
7197 u64 hostval = this_cpu_read(x86_spec_ctrl_current);
7198
7199 if (!cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL))
7200 return;
7201
7202 if (flags & VMX_RUN_SAVE_SPEC_CTRL)
7203 vmx->spec_ctrl = __rdmsr(MSR_IA32_SPEC_CTRL);
7204
7205 /*
7206 * If the guest/host SPEC_CTRL values differ, restore the host value.
7207 *
7208 * For legacy IBRS, the IBRS bit always needs to be written after
7209 * transitioning from a less privileged predictor mode, regardless of
7210 * whether the guest/host values differ.
7211 */
7212 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS) ||
7213 vmx->spec_ctrl != hostval)
7214 native_wrmsrl(MSR_IA32_SPEC_CTRL, hostval);
7215
7216 barrier_nospec();
7217 }
7218
vmx_exit_handlers_fastpath(struct kvm_vcpu * vcpu)7219 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
7220 {
7221 switch (to_vmx(vcpu)->exit_reason.basic) {
7222 case EXIT_REASON_MSR_WRITE:
7223 return handle_fastpath_set_msr_irqoff(vcpu);
7224 case EXIT_REASON_PREEMPTION_TIMER:
7225 return handle_fastpath_preemption_timer(vcpu);
7226 default:
7227 return EXIT_FASTPATH_NONE;
7228 }
7229 }
7230
vmx_vcpu_enter_exit(struct kvm_vcpu * vcpu,unsigned int flags)7231 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
7232 unsigned int flags)
7233 {
7234 struct vcpu_vmx *vmx = to_vmx(vcpu);
7235
7236 guest_state_enter_irqoff();
7237
7238 /*
7239 * L1D Flush includes CPU buffer clear to mitigate MDS, but VERW
7240 * mitigation for MDS is done late in VMentry and is still
7241 * executed in spite of L1D Flush. This is because an extra VERW
7242 * should not matter much after the big hammer L1D Flush.
7243 */
7244 if (static_branch_unlikely(&vmx_l1d_should_flush))
7245 vmx_l1d_flush(vcpu);
7246 else if (static_branch_unlikely(&mmio_stale_data_clear) &&
7247 kvm_arch_has_assigned_device(vcpu->kvm))
7248 mds_clear_cpu_buffers();
7249
7250 vmx_disable_fb_clear(vmx);
7251
7252 if (vcpu->arch.cr2 != native_read_cr2())
7253 native_write_cr2(vcpu->arch.cr2);
7254
7255 vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
7256 flags);
7257
7258 vcpu->arch.cr2 = native_read_cr2();
7259 vcpu->arch.regs_avail &= ~VMX_REGS_LAZY_LOAD_SET;
7260
7261 vmx->idt_vectoring_info = 0;
7262
7263 vmx_enable_fb_clear(vmx);
7264
7265 if (unlikely(vmx->fail)) {
7266 vmx->exit_reason.full = 0xdead;
7267 goto out;
7268 }
7269
7270 vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
7271 if (likely(!vmx->exit_reason.failed_vmentry))
7272 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7273
7274 if ((u16)vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI &&
7275 is_nmi(vmx_get_intr_info(vcpu))) {
7276 kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
7277 vmx_do_nmi_irqoff();
7278 kvm_after_interrupt(vcpu);
7279 }
7280
7281 out:
7282 guest_state_exit_irqoff();
7283 }
7284
vmx_vcpu_run(struct kvm_vcpu * vcpu)7285 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
7286 {
7287 struct vcpu_vmx *vmx = to_vmx(vcpu);
7288 unsigned long cr3, cr4;
7289
7290 /* Record the guest's net vcpu time for enforced NMI injections. */
7291 if (unlikely(!enable_vnmi &&
7292 vmx->loaded_vmcs->soft_vnmi_blocked))
7293 vmx->loaded_vmcs->entry_time = ktime_get();
7294
7295 /*
7296 * Don't enter VMX if guest state is invalid, let the exit handler
7297 * start emulation until we arrive back to a valid state. Synthesize a
7298 * consistency check VM-Exit due to invalid guest state and bail.
7299 */
7300 if (unlikely(vmx->emulation_required)) {
7301 vmx->fail = 0;
7302
7303 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
7304 vmx->exit_reason.failed_vmentry = 1;
7305 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
7306 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
7307 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
7308 vmx->exit_intr_info = 0;
7309 return EXIT_FASTPATH_NONE;
7310 }
7311
7312 trace_kvm_entry(vcpu);
7313
7314 if (vmx->ple_window_dirty) {
7315 vmx->ple_window_dirty = false;
7316 vmcs_write32(PLE_WINDOW, vmx->ple_window);
7317 }
7318
7319 /*
7320 * We did this in prepare_switch_to_guest, because it needs to
7321 * be within srcu_read_lock.
7322 */
7323 WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
7324
7325 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
7326 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7327 if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
7328 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7329 vcpu->arch.regs_dirty = 0;
7330
7331 /*
7332 * Refresh vmcs.HOST_CR3 if necessary. This must be done immediately
7333 * prior to VM-Enter, as the kernel may load a new ASID (PCID) any time
7334 * it switches back to the current->mm, which can occur in KVM context
7335 * when switching to a temporary mm to patch kernel code, e.g. if KVM
7336 * toggles a static key while handling a VM-Exit.
7337 */
7338 cr3 = __get_current_cr3_fast();
7339 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
7340 vmcs_writel(HOST_CR3, cr3);
7341 vmx->loaded_vmcs->host_state.cr3 = cr3;
7342 }
7343
7344 cr4 = cr4_read_shadow();
7345 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
7346 vmcs_writel(HOST_CR4, cr4);
7347 vmx->loaded_vmcs->host_state.cr4 = cr4;
7348 }
7349
7350 /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
7351 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
7352 set_debugreg(vcpu->arch.dr6, 6);
7353
7354 /* When single-stepping over STI and MOV SS, we must clear the
7355 * corresponding interruptibility bits in the guest state. Otherwise
7356 * vmentry fails as it then expects bit 14 (BS) in pending debug
7357 * exceptions being set, but that's not correct for the guest debugging
7358 * case. */
7359 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7360 vmx_set_interrupt_shadow(vcpu, 0);
7361
7362 kvm_load_guest_xsave_state(vcpu);
7363
7364 pt_guest_enter(vmx);
7365
7366 atomic_switch_perf_msrs(vmx);
7367 if (intel_pmu_lbr_is_enabled(vcpu))
7368 vmx_passthrough_lbr_msrs(vcpu);
7369
7370 if (enable_preemption_timer)
7371 vmx_update_hv_timer(vcpu);
7372
7373 kvm_wait_lapic_expire(vcpu);
7374
7375 /* The actual VMENTER/EXIT is in the .noinstr.text section. */
7376 vmx_vcpu_enter_exit(vcpu, __vmx_vcpu_run_flags(vmx));
7377
7378 /* All fields are clean at this point */
7379 if (kvm_is_using_evmcs()) {
7380 current_evmcs->hv_clean_fields |=
7381 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
7382
7383 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
7384 }
7385
7386 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7387 if (vmx->host_debugctlmsr)
7388 update_debugctlmsr(vmx->host_debugctlmsr);
7389
7390 #ifndef CONFIG_X86_64
7391 /*
7392 * The sysexit path does not restore ds/es, so we must set them to
7393 * a reasonable value ourselves.
7394 *
7395 * We can't defer this to vmx_prepare_switch_to_host() since that
7396 * function may be executed in interrupt context, which saves and
7397 * restore segments around it, nullifying its effect.
7398 */
7399 loadsegment(ds, __USER_DS);
7400 loadsegment(es, __USER_DS);
7401 #endif
7402
7403 pt_guest_exit(vmx);
7404
7405 kvm_load_host_xsave_state(vcpu);
7406
7407 if (is_guest_mode(vcpu)) {
7408 /*
7409 * Track VMLAUNCH/VMRESUME that have made past guest state
7410 * checking.
7411 */
7412 if (vmx->nested.nested_run_pending &&
7413 !vmx->exit_reason.failed_vmentry)
7414 ++vcpu->stat.nested_run;
7415
7416 vmx->nested.nested_run_pending = 0;
7417 }
7418
7419 if (unlikely(vmx->fail))
7420 return EXIT_FASTPATH_NONE;
7421
7422 if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
7423 kvm_machine_check();
7424
7425 trace_kvm_exit(vcpu, KVM_ISA_VMX);
7426
7427 if (unlikely(vmx->exit_reason.failed_vmentry))
7428 return EXIT_FASTPATH_NONE;
7429
7430 vmx->loaded_vmcs->launched = 1;
7431
7432 vmx_recover_nmi_blocking(vmx);
7433 vmx_complete_interrupts(vmx);
7434
7435 if (is_guest_mode(vcpu))
7436 return EXIT_FASTPATH_NONE;
7437
7438 return vmx_exit_handlers_fastpath(vcpu);
7439 }
7440
vmx_vcpu_free(struct kvm_vcpu * vcpu)7441 static void vmx_vcpu_free(struct kvm_vcpu *vcpu)
7442 {
7443 struct vcpu_vmx *vmx = to_vmx(vcpu);
7444
7445 if (enable_pml)
7446 vmx_destroy_pml_buffer(vmx);
7447 free_vpid(vmx->vpid);
7448 nested_vmx_free_vcpu(vcpu);
7449 free_loaded_vmcs(vmx->loaded_vmcs);
7450 }
7451
vmx_vcpu_create(struct kvm_vcpu * vcpu)7452 static int vmx_vcpu_create(struct kvm_vcpu *vcpu)
7453 {
7454 struct vmx_uret_msr *tsx_ctrl;
7455 struct vcpu_vmx *vmx;
7456 int i, err;
7457
7458 BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
7459 vmx = to_vmx(vcpu);
7460
7461 INIT_LIST_HEAD(&vmx->pi_wakeup_list);
7462
7463 err = -ENOMEM;
7464
7465 vmx->vpid = allocate_vpid();
7466
7467 /*
7468 * If PML is turned on, failure on enabling PML just results in failure
7469 * of creating the vcpu, therefore we can simplify PML logic (by
7470 * avoiding dealing with cases, such as enabling PML partially on vcpus
7471 * for the guest), etc.
7472 */
7473 if (enable_pml) {
7474 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
7475 if (!vmx->pml_pg)
7476 goto free_vpid;
7477 }
7478
7479 for (i = 0; i < kvm_nr_uret_msrs; ++i)
7480 vmx->guest_uret_msrs[i].mask = -1ull;
7481 if (boot_cpu_has(X86_FEATURE_RTM)) {
7482 /*
7483 * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
7484 * Keep the host value unchanged to avoid changing CPUID bits
7485 * under the host kernel's feet.
7486 */
7487 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7488 if (tsx_ctrl)
7489 tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
7490 }
7491
7492 err = alloc_loaded_vmcs(&vmx->vmcs01);
7493 if (err < 0)
7494 goto free_pml;
7495
7496 /*
7497 * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
7498 * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
7499 * feature only for vmcs01, KVM currently isn't equipped to realize any
7500 * performance benefits from enabling it for vmcs02.
7501 */
7502 if (kvm_is_using_evmcs() &&
7503 (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
7504 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
7505
7506 evmcs->hv_enlightenments_control.msr_bitmap = 1;
7507 }
7508
7509 /* The MSR bitmap starts with all ones */
7510 bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7511 bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
7512
7513 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
7514 #ifdef CONFIG_X86_64
7515 vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
7516 vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
7517 vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
7518 #endif
7519 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
7520 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
7521 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
7522 if (kvm_cstate_in_guest(vcpu->kvm)) {
7523 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
7524 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
7525 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
7526 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
7527 }
7528
7529 vmx->loaded_vmcs = &vmx->vmcs01;
7530
7531 if (cpu_need_virtualize_apic_accesses(vcpu)) {
7532 err = kvm_alloc_apic_access_page(vcpu->kvm);
7533 if (err)
7534 goto free_vmcs;
7535 }
7536
7537 if (enable_ept && !enable_unrestricted_guest) {
7538 err = init_rmode_identity_map(vcpu->kvm);
7539 if (err)
7540 goto free_vmcs;
7541 }
7542
7543 if (vmx_can_use_ipiv(vcpu))
7544 WRITE_ONCE(to_kvm_vmx(vcpu->kvm)->pid_table[vcpu->vcpu_id],
7545 __pa(&vmx->pi_desc) | PID_TABLE_ENTRY_VALID);
7546
7547 return 0;
7548
7549 free_vmcs:
7550 free_loaded_vmcs(vmx->loaded_vmcs);
7551 free_pml:
7552 vmx_destroy_pml_buffer(vmx);
7553 free_vpid:
7554 free_vpid(vmx->vpid);
7555 return err;
7556 }
7557
7558 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7559 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
7560
vmx_vm_init(struct kvm * kvm)7561 static int vmx_vm_init(struct kvm *kvm)
7562 {
7563 if (!ple_gap)
7564 kvm->arch.pause_in_guest = true;
7565
7566 if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
7567 switch (l1tf_mitigation) {
7568 case L1TF_MITIGATION_OFF:
7569 case L1TF_MITIGATION_FLUSH_NOWARN:
7570 /* 'I explicitly don't care' is set */
7571 break;
7572 case L1TF_MITIGATION_FLUSH:
7573 case L1TF_MITIGATION_FLUSH_NOSMT:
7574 case L1TF_MITIGATION_FULL:
7575 /*
7576 * Warn upon starting the first VM in a potentially
7577 * insecure environment.
7578 */
7579 if (sched_smt_active())
7580 pr_warn_once(L1TF_MSG_SMT);
7581 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
7582 pr_warn_once(L1TF_MSG_L1D);
7583 break;
7584 case L1TF_MITIGATION_FULL_FORCE:
7585 /* Flush is enforced */
7586 break;
7587 }
7588 }
7589 return 0;
7590 }
7591
vmx_get_mt_mask(struct kvm_vcpu * vcpu,gfn_t gfn,bool is_mmio)7592 static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7593 {
7594 u8 cache;
7595
7596 /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
7597 * memory aliases with conflicting memory types and sometimes MCEs.
7598 * We have to be careful as to what are honored and when.
7599 *
7600 * For MMIO, guest CD/MTRR are ignored. The EPT memory type is set to
7601 * UC. The effective memory type is UC or WC depending on guest PAT.
7602 * This was historically the source of MCEs and we want to be
7603 * conservative.
7604 *
7605 * When there is no need to deal with noncoherent DMA (e.g., no VT-d
7606 * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored. The
7607 * EPT memory type is set to WB. The effective memory type is forced
7608 * WB.
7609 *
7610 * Otherwise, we trust guest. Guest CD/MTRR/PAT are all honored. The
7611 * EPT memory type is used to emulate guest CD/MTRR.
7612 */
7613
7614 if (is_mmio)
7615 return MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7616
7617 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm))
7618 return (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7619
7620 if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) {
7621 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7622 cache = MTRR_TYPE_WRBACK;
7623 else
7624 cache = MTRR_TYPE_UNCACHABLE;
7625
7626 return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT;
7627 }
7628
7629 return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT;
7630 }
7631
vmcs_set_secondary_exec_control(struct vcpu_vmx * vmx,u32 new_ctl)7632 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7633 {
7634 /*
7635 * These bits in the secondary execution controls field
7636 * are dynamic, the others are mostly based on the hypervisor
7637 * architecture and the guest's CPUID. Do not touch the
7638 * dynamic bits.
7639 */
7640 u32 mask =
7641 SECONDARY_EXEC_SHADOW_VMCS |
7642 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7643 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7644 SECONDARY_EXEC_DESC;
7645
7646 u32 cur_ctl = secondary_exec_controls_get(vmx);
7647
7648 secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7649 }
7650
7651 /*
7652 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7653 * (indicating "allowed-1") if they are supported in the guest's CPUID.
7654 */
nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu * vcpu)7655 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7656 {
7657 struct vcpu_vmx *vmx = to_vmx(vcpu);
7658 struct kvm_cpuid_entry2 *entry;
7659
7660 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7661 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7662
7663 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
7664 if (entry && (entry->_reg & (_cpuid_mask))) \
7665 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
7666 } while (0)
7667
7668 entry = kvm_find_cpuid_entry(vcpu, 0x1);
7669 cr4_fixed1_update(X86_CR4_VME, edx, feature_bit(VME));
7670 cr4_fixed1_update(X86_CR4_PVI, edx, feature_bit(VME));
7671 cr4_fixed1_update(X86_CR4_TSD, edx, feature_bit(TSC));
7672 cr4_fixed1_update(X86_CR4_DE, edx, feature_bit(DE));
7673 cr4_fixed1_update(X86_CR4_PSE, edx, feature_bit(PSE));
7674 cr4_fixed1_update(X86_CR4_PAE, edx, feature_bit(PAE));
7675 cr4_fixed1_update(X86_CR4_MCE, edx, feature_bit(MCE));
7676 cr4_fixed1_update(X86_CR4_PGE, edx, feature_bit(PGE));
7677 cr4_fixed1_update(X86_CR4_OSFXSR, edx, feature_bit(FXSR));
7678 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7679 cr4_fixed1_update(X86_CR4_VMXE, ecx, feature_bit(VMX));
7680 cr4_fixed1_update(X86_CR4_SMXE, ecx, feature_bit(SMX));
7681 cr4_fixed1_update(X86_CR4_PCIDE, ecx, feature_bit(PCID));
7682 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, feature_bit(XSAVE));
7683
7684 entry = kvm_find_cpuid_entry_index(vcpu, 0x7, 0);
7685 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, feature_bit(FSGSBASE));
7686 cr4_fixed1_update(X86_CR4_SMEP, ebx, feature_bit(SMEP));
7687 cr4_fixed1_update(X86_CR4_SMAP, ebx, feature_bit(SMAP));
7688 cr4_fixed1_update(X86_CR4_PKE, ecx, feature_bit(PKU));
7689 cr4_fixed1_update(X86_CR4_UMIP, ecx, feature_bit(UMIP));
7690 cr4_fixed1_update(X86_CR4_LA57, ecx, feature_bit(LA57));
7691
7692 #undef cr4_fixed1_update
7693 }
7694
update_intel_pt_cfg(struct kvm_vcpu * vcpu)7695 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7696 {
7697 struct vcpu_vmx *vmx = to_vmx(vcpu);
7698 struct kvm_cpuid_entry2 *best = NULL;
7699 int i;
7700
7701 for (i = 0; i < PT_CPUID_LEAVES; i++) {
7702 best = kvm_find_cpuid_entry_index(vcpu, 0x14, i);
7703 if (!best)
7704 return;
7705 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7706 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7707 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7708 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7709 }
7710
7711 /* Get the number of configurable Address Ranges for filtering */
7712 vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7713 PT_CAP_num_address_ranges);
7714
7715 /* Initialize and clear the no dependency bits */
7716 vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7717 RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7718 RTIT_CTL_BRANCH_EN);
7719
7720 /*
7721 * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7722 * will inject an #GP
7723 */
7724 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7725 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7726
7727 /*
7728 * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7729 * PSBFreq can be set
7730 */
7731 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7732 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7733 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7734
7735 /*
7736 * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7737 */
7738 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7739 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7740 RTIT_CTL_MTC_RANGE);
7741
7742 /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7743 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7744 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7745 RTIT_CTL_PTW_EN);
7746
7747 /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7748 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7749 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7750
7751 /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7752 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7753 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7754
7755 /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7756 if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7757 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7758
7759 /* unmask address range configure area */
7760 for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7761 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7762 }
7763
vmx_vcpu_after_set_cpuid(struct kvm_vcpu * vcpu)7764 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7765 {
7766 struct vcpu_vmx *vmx = to_vmx(vcpu);
7767
7768 /*
7769 * XSAVES is effectively enabled if and only if XSAVE is also exposed
7770 * to the guest. XSAVES depends on CR4.OSXSAVE, and CR4.OSXSAVE can be
7771 * set if and only if XSAVE is supported.
7772 */
7773 if (boot_cpu_has(X86_FEATURE_XSAVE) &&
7774 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
7775 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_XSAVES);
7776
7777 kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VMX);
7778
7779 vmx_setup_uret_msrs(vmx);
7780
7781 if (cpu_has_secondary_exec_ctrls())
7782 vmcs_set_secondary_exec_control(vmx,
7783 vmx_secondary_exec_control(vmx));
7784
7785 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7786 vmx->msr_ia32_feature_control_valid_bits |=
7787 FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7788 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7789 else
7790 vmx->msr_ia32_feature_control_valid_bits &=
7791 ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7792 FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7793
7794 if (guest_can_use(vcpu, X86_FEATURE_VMX))
7795 nested_vmx_cr_fixed1_bits_update(vcpu);
7796
7797 if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7798 guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7799 update_intel_pt_cfg(vcpu);
7800
7801 if (boot_cpu_has(X86_FEATURE_RTM)) {
7802 struct vmx_uret_msr *msr;
7803 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7804 if (msr) {
7805 bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7806 vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7807 }
7808 }
7809
7810 if (kvm_cpu_cap_has(X86_FEATURE_XFD))
7811 vmx_set_intercept_for_msr(vcpu, MSR_IA32_XFD_ERR, MSR_TYPE_R,
7812 !guest_cpuid_has(vcpu, X86_FEATURE_XFD));
7813
7814 if (boot_cpu_has(X86_FEATURE_IBPB))
7815 vmx_set_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W,
7816 !guest_has_pred_cmd_msr(vcpu));
7817
7818 if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
7819 vmx_set_intercept_for_msr(vcpu, MSR_IA32_FLUSH_CMD, MSR_TYPE_W,
7820 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
7821
7822 set_cr4_guest_host_mask(vmx);
7823
7824 vmx_write_encls_bitmap(vcpu, NULL);
7825 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7826 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7827 else
7828 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7829
7830 if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7831 vmx->msr_ia32_feature_control_valid_bits |=
7832 FEAT_CTL_SGX_LC_ENABLED;
7833 else
7834 vmx->msr_ia32_feature_control_valid_bits &=
7835 ~FEAT_CTL_SGX_LC_ENABLED;
7836
7837 /* Refresh #PF interception to account for MAXPHYADDR changes. */
7838 vmx_update_exception_bitmap(vcpu);
7839 }
7840
vmx_get_perf_capabilities(void)7841 static u64 vmx_get_perf_capabilities(void)
7842 {
7843 u64 perf_cap = PMU_CAP_FW_WRITES;
7844 struct x86_pmu_lbr lbr;
7845 u64 host_perf_cap = 0;
7846
7847 if (!enable_pmu)
7848 return 0;
7849
7850 if (boot_cpu_has(X86_FEATURE_PDCM))
7851 rdmsrl(MSR_IA32_PERF_CAPABILITIES, host_perf_cap);
7852
7853 if (!cpu_feature_enabled(X86_FEATURE_ARCH_LBR)) {
7854 x86_perf_get_lbr(&lbr);
7855 if (lbr.nr)
7856 perf_cap |= host_perf_cap & PMU_CAP_LBR_FMT;
7857 }
7858
7859 if (vmx_pebs_supported()) {
7860 perf_cap |= host_perf_cap & PERF_CAP_PEBS_MASK;
7861 if ((perf_cap & PERF_CAP_PEBS_FORMAT) < 4)
7862 perf_cap &= ~PERF_CAP_PEBS_BASELINE;
7863 }
7864
7865 return perf_cap;
7866 }
7867
vmx_set_cpu_caps(void)7868 static __init void vmx_set_cpu_caps(void)
7869 {
7870 kvm_set_cpu_caps();
7871
7872 /* CPUID 0x1 */
7873 if (nested)
7874 kvm_cpu_cap_set(X86_FEATURE_VMX);
7875
7876 /* CPUID 0x7 */
7877 if (kvm_mpx_supported())
7878 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7879 if (!cpu_has_vmx_invpcid())
7880 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7881 if (vmx_pt_mode_is_host_guest())
7882 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7883 if (vmx_pebs_supported()) {
7884 kvm_cpu_cap_check_and_set(X86_FEATURE_DS);
7885 kvm_cpu_cap_check_and_set(X86_FEATURE_DTES64);
7886 }
7887
7888 if (!enable_pmu)
7889 kvm_cpu_cap_clear(X86_FEATURE_PDCM);
7890 kvm_caps.supported_perf_cap = vmx_get_perf_capabilities();
7891
7892 if (!enable_sgx) {
7893 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7894 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7895 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7896 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7897 }
7898
7899 if (vmx_umip_emulated())
7900 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7901
7902 /* CPUID 0xD.1 */
7903 kvm_caps.supported_xss = 0;
7904 if (!cpu_has_vmx_xsaves())
7905 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7906
7907 /* CPUID 0x80000001 and 0x7 (RDPID) */
7908 if (!cpu_has_vmx_rdtscp()) {
7909 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7910 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7911 }
7912
7913 if (cpu_has_vmx_waitpkg())
7914 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7915 }
7916
vmx_request_immediate_exit(struct kvm_vcpu * vcpu)7917 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7918 {
7919 to_vmx(vcpu)->req_immediate_exit = true;
7920 }
7921
vmx_check_intercept_io(struct kvm_vcpu * vcpu,struct x86_instruction_info * info)7922 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7923 struct x86_instruction_info *info)
7924 {
7925 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7926 unsigned short port;
7927 bool intercept;
7928 int size;
7929
7930 if (info->intercept == x86_intercept_in ||
7931 info->intercept == x86_intercept_ins) {
7932 port = info->src_val;
7933 size = info->dst_bytes;
7934 } else {
7935 port = info->dst_val;
7936 size = info->src_bytes;
7937 }
7938
7939 /*
7940 * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7941 * VM-exits depend on the 'unconditional IO exiting' VM-execution
7942 * control.
7943 *
7944 * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7945 */
7946 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7947 intercept = nested_cpu_has(vmcs12,
7948 CPU_BASED_UNCOND_IO_EXITING);
7949 else
7950 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7951
7952 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7953 return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7954 }
7955
vmx_check_intercept(struct kvm_vcpu * vcpu,struct x86_instruction_info * info,enum x86_intercept_stage stage,struct x86_exception * exception)7956 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7957 struct x86_instruction_info *info,
7958 enum x86_intercept_stage stage,
7959 struct x86_exception *exception)
7960 {
7961 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7962
7963 switch (info->intercept) {
7964 /*
7965 * RDPID causes #UD if disabled through secondary execution controls.
7966 * Because it is marked as EmulateOnUD, we need to intercept it here.
7967 * Note, RDPID is hidden behind ENABLE_RDTSCP.
7968 */
7969 case x86_intercept_rdpid:
7970 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7971 exception->vector = UD_VECTOR;
7972 exception->error_code_valid = false;
7973 return X86EMUL_PROPAGATE_FAULT;
7974 }
7975 break;
7976
7977 case x86_intercept_in:
7978 case x86_intercept_ins:
7979 case x86_intercept_out:
7980 case x86_intercept_outs:
7981 return vmx_check_intercept_io(vcpu, info);
7982
7983 case x86_intercept_lgdt:
7984 case x86_intercept_lidt:
7985 case x86_intercept_lldt:
7986 case x86_intercept_ltr:
7987 case x86_intercept_sgdt:
7988 case x86_intercept_sidt:
7989 case x86_intercept_sldt:
7990 case x86_intercept_str:
7991 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7992 return X86EMUL_CONTINUE;
7993
7994 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED. */
7995 break;
7996
7997 case x86_intercept_pause:
7998 /*
7999 * PAUSE is a single-byte NOP with a REPE prefix, i.e. collides
8000 * with vanilla NOPs in the emulator. Apply the interception
8001 * check only to actual PAUSE instructions. Don't check
8002 * PAUSE-loop-exiting, software can't expect a given PAUSE to
8003 * exit, i.e. KVM is within its rights to allow L2 to execute
8004 * the PAUSE.
8005 */
8006 if ((info->rep_prefix != REPE_PREFIX) ||
8007 !nested_cpu_has2(vmcs12, CPU_BASED_PAUSE_EXITING))
8008 return X86EMUL_CONTINUE;
8009
8010 break;
8011
8012 /* TODO: check more intercepts... */
8013 default:
8014 break;
8015 }
8016
8017 return X86EMUL_UNHANDLEABLE;
8018 }
8019
8020 #ifdef CONFIG_X86_64
8021 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
u64_shl_div_u64(u64 a,unsigned int shift,u64 divisor,u64 * result)8022 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
8023 u64 divisor, u64 *result)
8024 {
8025 u64 low = a << shift, high = a >> (64 - shift);
8026
8027 /* To avoid the overflow on divq */
8028 if (high >= divisor)
8029 return 1;
8030
8031 /* Low hold the result, high hold rem which is discarded */
8032 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
8033 "rm" (divisor), "0" (low), "1" (high));
8034 *result = low;
8035
8036 return 0;
8037 }
8038
vmx_set_hv_timer(struct kvm_vcpu * vcpu,u64 guest_deadline_tsc,bool * expired)8039 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
8040 bool *expired)
8041 {
8042 struct vcpu_vmx *vmx;
8043 u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
8044 struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
8045
8046 vmx = to_vmx(vcpu);
8047 tscl = rdtsc();
8048 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
8049 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
8050 lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
8051 ktimer->timer_advance_ns);
8052
8053 if (delta_tsc > lapic_timer_advance_cycles)
8054 delta_tsc -= lapic_timer_advance_cycles;
8055 else
8056 delta_tsc = 0;
8057
8058 /* Convert to host delta tsc if tsc scaling is enabled */
8059 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio &&
8060 delta_tsc && u64_shl_div_u64(delta_tsc,
8061 kvm_caps.tsc_scaling_ratio_frac_bits,
8062 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
8063 return -ERANGE;
8064
8065 /*
8066 * If the delta tsc can't fit in the 32 bit after the multi shift,
8067 * we can't use the preemption timer.
8068 * It's possible that it fits on later vmentries, but checking
8069 * on every vmentry is costly so we just use an hrtimer.
8070 */
8071 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
8072 return -ERANGE;
8073
8074 vmx->hv_deadline_tsc = tscl + delta_tsc;
8075 *expired = !delta_tsc;
8076 return 0;
8077 }
8078
vmx_cancel_hv_timer(struct kvm_vcpu * vcpu)8079 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
8080 {
8081 to_vmx(vcpu)->hv_deadline_tsc = -1;
8082 }
8083 #endif
8084
vmx_sched_in(struct kvm_vcpu * vcpu,int cpu)8085 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
8086 {
8087 if (!kvm_pause_in_guest(vcpu->kvm))
8088 shrink_ple_window(vcpu);
8089 }
8090
vmx_update_cpu_dirty_logging(struct kvm_vcpu * vcpu)8091 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
8092 {
8093 struct vcpu_vmx *vmx = to_vmx(vcpu);
8094
8095 if (WARN_ON_ONCE(!enable_pml))
8096 return;
8097
8098 if (is_guest_mode(vcpu)) {
8099 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
8100 return;
8101 }
8102
8103 /*
8104 * Note, nr_memslots_dirty_logging can be changed concurrent with this
8105 * code, but in that case another update request will be made and so
8106 * the guest will never run with a stale PML value.
8107 */
8108 if (atomic_read(&vcpu->kvm->nr_memslots_dirty_logging))
8109 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8110 else
8111 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
8112 }
8113
vmx_setup_mce(struct kvm_vcpu * vcpu)8114 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
8115 {
8116 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
8117 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
8118 FEAT_CTL_LMCE_ENABLED;
8119 else
8120 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
8121 ~FEAT_CTL_LMCE_ENABLED;
8122 }
8123
8124 #ifdef CONFIG_KVM_SMM
vmx_smi_allowed(struct kvm_vcpu * vcpu,bool for_injection)8125 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
8126 {
8127 /* we need a nested vmexit to enter SMM, postpone if run is pending */
8128 if (to_vmx(vcpu)->nested.nested_run_pending)
8129 return -EBUSY;
8130 return !is_smm(vcpu);
8131 }
8132
vmx_enter_smm(struct kvm_vcpu * vcpu,union kvm_smram * smram)8133 static int vmx_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
8134 {
8135 struct vcpu_vmx *vmx = to_vmx(vcpu);
8136
8137 /*
8138 * TODO: Implement custom flows for forcing the vCPU out/in of L2 on
8139 * SMI and RSM. Using the common VM-Exit + VM-Enter routines is wrong
8140 * SMI and RSM only modify state that is saved and restored via SMRAM.
8141 * E.g. most MSRs are left untouched, but many are modified by VM-Exit
8142 * and VM-Enter, and thus L2's values may be corrupted on SMI+RSM.
8143 */
8144 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
8145 if (vmx->nested.smm.guest_mode)
8146 nested_vmx_vmexit(vcpu, -1, 0, 0);
8147
8148 vmx->nested.smm.vmxon = vmx->nested.vmxon;
8149 vmx->nested.vmxon = false;
8150 vmx_clear_hlt(vcpu);
8151 return 0;
8152 }
8153
vmx_leave_smm(struct kvm_vcpu * vcpu,const union kvm_smram * smram)8154 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
8155 {
8156 struct vcpu_vmx *vmx = to_vmx(vcpu);
8157 int ret;
8158
8159 if (vmx->nested.smm.vmxon) {
8160 vmx->nested.vmxon = true;
8161 vmx->nested.smm.vmxon = false;
8162 }
8163
8164 if (vmx->nested.smm.guest_mode) {
8165 ret = nested_vmx_enter_non_root_mode(vcpu, false);
8166 if (ret)
8167 return ret;
8168
8169 vmx->nested.nested_run_pending = 1;
8170 vmx->nested.smm.guest_mode = false;
8171 }
8172 return 0;
8173 }
8174
vmx_enable_smi_window(struct kvm_vcpu * vcpu)8175 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
8176 {
8177 /* RSM will cause a vmexit anyway. */
8178 }
8179 #endif
8180
vmx_apic_init_signal_blocked(struct kvm_vcpu * vcpu)8181 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
8182 {
8183 return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
8184 }
8185
vmx_migrate_timers(struct kvm_vcpu * vcpu)8186 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
8187 {
8188 if (is_guest_mode(vcpu)) {
8189 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
8190
8191 if (hrtimer_try_to_cancel(timer) == 1)
8192 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
8193 }
8194 }
8195
vmx_hardware_unsetup(void)8196 static void vmx_hardware_unsetup(void)
8197 {
8198 kvm_set_posted_intr_wakeup_handler(NULL);
8199
8200 if (nested)
8201 nested_vmx_hardware_unsetup();
8202
8203 free_kvm_area();
8204 }
8205
8206 #define VMX_REQUIRED_APICV_INHIBITS \
8207 ( \
8208 BIT(APICV_INHIBIT_REASON_DISABLE)| \
8209 BIT(APICV_INHIBIT_REASON_ABSENT) | \
8210 BIT(APICV_INHIBIT_REASON_HYPERV) | \
8211 BIT(APICV_INHIBIT_REASON_BLOCKIRQ) | \
8212 BIT(APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED) | \
8213 BIT(APICV_INHIBIT_REASON_APIC_ID_MODIFIED) | \
8214 BIT(APICV_INHIBIT_REASON_APIC_BASE_MODIFIED) \
8215 )
8216
vmx_vm_destroy(struct kvm * kvm)8217 static void vmx_vm_destroy(struct kvm *kvm)
8218 {
8219 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
8220
8221 free_pages((unsigned long)kvm_vmx->pid_table, vmx_get_pid_table_order(kvm));
8222 }
8223
8224 static struct kvm_x86_ops vmx_x86_ops __initdata = {
8225 .name = KBUILD_MODNAME,
8226
8227 .check_processor_compatibility = vmx_check_processor_compat,
8228
8229 .hardware_unsetup = vmx_hardware_unsetup,
8230
8231 .hardware_enable = vmx_hardware_enable,
8232 .hardware_disable = vmx_hardware_disable,
8233 .has_emulated_msr = vmx_has_emulated_msr,
8234
8235 .vm_size = sizeof(struct kvm_vmx),
8236 .vm_init = vmx_vm_init,
8237 .vm_destroy = vmx_vm_destroy,
8238
8239 .vcpu_precreate = vmx_vcpu_precreate,
8240 .vcpu_create = vmx_vcpu_create,
8241 .vcpu_free = vmx_vcpu_free,
8242 .vcpu_reset = vmx_vcpu_reset,
8243
8244 .prepare_switch_to_guest = vmx_prepare_switch_to_guest,
8245 .vcpu_load = vmx_vcpu_load,
8246 .vcpu_put = vmx_vcpu_put,
8247
8248 .update_exception_bitmap = vmx_update_exception_bitmap,
8249 .get_msr_feature = vmx_get_msr_feature,
8250 .get_msr = vmx_get_msr,
8251 .set_msr = vmx_set_msr,
8252 .get_segment_base = vmx_get_segment_base,
8253 .get_segment = vmx_get_segment,
8254 .set_segment = vmx_set_segment,
8255 .get_cpl = vmx_get_cpl,
8256 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8257 .is_valid_cr0 = vmx_is_valid_cr0,
8258 .set_cr0 = vmx_set_cr0,
8259 .is_valid_cr4 = vmx_is_valid_cr4,
8260 .set_cr4 = vmx_set_cr4,
8261 .set_efer = vmx_set_efer,
8262 .get_idt = vmx_get_idt,
8263 .set_idt = vmx_set_idt,
8264 .get_gdt = vmx_get_gdt,
8265 .set_gdt = vmx_set_gdt,
8266 .set_dr7 = vmx_set_dr7,
8267 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
8268 .cache_reg = vmx_cache_reg,
8269 .get_rflags = vmx_get_rflags,
8270 .set_rflags = vmx_set_rflags,
8271 .get_if_flag = vmx_get_if_flag,
8272
8273 .flush_tlb_all = vmx_flush_tlb_all,
8274 .flush_tlb_current = vmx_flush_tlb_current,
8275 .flush_tlb_gva = vmx_flush_tlb_gva,
8276 .flush_tlb_guest = vmx_flush_tlb_guest,
8277
8278 .vcpu_pre_run = vmx_vcpu_pre_run,
8279 .vcpu_run = vmx_vcpu_run,
8280 .handle_exit = vmx_handle_exit,
8281 .skip_emulated_instruction = vmx_skip_emulated_instruction,
8282 .update_emulated_instruction = vmx_update_emulated_instruction,
8283 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8284 .get_interrupt_shadow = vmx_get_interrupt_shadow,
8285 .patch_hypercall = vmx_patch_hypercall,
8286 .inject_irq = vmx_inject_irq,
8287 .inject_nmi = vmx_inject_nmi,
8288 .inject_exception = vmx_inject_exception,
8289 .cancel_injection = vmx_cancel_injection,
8290 .interrupt_allowed = vmx_interrupt_allowed,
8291 .nmi_allowed = vmx_nmi_allowed,
8292 .get_nmi_mask = vmx_get_nmi_mask,
8293 .set_nmi_mask = vmx_set_nmi_mask,
8294 .enable_nmi_window = vmx_enable_nmi_window,
8295 .enable_irq_window = vmx_enable_irq_window,
8296 .update_cr8_intercept = vmx_update_cr8_intercept,
8297 .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
8298 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
8299 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
8300 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8301 .apicv_pre_state_restore = vmx_apicv_pre_state_restore,
8302 .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS,
8303 .hwapic_irr_update = vmx_hwapic_irr_update,
8304 .hwapic_isr_update = vmx_hwapic_isr_update,
8305 .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
8306 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8307 .deliver_interrupt = vmx_deliver_interrupt,
8308 .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
8309
8310 .set_tss_addr = vmx_set_tss_addr,
8311 .set_identity_map_addr = vmx_set_identity_map_addr,
8312 .get_mt_mask = vmx_get_mt_mask,
8313
8314 .get_exit_info = vmx_get_exit_info,
8315
8316 .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
8317
8318 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8319
8320 .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
8321 .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
8322 .write_tsc_offset = vmx_write_tsc_offset,
8323 .write_tsc_multiplier = vmx_write_tsc_multiplier,
8324
8325 .load_mmu_pgd = vmx_load_mmu_pgd,
8326
8327 .check_intercept = vmx_check_intercept,
8328 .handle_exit_irqoff = vmx_handle_exit_irqoff,
8329
8330 .request_immediate_exit = vmx_request_immediate_exit,
8331
8332 .sched_in = vmx_sched_in,
8333
8334 .cpu_dirty_log_size = PML_ENTITY_NUM,
8335 .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
8336
8337 .nested_ops = &vmx_nested_ops,
8338
8339 .pi_update_irte = vmx_pi_update_irte,
8340 .pi_start_assignment = vmx_pi_start_assignment,
8341
8342 #ifdef CONFIG_X86_64
8343 .set_hv_timer = vmx_set_hv_timer,
8344 .cancel_hv_timer = vmx_cancel_hv_timer,
8345 #endif
8346
8347 .setup_mce = vmx_setup_mce,
8348
8349 #ifdef CONFIG_KVM_SMM
8350 .smi_allowed = vmx_smi_allowed,
8351 .enter_smm = vmx_enter_smm,
8352 .leave_smm = vmx_leave_smm,
8353 .enable_smi_window = vmx_enable_smi_window,
8354 #endif
8355
8356 .can_emulate_instruction = vmx_can_emulate_instruction,
8357 .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
8358 .migrate_timers = vmx_migrate_timers,
8359
8360 .msr_filter_changed = vmx_msr_filter_changed,
8361 .complete_emulated_msr = kvm_complete_insn_gp,
8362
8363 .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
8364 };
8365
vmx_handle_intel_pt_intr(void)8366 static unsigned int vmx_handle_intel_pt_intr(void)
8367 {
8368 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
8369
8370 /* '0' on failure so that the !PT case can use a RET0 static call. */
8371 if (!vcpu || !kvm_handling_nmi_from_guest(vcpu))
8372 return 0;
8373
8374 kvm_make_request(KVM_REQ_PMI, vcpu);
8375 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8376 (unsigned long *)&vcpu->arch.pmu.global_status);
8377 return 1;
8378 }
8379
vmx_setup_user_return_msrs(void)8380 static __init void vmx_setup_user_return_msrs(void)
8381 {
8382
8383 /*
8384 * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
8385 * will emulate SYSCALL in legacy mode if the vendor string in guest
8386 * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
8387 * support this emulation, MSR_STAR is included in the list for i386,
8388 * but is never loaded into hardware. MSR_CSTAR is also never loaded
8389 * into hardware and is here purely for emulation purposes.
8390 */
8391 const u32 vmx_uret_msrs_list[] = {
8392 #ifdef CONFIG_X86_64
8393 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
8394 #endif
8395 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
8396 MSR_IA32_TSX_CTRL,
8397 };
8398 int i;
8399
8400 BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
8401
8402 for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
8403 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
8404 }
8405
vmx_setup_me_spte_mask(void)8406 static void __init vmx_setup_me_spte_mask(void)
8407 {
8408 u64 me_mask = 0;
8409
8410 /*
8411 * kvm_get_shadow_phys_bits() returns shadow_phys_bits. Use
8412 * the former to avoid exposing shadow_phys_bits.
8413 *
8414 * On pre-MKTME system, boot_cpu_data.x86_phys_bits equals to
8415 * shadow_phys_bits. On MKTME and/or TDX capable systems,
8416 * boot_cpu_data.x86_phys_bits holds the actual physical address
8417 * w/o the KeyID bits, and shadow_phys_bits equals to MAXPHYADDR
8418 * reported by CPUID. Those bits between are KeyID bits.
8419 */
8420 if (boot_cpu_data.x86_phys_bits != kvm_get_shadow_phys_bits())
8421 me_mask = rsvd_bits(boot_cpu_data.x86_phys_bits,
8422 kvm_get_shadow_phys_bits() - 1);
8423 /*
8424 * Unlike SME, host kernel doesn't support setting up any
8425 * MKTME KeyID on Intel platforms. No memory encryption
8426 * bits should be included into the SPTE.
8427 */
8428 kvm_mmu_set_me_spte_mask(0, me_mask);
8429 }
8430
8431 static struct kvm_x86_init_ops vmx_init_ops __initdata;
8432
hardware_setup(void)8433 static __init int hardware_setup(void)
8434 {
8435 unsigned long host_bndcfgs;
8436 struct desc_ptr dt;
8437 int r;
8438
8439 store_idt(&dt);
8440 host_idt_base = dt.address;
8441
8442 vmx_setup_user_return_msrs();
8443
8444 if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
8445 return -EIO;
8446
8447 if (cpu_has_perf_global_ctrl_bug())
8448 pr_warn_once("VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
8449 "does not work properly. Using workaround\n");
8450
8451 if (boot_cpu_has(X86_FEATURE_NX))
8452 kvm_enable_efer_bits(EFER_NX);
8453
8454 if (boot_cpu_has(X86_FEATURE_MPX)) {
8455 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
8456 WARN_ONCE(host_bndcfgs, "BNDCFGS in host will be lost");
8457 }
8458
8459 if (!cpu_has_vmx_mpx())
8460 kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
8461 XFEATURE_MASK_BNDCSR);
8462
8463 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
8464 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
8465 enable_vpid = 0;
8466
8467 if (!cpu_has_vmx_ept() ||
8468 !cpu_has_vmx_ept_4levels() ||
8469 !cpu_has_vmx_ept_mt_wb() ||
8470 !cpu_has_vmx_invept_global())
8471 enable_ept = 0;
8472
8473 /* NX support is required for shadow paging. */
8474 if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
8475 pr_err_ratelimited("NX (Execute Disable) not supported\n");
8476 return -EOPNOTSUPP;
8477 }
8478
8479 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
8480 enable_ept_ad_bits = 0;
8481
8482 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
8483 enable_unrestricted_guest = 0;
8484
8485 if (!cpu_has_vmx_flexpriority())
8486 flexpriority_enabled = 0;
8487
8488 if (!cpu_has_virtual_nmis())
8489 enable_vnmi = 0;
8490
8491 #ifdef CONFIG_X86_SGX_KVM
8492 if (!cpu_has_vmx_encls_vmexit())
8493 enable_sgx = false;
8494 #endif
8495
8496 /*
8497 * set_apic_access_page_addr() is used to reload apic access
8498 * page upon invalidation. No need to do anything if not
8499 * using the APIC_ACCESS_ADDR VMCS field.
8500 */
8501 if (!flexpriority_enabled)
8502 vmx_x86_ops.set_apic_access_page_addr = NULL;
8503
8504 if (!cpu_has_vmx_tpr_shadow())
8505 vmx_x86_ops.update_cr8_intercept = NULL;
8506
8507 #if IS_ENABLED(CONFIG_HYPERV)
8508 if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
8509 && enable_ept) {
8510 vmx_x86_ops.flush_remote_tlbs = hv_flush_remote_tlbs;
8511 vmx_x86_ops.flush_remote_tlbs_range = hv_flush_remote_tlbs_range;
8512 }
8513 #endif
8514
8515 if (!cpu_has_vmx_ple()) {
8516 ple_gap = 0;
8517 ple_window = 0;
8518 ple_window_grow = 0;
8519 ple_window_max = 0;
8520 ple_window_shrink = 0;
8521 }
8522
8523 if (!cpu_has_vmx_apicv())
8524 enable_apicv = 0;
8525 if (!enable_apicv)
8526 vmx_x86_ops.sync_pir_to_irr = NULL;
8527
8528 if (!enable_apicv || !cpu_has_vmx_ipiv())
8529 enable_ipiv = false;
8530
8531 if (cpu_has_vmx_tsc_scaling())
8532 kvm_caps.has_tsc_control = true;
8533
8534 kvm_caps.max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
8535 kvm_caps.tsc_scaling_ratio_frac_bits = 48;
8536 kvm_caps.has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
8537 kvm_caps.has_notify_vmexit = cpu_has_notify_vmexit();
8538
8539 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8540
8541 if (enable_ept)
8542 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
8543 cpu_has_vmx_ept_execute_only());
8544
8545 /*
8546 * Setup shadow_me_value/shadow_me_mask to include MKTME KeyID
8547 * bits to shadow_zero_check.
8548 */
8549 vmx_setup_me_spte_mask();
8550
8551 kvm_configure_mmu(enable_ept, 0, vmx_get_max_ept_level(),
8552 ept_caps_to_lpage_level(vmx_capability.ept));
8553
8554 /*
8555 * Only enable PML when hardware supports PML feature, and both EPT
8556 * and EPT A/D bit features are enabled -- PML depends on them to work.
8557 */
8558 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
8559 enable_pml = 0;
8560
8561 if (!enable_pml)
8562 vmx_x86_ops.cpu_dirty_log_size = 0;
8563
8564 if (!cpu_has_vmx_preemption_timer())
8565 enable_preemption_timer = false;
8566
8567 if (enable_preemption_timer) {
8568 u64 use_timer_freq = 5000ULL * 1000 * 1000;
8569
8570 cpu_preemption_timer_multi =
8571 vmcs_config.misc & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
8572
8573 if (tsc_khz)
8574 use_timer_freq = (u64)tsc_khz * 1000;
8575 use_timer_freq >>= cpu_preemption_timer_multi;
8576
8577 /*
8578 * KVM "disables" the preemption timer by setting it to its max
8579 * value. Don't use the timer if it might cause spurious exits
8580 * at a rate faster than 0.1 Hz (of uninterrupted guest time).
8581 */
8582 if (use_timer_freq > 0xffffffffu / 10)
8583 enable_preemption_timer = false;
8584 }
8585
8586 if (!enable_preemption_timer) {
8587 vmx_x86_ops.set_hv_timer = NULL;
8588 vmx_x86_ops.cancel_hv_timer = NULL;
8589 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
8590 }
8591
8592 kvm_caps.supported_mce_cap |= MCG_LMCE_P;
8593 kvm_caps.supported_mce_cap |= MCG_CMCI_P;
8594
8595 if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
8596 return -EINVAL;
8597 if (!enable_ept || !enable_pmu || !cpu_has_vmx_intel_pt())
8598 pt_mode = PT_MODE_SYSTEM;
8599 if (pt_mode == PT_MODE_HOST_GUEST)
8600 vmx_init_ops.handle_intel_pt_intr = vmx_handle_intel_pt_intr;
8601 else
8602 vmx_init_ops.handle_intel_pt_intr = NULL;
8603
8604 setup_default_sgx_lepubkeyhash();
8605
8606 if (nested) {
8607 nested_vmx_setup_ctls_msrs(&vmcs_config, vmx_capability.ept);
8608
8609 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
8610 if (r)
8611 return r;
8612 }
8613
8614 vmx_set_cpu_caps();
8615
8616 r = alloc_kvm_area();
8617 if (r && nested)
8618 nested_vmx_hardware_unsetup();
8619
8620 kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
8621
8622 return r;
8623 }
8624
8625 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
8626 .hardware_setup = hardware_setup,
8627 .handle_intel_pt_intr = NULL,
8628
8629 .runtime_ops = &vmx_x86_ops,
8630 .pmu_ops = &intel_pmu_ops,
8631 };
8632
vmx_cleanup_l1d_flush(void)8633 static void vmx_cleanup_l1d_flush(void)
8634 {
8635 if (vmx_l1d_flush_pages) {
8636 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
8637 vmx_l1d_flush_pages = NULL;
8638 }
8639 /* Restore state so sysfs ignores VMX */
8640 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
8641 }
8642
__vmx_exit(void)8643 static void __vmx_exit(void)
8644 {
8645 allow_smaller_maxphyaddr = false;
8646
8647 cpu_emergency_unregister_virt_callback(vmx_emergency_disable);
8648
8649 vmx_cleanup_l1d_flush();
8650 }
8651
vmx_exit(void)8652 static void vmx_exit(void)
8653 {
8654 kvm_exit();
8655 kvm_x86_vendor_exit();
8656
8657 __vmx_exit();
8658 }
8659 module_exit(vmx_exit);
8660
vmx_init(void)8661 static int __init vmx_init(void)
8662 {
8663 int r, cpu;
8664
8665 if (!kvm_is_vmx_supported())
8666 return -EOPNOTSUPP;
8667
8668 /*
8669 * Note, hv_init_evmcs() touches only VMX knobs, i.e. there's nothing
8670 * to unwind if a later step fails.
8671 */
8672 hv_init_evmcs();
8673
8674 r = kvm_x86_vendor_init(&vmx_init_ops);
8675 if (r)
8676 return r;
8677
8678 /*
8679 * Must be called after common x86 init so enable_ept is properly set
8680 * up. Hand the parameter mitigation value in which was stored in
8681 * the pre module init parser. If no parameter was given, it will
8682 * contain 'auto' which will be turned into the default 'cond'
8683 * mitigation mode.
8684 */
8685 r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8686 if (r)
8687 goto err_l1d_flush;
8688
8689 for_each_possible_cpu(cpu) {
8690 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8691
8692 pi_init_cpu(cpu);
8693 }
8694
8695 cpu_emergency_register_virt_callback(vmx_emergency_disable);
8696
8697 vmx_check_vmcs12_offsets();
8698
8699 /*
8700 * Shadow paging doesn't have a (further) performance penalty
8701 * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8702 * by default
8703 */
8704 if (!enable_ept)
8705 allow_smaller_maxphyaddr = true;
8706
8707 /*
8708 * Common KVM initialization _must_ come last, after this, /dev/kvm is
8709 * exposed to userspace!
8710 */
8711 r = kvm_init(sizeof(struct vcpu_vmx), __alignof__(struct vcpu_vmx),
8712 THIS_MODULE);
8713 if (r)
8714 goto err_kvm_init;
8715
8716 return 0;
8717
8718 err_kvm_init:
8719 __vmx_exit();
8720 err_l1d_flush:
8721 kvm_x86_vendor_exit();
8722 return r;
8723 }
8724 module_init(vmx_init);
8725