1 /*
2  * mm/truncate.c - code for taking down pages from address_spaces
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 10Sep2002	Andrew Morton
7  *		Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/swap.h>
15 #include <linux/export.h>
16 #include <linux/pagemap.h>
17 #include <linux/highmem.h>
18 #include <linux/pagevec.h>
19 #include <linux/task_io_accounting_ops.h>
20 #include <linux/buffer_head.h>	/* grr. try_to_release_page,
21 				   do_invalidatepage */
22 #include <linux/cleancache.h>
23 #include "internal.h"
24 
25 
26 /**
27  * do_invalidatepage - invalidate part or all of a page
28  * @page: the page which is affected
29  * @offset: the index of the truncation point
30  *
31  * do_invalidatepage() is called when all or part of the page has become
32  * invalidated by a truncate operation.
33  *
34  * do_invalidatepage() does not have to release all buffers, but it must
35  * ensure that no dirty buffer is left outside @offset and that no I/O
36  * is underway against any of the blocks which are outside the truncation
37  * point.  Because the caller is about to free (and possibly reuse) those
38  * blocks on-disk.
39  */
do_invalidatepage(struct page * page,unsigned long offset)40 void do_invalidatepage(struct page *page, unsigned long offset)
41 {
42 	void (*invalidatepage)(struct page *, unsigned long);
43 	invalidatepage = page->mapping->a_ops->invalidatepage;
44 #ifdef CONFIG_BLOCK
45 	if (!invalidatepage)
46 		invalidatepage = block_invalidatepage;
47 #endif
48 	if (invalidatepage)
49 		(*invalidatepage)(page, offset);
50 }
51 
truncate_partial_page(struct page * page,unsigned partial)52 static inline void truncate_partial_page(struct page *page, unsigned partial)
53 {
54 	zero_user_segment(page, partial, PAGE_CACHE_SIZE);
55 	cleancache_invalidate_page(page->mapping, page);
56 	if (page_has_private(page))
57 		do_invalidatepage(page, partial);
58 }
59 
60 /*
61  * This cancels just the dirty bit on the kernel page itself, it
62  * does NOT actually remove dirty bits on any mmap's that may be
63  * around. It also leaves the page tagged dirty, so any sync
64  * activity will still find it on the dirty lists, and in particular,
65  * clear_page_dirty_for_io() will still look at the dirty bits in
66  * the VM.
67  *
68  * Doing this should *normally* only ever be done when a page
69  * is truncated, and is not actually mapped anywhere at all. However,
70  * fs/buffer.c does this when it notices that somebody has cleaned
71  * out all the buffers on a page without actually doing it through
72  * the VM. Can you say "ext3 is horribly ugly"? Tought you could.
73  */
cancel_dirty_page(struct page * page,unsigned int account_size)74 void cancel_dirty_page(struct page *page, unsigned int account_size)
75 {
76 	if (TestClearPageDirty(page)) {
77 		struct address_space *mapping = page->mapping;
78 		if (mapping && mapping_cap_account_dirty(mapping)) {
79 			dec_zone_page_state(page, NR_FILE_DIRTY);
80 			dec_bdi_stat(mapping->backing_dev_info,
81 					BDI_RECLAIMABLE);
82 			if (account_size)
83 				task_io_account_cancelled_write(account_size);
84 		}
85 	}
86 }
87 EXPORT_SYMBOL(cancel_dirty_page);
88 
89 /*
90  * If truncate cannot remove the fs-private metadata from the page, the page
91  * becomes orphaned.  It will be left on the LRU and may even be mapped into
92  * user pagetables if we're racing with filemap_fault().
93  *
94  * We need to bale out if page->mapping is no longer equal to the original
95  * mapping.  This happens a) when the VM reclaimed the page while we waited on
96  * its lock, b) when a concurrent invalidate_mapping_pages got there first and
97  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
98  */
99 static int
truncate_complete_page(struct address_space * mapping,struct page * page)100 truncate_complete_page(struct address_space *mapping, struct page *page)
101 {
102 	if (page->mapping != mapping)
103 		return -EIO;
104 
105 	if (page_has_private(page))
106 		do_invalidatepage(page, 0);
107 
108 	cancel_dirty_page(page, PAGE_CACHE_SIZE);
109 
110 	clear_page_mlock(page);
111 	ClearPageMappedToDisk(page);
112 	delete_from_page_cache(page);
113 	return 0;
114 }
115 
116 /*
117  * This is for invalidate_mapping_pages().  That function can be called at
118  * any time, and is not supposed to throw away dirty pages.  But pages can
119  * be marked dirty at any time too, so use remove_mapping which safely
120  * discards clean, unused pages.
121  *
122  * Returns non-zero if the page was successfully invalidated.
123  */
124 static int
invalidate_complete_page(struct address_space * mapping,struct page * page)125 invalidate_complete_page(struct address_space *mapping, struct page *page)
126 {
127 	int ret;
128 
129 	if (page->mapping != mapping)
130 		return 0;
131 
132 	if (page_has_private(page) && !try_to_release_page(page, 0))
133 		return 0;
134 
135 	clear_page_mlock(page);
136 	ret = remove_mapping(mapping, page);
137 
138 	return ret;
139 }
140 
truncate_inode_page(struct address_space * mapping,struct page * page)141 int truncate_inode_page(struct address_space *mapping, struct page *page)
142 {
143 	if (page_mapped(page)) {
144 		unmap_mapping_range(mapping,
145 				   (loff_t)page->index << PAGE_CACHE_SHIFT,
146 				   PAGE_CACHE_SIZE, 0);
147 	}
148 	return truncate_complete_page(mapping, page);
149 }
150 
151 /*
152  * Used to get rid of pages on hardware memory corruption.
153  */
generic_error_remove_page(struct address_space * mapping,struct page * page)154 int generic_error_remove_page(struct address_space *mapping, struct page *page)
155 {
156 	if (!mapping)
157 		return -EINVAL;
158 	/*
159 	 * Only punch for normal data pages for now.
160 	 * Handling other types like directories would need more auditing.
161 	 */
162 	if (!S_ISREG(mapping->host->i_mode))
163 		return -EIO;
164 	return truncate_inode_page(mapping, page);
165 }
166 EXPORT_SYMBOL(generic_error_remove_page);
167 
168 /*
169  * Safely invalidate one page from its pagecache mapping.
170  * It only drops clean, unused pages. The page must be locked.
171  *
172  * Returns 1 if the page is successfully invalidated, otherwise 0.
173  */
invalidate_inode_page(struct page * page)174 int invalidate_inode_page(struct page *page)
175 {
176 	struct address_space *mapping = page_mapping(page);
177 	if (!mapping)
178 		return 0;
179 	if (PageDirty(page) || PageWriteback(page))
180 		return 0;
181 	if (page_mapped(page))
182 		return 0;
183 	return invalidate_complete_page(mapping, page);
184 }
185 
186 /**
187  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
188  * @mapping: mapping to truncate
189  * @lstart: offset from which to truncate
190  * @lend: offset to which to truncate
191  *
192  * Truncate the page cache, removing the pages that are between
193  * specified offsets (and zeroing out partial page
194  * (if lstart is not page aligned)).
195  *
196  * Truncate takes two passes - the first pass is nonblocking.  It will not
197  * block on page locks and it will not block on writeback.  The second pass
198  * will wait.  This is to prevent as much IO as possible in the affected region.
199  * The first pass will remove most pages, so the search cost of the second pass
200  * is low.
201  *
202  * We pass down the cache-hot hint to the page freeing code.  Even if the
203  * mapping is large, it is probably the case that the final pages are the most
204  * recently touched, and freeing happens in ascending file offset order.
205  */
truncate_inode_pages_range(struct address_space * mapping,loff_t lstart,loff_t lend)206 void truncate_inode_pages_range(struct address_space *mapping,
207 				loff_t lstart, loff_t lend)
208 {
209 	const pgoff_t start = (lstart + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
210 	const unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);
211 	struct pagevec pvec;
212 	pgoff_t index;
213 	pgoff_t end;
214 	int i;
215 
216 	cleancache_invalidate_inode(mapping);
217 	if (mapping->nrpages == 0)
218 		return;
219 
220 	BUG_ON((lend & (PAGE_CACHE_SIZE - 1)) != (PAGE_CACHE_SIZE - 1));
221 	end = (lend >> PAGE_CACHE_SHIFT);
222 
223 	pagevec_init(&pvec, 0);
224 	index = start;
225 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
226 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
227 		mem_cgroup_uncharge_start();
228 		for (i = 0; i < pagevec_count(&pvec); i++) {
229 			struct page *page = pvec.pages[i];
230 
231 			/* We rely upon deletion not changing page->index */
232 			index = page->index;
233 			if (index > end)
234 				break;
235 
236 			if (!trylock_page(page))
237 				continue;
238 			WARN_ON(page->index != index);
239 			if (PageWriteback(page)) {
240 				unlock_page(page);
241 				continue;
242 			}
243 			truncate_inode_page(mapping, page);
244 			unlock_page(page);
245 		}
246 		pagevec_release(&pvec);
247 		mem_cgroup_uncharge_end();
248 		cond_resched();
249 		index++;
250 	}
251 
252 	if (partial) {
253 		struct page *page = find_lock_page(mapping, start - 1);
254 		if (page) {
255 			wait_on_page_writeback(page);
256 			truncate_partial_page(page, partial);
257 			unlock_page(page);
258 			page_cache_release(page);
259 		}
260 	}
261 
262 	index = start;
263 	for ( ; ; ) {
264 		cond_resched();
265 		if (!pagevec_lookup(&pvec, mapping, index,
266 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
267 			if (index == start)
268 				break;
269 			index = start;
270 			continue;
271 		}
272 		if (index == start && pvec.pages[0]->index > end) {
273 			pagevec_release(&pvec);
274 			break;
275 		}
276 		mem_cgroup_uncharge_start();
277 		for (i = 0; i < pagevec_count(&pvec); i++) {
278 			struct page *page = pvec.pages[i];
279 
280 			/* We rely upon deletion not changing page->index */
281 			index = page->index;
282 			if (index > end)
283 				break;
284 
285 			lock_page(page);
286 			WARN_ON(page->index != index);
287 			wait_on_page_writeback(page);
288 			truncate_inode_page(mapping, page);
289 			unlock_page(page);
290 		}
291 		pagevec_release(&pvec);
292 		mem_cgroup_uncharge_end();
293 		index++;
294 	}
295 	cleancache_invalidate_inode(mapping);
296 }
297 EXPORT_SYMBOL(truncate_inode_pages_range);
298 
299 /**
300  * truncate_inode_pages - truncate *all* the pages from an offset
301  * @mapping: mapping to truncate
302  * @lstart: offset from which to truncate
303  *
304  * Called under (and serialised by) inode->i_mutex.
305  *
306  * Note: When this function returns, there can be a page in the process of
307  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus
308  * mapping->nrpages can be non-zero when this function returns even after
309  * truncation of the whole mapping.
310  */
truncate_inode_pages(struct address_space * mapping,loff_t lstart)311 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
312 {
313 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
314 }
315 EXPORT_SYMBOL(truncate_inode_pages);
316 
317 /**
318  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
319  * @mapping: the address_space which holds the pages to invalidate
320  * @start: the offset 'from' which to invalidate
321  * @end: the offset 'to' which to invalidate (inclusive)
322  *
323  * This function only removes the unlocked pages, if you want to
324  * remove all the pages of one inode, you must call truncate_inode_pages.
325  *
326  * invalidate_mapping_pages() will not block on IO activity. It will not
327  * invalidate pages which are dirty, locked, under writeback or mapped into
328  * pagetables.
329  */
invalidate_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t end)330 unsigned long invalidate_mapping_pages(struct address_space *mapping,
331 		pgoff_t start, pgoff_t end)
332 {
333 	struct pagevec pvec;
334 	pgoff_t index = start;
335 	unsigned long ret;
336 	unsigned long count = 0;
337 	int i;
338 
339 	/*
340 	 * Note: this function may get called on a shmem/tmpfs mapping:
341 	 * pagevec_lookup() might then return 0 prematurely (because it
342 	 * got a gangful of swap entries); but it's hardly worth worrying
343 	 * about - it can rarely have anything to free from such a mapping
344 	 * (most pages are dirty), and already skips over any difficulties.
345 	 */
346 
347 	pagevec_init(&pvec, 0);
348 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
349 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
350 		mem_cgroup_uncharge_start();
351 		for (i = 0; i < pagevec_count(&pvec); i++) {
352 			struct page *page = pvec.pages[i];
353 
354 			/* We rely upon deletion not changing page->index */
355 			index = page->index;
356 			if (index > end)
357 				break;
358 
359 			if (!trylock_page(page))
360 				continue;
361 			WARN_ON(page->index != index);
362 			ret = invalidate_inode_page(page);
363 			unlock_page(page);
364 			/*
365 			 * Invalidation is a hint that the page is no longer
366 			 * of interest and try to speed up its reclaim.
367 			 */
368 			if (!ret)
369 				deactivate_page(page);
370 			count += ret;
371 		}
372 		pagevec_release(&pvec);
373 		mem_cgroup_uncharge_end();
374 		cond_resched();
375 		index++;
376 	}
377 	return count;
378 }
379 EXPORT_SYMBOL(invalidate_mapping_pages);
380 
381 /*
382  * This is like invalidate_complete_page(), except it ignores the page's
383  * refcount.  We do this because invalidate_inode_pages2() needs stronger
384  * invalidation guarantees, and cannot afford to leave pages behind because
385  * shrink_page_list() has a temp ref on them, or because they're transiently
386  * sitting in the lru_cache_add() pagevecs.
387  */
388 static int
invalidate_complete_page2(struct address_space * mapping,struct page * page)389 invalidate_complete_page2(struct address_space *mapping, struct page *page)
390 {
391 	if (page->mapping != mapping)
392 		return 0;
393 
394 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
395 		return 0;
396 
397 	clear_page_mlock(page);
398 
399 	spin_lock_irq(&mapping->tree_lock);
400 	if (PageDirty(page))
401 		goto failed;
402 
403 	BUG_ON(page_has_private(page));
404 	__delete_from_page_cache(page);
405 	spin_unlock_irq(&mapping->tree_lock);
406 	mem_cgroup_uncharge_cache_page(page);
407 
408 	if (mapping->a_ops->freepage)
409 		mapping->a_ops->freepage(page);
410 
411 	page_cache_release(page);	/* pagecache ref */
412 	return 1;
413 failed:
414 	spin_unlock_irq(&mapping->tree_lock);
415 	return 0;
416 }
417 
do_launder_page(struct address_space * mapping,struct page * page)418 static int do_launder_page(struct address_space *mapping, struct page *page)
419 {
420 	if (!PageDirty(page))
421 		return 0;
422 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
423 		return 0;
424 	return mapping->a_ops->launder_page(page);
425 }
426 
427 /**
428  * invalidate_inode_pages2_range - remove range of pages from an address_space
429  * @mapping: the address_space
430  * @start: the page offset 'from' which to invalidate
431  * @end: the page offset 'to' which to invalidate (inclusive)
432  *
433  * Any pages which are found to be mapped into pagetables are unmapped prior to
434  * invalidation.
435  *
436  * Returns -EBUSY if any pages could not be invalidated.
437  */
invalidate_inode_pages2_range(struct address_space * mapping,pgoff_t start,pgoff_t end)438 int invalidate_inode_pages2_range(struct address_space *mapping,
439 				  pgoff_t start, pgoff_t end)
440 {
441 	struct pagevec pvec;
442 	pgoff_t index;
443 	int i;
444 	int ret = 0;
445 	int ret2 = 0;
446 	int did_range_unmap = 0;
447 
448 	cleancache_invalidate_inode(mapping);
449 	pagevec_init(&pvec, 0);
450 	index = start;
451 	while (index <= end && pagevec_lookup(&pvec, mapping, index,
452 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1)) {
453 		mem_cgroup_uncharge_start();
454 		for (i = 0; i < pagevec_count(&pvec); i++) {
455 			struct page *page = pvec.pages[i];
456 
457 			/* We rely upon deletion not changing page->index */
458 			index = page->index;
459 			if (index > end)
460 				break;
461 
462 			lock_page(page);
463 			WARN_ON(page->index != index);
464 			if (page->mapping != mapping) {
465 				unlock_page(page);
466 				continue;
467 			}
468 			wait_on_page_writeback(page);
469 			if (page_mapped(page)) {
470 				if (!did_range_unmap) {
471 					/*
472 					 * Zap the rest of the file in one hit.
473 					 */
474 					unmap_mapping_range(mapping,
475 					   (loff_t)index << PAGE_CACHE_SHIFT,
476 					   (loff_t)(1 + end - index)
477 							 << PAGE_CACHE_SHIFT,
478 					    0);
479 					did_range_unmap = 1;
480 				} else {
481 					/*
482 					 * Just zap this page
483 					 */
484 					unmap_mapping_range(mapping,
485 					   (loff_t)index << PAGE_CACHE_SHIFT,
486 					   PAGE_CACHE_SIZE, 0);
487 				}
488 			}
489 			BUG_ON(page_mapped(page));
490 			ret2 = do_launder_page(mapping, page);
491 			if (ret2 == 0) {
492 				if (!invalidate_complete_page2(mapping, page))
493 					ret2 = -EBUSY;
494 			}
495 			if (ret2 < 0)
496 				ret = ret2;
497 			unlock_page(page);
498 		}
499 		pagevec_release(&pvec);
500 		mem_cgroup_uncharge_end();
501 		cond_resched();
502 		index++;
503 	}
504 	cleancache_invalidate_inode(mapping);
505 	return ret;
506 }
507 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
508 
509 /**
510  * invalidate_inode_pages2 - remove all pages from an address_space
511  * @mapping: the address_space
512  *
513  * Any pages which are found to be mapped into pagetables are unmapped prior to
514  * invalidation.
515  *
516  * Returns -EBUSY if any pages could not be invalidated.
517  */
invalidate_inode_pages2(struct address_space * mapping)518 int invalidate_inode_pages2(struct address_space *mapping)
519 {
520 	return invalidate_inode_pages2_range(mapping, 0, -1);
521 }
522 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
523 
524 /**
525  * truncate_pagecache - unmap and remove pagecache that has been truncated
526  * @inode: inode
527  * @oldsize: old file size
528  * @newsize: new file size
529  *
530  * inode's new i_size must already be written before truncate_pagecache
531  * is called.
532  *
533  * This function should typically be called before the filesystem
534  * releases resources associated with the freed range (eg. deallocates
535  * blocks). This way, pagecache will always stay logically coherent
536  * with on-disk format, and the filesystem would not have to deal with
537  * situations such as writepage being called for a page that has already
538  * had its underlying blocks deallocated.
539  */
truncate_pagecache(struct inode * inode,loff_t oldsize,loff_t newsize)540 void truncate_pagecache(struct inode *inode, loff_t oldsize, loff_t newsize)
541 {
542 	struct address_space *mapping = inode->i_mapping;
543 	loff_t holebegin = round_up(newsize, PAGE_SIZE);
544 
545 	/*
546 	 * unmap_mapping_range is called twice, first simply for
547 	 * efficiency so that truncate_inode_pages does fewer
548 	 * single-page unmaps.  However after this first call, and
549 	 * before truncate_inode_pages finishes, it is possible for
550 	 * private pages to be COWed, which remain after
551 	 * truncate_inode_pages finishes, hence the second
552 	 * unmap_mapping_range call must be made for correctness.
553 	 */
554 	unmap_mapping_range(mapping, holebegin, 0, 1);
555 	truncate_inode_pages(mapping, newsize);
556 	unmap_mapping_range(mapping, holebegin, 0, 1);
557 }
558 EXPORT_SYMBOL(truncate_pagecache);
559 
560 /**
561  * truncate_setsize - update inode and pagecache for a new file size
562  * @inode: inode
563  * @newsize: new file size
564  *
565  * truncate_setsize updates i_size and performs pagecache truncation (if
566  * necessary) to @newsize. It will be typically be called from the filesystem's
567  * setattr function when ATTR_SIZE is passed in.
568  *
569  * Must be called with inode_mutex held and before all filesystem specific
570  * block truncation has been performed.
571  */
truncate_setsize(struct inode * inode,loff_t newsize)572 void truncate_setsize(struct inode *inode, loff_t newsize)
573 {
574 	loff_t oldsize;
575 
576 	oldsize = inode->i_size;
577 	i_size_write(inode, newsize);
578 
579 	truncate_pagecache(inode, oldsize, newsize);
580 }
581 EXPORT_SYMBOL(truncate_setsize);
582 
583 /**
584  * vmtruncate - unmap mappings "freed" by truncate() syscall
585  * @inode: inode of the file used
586  * @newsize: file offset to start truncating
587  *
588  * This function is deprecated and truncate_setsize or truncate_pagecache
589  * should be used instead, together with filesystem specific block truncation.
590  */
vmtruncate(struct inode * inode,loff_t newsize)591 int vmtruncate(struct inode *inode, loff_t newsize)
592 {
593 	int error;
594 
595 	error = inode_newsize_ok(inode, newsize);
596 	if (error)
597 		return error;
598 
599 	truncate_setsize(inode, newsize);
600 	if (inode->i_op->truncate)
601 		inode->i_op->truncate(inode);
602 	return 0;
603 }
604 EXPORT_SYMBOL(vmtruncate);
605 
vmtruncate_range(struct inode * inode,loff_t lstart,loff_t lend)606 int vmtruncate_range(struct inode *inode, loff_t lstart, loff_t lend)
607 {
608 	struct address_space *mapping = inode->i_mapping;
609 	loff_t holebegin = round_up(lstart, PAGE_SIZE);
610 	loff_t holelen = 1 + lend - holebegin;
611 
612 	/*
613 	 * If the underlying filesystem is not going to provide
614 	 * a way to truncate a range of blocks (punch a hole) -
615 	 * we should return failure right now.
616 	 */
617 	if (!inode->i_op->truncate_range)
618 		return -ENOSYS;
619 
620 	mutex_lock(&inode->i_mutex);
621 	inode_dio_wait(inode);
622 	unmap_mapping_range(mapping, holebegin, holelen, 1);
623 	inode->i_op->truncate_range(inode, lstart, lend);
624 	/* unmap again to remove racily COWed private pages */
625 	unmap_mapping_range(mapping, holebegin, holelen, 1);
626 	mutex_unlock(&inode->i_mutex);
627 
628 	return 0;
629 }
630 
631 /**
632  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
633  * @inode: inode
634  * @lstart: offset of beginning of hole
635  * @lend: offset of last byte of hole
636  *
637  * This function should typically be called before the filesystem
638  * releases resources associated with the freed range (eg. deallocates
639  * blocks). This way, pagecache will always stay logically coherent
640  * with on-disk format, and the filesystem would not have to deal with
641  * situations such as writepage being called for a page that has already
642  * had its underlying blocks deallocated.
643  */
truncate_pagecache_range(struct inode * inode,loff_t lstart,loff_t lend)644 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
645 {
646 	struct address_space *mapping = inode->i_mapping;
647 	loff_t unmap_start = round_up(lstart, PAGE_SIZE);
648 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
649 	/*
650 	 * This rounding is currently just for example: unmap_mapping_range
651 	 * expands its hole outwards, whereas we want it to contract the hole
652 	 * inwards.  However, existing callers of truncate_pagecache_range are
653 	 * doing their own page rounding first; and truncate_inode_pages_range
654 	 * currently BUGs if lend is not pagealigned-1 (it handles partial
655 	 * page at start of hole, but not partial page at end of hole).  Note
656 	 * unmap_mapping_range allows holelen 0 for all, and we allow lend -1.
657 	 */
658 
659 	/*
660 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only
661 	 * once (before truncating pagecache), and without "even_cows" flag:
662 	 * hole-punching should not remove private COWed pages from the hole.
663 	 */
664 	if ((u64)unmap_end > (u64)unmap_start)
665 		unmap_mapping_range(mapping, unmap_start,
666 				    1 + unmap_end - unmap_start, 0);
667 	truncate_inode_pages_range(mapping, lstart, lend);
668 }
669 EXPORT_SYMBOL(truncate_pagecache_range);
670