1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2009 Red Hat, Inc.
4 */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/coredump.h>
12 #include <linux/sched/numa_balancing.h>
13 #include <linux/highmem.h>
14 #include <linux/hugetlb.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/rmap.h>
17 #include <linux/swap.h>
18 #include <linux/shrinker.h>
19 #include <linux/mm_inline.h>
20 #include <linux/swapops.h>
21 #include <linux/backing-dev.h>
22 #include <linux/dax.h>
23 #include <linux/khugepaged.h>
24 #include <linux/freezer.h>
25 #include <linux/pfn_t.h>
26 #include <linux/mman.h>
27 #include <linux/memremap.h>
28 #include <linux/pagemap.h>
29 #include <linux/debugfs.h>
30 #include <linux/migrate.h>
31 #include <linux/hashtable.h>
32 #include <linux/userfaultfd_k.h>
33 #include <linux/page_idle.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/oom.h>
36 #include <linux/numa.h>
37 #include <linux/page_owner.h>
38 #include <linux/sched/sysctl.h>
39
40 #include <asm/tlb.h>
41 #include <asm/pgalloc.h>
42 #include "internal.h"
43 #include "swap.h"
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/thp.h>
47
48 /*
49 * By default, transparent hugepage support is disabled in order to avoid
50 * risking an increased memory footprint for applications that are not
51 * guaranteed to benefit from it. When transparent hugepage support is
52 * enabled, it is for all mappings, and khugepaged scans all mappings.
53 * Defrag is invoked by khugepaged hugepage allocations and by page faults
54 * for all hugepage allocations.
55 */
56 unsigned long transparent_hugepage_flags __read_mostly =
57 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
58 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
59 #endif
60 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
61 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
62 #endif
63 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
64 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
65 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
66
67 static struct shrinker deferred_split_shrinker;
68
69 static atomic_t huge_zero_refcount;
70 struct page *huge_zero_page __read_mostly;
71 unsigned long huge_zero_pfn __read_mostly = ~0UL;
72
transparent_hugepage_active(struct vm_area_struct * vma)73 bool transparent_hugepage_active(struct vm_area_struct *vma)
74 {
75 /* The addr is used to check if the vma size fits */
76 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
77
78 if (!transhuge_vma_suitable(vma, addr))
79 return false;
80 if (vma_is_anonymous(vma))
81 return __transparent_hugepage_enabled(vma);
82 if (vma_is_shmem(vma))
83 return shmem_huge_enabled(vma);
84 if (transhuge_vma_enabled(vma, vma->vm_flags) && file_thp_enabled(vma))
85 return true;
86
87 return false;
88 }
89
get_huge_zero_page(void)90 static bool get_huge_zero_page(void)
91 {
92 struct page *zero_page;
93 retry:
94 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
95 return true;
96
97 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
98 HPAGE_PMD_ORDER);
99 if (!zero_page) {
100 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
101 return false;
102 }
103 count_vm_event(THP_ZERO_PAGE_ALLOC);
104 preempt_disable();
105 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
106 preempt_enable();
107 __free_pages(zero_page, compound_order(zero_page));
108 goto retry;
109 }
110 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
111
112 /* We take additional reference here. It will be put back by shrinker */
113 atomic_set(&huge_zero_refcount, 2);
114 preempt_enable();
115 return true;
116 }
117
put_huge_zero_page(void)118 static void put_huge_zero_page(void)
119 {
120 /*
121 * Counter should never go to zero here. Only shrinker can put
122 * last reference.
123 */
124 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
125 }
126
mm_get_huge_zero_page(struct mm_struct * mm)127 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
128 {
129 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
130 return READ_ONCE(huge_zero_page);
131
132 if (!get_huge_zero_page())
133 return NULL;
134
135 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136 put_huge_zero_page();
137
138 return READ_ONCE(huge_zero_page);
139 }
140
mm_put_huge_zero_page(struct mm_struct * mm)141 void mm_put_huge_zero_page(struct mm_struct *mm)
142 {
143 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
144 put_huge_zero_page();
145 }
146
shrink_huge_zero_page_count(struct shrinker * shrink,struct shrink_control * sc)147 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
148 struct shrink_control *sc)
149 {
150 /* we can free zero page only if last reference remains */
151 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
152 }
153
shrink_huge_zero_page_scan(struct shrinker * shrink,struct shrink_control * sc)154 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
155 struct shrink_control *sc)
156 {
157 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
158 struct page *zero_page = xchg(&huge_zero_page, NULL);
159 BUG_ON(zero_page == NULL);
160 WRITE_ONCE(huge_zero_pfn, ~0UL);
161 __free_pages(zero_page, compound_order(zero_page));
162 return HPAGE_PMD_NR;
163 }
164
165 return 0;
166 }
167
168 static struct shrinker huge_zero_page_shrinker = {
169 .count_objects = shrink_huge_zero_page_count,
170 .scan_objects = shrink_huge_zero_page_scan,
171 .seeks = DEFAULT_SEEKS,
172 };
173
174 #ifdef CONFIG_SYSFS
enabled_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)175 static ssize_t enabled_show(struct kobject *kobj,
176 struct kobj_attribute *attr, char *buf)
177 {
178 const char *output;
179
180 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
181 output = "[always] madvise never";
182 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
183 &transparent_hugepage_flags))
184 output = "always [madvise] never";
185 else
186 output = "always madvise [never]";
187
188 return sysfs_emit(buf, "%s\n", output);
189 }
190
enabled_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)191 static ssize_t enabled_store(struct kobject *kobj,
192 struct kobj_attribute *attr,
193 const char *buf, size_t count)
194 {
195 ssize_t ret = count;
196
197 if (sysfs_streq(buf, "always")) {
198 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
199 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
200 } else if (sysfs_streq(buf, "madvise")) {
201 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
202 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
203 } else if (sysfs_streq(buf, "never")) {
204 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
205 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
206 } else
207 ret = -EINVAL;
208
209 if (ret > 0) {
210 int err = start_stop_khugepaged();
211 if (err)
212 ret = err;
213 }
214 return ret;
215 }
216 static struct kobj_attribute enabled_attr =
217 __ATTR(enabled, 0644, enabled_show, enabled_store);
218
single_hugepage_flag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf,enum transparent_hugepage_flag flag)219 ssize_t single_hugepage_flag_show(struct kobject *kobj,
220 struct kobj_attribute *attr, char *buf,
221 enum transparent_hugepage_flag flag)
222 {
223 return sysfs_emit(buf, "%d\n",
224 !!test_bit(flag, &transparent_hugepage_flags));
225 }
226
single_hugepage_flag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count,enum transparent_hugepage_flag flag)227 ssize_t single_hugepage_flag_store(struct kobject *kobj,
228 struct kobj_attribute *attr,
229 const char *buf, size_t count,
230 enum transparent_hugepage_flag flag)
231 {
232 unsigned long value;
233 int ret;
234
235 ret = kstrtoul(buf, 10, &value);
236 if (ret < 0)
237 return ret;
238 if (value > 1)
239 return -EINVAL;
240
241 if (value)
242 set_bit(flag, &transparent_hugepage_flags);
243 else
244 clear_bit(flag, &transparent_hugepage_flags);
245
246 return count;
247 }
248
defrag_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251 {
252 const char *output;
253
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
255 &transparent_hugepage_flags))
256 output = "[always] defer defer+madvise madvise never";
257 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
258 &transparent_hugepage_flags))
259 output = "always [defer] defer+madvise madvise never";
260 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
261 &transparent_hugepage_flags))
262 output = "always defer [defer+madvise] madvise never";
263 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
264 &transparent_hugepage_flags))
265 output = "always defer defer+madvise [madvise] never";
266 else
267 output = "always defer defer+madvise madvise [never]";
268
269 return sysfs_emit(buf, "%s\n", output);
270 }
271
defrag_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)272 static ssize_t defrag_store(struct kobject *kobj,
273 struct kobj_attribute *attr,
274 const char *buf, size_t count)
275 {
276 if (sysfs_streq(buf, "always")) {
277 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
280 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
281 } else if (sysfs_streq(buf, "defer+madvise")) {
282 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
285 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
286 } else if (sysfs_streq(buf, "defer")) {
287 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
290 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
291 } else if (sysfs_streq(buf, "madvise")) {
292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
295 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
296 } else if (sysfs_streq(buf, "never")) {
297 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
301 } else
302 return -EINVAL;
303
304 return count;
305 }
306 static struct kobj_attribute defrag_attr =
307 __ATTR(defrag, 0644, defrag_show, defrag_store);
308
use_zero_page_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)309 static ssize_t use_zero_page_show(struct kobject *kobj,
310 struct kobj_attribute *attr, char *buf)
311 {
312 return single_hugepage_flag_show(kobj, attr, buf,
313 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
314 }
use_zero_page_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)315 static ssize_t use_zero_page_store(struct kobject *kobj,
316 struct kobj_attribute *attr, const char *buf, size_t count)
317 {
318 return single_hugepage_flag_store(kobj, attr, buf, count,
319 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
320 }
321 static struct kobj_attribute use_zero_page_attr =
322 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
323
hpage_pmd_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)324 static ssize_t hpage_pmd_size_show(struct kobject *kobj,
325 struct kobj_attribute *attr, char *buf)
326 {
327 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
328 }
329 static struct kobj_attribute hpage_pmd_size_attr =
330 __ATTR_RO(hpage_pmd_size);
331
332 static struct attribute *hugepage_attr[] = {
333 &enabled_attr.attr,
334 &defrag_attr.attr,
335 &use_zero_page_attr.attr,
336 &hpage_pmd_size_attr.attr,
337 #ifdef CONFIG_SHMEM
338 &shmem_enabled_attr.attr,
339 #endif
340 NULL,
341 };
342
343 static const struct attribute_group hugepage_attr_group = {
344 .attrs = hugepage_attr,
345 };
346
hugepage_init_sysfs(struct kobject ** hugepage_kobj)347 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
348 {
349 int err;
350
351 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
352 if (unlikely(!*hugepage_kobj)) {
353 pr_err("failed to create transparent hugepage kobject\n");
354 return -ENOMEM;
355 }
356
357 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
358 if (err) {
359 pr_err("failed to register transparent hugepage group\n");
360 goto delete_obj;
361 }
362
363 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
364 if (err) {
365 pr_err("failed to register transparent hugepage group\n");
366 goto remove_hp_group;
367 }
368
369 return 0;
370
371 remove_hp_group:
372 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
373 delete_obj:
374 kobject_put(*hugepage_kobj);
375 return err;
376 }
377
hugepage_exit_sysfs(struct kobject * hugepage_kobj)378 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379 {
380 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
381 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
382 kobject_put(hugepage_kobj);
383 }
384 #else
hugepage_init_sysfs(struct kobject ** hugepage_kobj)385 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
386 {
387 return 0;
388 }
389
hugepage_exit_sysfs(struct kobject * hugepage_kobj)390 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
391 {
392 }
393 #endif /* CONFIG_SYSFS */
394
hugepage_init(void)395 static int __init hugepage_init(void)
396 {
397 int err;
398 struct kobject *hugepage_kobj;
399
400 if (!has_transparent_hugepage()) {
401 /*
402 * Hardware doesn't support hugepages, hence disable
403 * DAX PMD support.
404 */
405 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
406 return -EINVAL;
407 }
408
409 /*
410 * hugepages can't be allocated by the buddy allocator
411 */
412 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
413 /*
414 * we use page->mapping and page->index in second tail page
415 * as list_head: assuming THP order >= 2
416 */
417 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
418
419 err = hugepage_init_sysfs(&hugepage_kobj);
420 if (err)
421 goto err_sysfs;
422
423 err = khugepaged_init();
424 if (err)
425 goto err_slab;
426
427 err = register_shrinker(&huge_zero_page_shrinker);
428 if (err)
429 goto err_hzp_shrinker;
430 err = register_shrinker(&deferred_split_shrinker);
431 if (err)
432 goto err_split_shrinker;
433
434 /*
435 * By default disable transparent hugepages on smaller systems,
436 * where the extra memory used could hurt more than TLB overhead
437 * is likely to save. The admin can still enable it through /sys.
438 */
439 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
440 transparent_hugepage_flags = 0;
441 return 0;
442 }
443
444 err = start_stop_khugepaged();
445 if (err)
446 goto err_khugepaged;
447
448 return 0;
449 err_khugepaged:
450 unregister_shrinker(&deferred_split_shrinker);
451 err_split_shrinker:
452 unregister_shrinker(&huge_zero_page_shrinker);
453 err_hzp_shrinker:
454 khugepaged_destroy();
455 err_slab:
456 hugepage_exit_sysfs(hugepage_kobj);
457 err_sysfs:
458 return err;
459 }
460 subsys_initcall(hugepage_init);
461
setup_transparent_hugepage(char * str)462 static int __init setup_transparent_hugepage(char *str)
463 {
464 int ret = 0;
465 if (!str)
466 goto out;
467 if (!strcmp(str, "always")) {
468 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
469 &transparent_hugepage_flags);
470 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
471 &transparent_hugepage_flags);
472 ret = 1;
473 } else if (!strcmp(str, "madvise")) {
474 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
475 &transparent_hugepage_flags);
476 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
477 &transparent_hugepage_flags);
478 ret = 1;
479 } else if (!strcmp(str, "never")) {
480 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
481 &transparent_hugepage_flags);
482 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
483 &transparent_hugepage_flags);
484 ret = 1;
485 }
486 out:
487 if (!ret)
488 pr_warn("transparent_hugepage= cannot parse, ignored\n");
489 return ret;
490 }
491 __setup("transparent_hugepage=", setup_transparent_hugepage);
492
maybe_pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)493 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
494 {
495 if (likely(vma->vm_flags & VM_WRITE))
496 pmd = pmd_mkwrite(pmd);
497 return pmd;
498 }
499
500 #ifdef CONFIG_MEMCG
get_deferred_split_queue(struct page * page)501 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
502 {
503 struct mem_cgroup *memcg = page_memcg(compound_head(page));
504 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
505
506 if (memcg)
507 return &memcg->deferred_split_queue;
508 else
509 return &pgdat->deferred_split_queue;
510 }
511 #else
get_deferred_split_queue(struct page * page)512 static inline struct deferred_split *get_deferred_split_queue(struct page *page)
513 {
514 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
515
516 return &pgdat->deferred_split_queue;
517 }
518 #endif
519
prep_transhuge_page(struct page * page)520 void prep_transhuge_page(struct page *page)
521 {
522 /*
523 * we use page->mapping and page->indexlru in second tail page
524 * as list_head: assuming THP order >= 2
525 */
526
527 INIT_LIST_HEAD(page_deferred_list(page));
528 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
529 }
530
is_transparent_hugepage(struct page * page)531 static inline bool is_transparent_hugepage(struct page *page)
532 {
533 if (!PageCompound(page))
534 return false;
535
536 page = compound_head(page);
537 return is_huge_zero_page(page) ||
538 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
539 }
540
__thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,loff_t off,unsigned long flags,unsigned long size)541 static unsigned long __thp_get_unmapped_area(struct file *filp,
542 unsigned long addr, unsigned long len,
543 loff_t off, unsigned long flags, unsigned long size)
544 {
545 loff_t off_end = off + len;
546 loff_t off_align = round_up(off, size);
547 unsigned long len_pad, ret;
548
549 if (off_end <= off_align || (off_end - off_align) < size)
550 return 0;
551
552 len_pad = len + size;
553 if (len_pad < len || (off + len_pad) < off)
554 return 0;
555
556 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
557 off >> PAGE_SHIFT, flags);
558
559 /*
560 * The failure might be due to length padding. The caller will retry
561 * without the padding.
562 */
563 if (IS_ERR_VALUE(ret))
564 return 0;
565
566 /*
567 * Do not try to align to THP boundary if allocation at the address
568 * hint succeeds.
569 */
570 if (ret == addr)
571 return addr;
572
573 ret += (off - ret) & (size - 1);
574 return ret;
575 }
576
thp_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)577 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
578 unsigned long len, unsigned long pgoff, unsigned long flags)
579 {
580 unsigned long ret;
581 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
582
583 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
584 if (ret)
585 return ret;
586
587 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
588 }
589 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
590
__do_huge_pmd_anonymous_page(struct vm_fault * vmf,struct page * page,gfp_t gfp)591 static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
592 struct page *page, gfp_t gfp)
593 {
594 struct vm_area_struct *vma = vmf->vma;
595 pgtable_t pgtable;
596 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
597 vm_fault_t ret = 0;
598
599 VM_BUG_ON_PAGE(!PageCompound(page), page);
600
601 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, gfp)) {
602 put_page(page);
603 count_vm_event(THP_FAULT_FALLBACK);
604 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
605 return VM_FAULT_FALLBACK;
606 }
607 cgroup_throttle_swaprate(page, gfp);
608
609 pgtable = pte_alloc_one(vma->vm_mm);
610 if (unlikely(!pgtable)) {
611 ret = VM_FAULT_OOM;
612 goto release;
613 }
614
615 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
616 /*
617 * The memory barrier inside __SetPageUptodate makes sure that
618 * clear_huge_page writes become visible before the set_pmd_at()
619 * write.
620 */
621 __SetPageUptodate(page);
622
623 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
624 if (unlikely(!pmd_none(*vmf->pmd))) {
625 goto unlock_release;
626 } else {
627 pmd_t entry;
628
629 ret = check_stable_address_space(vma->vm_mm);
630 if (ret)
631 goto unlock_release;
632
633 /* Deliver the page fault to userland */
634 if (userfaultfd_missing(vma)) {
635 spin_unlock(vmf->ptl);
636 put_page(page);
637 pte_free(vma->vm_mm, pgtable);
638 ret = handle_userfault(vmf, VM_UFFD_MISSING);
639 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
640 return ret;
641 }
642
643 entry = mk_huge_pmd(page, vma->vm_page_prot);
644 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
645 page_add_new_anon_rmap(page, vma, haddr);
646 lru_cache_add_inactive_or_unevictable(page, vma);
647 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
648 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
649 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
650 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
651 mm_inc_nr_ptes(vma->vm_mm);
652 spin_unlock(vmf->ptl);
653 count_vm_event(THP_FAULT_ALLOC);
654 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
655 }
656
657 return 0;
658 unlock_release:
659 spin_unlock(vmf->ptl);
660 release:
661 if (pgtable)
662 pte_free(vma->vm_mm, pgtable);
663 put_page(page);
664 return ret;
665
666 }
667
668 /*
669 * always: directly stall for all thp allocations
670 * defer: wake kswapd and fail if not immediately available
671 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
672 * fail if not immediately available
673 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
674 * available
675 * never: never stall for any thp allocation
676 */
vma_thp_gfp_mask(struct vm_area_struct * vma)677 gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
678 {
679 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
680
681 /* Always do synchronous compaction */
682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
683 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
684
685 /* Kick kcompactd and fail quickly */
686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
687 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
688
689 /* Synchronous compaction if madvised, otherwise kick kcompactd */
690 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
691 return GFP_TRANSHUGE_LIGHT |
692 (vma_madvised ? __GFP_DIRECT_RECLAIM :
693 __GFP_KSWAPD_RECLAIM);
694
695 /* Only do synchronous compaction if madvised */
696 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
697 return GFP_TRANSHUGE_LIGHT |
698 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
699
700 return GFP_TRANSHUGE_LIGHT;
701 }
702
703 /* Caller must hold page table lock. */
set_huge_zero_page(pgtable_t pgtable,struct mm_struct * mm,struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd,struct page * zero_page)704 static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
705 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
706 struct page *zero_page)
707 {
708 pmd_t entry;
709 if (!pmd_none(*pmd))
710 return;
711 entry = mk_pmd(zero_page, vma->vm_page_prot);
712 entry = pmd_mkhuge(entry);
713 if (pgtable)
714 pgtable_trans_huge_deposit(mm, pmd, pgtable);
715 set_pmd_at(mm, haddr, pmd, entry);
716 mm_inc_nr_ptes(mm);
717 }
718
do_huge_pmd_anonymous_page(struct vm_fault * vmf)719 vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
720 {
721 struct vm_area_struct *vma = vmf->vma;
722 gfp_t gfp;
723 struct folio *folio;
724 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
725
726 if (!transhuge_vma_suitable(vma, haddr))
727 return VM_FAULT_FALLBACK;
728 if (unlikely(anon_vma_prepare(vma)))
729 return VM_FAULT_OOM;
730 khugepaged_enter(vma, vma->vm_flags);
731
732 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
733 !mm_forbids_zeropage(vma->vm_mm) &&
734 transparent_hugepage_use_zero_page()) {
735 pgtable_t pgtable;
736 struct page *zero_page;
737 vm_fault_t ret;
738 pgtable = pte_alloc_one(vma->vm_mm);
739 if (unlikely(!pgtable))
740 return VM_FAULT_OOM;
741 zero_page = mm_get_huge_zero_page(vma->vm_mm);
742 if (unlikely(!zero_page)) {
743 pte_free(vma->vm_mm, pgtable);
744 count_vm_event(THP_FAULT_FALLBACK);
745 return VM_FAULT_FALLBACK;
746 }
747 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
748 ret = 0;
749 if (pmd_none(*vmf->pmd)) {
750 ret = check_stable_address_space(vma->vm_mm);
751 if (ret) {
752 spin_unlock(vmf->ptl);
753 pte_free(vma->vm_mm, pgtable);
754 } else if (userfaultfd_missing(vma)) {
755 spin_unlock(vmf->ptl);
756 pte_free(vma->vm_mm, pgtable);
757 ret = handle_userfault(vmf, VM_UFFD_MISSING);
758 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
759 } else {
760 set_huge_zero_page(pgtable, vma->vm_mm, vma,
761 haddr, vmf->pmd, zero_page);
762 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
763 spin_unlock(vmf->ptl);
764 }
765 } else {
766 spin_unlock(vmf->ptl);
767 pte_free(vma->vm_mm, pgtable);
768 }
769 return ret;
770 }
771 gfp = vma_thp_gfp_mask(vma);
772 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, vma, haddr, true);
773 if (unlikely(!folio)) {
774 count_vm_event(THP_FAULT_FALLBACK);
775 return VM_FAULT_FALLBACK;
776 }
777 return __do_huge_pmd_anonymous_page(vmf, &folio->page, gfp);
778 }
779
insert_pfn_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,pfn_t pfn,pgprot_t prot,bool write,pgtable_t pgtable)780 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
781 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
782 pgtable_t pgtable)
783 {
784 struct mm_struct *mm = vma->vm_mm;
785 pmd_t entry;
786 spinlock_t *ptl;
787
788 ptl = pmd_lock(mm, pmd);
789 if (!pmd_none(*pmd)) {
790 if (write) {
791 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
792 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
793 goto out_unlock;
794 }
795 entry = pmd_mkyoung(*pmd);
796 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
797 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
798 update_mmu_cache_pmd(vma, addr, pmd);
799 }
800
801 goto out_unlock;
802 }
803
804 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
805 if (pfn_t_devmap(pfn))
806 entry = pmd_mkdevmap(entry);
807 if (write) {
808 entry = pmd_mkyoung(pmd_mkdirty(entry));
809 entry = maybe_pmd_mkwrite(entry, vma);
810 }
811
812 if (pgtable) {
813 pgtable_trans_huge_deposit(mm, pmd, pgtable);
814 mm_inc_nr_ptes(mm);
815 pgtable = NULL;
816 }
817
818 set_pmd_at(mm, addr, pmd, entry);
819 update_mmu_cache_pmd(vma, addr, pmd);
820
821 out_unlock:
822 spin_unlock(ptl);
823 if (pgtable)
824 pte_free(mm, pgtable);
825 }
826
827 /**
828 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
829 * @vmf: Structure describing the fault
830 * @pfn: pfn to insert
831 * @pgprot: page protection to use
832 * @write: whether it's a write fault
833 *
834 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
835 * also consult the vmf_insert_mixed_prot() documentation when
836 * @pgprot != @vmf->vma->vm_page_prot.
837 *
838 * Return: vm_fault_t value.
839 */
vmf_insert_pfn_pmd_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)840 vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
841 pgprot_t pgprot, bool write)
842 {
843 unsigned long addr = vmf->address & PMD_MASK;
844 struct vm_area_struct *vma = vmf->vma;
845 pgtable_t pgtable = NULL;
846
847 /*
848 * If we had pmd_special, we could avoid all these restrictions,
849 * but we need to be consistent with PTEs and architectures that
850 * can't support a 'special' bit.
851 */
852 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
853 !pfn_t_devmap(pfn));
854 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
855 (VM_PFNMAP|VM_MIXEDMAP));
856 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
857
858 if (addr < vma->vm_start || addr >= vma->vm_end)
859 return VM_FAULT_SIGBUS;
860
861 if (arch_needs_pgtable_deposit()) {
862 pgtable = pte_alloc_one(vma->vm_mm);
863 if (!pgtable)
864 return VM_FAULT_OOM;
865 }
866
867 track_pfn_insert(vma, &pgprot, pfn);
868
869 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
870 return VM_FAULT_NOPAGE;
871 }
872 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
873
874 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
maybe_pud_mkwrite(pud_t pud,struct vm_area_struct * vma)875 static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
876 {
877 if (likely(vma->vm_flags & VM_WRITE))
878 pud = pud_mkwrite(pud);
879 return pud;
880 }
881
insert_pfn_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,pfn_t pfn,pgprot_t prot,bool write)882 static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
883 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
884 {
885 struct mm_struct *mm = vma->vm_mm;
886 pud_t entry;
887 spinlock_t *ptl;
888
889 ptl = pud_lock(mm, pud);
890 if (!pud_none(*pud)) {
891 if (write) {
892 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
893 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
894 goto out_unlock;
895 }
896 entry = pud_mkyoung(*pud);
897 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
898 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
899 update_mmu_cache_pud(vma, addr, pud);
900 }
901 goto out_unlock;
902 }
903
904 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
905 if (pfn_t_devmap(pfn))
906 entry = pud_mkdevmap(entry);
907 if (write) {
908 entry = pud_mkyoung(pud_mkdirty(entry));
909 entry = maybe_pud_mkwrite(entry, vma);
910 }
911 set_pud_at(mm, addr, pud, entry);
912 update_mmu_cache_pud(vma, addr, pud);
913
914 out_unlock:
915 spin_unlock(ptl);
916 }
917
918 /**
919 * vmf_insert_pfn_pud_prot - insert a pud size pfn
920 * @vmf: Structure describing the fault
921 * @pfn: pfn to insert
922 * @pgprot: page protection to use
923 * @write: whether it's a write fault
924 *
925 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
926 * also consult the vmf_insert_mixed_prot() documentation when
927 * @pgprot != @vmf->vma->vm_page_prot.
928 *
929 * Return: vm_fault_t value.
930 */
vmf_insert_pfn_pud_prot(struct vm_fault * vmf,pfn_t pfn,pgprot_t pgprot,bool write)931 vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
932 pgprot_t pgprot, bool write)
933 {
934 unsigned long addr = vmf->address & PUD_MASK;
935 struct vm_area_struct *vma = vmf->vma;
936
937 /*
938 * If we had pud_special, we could avoid all these restrictions,
939 * but we need to be consistent with PTEs and architectures that
940 * can't support a 'special' bit.
941 */
942 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
943 !pfn_t_devmap(pfn));
944 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
945 (VM_PFNMAP|VM_MIXEDMAP));
946 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
947
948 if (addr < vma->vm_start || addr >= vma->vm_end)
949 return VM_FAULT_SIGBUS;
950
951 track_pfn_insert(vma, &pgprot, pfn);
952
953 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
954 return VM_FAULT_NOPAGE;
955 }
956 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
957 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
958
touch_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags)959 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
960 pmd_t *pmd, int flags)
961 {
962 pmd_t _pmd;
963
964 _pmd = pmd_mkyoung(*pmd);
965 if (flags & FOLL_WRITE)
966 _pmd = pmd_mkdirty(_pmd);
967 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
968 pmd, _pmd, flags & FOLL_WRITE))
969 update_mmu_cache_pmd(vma, addr, pmd);
970 }
971
follow_devmap_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,int flags,struct dev_pagemap ** pgmap)972 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
973 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
974 {
975 unsigned long pfn = pmd_pfn(*pmd);
976 struct mm_struct *mm = vma->vm_mm;
977 struct page *page;
978
979 assert_spin_locked(pmd_lockptr(mm, pmd));
980
981 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
982 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
983 (FOLL_PIN | FOLL_GET)))
984 return NULL;
985
986 if (flags & FOLL_WRITE && !pmd_write(*pmd))
987 return NULL;
988
989 if (pmd_present(*pmd) && pmd_devmap(*pmd))
990 /* pass */;
991 else
992 return NULL;
993
994 if (flags & FOLL_TOUCH)
995 touch_pmd(vma, addr, pmd, flags);
996
997 /*
998 * device mapped pages can only be returned if the
999 * caller will manage the page reference count.
1000 */
1001 if (!(flags & (FOLL_GET | FOLL_PIN)))
1002 return ERR_PTR(-EEXIST);
1003
1004 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1005 *pgmap = get_dev_pagemap(pfn, *pgmap);
1006 if (!*pgmap)
1007 return ERR_PTR(-EFAULT);
1008 page = pfn_to_page(pfn);
1009 if (!try_grab_page(page, flags))
1010 page = ERR_PTR(-ENOMEM);
1011
1012 return page;
1013 }
1014
copy_huge_pmd(struct mm_struct * dst_mm,struct mm_struct * src_mm,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1015 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1016 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1017 struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1018 {
1019 spinlock_t *dst_ptl, *src_ptl;
1020 struct page *src_page;
1021 pmd_t pmd;
1022 pgtable_t pgtable = NULL;
1023 int ret = -ENOMEM;
1024
1025 /* Skip if can be re-fill on fault */
1026 if (!vma_is_anonymous(dst_vma))
1027 return 0;
1028
1029 pgtable = pte_alloc_one(dst_mm);
1030 if (unlikely(!pgtable))
1031 goto out;
1032
1033 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1034 src_ptl = pmd_lockptr(src_mm, src_pmd);
1035 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1036
1037 ret = -EAGAIN;
1038 pmd = *src_pmd;
1039
1040 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1041 if (unlikely(is_swap_pmd(pmd))) {
1042 swp_entry_t entry = pmd_to_swp_entry(pmd);
1043
1044 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1045 if (!is_readable_migration_entry(entry)) {
1046 entry = make_readable_migration_entry(
1047 swp_offset(entry));
1048 pmd = swp_entry_to_pmd(entry);
1049 if (pmd_swp_soft_dirty(*src_pmd))
1050 pmd = pmd_swp_mksoft_dirty(pmd);
1051 if (pmd_swp_uffd_wp(*src_pmd))
1052 pmd = pmd_swp_mkuffd_wp(pmd);
1053 set_pmd_at(src_mm, addr, src_pmd, pmd);
1054 }
1055 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1056 mm_inc_nr_ptes(dst_mm);
1057 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1058 if (!userfaultfd_wp(dst_vma))
1059 pmd = pmd_swp_clear_uffd_wp(pmd);
1060 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1061 ret = 0;
1062 goto out_unlock;
1063 }
1064 #endif
1065
1066 if (unlikely(!pmd_trans_huge(pmd))) {
1067 pte_free(dst_mm, pgtable);
1068 goto out_unlock;
1069 }
1070 /*
1071 * When page table lock is held, the huge zero pmd should not be
1072 * under splitting since we don't split the page itself, only pmd to
1073 * a page table.
1074 */
1075 if (is_huge_zero_pmd(pmd)) {
1076 /*
1077 * get_huge_zero_page() will never allocate a new page here,
1078 * since we already have a zero page to copy. It just takes a
1079 * reference.
1080 */
1081 mm_get_huge_zero_page(dst_mm);
1082 goto out_zero_page;
1083 }
1084
1085 src_page = pmd_page(pmd);
1086 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1087
1088 get_page(src_page);
1089 if (unlikely(page_try_dup_anon_rmap(src_page, true, src_vma))) {
1090 /* Page maybe pinned: split and retry the fault on PTEs. */
1091 put_page(src_page);
1092 pte_free(dst_mm, pgtable);
1093 spin_unlock(src_ptl);
1094 spin_unlock(dst_ptl);
1095 __split_huge_pmd(src_vma, src_pmd, addr, false, NULL);
1096 return -EAGAIN;
1097 }
1098 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1099 out_zero_page:
1100 mm_inc_nr_ptes(dst_mm);
1101 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1102 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1103 if (!userfaultfd_wp(dst_vma))
1104 pmd = pmd_clear_uffd_wp(pmd);
1105 pmd = pmd_mkold(pmd_wrprotect(pmd));
1106 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1107
1108 ret = 0;
1109 out_unlock:
1110 spin_unlock(src_ptl);
1111 spin_unlock(dst_ptl);
1112 out:
1113 return ret;
1114 }
1115
1116 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
touch_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags)1117 static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1118 pud_t *pud, int flags)
1119 {
1120 pud_t _pud;
1121
1122 _pud = pud_mkyoung(*pud);
1123 if (flags & FOLL_WRITE)
1124 _pud = pud_mkdirty(_pud);
1125 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1126 pud, _pud, flags & FOLL_WRITE))
1127 update_mmu_cache_pud(vma, addr, pud);
1128 }
1129
follow_devmap_pud(struct vm_area_struct * vma,unsigned long addr,pud_t * pud,int flags,struct dev_pagemap ** pgmap)1130 struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1131 pud_t *pud, int flags, struct dev_pagemap **pgmap)
1132 {
1133 unsigned long pfn = pud_pfn(*pud);
1134 struct mm_struct *mm = vma->vm_mm;
1135 struct page *page;
1136
1137 assert_spin_locked(pud_lockptr(mm, pud));
1138
1139 if (flags & FOLL_WRITE && !pud_write(*pud))
1140 return NULL;
1141
1142 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1143 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1144 (FOLL_PIN | FOLL_GET)))
1145 return NULL;
1146
1147 if (pud_present(*pud) && pud_devmap(*pud))
1148 /* pass */;
1149 else
1150 return NULL;
1151
1152 if (flags & FOLL_TOUCH)
1153 touch_pud(vma, addr, pud, flags);
1154
1155 /*
1156 * device mapped pages can only be returned if the
1157 * caller will manage the page reference count.
1158 *
1159 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
1160 */
1161 if (!(flags & (FOLL_GET | FOLL_PIN)))
1162 return ERR_PTR(-EEXIST);
1163
1164 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1165 *pgmap = get_dev_pagemap(pfn, *pgmap);
1166 if (!*pgmap)
1167 return ERR_PTR(-EFAULT);
1168 page = pfn_to_page(pfn);
1169 if (!try_grab_page(page, flags))
1170 page = ERR_PTR(-ENOMEM);
1171
1172 return page;
1173 }
1174
copy_huge_pud(struct mm_struct * dst_mm,struct mm_struct * src_mm,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,struct vm_area_struct * vma)1175 int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1176 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1177 struct vm_area_struct *vma)
1178 {
1179 spinlock_t *dst_ptl, *src_ptl;
1180 pud_t pud;
1181 int ret;
1182
1183 dst_ptl = pud_lock(dst_mm, dst_pud);
1184 src_ptl = pud_lockptr(src_mm, src_pud);
1185 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1186
1187 ret = -EAGAIN;
1188 pud = *src_pud;
1189 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1190 goto out_unlock;
1191
1192 /*
1193 * When page table lock is held, the huge zero pud should not be
1194 * under splitting since we don't split the page itself, only pud to
1195 * a page table.
1196 */
1197 if (is_huge_zero_pud(pud)) {
1198 /* No huge zero pud yet */
1199 }
1200
1201 /*
1202 * TODO: once we support anonymous pages, use page_try_dup_anon_rmap()
1203 * and split if duplicating fails.
1204 */
1205 pudp_set_wrprotect(src_mm, addr, src_pud);
1206 pud = pud_mkold(pud_wrprotect(pud));
1207 set_pud_at(dst_mm, addr, dst_pud, pud);
1208
1209 ret = 0;
1210 out_unlock:
1211 spin_unlock(src_ptl);
1212 spin_unlock(dst_ptl);
1213 return ret;
1214 }
1215
huge_pud_set_accessed(struct vm_fault * vmf,pud_t orig_pud)1216 void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1217 {
1218 pud_t entry;
1219 unsigned long haddr;
1220 bool write = vmf->flags & FAULT_FLAG_WRITE;
1221
1222 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1223 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1224 goto unlock;
1225
1226 entry = pud_mkyoung(orig_pud);
1227 if (write)
1228 entry = pud_mkdirty(entry);
1229 haddr = vmf->address & HPAGE_PUD_MASK;
1230 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1231 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1232
1233 unlock:
1234 spin_unlock(vmf->ptl);
1235 }
1236 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1237
huge_pmd_set_accessed(struct vm_fault * vmf)1238 void huge_pmd_set_accessed(struct vm_fault *vmf)
1239 {
1240 pmd_t entry;
1241 unsigned long haddr;
1242 bool write = vmf->flags & FAULT_FLAG_WRITE;
1243 pmd_t orig_pmd = vmf->orig_pmd;
1244
1245 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1246 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1247 goto unlock;
1248
1249 entry = pmd_mkyoung(orig_pmd);
1250 if (write)
1251 entry = pmd_mkdirty(entry);
1252 haddr = vmf->address & HPAGE_PMD_MASK;
1253 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1254 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1255
1256 unlock:
1257 spin_unlock(vmf->ptl);
1258 }
1259
do_huge_pmd_wp_page(struct vm_fault * vmf)1260 vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf)
1261 {
1262 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
1263 struct vm_area_struct *vma = vmf->vma;
1264 struct page *page;
1265 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1266 pmd_t orig_pmd = vmf->orig_pmd;
1267
1268 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1269 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1270
1271 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
1272 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
1273
1274 if (is_huge_zero_pmd(orig_pmd))
1275 goto fallback;
1276
1277 spin_lock(vmf->ptl);
1278
1279 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1280 spin_unlock(vmf->ptl);
1281 return 0;
1282 }
1283
1284 page = pmd_page(orig_pmd);
1285 VM_BUG_ON_PAGE(!PageHead(page), page);
1286
1287 /* Early check when only holding the PT lock. */
1288 if (PageAnonExclusive(page))
1289 goto reuse;
1290
1291 if (!trylock_page(page)) {
1292 get_page(page);
1293 spin_unlock(vmf->ptl);
1294 lock_page(page);
1295 spin_lock(vmf->ptl);
1296 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1297 spin_unlock(vmf->ptl);
1298 unlock_page(page);
1299 put_page(page);
1300 return 0;
1301 }
1302 put_page(page);
1303 }
1304
1305 /* Recheck after temporarily dropping the PT lock. */
1306 if (PageAnonExclusive(page)) {
1307 unlock_page(page);
1308 goto reuse;
1309 }
1310
1311 /*
1312 * See do_wp_page(): we can only reuse the page exclusively if there are
1313 * no additional references. Note that we always drain the LRU
1314 * pagevecs immediately after adding a THP.
1315 */
1316 if (page_count(page) > 1 + PageSwapCache(page) * thp_nr_pages(page))
1317 goto unlock_fallback;
1318 if (PageSwapCache(page))
1319 try_to_free_swap(page);
1320 if (page_count(page) == 1) {
1321 pmd_t entry;
1322
1323 page_move_anon_rmap(page, vma);
1324 unlock_page(page);
1325 reuse:
1326 if (unlikely(unshare)) {
1327 spin_unlock(vmf->ptl);
1328 return 0;
1329 }
1330 entry = pmd_mkyoung(orig_pmd);
1331 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1332 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1333 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1334 spin_unlock(vmf->ptl);
1335 return VM_FAULT_WRITE;
1336 }
1337
1338 unlock_fallback:
1339 unlock_page(page);
1340 spin_unlock(vmf->ptl);
1341 fallback:
1342 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1343 return VM_FAULT_FALLBACK;
1344 }
1345
1346 /* FOLL_FORCE can write to even unwritable PMDs in COW mappings. */
can_follow_write_pmd(pmd_t pmd,struct page * page,struct vm_area_struct * vma,unsigned int flags)1347 static inline bool can_follow_write_pmd(pmd_t pmd, struct page *page,
1348 struct vm_area_struct *vma,
1349 unsigned int flags)
1350 {
1351 /* If the pmd is writable, we can write to the page. */
1352 if (pmd_write(pmd))
1353 return true;
1354
1355 /* Maybe FOLL_FORCE is set to override it? */
1356 if (!(flags & FOLL_FORCE))
1357 return false;
1358
1359 /* But FOLL_FORCE has no effect on shared mappings */
1360 if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
1361 return false;
1362
1363 /* ... or read-only private ones */
1364 if (!(vma->vm_flags & VM_MAYWRITE))
1365 return false;
1366
1367 /* ... or already writable ones that just need to take a write fault */
1368 if (vma->vm_flags & VM_WRITE)
1369 return false;
1370
1371 /*
1372 * See can_change_pte_writable(): we broke COW and could map the page
1373 * writable if we have an exclusive anonymous page ...
1374 */
1375 if (!page || !PageAnon(page) || !PageAnonExclusive(page))
1376 return false;
1377
1378 /* ... and a write-fault isn't required for other reasons. */
1379 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) &&
1380 !(vma->vm_flags & VM_SOFTDIRTY) && !pmd_soft_dirty(pmd))
1381 return false;
1382 return !userfaultfd_huge_pmd_wp(vma, pmd);
1383 }
1384
follow_trans_huge_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmd,unsigned int flags)1385 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1386 unsigned long addr,
1387 pmd_t *pmd,
1388 unsigned int flags)
1389 {
1390 struct mm_struct *mm = vma->vm_mm;
1391 struct page *page;
1392
1393 assert_spin_locked(pmd_lockptr(mm, pmd));
1394
1395 page = pmd_page(*pmd);
1396 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1397
1398 if ((flags & FOLL_WRITE) &&
1399 !can_follow_write_pmd(*pmd, page, vma, flags))
1400 return NULL;
1401
1402 /* Avoid dumping huge zero page */
1403 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1404 return ERR_PTR(-EFAULT);
1405
1406 /* Full NUMA hinting faults to serialise migration in fault paths */
1407 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1408 return NULL;
1409
1410 if (!pmd_write(*pmd) && gup_must_unshare(flags, page))
1411 return ERR_PTR(-EMLINK);
1412
1413 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
1414 !PageAnonExclusive(page), page);
1415
1416 if (!try_grab_page(page, flags))
1417 return ERR_PTR(-ENOMEM);
1418
1419 if (flags & FOLL_TOUCH)
1420 touch_pmd(vma, addr, pmd, flags);
1421
1422 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1423 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1424
1425 return page;
1426 }
1427
1428 /* NUMA hinting page fault entry point for trans huge pmds */
do_huge_pmd_numa_page(struct vm_fault * vmf)1429 vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
1430 {
1431 struct vm_area_struct *vma = vmf->vma;
1432 pmd_t oldpmd = vmf->orig_pmd;
1433 pmd_t pmd;
1434 struct page *page;
1435 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1436 int page_nid = NUMA_NO_NODE;
1437 int target_nid, last_cpupid = -1;
1438 bool migrated = false;
1439 bool was_writable = pmd_savedwrite(oldpmd);
1440 int flags = 0;
1441
1442 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1443 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1444 spin_unlock(vmf->ptl);
1445 goto out;
1446 }
1447
1448 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1449 page = vm_normal_page_pmd(vma, haddr, pmd);
1450 if (!page)
1451 goto out_map;
1452
1453 /* See similar comment in do_numa_page for explanation */
1454 if (!was_writable)
1455 flags |= TNF_NO_GROUP;
1456
1457 page_nid = page_to_nid(page);
1458 last_cpupid = page_cpupid_last(page);
1459 target_nid = numa_migrate_prep(page, vma, haddr, page_nid,
1460 &flags);
1461
1462 if (target_nid == NUMA_NO_NODE) {
1463 put_page(page);
1464 goto out_map;
1465 }
1466
1467 spin_unlock(vmf->ptl);
1468
1469 migrated = migrate_misplaced_page(page, vma, target_nid);
1470 if (migrated) {
1471 flags |= TNF_MIGRATED;
1472 page_nid = target_nid;
1473 } else {
1474 flags |= TNF_MIGRATE_FAIL;
1475 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1476 if (unlikely(!pmd_same(oldpmd, *vmf->pmd))) {
1477 spin_unlock(vmf->ptl);
1478 goto out;
1479 }
1480 goto out_map;
1481 }
1482
1483 out:
1484 if (page_nid != NUMA_NO_NODE)
1485 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1486 flags);
1487
1488 return 0;
1489
1490 out_map:
1491 /* Restore the PMD */
1492 pmd = pmd_modify(oldpmd, vma->vm_page_prot);
1493 pmd = pmd_mkyoung(pmd);
1494 if (was_writable)
1495 pmd = pmd_mkwrite(pmd);
1496 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1497 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1498 spin_unlock(vmf->ptl);
1499 goto out;
1500 }
1501
1502 /*
1503 * Return true if we do MADV_FREE successfully on entire pmd page.
1504 * Otherwise, return false.
1505 */
madvise_free_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long next)1506 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1507 pmd_t *pmd, unsigned long addr, unsigned long next)
1508 {
1509 spinlock_t *ptl;
1510 pmd_t orig_pmd;
1511 struct page *page;
1512 struct mm_struct *mm = tlb->mm;
1513 bool ret = false;
1514
1515 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1516
1517 ptl = pmd_trans_huge_lock(pmd, vma);
1518 if (!ptl)
1519 goto out_unlocked;
1520
1521 orig_pmd = *pmd;
1522 if (is_huge_zero_pmd(orig_pmd))
1523 goto out;
1524
1525 if (unlikely(!pmd_present(orig_pmd))) {
1526 VM_BUG_ON(thp_migration_supported() &&
1527 !is_pmd_migration_entry(orig_pmd));
1528 goto out;
1529 }
1530
1531 page = pmd_page(orig_pmd);
1532 /*
1533 * If other processes are mapping this page, we couldn't discard
1534 * the page unless they all do MADV_FREE so let's skip the page.
1535 */
1536 if (total_mapcount(page) != 1)
1537 goto out;
1538
1539 if (!trylock_page(page))
1540 goto out;
1541
1542 /*
1543 * If user want to discard part-pages of THP, split it so MADV_FREE
1544 * will deactivate only them.
1545 */
1546 if (next - addr != HPAGE_PMD_SIZE) {
1547 get_page(page);
1548 spin_unlock(ptl);
1549 split_huge_page(page);
1550 unlock_page(page);
1551 put_page(page);
1552 goto out_unlocked;
1553 }
1554
1555 if (PageDirty(page))
1556 ClearPageDirty(page);
1557 unlock_page(page);
1558
1559 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1560 pmdp_invalidate(vma, addr, pmd);
1561 orig_pmd = pmd_mkold(orig_pmd);
1562 orig_pmd = pmd_mkclean(orig_pmd);
1563
1564 set_pmd_at(mm, addr, pmd, orig_pmd);
1565 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1566 }
1567
1568 mark_page_lazyfree(page);
1569 ret = true;
1570 out:
1571 spin_unlock(ptl);
1572 out_unlocked:
1573 return ret;
1574 }
1575
zap_deposited_table(struct mm_struct * mm,pmd_t * pmd)1576 static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1577 {
1578 pgtable_t pgtable;
1579
1580 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1581 pte_free(mm, pgtable);
1582 mm_dec_nr_ptes(mm);
1583 }
1584
zap_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr)1585 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1586 pmd_t *pmd, unsigned long addr)
1587 {
1588 pmd_t orig_pmd;
1589 spinlock_t *ptl;
1590
1591 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1592
1593 ptl = __pmd_trans_huge_lock(pmd, vma);
1594 if (!ptl)
1595 return 0;
1596 /*
1597 * For architectures like ppc64 we look at deposited pgtable
1598 * when calling pmdp_huge_get_and_clear. So do the
1599 * pgtable_trans_huge_withdraw after finishing pmdp related
1600 * operations.
1601 */
1602 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1603 tlb->fullmm);
1604 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1605 if (vma_is_special_huge(vma)) {
1606 if (arch_needs_pgtable_deposit())
1607 zap_deposited_table(tlb->mm, pmd);
1608 spin_unlock(ptl);
1609 } else if (is_huge_zero_pmd(orig_pmd)) {
1610 zap_deposited_table(tlb->mm, pmd);
1611 spin_unlock(ptl);
1612 } else {
1613 struct page *page = NULL;
1614 int flush_needed = 1;
1615
1616 if (pmd_present(orig_pmd)) {
1617 page = pmd_page(orig_pmd);
1618 page_remove_rmap(page, vma, true);
1619 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1620 VM_BUG_ON_PAGE(!PageHead(page), page);
1621 } else if (thp_migration_supported()) {
1622 swp_entry_t entry;
1623
1624 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1625 entry = pmd_to_swp_entry(orig_pmd);
1626 page = pfn_swap_entry_to_page(entry);
1627 flush_needed = 0;
1628 } else
1629 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1630
1631 if (PageAnon(page)) {
1632 zap_deposited_table(tlb->mm, pmd);
1633 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1634 } else {
1635 if (arch_needs_pgtable_deposit())
1636 zap_deposited_table(tlb->mm, pmd);
1637 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1638 }
1639
1640 spin_unlock(ptl);
1641 if (flush_needed)
1642 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1643 }
1644 return 1;
1645 }
1646
1647 #ifndef pmd_move_must_withdraw
pmd_move_must_withdraw(spinlock_t * new_pmd_ptl,spinlock_t * old_pmd_ptl,struct vm_area_struct * vma)1648 static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1649 spinlock_t *old_pmd_ptl,
1650 struct vm_area_struct *vma)
1651 {
1652 /*
1653 * With split pmd lock we also need to move preallocated
1654 * PTE page table if new_pmd is on different PMD page table.
1655 *
1656 * We also don't deposit and withdraw tables for file pages.
1657 */
1658 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1659 }
1660 #endif
1661
move_soft_dirty_pmd(pmd_t pmd)1662 static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1663 {
1664 #ifdef CONFIG_MEM_SOFT_DIRTY
1665 if (unlikely(is_pmd_migration_entry(pmd)))
1666 pmd = pmd_swp_mksoft_dirty(pmd);
1667 else if (pmd_present(pmd))
1668 pmd = pmd_mksoft_dirty(pmd);
1669 #endif
1670 return pmd;
1671 }
1672
move_huge_pmd(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pmd_t * old_pmd,pmd_t * new_pmd)1673 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1674 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
1675 {
1676 spinlock_t *old_ptl, *new_ptl;
1677 pmd_t pmd;
1678 struct mm_struct *mm = vma->vm_mm;
1679 bool force_flush = false;
1680
1681 /*
1682 * The destination pmd shouldn't be established, free_pgtables()
1683 * should have release it.
1684 */
1685 if (WARN_ON(!pmd_none(*new_pmd))) {
1686 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1687 return false;
1688 }
1689
1690 /*
1691 * We don't have to worry about the ordering of src and dst
1692 * ptlocks because exclusive mmap_lock prevents deadlock.
1693 */
1694 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1695 if (old_ptl) {
1696 new_ptl = pmd_lockptr(mm, new_pmd);
1697 if (new_ptl != old_ptl)
1698 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1699 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1700 if (pmd_present(pmd))
1701 force_flush = true;
1702 VM_BUG_ON(!pmd_none(*new_pmd));
1703
1704 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1705 pgtable_t pgtable;
1706 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1707 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1708 }
1709 pmd = move_soft_dirty_pmd(pmd);
1710 set_pmd_at(mm, new_addr, new_pmd, pmd);
1711 if (force_flush)
1712 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1713 if (new_ptl != old_ptl)
1714 spin_unlock(new_ptl);
1715 spin_unlock(old_ptl);
1716 return true;
1717 }
1718 return false;
1719 }
1720
1721 /*
1722 * Returns
1723 * - 0 if PMD could not be locked
1724 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1725 * or if prot_numa but THP migration is not supported
1726 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
1727 */
change_huge_pmd(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,pgprot_t newprot,unsigned long cp_flags)1728 int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1729 pmd_t *pmd, unsigned long addr, pgprot_t newprot,
1730 unsigned long cp_flags)
1731 {
1732 struct mm_struct *mm = vma->vm_mm;
1733 spinlock_t *ptl;
1734 pmd_t oldpmd, entry;
1735 bool preserve_write;
1736 int ret;
1737 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
1738 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1739 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
1740
1741 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1742
1743 if (prot_numa && !thp_migration_supported())
1744 return 1;
1745
1746 ptl = __pmd_trans_huge_lock(pmd, vma);
1747 if (!ptl)
1748 return 0;
1749
1750 preserve_write = prot_numa && pmd_write(*pmd);
1751 ret = 1;
1752
1753 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1754 if (is_swap_pmd(*pmd)) {
1755 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1756 struct page *page = pfn_swap_entry_to_page(entry);
1757
1758 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1759 if (is_writable_migration_entry(entry)) {
1760 pmd_t newpmd;
1761 /*
1762 * A protection check is difficult so
1763 * just be safe and disable write
1764 */
1765 if (PageAnon(page))
1766 entry = make_readable_exclusive_migration_entry(swp_offset(entry));
1767 else
1768 entry = make_readable_migration_entry(swp_offset(entry));
1769 newpmd = swp_entry_to_pmd(entry);
1770 if (pmd_swp_soft_dirty(*pmd))
1771 newpmd = pmd_swp_mksoft_dirty(newpmd);
1772 if (pmd_swp_uffd_wp(*pmd))
1773 newpmd = pmd_swp_mkuffd_wp(newpmd);
1774 set_pmd_at(mm, addr, pmd, newpmd);
1775 }
1776 goto unlock;
1777 }
1778 #endif
1779
1780 if (prot_numa) {
1781 struct page *page;
1782 /*
1783 * Avoid trapping faults against the zero page. The read-only
1784 * data is likely to be read-cached on the local CPU and
1785 * local/remote hits to the zero page are not interesting.
1786 */
1787 if (is_huge_zero_pmd(*pmd))
1788 goto unlock;
1789
1790 if (pmd_protnone(*pmd))
1791 goto unlock;
1792
1793 page = pmd_page(*pmd);
1794 /*
1795 * Skip scanning top tier node if normal numa
1796 * balancing is disabled
1797 */
1798 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_NORMAL) &&
1799 node_is_toptier(page_to_nid(page)))
1800 goto unlock;
1801 }
1802 /*
1803 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
1804 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1805 * which is also under mmap_read_lock(mm):
1806 *
1807 * CPU0: CPU1:
1808 * change_huge_pmd(prot_numa=1)
1809 * pmdp_huge_get_and_clear_notify()
1810 * madvise_dontneed()
1811 * zap_pmd_range()
1812 * pmd_trans_huge(*pmd) == 0 (without ptl)
1813 * // skip the pmd
1814 * set_pmd_at();
1815 * // pmd is re-established
1816 *
1817 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1818 * which may break userspace.
1819 *
1820 * pmdp_invalidate_ad() is required to make sure we don't miss
1821 * dirty/young flags set by hardware.
1822 */
1823 oldpmd = pmdp_invalidate_ad(vma, addr, pmd);
1824
1825 entry = pmd_modify(oldpmd, newprot);
1826 if (preserve_write)
1827 entry = pmd_mk_savedwrite(entry);
1828 if (uffd_wp) {
1829 entry = pmd_wrprotect(entry);
1830 entry = pmd_mkuffd_wp(entry);
1831 } else if (uffd_wp_resolve) {
1832 /*
1833 * Leave the write bit to be handled by PF interrupt
1834 * handler, then things like COW could be properly
1835 * handled.
1836 */
1837 entry = pmd_clear_uffd_wp(entry);
1838 }
1839 ret = HPAGE_PMD_NR;
1840 set_pmd_at(mm, addr, pmd, entry);
1841
1842 if (huge_pmd_needs_flush(oldpmd, entry))
1843 tlb_flush_pmd_range(tlb, addr, HPAGE_PMD_SIZE);
1844
1845 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1846 unlock:
1847 spin_unlock(ptl);
1848 return ret;
1849 }
1850
1851 /*
1852 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1853 *
1854 * Note that if it returns page table lock pointer, this routine returns without
1855 * unlocking page table lock. So callers must unlock it.
1856 */
__pmd_trans_huge_lock(pmd_t * pmd,struct vm_area_struct * vma)1857 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1858 {
1859 spinlock_t *ptl;
1860 ptl = pmd_lock(vma->vm_mm, pmd);
1861 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1862 pmd_devmap(*pmd)))
1863 return ptl;
1864 spin_unlock(ptl);
1865 return NULL;
1866 }
1867
1868 /*
1869 * Returns true if a given pud maps a thp, false otherwise.
1870 *
1871 * Note that if it returns true, this routine returns without unlocking page
1872 * table lock. So callers must unlock it.
1873 */
__pud_trans_huge_lock(pud_t * pud,struct vm_area_struct * vma)1874 spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1875 {
1876 spinlock_t *ptl;
1877
1878 ptl = pud_lock(vma->vm_mm, pud);
1879 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1880 return ptl;
1881 spin_unlock(ptl);
1882 return NULL;
1883 }
1884
1885 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
zap_huge_pud(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr)1886 int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1887 pud_t *pud, unsigned long addr)
1888 {
1889 spinlock_t *ptl;
1890
1891 ptl = __pud_trans_huge_lock(pud, vma);
1892 if (!ptl)
1893 return 0;
1894 /*
1895 * For architectures like ppc64 we look at deposited pgtable
1896 * when calling pudp_huge_get_and_clear. So do the
1897 * pgtable_trans_huge_withdraw after finishing pudp related
1898 * operations.
1899 */
1900 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
1901 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1902 if (vma_is_special_huge(vma)) {
1903 spin_unlock(ptl);
1904 /* No zero page support yet */
1905 } else {
1906 /* No support for anonymous PUD pages yet */
1907 BUG();
1908 }
1909 return 1;
1910 }
1911
__split_huge_pud_locked(struct vm_area_struct * vma,pud_t * pud,unsigned long haddr)1912 static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1913 unsigned long haddr)
1914 {
1915 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1916 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1917 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1918 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1919
1920 count_vm_event(THP_SPLIT_PUD);
1921
1922 pudp_huge_clear_flush_notify(vma, haddr, pud);
1923 }
1924
__split_huge_pud(struct vm_area_struct * vma,pud_t * pud,unsigned long address)1925 void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1926 unsigned long address)
1927 {
1928 spinlock_t *ptl;
1929 struct mmu_notifier_range range;
1930
1931 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1932 address & HPAGE_PUD_MASK,
1933 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1934 mmu_notifier_invalidate_range_start(&range);
1935 ptl = pud_lock(vma->vm_mm, pud);
1936 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1937 goto out;
1938 __split_huge_pud_locked(vma, pud, range.start);
1939
1940 out:
1941 spin_unlock(ptl);
1942 /*
1943 * No need to double call mmu_notifier->invalidate_range() callback as
1944 * the above pudp_huge_clear_flush_notify() did already call it.
1945 */
1946 mmu_notifier_invalidate_range_only_end(&range);
1947 }
1948 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1949
__split_huge_zero_page_pmd(struct vm_area_struct * vma,unsigned long haddr,pmd_t * pmd)1950 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1951 unsigned long haddr, pmd_t *pmd)
1952 {
1953 struct mm_struct *mm = vma->vm_mm;
1954 pgtable_t pgtable;
1955 pmd_t _pmd;
1956 int i;
1957
1958 /*
1959 * Leave pmd empty until pte is filled note that it is fine to delay
1960 * notification until mmu_notifier_invalidate_range_end() as we are
1961 * replacing a zero pmd write protected page with a zero pte write
1962 * protected page.
1963 *
1964 * See Documentation/vm/mmu_notifier.rst
1965 */
1966 pmdp_huge_clear_flush(vma, haddr, pmd);
1967
1968 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1969 pmd_populate(mm, &_pmd, pgtable);
1970
1971 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1972 pte_t *pte, entry;
1973 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1974 entry = pte_mkspecial(entry);
1975 pte = pte_offset_map(&_pmd, haddr);
1976 VM_BUG_ON(!pte_none(*pte));
1977 set_pte_at(mm, haddr, pte, entry);
1978 pte_unmap(pte);
1979 }
1980 smp_wmb(); /* make pte visible before pmd */
1981 pmd_populate(mm, pmd, pgtable);
1982 }
1983
__split_huge_pmd_locked(struct vm_area_struct * vma,pmd_t * pmd,unsigned long haddr,bool freeze)1984 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1985 unsigned long haddr, bool freeze)
1986 {
1987 struct mm_struct *mm = vma->vm_mm;
1988 struct page *page;
1989 pgtable_t pgtable;
1990 pmd_t old_pmd, _pmd;
1991 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
1992 bool anon_exclusive = false;
1993 unsigned long addr;
1994 int i;
1995
1996 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1997 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1998 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1999 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2000 && !pmd_devmap(*pmd));
2001
2002 count_vm_event(THP_SPLIT_PMD);
2003
2004 if (!vma_is_anonymous(vma)) {
2005 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2006 /*
2007 * We are going to unmap this huge page. So
2008 * just go ahead and zap it
2009 */
2010 if (arch_needs_pgtable_deposit())
2011 zap_deposited_table(mm, pmd);
2012 if (vma_is_special_huge(vma))
2013 return;
2014 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2015 swp_entry_t entry;
2016
2017 entry = pmd_to_swp_entry(old_pmd);
2018 page = pfn_swap_entry_to_page(entry);
2019 } else {
2020 page = pmd_page(old_pmd);
2021 if (!PageDirty(page) && pmd_dirty(old_pmd))
2022 set_page_dirty(page);
2023 if (!PageReferenced(page) && pmd_young(old_pmd))
2024 SetPageReferenced(page);
2025 page_remove_rmap(page, vma, true);
2026 put_page(page);
2027 }
2028 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2029 return;
2030 }
2031
2032 if (is_huge_zero_pmd(*pmd)) {
2033 /*
2034 * FIXME: Do we want to invalidate secondary mmu by calling
2035 * mmu_notifier_invalidate_range() see comments below inside
2036 * __split_huge_pmd() ?
2037 *
2038 * We are going from a zero huge page write protected to zero
2039 * small page also write protected so it does not seems useful
2040 * to invalidate secondary mmu at this time.
2041 */
2042 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2043 }
2044
2045 /*
2046 * Up to this point the pmd is present and huge and userland has the
2047 * whole access to the hugepage during the split (which happens in
2048 * place). If we overwrite the pmd with the not-huge version pointing
2049 * to the pte here (which of course we could if all CPUs were bug
2050 * free), userland could trigger a small page size TLB miss on the
2051 * small sized TLB while the hugepage TLB entry is still established in
2052 * the huge TLB. Some CPU doesn't like that.
2053 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2054 * 383 on page 105. Intel should be safe but is also warns that it's
2055 * only safe if the permission and cache attributes of the two entries
2056 * loaded in the two TLB is identical (which should be the case here).
2057 * But it is generally safer to never allow small and huge TLB entries
2058 * for the same virtual address to be loaded simultaneously. So instead
2059 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2060 * current pmd notpresent (atomically because here the pmd_trans_huge
2061 * must remain set at all times on the pmd until the split is complete
2062 * for this pmd), then we flush the SMP TLB and finally we write the
2063 * non-huge version of the pmd entry with pmd_populate.
2064 */
2065 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2066
2067 pmd_migration = is_pmd_migration_entry(old_pmd);
2068 if (unlikely(pmd_migration)) {
2069 swp_entry_t entry;
2070
2071 entry = pmd_to_swp_entry(old_pmd);
2072 page = pfn_swap_entry_to_page(entry);
2073 write = is_writable_migration_entry(entry);
2074 if (PageAnon(page))
2075 anon_exclusive = is_readable_exclusive_migration_entry(entry);
2076 young = false;
2077 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2078 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2079 } else {
2080 page = pmd_page(old_pmd);
2081 if (pmd_dirty(old_pmd))
2082 SetPageDirty(page);
2083 write = pmd_write(old_pmd);
2084 young = pmd_young(old_pmd);
2085 soft_dirty = pmd_soft_dirty(old_pmd);
2086 uffd_wp = pmd_uffd_wp(old_pmd);
2087
2088 VM_BUG_ON_PAGE(!page_count(page), page);
2089 page_ref_add(page, HPAGE_PMD_NR - 1);
2090
2091 /*
2092 * Without "freeze", we'll simply split the PMD, propagating the
2093 * PageAnonExclusive() flag for each PTE by setting it for
2094 * each subpage -- no need to (temporarily) clear.
2095 *
2096 * With "freeze" we want to replace mapped pages by
2097 * migration entries right away. This is only possible if we
2098 * managed to clear PageAnonExclusive() -- see
2099 * set_pmd_migration_entry().
2100 *
2101 * In case we cannot clear PageAnonExclusive(), split the PMD
2102 * only and let try_to_migrate_one() fail later.
2103 */
2104 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
2105 if (freeze && anon_exclusive && page_try_share_anon_rmap(page))
2106 freeze = false;
2107 }
2108
2109 /*
2110 * Withdraw the table only after we mark the pmd entry invalid.
2111 * This's critical for some architectures (Power).
2112 */
2113 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2114 pmd_populate(mm, &_pmd, pgtable);
2115
2116 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2117 pte_t entry, *pte;
2118 /*
2119 * Note that NUMA hinting access restrictions are not
2120 * transferred to avoid any possibility of altering
2121 * permissions across VMAs.
2122 */
2123 if (freeze || pmd_migration) {
2124 swp_entry_t swp_entry;
2125 if (write)
2126 swp_entry = make_writable_migration_entry(
2127 page_to_pfn(page + i));
2128 else if (anon_exclusive)
2129 swp_entry = make_readable_exclusive_migration_entry(
2130 page_to_pfn(page + i));
2131 else
2132 swp_entry = make_readable_migration_entry(
2133 page_to_pfn(page + i));
2134 entry = swp_entry_to_pte(swp_entry);
2135 if (soft_dirty)
2136 entry = pte_swp_mksoft_dirty(entry);
2137 if (uffd_wp)
2138 entry = pte_swp_mkuffd_wp(entry);
2139 } else {
2140 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2141 entry = maybe_mkwrite(entry, vma);
2142 if (anon_exclusive)
2143 SetPageAnonExclusive(page + i);
2144 if (!write)
2145 entry = pte_wrprotect(entry);
2146 if (!young)
2147 entry = pte_mkold(entry);
2148 if (soft_dirty)
2149 entry = pte_mksoft_dirty(entry);
2150 if (uffd_wp)
2151 entry = pte_mkuffd_wp(entry);
2152 }
2153 pte = pte_offset_map(&_pmd, addr);
2154 BUG_ON(!pte_none(*pte));
2155 set_pte_at(mm, addr, pte, entry);
2156 if (!pmd_migration)
2157 atomic_inc(&page[i]._mapcount);
2158 pte_unmap(pte);
2159 }
2160
2161 if (!pmd_migration) {
2162 /*
2163 * Set PG_double_map before dropping compound_mapcount to avoid
2164 * false-negative page_mapped().
2165 */
2166 if (compound_mapcount(page) > 1 &&
2167 !TestSetPageDoubleMap(page)) {
2168 for (i = 0; i < HPAGE_PMD_NR; i++)
2169 atomic_inc(&page[i]._mapcount);
2170 }
2171
2172 lock_page_memcg(page);
2173 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2174 /* Last compound_mapcount is gone. */
2175 __mod_lruvec_page_state(page, NR_ANON_THPS,
2176 -HPAGE_PMD_NR);
2177 if (TestClearPageDoubleMap(page)) {
2178 /* No need in mapcount reference anymore */
2179 for (i = 0; i < HPAGE_PMD_NR; i++)
2180 atomic_dec(&page[i]._mapcount);
2181 }
2182 }
2183 unlock_page_memcg(page);
2184
2185 /* Above is effectively page_remove_rmap(page, vma, true) */
2186 munlock_vma_page(page, vma, true);
2187 }
2188
2189 smp_wmb(); /* make pte visible before pmd */
2190 pmd_populate(mm, pmd, pgtable);
2191
2192 if (freeze) {
2193 for (i = 0; i < HPAGE_PMD_NR; i++) {
2194 page_remove_rmap(page + i, vma, false);
2195 put_page(page + i);
2196 }
2197 }
2198 }
2199
__split_huge_pmd(struct vm_area_struct * vma,pmd_t * pmd,unsigned long address,bool freeze,struct folio * folio)2200 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2201 unsigned long address, bool freeze, struct folio *folio)
2202 {
2203 spinlock_t *ptl;
2204 struct mmu_notifier_range range;
2205
2206 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2207 address & HPAGE_PMD_MASK,
2208 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2209 mmu_notifier_invalidate_range_start(&range);
2210 ptl = pmd_lock(vma->vm_mm, pmd);
2211
2212 /*
2213 * If caller asks to setup a migration entry, we need a folio to check
2214 * pmd against. Otherwise we can end up replacing wrong folio.
2215 */
2216 VM_BUG_ON(freeze && !folio);
2217 VM_WARN_ON_ONCE(folio && !folio_test_locked(folio));
2218
2219 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd) ||
2220 is_pmd_migration_entry(*pmd)) {
2221 if (folio && folio != page_folio(pmd_page(*pmd)))
2222 goto out;
2223 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2224 }
2225
2226 out:
2227 spin_unlock(ptl);
2228 /*
2229 * No need to double call mmu_notifier->invalidate_range() callback.
2230 * They are 3 cases to consider inside __split_huge_pmd_locked():
2231 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2232 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2233 * fault will trigger a flush_notify before pointing to a new page
2234 * (it is fine if the secondary mmu keeps pointing to the old zero
2235 * page in the meantime)
2236 * 3) Split a huge pmd into pte pointing to the same page. No need
2237 * to invalidate secondary tlb entry they are all still valid.
2238 * any further changes to individual pte will notify. So no need
2239 * to call mmu_notifier->invalidate_range()
2240 */
2241 mmu_notifier_invalidate_range_only_end(&range);
2242 }
2243
split_huge_pmd_address(struct vm_area_struct * vma,unsigned long address,bool freeze,struct folio * folio)2244 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2245 bool freeze, struct folio *folio)
2246 {
2247 pgd_t *pgd;
2248 p4d_t *p4d;
2249 pud_t *pud;
2250 pmd_t *pmd;
2251
2252 pgd = pgd_offset(vma->vm_mm, address);
2253 if (!pgd_present(*pgd))
2254 return;
2255
2256 p4d = p4d_offset(pgd, address);
2257 if (!p4d_present(*p4d))
2258 return;
2259
2260 pud = pud_offset(p4d, address);
2261 if (!pud_present(*pud))
2262 return;
2263
2264 pmd = pmd_offset(pud, address);
2265
2266 __split_huge_pmd(vma, pmd, address, freeze, folio);
2267 }
2268
split_huge_pmd_if_needed(struct vm_area_struct * vma,unsigned long address)2269 static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2270 {
2271 /*
2272 * If the new address isn't hpage aligned and it could previously
2273 * contain an hugepage: check if we need to split an huge pmd.
2274 */
2275 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2276 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2277 ALIGN(address, HPAGE_PMD_SIZE)))
2278 split_huge_pmd_address(vma, address, false, NULL);
2279 }
2280
vma_adjust_trans_huge(struct vm_area_struct * vma,unsigned long start,unsigned long end,long adjust_next)2281 void vma_adjust_trans_huge(struct vm_area_struct *vma,
2282 unsigned long start,
2283 unsigned long end,
2284 long adjust_next)
2285 {
2286 /* Check if we need to split start first. */
2287 split_huge_pmd_if_needed(vma, start);
2288
2289 /* Check if we need to split end next. */
2290 split_huge_pmd_if_needed(vma, end);
2291
2292 /*
2293 * If we're also updating the vma->vm_next->vm_start,
2294 * check if we need to split it.
2295 */
2296 if (adjust_next > 0) {
2297 struct vm_area_struct *next = vma->vm_next;
2298 unsigned long nstart = next->vm_start;
2299 nstart += adjust_next;
2300 split_huge_pmd_if_needed(next, nstart);
2301 }
2302 }
2303
unmap_page(struct page * page)2304 static void unmap_page(struct page *page)
2305 {
2306 struct folio *folio = page_folio(page);
2307 enum ttu_flags ttu_flags = TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2308 TTU_SYNC;
2309
2310 VM_BUG_ON_PAGE(!PageHead(page), page);
2311
2312 /*
2313 * Anon pages need migration entries to preserve them, but file
2314 * pages can simply be left unmapped, then faulted back on demand.
2315 * If that is ever changed (perhaps for mlock), update remap_page().
2316 */
2317 if (folio_test_anon(folio))
2318 try_to_migrate(folio, ttu_flags);
2319 else
2320 try_to_unmap(folio, ttu_flags | TTU_IGNORE_MLOCK);
2321 }
2322
remap_page(struct folio * folio,unsigned long nr)2323 static void remap_page(struct folio *folio, unsigned long nr)
2324 {
2325 int i = 0;
2326
2327 /* If unmap_page() uses try_to_migrate() on file, remove this check */
2328 if (!folio_test_anon(folio))
2329 return;
2330 for (;;) {
2331 remove_migration_ptes(folio, folio, true);
2332 i += folio_nr_pages(folio);
2333 if (i >= nr)
2334 break;
2335 folio = folio_next(folio);
2336 }
2337 }
2338
lru_add_page_tail(struct page * head,struct page * tail,struct lruvec * lruvec,struct list_head * list)2339 static void lru_add_page_tail(struct page *head, struct page *tail,
2340 struct lruvec *lruvec, struct list_head *list)
2341 {
2342 VM_BUG_ON_PAGE(!PageHead(head), head);
2343 VM_BUG_ON_PAGE(PageCompound(tail), head);
2344 VM_BUG_ON_PAGE(PageLRU(tail), head);
2345 lockdep_assert_held(&lruvec->lru_lock);
2346
2347 if (list) {
2348 /* page reclaim is reclaiming a huge page */
2349 VM_WARN_ON(PageLRU(head));
2350 get_page(tail);
2351 list_add_tail(&tail->lru, list);
2352 } else {
2353 /* head is still on lru (and we have it frozen) */
2354 VM_WARN_ON(!PageLRU(head));
2355 if (PageUnevictable(tail))
2356 tail->mlock_count = 0;
2357 else
2358 list_add_tail(&tail->lru, &head->lru);
2359 SetPageLRU(tail);
2360 }
2361 }
2362
__split_huge_page_tail(struct page * head,int tail,struct lruvec * lruvec,struct list_head * list)2363 static void __split_huge_page_tail(struct page *head, int tail,
2364 struct lruvec *lruvec, struct list_head *list)
2365 {
2366 struct page *page_tail = head + tail;
2367
2368 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2369
2370 /*
2371 * Clone page flags before unfreezing refcount.
2372 *
2373 * After successful get_page_unless_zero() might follow flags change,
2374 * for example lock_page() which set PG_waiters.
2375 *
2376 * Note that for mapped sub-pages of an anonymous THP,
2377 * PG_anon_exclusive has been cleared in unmap_page() and is stored in
2378 * the migration entry instead from where remap_page() will restore it.
2379 * We can still have PG_anon_exclusive set on effectively unmapped and
2380 * unreferenced sub-pages of an anonymous THP: we can simply drop
2381 * PG_anon_exclusive (-> PG_mappedtodisk) for these here.
2382 */
2383 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2384 page_tail->flags |= (head->flags &
2385 ((1L << PG_referenced) |
2386 (1L << PG_swapbacked) |
2387 (1L << PG_swapcache) |
2388 (1L << PG_mlocked) |
2389 (1L << PG_uptodate) |
2390 (1L << PG_active) |
2391 (1L << PG_workingset) |
2392 (1L << PG_locked) |
2393 (1L << PG_unevictable) |
2394 #ifdef CONFIG_64BIT
2395 (1L << PG_arch_2) |
2396 #endif
2397 (1L << PG_dirty)));
2398
2399 /* ->mapping in first tail page is compound_mapcount */
2400 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2401 page_tail);
2402 page_tail->mapping = head->mapping;
2403 page_tail->index = head->index + tail;
2404 page_tail->private = 0;
2405
2406 /* Page flags must be visible before we make the page non-compound. */
2407 smp_wmb();
2408
2409 /*
2410 * Clear PageTail before unfreezing page refcount.
2411 *
2412 * After successful get_page_unless_zero() might follow put_page()
2413 * which needs correct compound_head().
2414 */
2415 clear_compound_head(page_tail);
2416
2417 /* Finally unfreeze refcount. Additional reference from page cache. */
2418 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2419 PageSwapCache(head)));
2420
2421 if (page_is_young(head))
2422 set_page_young(page_tail);
2423 if (page_is_idle(head))
2424 set_page_idle(page_tail);
2425
2426 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2427
2428 /*
2429 * always add to the tail because some iterators expect new
2430 * pages to show after the currently processed elements - e.g.
2431 * migrate_pages
2432 */
2433 lru_add_page_tail(head, page_tail, lruvec, list);
2434 }
2435
__split_huge_page(struct page * page,struct list_head * list,pgoff_t end)2436 static void __split_huge_page(struct page *page, struct list_head *list,
2437 pgoff_t end)
2438 {
2439 struct folio *folio = page_folio(page);
2440 struct page *head = &folio->page;
2441 struct lruvec *lruvec;
2442 struct address_space *swap_cache = NULL;
2443 unsigned long offset = 0;
2444 unsigned int nr = thp_nr_pages(head);
2445 int i;
2446
2447 /* complete memcg works before add pages to LRU */
2448 split_page_memcg(head, nr);
2449
2450 if (PageAnon(head) && PageSwapCache(head)) {
2451 swp_entry_t entry = { .val = page_private(head) };
2452
2453 offset = swp_offset(entry);
2454 swap_cache = swap_address_space(entry);
2455 xa_lock(&swap_cache->i_pages);
2456 }
2457
2458 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
2459 lruvec = folio_lruvec_lock(folio);
2460
2461 ClearPageHasHWPoisoned(head);
2462
2463 for (i = nr - 1; i >= 1; i--) {
2464 __split_huge_page_tail(head, i, lruvec, list);
2465 /* Some pages can be beyond EOF: drop them from page cache */
2466 if (head[i].index >= end) {
2467 struct folio *tail = page_folio(head + i);
2468
2469 if (shmem_mapping(head->mapping))
2470 shmem_uncharge(head->mapping->host, 1);
2471 else if (folio_test_clear_dirty(tail))
2472 folio_account_cleaned(tail,
2473 inode_to_wb(folio->mapping->host));
2474 __filemap_remove_folio(tail, NULL);
2475 folio_put(tail);
2476 } else if (!PageAnon(page)) {
2477 __xa_store(&head->mapping->i_pages, head[i].index,
2478 head + i, 0);
2479 } else if (swap_cache) {
2480 __xa_store(&swap_cache->i_pages, offset + i,
2481 head + i, 0);
2482 }
2483 }
2484
2485 ClearPageCompound(head);
2486 unlock_page_lruvec(lruvec);
2487 /* Caller disabled irqs, so they are still disabled here */
2488
2489 split_page_owner(head, nr);
2490
2491 /* See comment in __split_huge_page_tail() */
2492 if (PageAnon(head)) {
2493 /* Additional pin to swap cache */
2494 if (PageSwapCache(head)) {
2495 page_ref_add(head, 2);
2496 xa_unlock(&swap_cache->i_pages);
2497 } else {
2498 page_ref_inc(head);
2499 }
2500 } else {
2501 /* Additional pin to page cache */
2502 page_ref_add(head, 2);
2503 xa_unlock(&head->mapping->i_pages);
2504 }
2505 local_irq_enable();
2506
2507 remap_page(folio, nr);
2508
2509 if (PageSwapCache(head)) {
2510 swp_entry_t entry = { .val = page_private(head) };
2511
2512 split_swap_cluster(entry);
2513 }
2514
2515 for (i = 0; i < nr; i++) {
2516 struct page *subpage = head + i;
2517 if (subpage == page)
2518 continue;
2519 unlock_page(subpage);
2520
2521 /*
2522 * Subpages may be freed if there wasn't any mapping
2523 * like if add_to_swap() is running on a lru page that
2524 * had its mapping zapped. And freeing these pages
2525 * requires taking the lru_lock so we do the put_page
2526 * of the tail pages after the split is complete.
2527 */
2528 put_page(subpage);
2529 }
2530 }
2531
2532 /* Racy check whether the huge page can be split */
can_split_folio(struct folio * folio,int * pextra_pins)2533 bool can_split_folio(struct folio *folio, int *pextra_pins)
2534 {
2535 int extra_pins;
2536
2537 /* Additional pins from page cache */
2538 if (folio_test_anon(folio))
2539 extra_pins = folio_test_swapcache(folio) ?
2540 folio_nr_pages(folio) : 0;
2541 else
2542 extra_pins = folio_nr_pages(folio);
2543 if (pextra_pins)
2544 *pextra_pins = extra_pins;
2545 return folio_mapcount(folio) == folio_ref_count(folio) - extra_pins - 1;
2546 }
2547
2548 /*
2549 * This function splits huge page into normal pages. @page can point to any
2550 * subpage of huge page to split. Split doesn't change the position of @page.
2551 *
2552 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2553 * The huge page must be locked.
2554 *
2555 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2556 *
2557 * Both head page and tail pages will inherit mapping, flags, and so on from
2558 * the hugepage.
2559 *
2560 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2561 * they are not mapped.
2562 *
2563 * Returns 0 if the hugepage is split successfully.
2564 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2565 * us.
2566 */
split_huge_page_to_list(struct page * page,struct list_head * list)2567 int split_huge_page_to_list(struct page *page, struct list_head *list)
2568 {
2569 struct folio *folio = page_folio(page);
2570 struct page *head = &folio->page;
2571 struct deferred_split *ds_queue = get_deferred_split_queue(head);
2572 XA_STATE(xas, &head->mapping->i_pages, head->index);
2573 struct anon_vma *anon_vma = NULL;
2574 struct address_space *mapping = NULL;
2575 int extra_pins, ret;
2576 pgoff_t end;
2577 bool is_hzp;
2578
2579 VM_BUG_ON_PAGE(!PageLocked(head), head);
2580 VM_BUG_ON_PAGE(!PageCompound(head), head);
2581
2582 is_hzp = is_huge_zero_page(head);
2583 VM_WARN_ON_ONCE_PAGE(is_hzp, head);
2584 if (is_hzp)
2585 return -EBUSY;
2586
2587 if (PageWriteback(head))
2588 return -EBUSY;
2589
2590 if (PageAnon(head)) {
2591 /*
2592 * The caller does not necessarily hold an mmap_lock that would
2593 * prevent the anon_vma disappearing so we first we take a
2594 * reference to it and then lock the anon_vma for write. This
2595 * is similar to folio_lock_anon_vma_read except the write lock
2596 * is taken to serialise against parallel split or collapse
2597 * operations.
2598 */
2599 anon_vma = page_get_anon_vma(head);
2600 if (!anon_vma) {
2601 ret = -EBUSY;
2602 goto out;
2603 }
2604 end = -1;
2605 mapping = NULL;
2606 anon_vma_lock_write(anon_vma);
2607 } else {
2608 mapping = head->mapping;
2609
2610 /* Truncated ? */
2611 if (!mapping) {
2612 ret = -EBUSY;
2613 goto out;
2614 }
2615
2616 xas_split_alloc(&xas, head, compound_order(head),
2617 mapping_gfp_mask(mapping) & GFP_RECLAIM_MASK);
2618 if (xas_error(&xas)) {
2619 ret = xas_error(&xas);
2620 goto out;
2621 }
2622
2623 anon_vma = NULL;
2624 i_mmap_lock_read(mapping);
2625
2626 /*
2627 *__split_huge_page() may need to trim off pages beyond EOF:
2628 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2629 * which cannot be nested inside the page tree lock. So note
2630 * end now: i_size itself may be changed at any moment, but
2631 * head page lock is good enough to serialize the trimming.
2632 */
2633 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2634 if (shmem_mapping(mapping))
2635 end = shmem_fallocend(mapping->host, end);
2636 }
2637
2638 /*
2639 * Racy check if we can split the page, before unmap_page() will
2640 * split PMDs
2641 */
2642 if (!can_split_folio(folio, &extra_pins)) {
2643 ret = -EBUSY;
2644 goto out_unlock;
2645 }
2646
2647 unmap_page(head);
2648
2649 /* block interrupt reentry in xa_lock and spinlock */
2650 local_irq_disable();
2651 if (mapping) {
2652 /*
2653 * Check if the head page is present in page cache.
2654 * We assume all tail are present too, if head is there.
2655 */
2656 xas_lock(&xas);
2657 xas_reset(&xas);
2658 if (xas_load(&xas) != head)
2659 goto fail;
2660 }
2661
2662 /* Prevent deferred_split_scan() touching ->_refcount */
2663 spin_lock(&ds_queue->split_queue_lock);
2664 if (page_ref_freeze(head, 1 + extra_pins)) {
2665 if (!list_empty(page_deferred_list(head))) {
2666 ds_queue->split_queue_len--;
2667 list_del(page_deferred_list(head));
2668 }
2669 spin_unlock(&ds_queue->split_queue_lock);
2670 if (mapping) {
2671 int nr = thp_nr_pages(head);
2672
2673 xas_split(&xas, head, thp_order(head));
2674 if (PageSwapBacked(head)) {
2675 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2676 -nr);
2677 } else {
2678 __mod_lruvec_page_state(head, NR_FILE_THPS,
2679 -nr);
2680 filemap_nr_thps_dec(mapping);
2681 }
2682 }
2683
2684 __split_huge_page(page, list, end);
2685 ret = 0;
2686 } else {
2687 spin_unlock(&ds_queue->split_queue_lock);
2688 fail:
2689 if (mapping)
2690 xas_unlock(&xas);
2691 local_irq_enable();
2692 remap_page(folio, folio_nr_pages(folio));
2693 ret = -EBUSY;
2694 }
2695
2696 out_unlock:
2697 if (anon_vma) {
2698 anon_vma_unlock_write(anon_vma);
2699 put_anon_vma(anon_vma);
2700 }
2701 if (mapping)
2702 i_mmap_unlock_read(mapping);
2703 out:
2704 xas_destroy(&xas);
2705 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2706 return ret;
2707 }
2708
free_transhuge_page(struct page * page)2709 void free_transhuge_page(struct page *page)
2710 {
2711 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2712 unsigned long flags;
2713
2714 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2715 if (!list_empty(page_deferred_list(page))) {
2716 ds_queue->split_queue_len--;
2717 list_del(page_deferred_list(page));
2718 }
2719 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2720 free_compound_page(page);
2721 }
2722
deferred_split_huge_page(struct page * page)2723 void deferred_split_huge_page(struct page *page)
2724 {
2725 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2726 #ifdef CONFIG_MEMCG
2727 struct mem_cgroup *memcg = page_memcg(compound_head(page));
2728 #endif
2729 unsigned long flags;
2730
2731 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2732
2733 /*
2734 * The try_to_unmap() in page reclaim path might reach here too,
2735 * this may cause a race condition to corrupt deferred split queue.
2736 * And, if page reclaim is already handling the same page, it is
2737 * unnecessary to handle it again in shrinker.
2738 *
2739 * Check PageSwapCache to determine if the page is being
2740 * handled by page reclaim since THP swap would add the page into
2741 * swap cache before calling try_to_unmap().
2742 */
2743 if (PageSwapCache(page))
2744 return;
2745
2746 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2747 if (list_empty(page_deferred_list(page))) {
2748 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2749 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2750 ds_queue->split_queue_len++;
2751 #ifdef CONFIG_MEMCG
2752 if (memcg)
2753 set_shrinker_bit(memcg, page_to_nid(page),
2754 deferred_split_shrinker.id);
2755 #endif
2756 }
2757 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2758 }
2759
deferred_split_count(struct shrinker * shrink,struct shrink_control * sc)2760 static unsigned long deferred_split_count(struct shrinker *shrink,
2761 struct shrink_control *sc)
2762 {
2763 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2764 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2765
2766 #ifdef CONFIG_MEMCG
2767 if (sc->memcg)
2768 ds_queue = &sc->memcg->deferred_split_queue;
2769 #endif
2770 return READ_ONCE(ds_queue->split_queue_len);
2771 }
2772
deferred_split_scan(struct shrinker * shrink,struct shrink_control * sc)2773 static unsigned long deferred_split_scan(struct shrinker *shrink,
2774 struct shrink_control *sc)
2775 {
2776 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2777 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
2778 unsigned long flags;
2779 LIST_HEAD(list), *pos, *next;
2780 struct page *page;
2781 int split = 0;
2782
2783 #ifdef CONFIG_MEMCG
2784 if (sc->memcg)
2785 ds_queue = &sc->memcg->deferred_split_queue;
2786 #endif
2787
2788 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2789 /* Take pin on all head pages to avoid freeing them under us */
2790 list_for_each_safe(pos, next, &ds_queue->split_queue) {
2791 page = list_entry((void *)pos, struct page, deferred_list);
2792 page = compound_head(page);
2793 if (get_page_unless_zero(page)) {
2794 list_move(page_deferred_list(page), &list);
2795 } else {
2796 /* We lost race with put_compound_page() */
2797 list_del_init(page_deferred_list(page));
2798 ds_queue->split_queue_len--;
2799 }
2800 if (!--sc->nr_to_scan)
2801 break;
2802 }
2803 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2804
2805 list_for_each_safe(pos, next, &list) {
2806 page = list_entry((void *)pos, struct page, deferred_list);
2807 if (!trylock_page(page))
2808 goto next;
2809 /* split_huge_page() removes page from list on success */
2810 if (!split_huge_page(page))
2811 split++;
2812 unlock_page(page);
2813 next:
2814 put_page(page);
2815 }
2816
2817 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2818 list_splice_tail(&list, &ds_queue->split_queue);
2819 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
2820
2821 /*
2822 * Stop shrinker if we didn't split any page, but the queue is empty.
2823 * This can happen if pages were freed under us.
2824 */
2825 if (!split && list_empty(&ds_queue->split_queue))
2826 return SHRINK_STOP;
2827 return split;
2828 }
2829
2830 static struct shrinker deferred_split_shrinker = {
2831 .count_objects = deferred_split_count,
2832 .scan_objects = deferred_split_scan,
2833 .seeks = DEFAULT_SEEKS,
2834 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2835 SHRINKER_NONSLAB,
2836 };
2837
2838 #ifdef CONFIG_DEBUG_FS
split_huge_pages_all(void)2839 static void split_huge_pages_all(void)
2840 {
2841 struct zone *zone;
2842 struct page *page;
2843 unsigned long pfn, max_zone_pfn;
2844 unsigned long total = 0, split = 0;
2845
2846 pr_debug("Split all THPs\n");
2847 for_each_populated_zone(zone) {
2848 max_zone_pfn = zone_end_pfn(zone);
2849 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2850 if (!pfn_valid(pfn))
2851 continue;
2852
2853 page = pfn_to_page(pfn);
2854 if (!get_page_unless_zero(page))
2855 continue;
2856
2857 if (zone != page_zone(page))
2858 goto next;
2859
2860 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2861 goto next;
2862
2863 total++;
2864 lock_page(page);
2865 if (!split_huge_page(page))
2866 split++;
2867 unlock_page(page);
2868 next:
2869 put_page(page);
2870 cond_resched();
2871 }
2872 }
2873
2874 pr_debug("%lu of %lu THP split\n", split, total);
2875 }
2876
vma_not_suitable_for_thp_split(struct vm_area_struct * vma)2877 static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2878 {
2879 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2880 is_vm_hugetlb_page(vma);
2881 }
2882
split_huge_pages_pid(int pid,unsigned long vaddr_start,unsigned long vaddr_end)2883 static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2884 unsigned long vaddr_end)
2885 {
2886 int ret = 0;
2887 struct task_struct *task;
2888 struct mm_struct *mm;
2889 unsigned long total = 0, split = 0;
2890 unsigned long addr;
2891
2892 vaddr_start &= PAGE_MASK;
2893 vaddr_end &= PAGE_MASK;
2894
2895 /* Find the task_struct from pid */
2896 rcu_read_lock();
2897 task = find_task_by_vpid(pid);
2898 if (!task) {
2899 rcu_read_unlock();
2900 ret = -ESRCH;
2901 goto out;
2902 }
2903 get_task_struct(task);
2904 rcu_read_unlock();
2905
2906 /* Find the mm_struct */
2907 mm = get_task_mm(task);
2908 put_task_struct(task);
2909
2910 if (!mm) {
2911 ret = -EINVAL;
2912 goto out;
2913 }
2914
2915 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2916 pid, vaddr_start, vaddr_end);
2917
2918 mmap_read_lock(mm);
2919 /*
2920 * always increase addr by PAGE_SIZE, since we could have a PTE page
2921 * table filled with PTE-mapped THPs, each of which is distinct.
2922 */
2923 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
2924 struct vm_area_struct *vma = find_vma(mm, addr);
2925 struct page *page;
2926
2927 if (!vma || addr < vma->vm_start)
2928 break;
2929
2930 /* skip special VMA and hugetlb VMA */
2931 if (vma_not_suitable_for_thp_split(vma)) {
2932 addr = vma->vm_end;
2933 continue;
2934 }
2935
2936 /* FOLL_DUMP to ignore special (like zero) pages */
2937 page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
2938
2939 if (IS_ERR(page))
2940 continue;
2941 if (!page)
2942 continue;
2943
2944 if (!is_transparent_hugepage(page))
2945 goto next;
2946
2947 total++;
2948 if (!can_split_folio(page_folio(page), NULL))
2949 goto next;
2950
2951 if (!trylock_page(page))
2952 goto next;
2953
2954 if (!split_huge_page(page))
2955 split++;
2956
2957 unlock_page(page);
2958 next:
2959 put_page(page);
2960 cond_resched();
2961 }
2962 mmap_read_unlock(mm);
2963 mmput(mm);
2964
2965 pr_debug("%lu of %lu THP split\n", split, total);
2966
2967 out:
2968 return ret;
2969 }
2970
split_huge_pages_in_file(const char * file_path,pgoff_t off_start,pgoff_t off_end)2971 static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
2972 pgoff_t off_end)
2973 {
2974 struct filename *file;
2975 struct file *candidate;
2976 struct address_space *mapping;
2977 int ret = -EINVAL;
2978 pgoff_t index;
2979 int nr_pages = 1;
2980 unsigned long total = 0, split = 0;
2981
2982 file = getname_kernel(file_path);
2983 if (IS_ERR(file))
2984 return ret;
2985
2986 candidate = file_open_name(file, O_RDONLY, 0);
2987 if (IS_ERR(candidate))
2988 goto out;
2989
2990 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
2991 file_path, off_start, off_end);
2992
2993 mapping = candidate->f_mapping;
2994
2995 for (index = off_start; index < off_end; index += nr_pages) {
2996 struct page *fpage = pagecache_get_page(mapping, index,
2997 FGP_ENTRY | FGP_HEAD, 0);
2998
2999 nr_pages = 1;
3000 if (xa_is_value(fpage) || !fpage)
3001 continue;
3002
3003 if (!is_transparent_hugepage(fpage))
3004 goto next;
3005
3006 total++;
3007 nr_pages = thp_nr_pages(fpage);
3008
3009 if (!trylock_page(fpage))
3010 goto next;
3011
3012 if (!split_huge_page(fpage))
3013 split++;
3014
3015 unlock_page(fpage);
3016 next:
3017 put_page(fpage);
3018 cond_resched();
3019 }
3020
3021 filp_close(candidate, NULL);
3022 ret = 0;
3023
3024 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3025 out:
3026 putname(file);
3027 return ret;
3028 }
3029
3030 #define MAX_INPUT_BUF_SZ 255
3031
split_huge_pages_write(struct file * file,const char __user * buf,size_t count,loff_t * ppops)3032 static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3033 size_t count, loff_t *ppops)
3034 {
3035 static DEFINE_MUTEX(split_debug_mutex);
3036 ssize_t ret;
3037 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3038 char input_buf[MAX_INPUT_BUF_SZ];
3039 int pid;
3040 unsigned long vaddr_start, vaddr_end;
3041
3042 ret = mutex_lock_interruptible(&split_debug_mutex);
3043 if (ret)
3044 return ret;
3045
3046 ret = -EFAULT;
3047
3048 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3049 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3050 goto out;
3051
3052 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
3053
3054 if (input_buf[0] == '/') {
3055 char *tok;
3056 char *buf = input_buf;
3057 char file_path[MAX_INPUT_BUF_SZ];
3058 pgoff_t off_start = 0, off_end = 0;
3059 size_t input_len = strlen(input_buf);
3060
3061 tok = strsep(&buf, ",");
3062 if (tok) {
3063 strcpy(file_path, tok);
3064 } else {
3065 ret = -EINVAL;
3066 goto out;
3067 }
3068
3069 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3070 if (ret != 2) {
3071 ret = -EINVAL;
3072 goto out;
3073 }
3074 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3075 if (!ret)
3076 ret = input_len;
3077
3078 goto out;
3079 }
3080
3081 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3082 if (ret == 1 && pid == 1) {
3083 split_huge_pages_all();
3084 ret = strlen(input_buf);
3085 goto out;
3086 } else if (ret != 3) {
3087 ret = -EINVAL;
3088 goto out;
3089 }
3090
3091 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3092 if (!ret)
3093 ret = strlen(input_buf);
3094 out:
3095 mutex_unlock(&split_debug_mutex);
3096 return ret;
3097
3098 }
3099
3100 static const struct file_operations split_huge_pages_fops = {
3101 .owner = THIS_MODULE,
3102 .write = split_huge_pages_write,
3103 .llseek = no_llseek,
3104 };
3105
split_huge_pages_debugfs(void)3106 static int __init split_huge_pages_debugfs(void)
3107 {
3108 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3109 &split_huge_pages_fops);
3110 return 0;
3111 }
3112 late_initcall(split_huge_pages_debugfs);
3113 #endif
3114
3115 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)3116 int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3117 struct page *page)
3118 {
3119 struct vm_area_struct *vma = pvmw->vma;
3120 struct mm_struct *mm = vma->vm_mm;
3121 unsigned long address = pvmw->address;
3122 bool anon_exclusive;
3123 pmd_t pmdval;
3124 swp_entry_t entry;
3125 pmd_t pmdswp;
3126
3127 if (!(pvmw->pmd && !pvmw->pte))
3128 return 0;
3129
3130 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
3131 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
3132
3133 anon_exclusive = PageAnon(page) && PageAnonExclusive(page);
3134 if (anon_exclusive && page_try_share_anon_rmap(page)) {
3135 set_pmd_at(mm, address, pvmw->pmd, pmdval);
3136 return -EBUSY;
3137 }
3138
3139 if (pmd_dirty(pmdval))
3140 set_page_dirty(page);
3141 if (pmd_write(pmdval))
3142 entry = make_writable_migration_entry(page_to_pfn(page));
3143 else if (anon_exclusive)
3144 entry = make_readable_exclusive_migration_entry(page_to_pfn(page));
3145 else
3146 entry = make_readable_migration_entry(page_to_pfn(page));
3147 pmdswp = swp_entry_to_pmd(entry);
3148 if (pmd_soft_dirty(pmdval))
3149 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3150 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
3151 page_remove_rmap(page, vma, true);
3152 put_page(page);
3153 trace_set_migration_pmd(address, pmd_val(pmdswp));
3154
3155 return 0;
3156 }
3157
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)3158 void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3159 {
3160 struct vm_area_struct *vma = pvmw->vma;
3161 struct mm_struct *mm = vma->vm_mm;
3162 unsigned long address = pvmw->address;
3163 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3164 pmd_t pmde;
3165 swp_entry_t entry;
3166
3167 if (!(pvmw->pmd && !pvmw->pte))
3168 return;
3169
3170 entry = pmd_to_swp_entry(*pvmw->pmd);
3171 get_page(new);
3172 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3173 if (pmd_swp_soft_dirty(*pvmw->pmd))
3174 pmde = pmd_mksoft_dirty(pmde);
3175 if (is_writable_migration_entry(entry))
3176 pmde = maybe_pmd_mkwrite(pmde, vma);
3177 if (pmd_swp_uffd_wp(*pvmw->pmd))
3178 pmde = pmd_wrprotect(pmd_mkuffd_wp(pmde));
3179
3180 if (PageAnon(new)) {
3181 rmap_t rmap_flags = RMAP_COMPOUND;
3182
3183 if (!is_readable_migration_entry(entry))
3184 rmap_flags |= RMAP_EXCLUSIVE;
3185
3186 page_add_anon_rmap(new, vma, mmun_start, rmap_flags);
3187 } else {
3188 page_add_file_rmap(new, vma, true);
3189 }
3190 VM_BUG_ON(pmd_write(pmde) && PageAnon(new) && !PageAnonExclusive(new));
3191 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3192
3193 /* No need to invalidate - it was non-present before */
3194 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3195 trace_remove_migration_pmd(address, pmd_val(pmde));
3196 }
3197 #endif
3198