1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/shm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/syscalls.h>
22 #include <linux/capability.h>
23 #include <linux/init.h>
24 #include <linux/file.h>
25 #include <linux/fs.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/hugetlb.h>
29 #include <linux/shmem_fs.h>
30 #include <linux/profile.h>
31 #include <linux/export.h>
32 #include <linux/mount.h>
33 #include <linux/mempolicy.h>
34 #include <linux/rmap.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/mmdebug.h>
37 #include <linux/perf_event.h>
38 #include <linux/audit.h>
39 #include <linux/khugepaged.h>
40 #include <linux/uprobes.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46 #include <linux/pkeys.h>
47 #include <linux/oom.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ksm.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlb.h>
54 #include <asm/mmu_context.h>
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/mmap.h>
58
59 #include "internal.h"
60
61 #ifndef arch_mmap_check
62 #define arch_mmap_check(addr, len, flags) (0)
63 #endif
64
65 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
66 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
67 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
68 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
69 #endif
70 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
71 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
72 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
73 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
74 #endif
75
76 static bool ignore_rlimit_data;
77 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
78
79 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
80 struct vm_area_struct *vma, struct vm_area_struct *prev,
81 struct vm_area_struct *next, unsigned long start,
82 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
83
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)84 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
85 {
86 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
87 }
88
89 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)90 void vma_set_page_prot(struct vm_area_struct *vma)
91 {
92 unsigned long vm_flags = vma->vm_flags;
93 pgprot_t vm_page_prot;
94
95 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
96 if (vma_wants_writenotify(vma, vm_page_prot)) {
97 vm_flags &= ~VM_SHARED;
98 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
99 }
100 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
101 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
102 }
103
104 /*
105 * Requires inode->i_mapping->i_mmap_rwsem
106 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)107 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
108 struct file *file, struct address_space *mapping)
109 {
110 if (vma->vm_flags & VM_SHARED)
111 mapping_unmap_writable(mapping);
112
113 flush_dcache_mmap_lock(mapping);
114 vma_interval_tree_remove(vma, &mapping->i_mmap);
115 flush_dcache_mmap_unlock(mapping);
116 }
117
118 /*
119 * Unlink a file-based vm structure from its interval tree, to hide
120 * vma from rmap and vmtruncate before freeing its page tables.
121 */
unlink_file_vma(struct vm_area_struct * vma)122 void unlink_file_vma(struct vm_area_struct *vma)
123 {
124 struct file *file = vma->vm_file;
125
126 if (file) {
127 struct address_space *mapping = file->f_mapping;
128 i_mmap_lock_write(mapping);
129 __remove_shared_vm_struct(vma, file, mapping);
130 i_mmap_unlock_write(mapping);
131 }
132 }
133
134 /*
135 * Close a vm structure and free it.
136 */
remove_vma(struct vm_area_struct * vma,bool unreachable)137 static void remove_vma(struct vm_area_struct *vma, bool unreachable)
138 {
139 might_sleep();
140 if (vma->vm_ops && vma->vm_ops->close)
141 vma->vm_ops->close(vma);
142 if (vma->vm_file)
143 fput(vma->vm_file);
144 mpol_put(vma_policy(vma));
145 if (unreachable)
146 __vm_area_free(vma);
147 else
148 vm_area_free(vma);
149 }
150
vma_prev_limit(struct vma_iterator * vmi,unsigned long min)151 static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
152 unsigned long min)
153 {
154 return mas_prev(&vmi->mas, min);
155 }
156
157 /*
158 * check_brk_limits() - Use platform specific check of range & verify mlock
159 * limits.
160 * @addr: The address to check
161 * @len: The size of increase.
162 *
163 * Return: 0 on success.
164 */
check_brk_limits(unsigned long addr,unsigned long len)165 static int check_brk_limits(unsigned long addr, unsigned long len)
166 {
167 unsigned long mapped_addr;
168
169 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
170 if (IS_ERR_VALUE(mapped_addr))
171 return mapped_addr;
172
173 return mlock_future_ok(current->mm, current->mm->def_flags, len)
174 ? 0 : -EAGAIN;
175 }
176 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
177 unsigned long addr, unsigned long request, unsigned long flags);
SYSCALL_DEFINE1(brk,unsigned long,brk)178 SYSCALL_DEFINE1(brk, unsigned long, brk)
179 {
180 unsigned long newbrk, oldbrk, origbrk;
181 struct mm_struct *mm = current->mm;
182 struct vm_area_struct *brkvma, *next = NULL;
183 unsigned long min_brk;
184 bool populate = false;
185 LIST_HEAD(uf);
186 struct vma_iterator vmi;
187
188 if (mmap_write_lock_killable(mm))
189 return -EINTR;
190
191 origbrk = mm->brk;
192
193 #ifdef CONFIG_COMPAT_BRK
194 /*
195 * CONFIG_COMPAT_BRK can still be overridden by setting
196 * randomize_va_space to 2, which will still cause mm->start_brk
197 * to be arbitrarily shifted
198 */
199 if (current->brk_randomized)
200 min_brk = mm->start_brk;
201 else
202 min_brk = mm->end_data;
203 #else
204 min_brk = mm->start_brk;
205 #endif
206 if (brk < min_brk)
207 goto out;
208
209 /*
210 * Check against rlimit here. If this check is done later after the test
211 * of oldbrk with newbrk then it can escape the test and let the data
212 * segment grow beyond its set limit the in case where the limit is
213 * not page aligned -Ram Gupta
214 */
215 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
216 mm->end_data, mm->start_data))
217 goto out;
218
219 newbrk = PAGE_ALIGN(brk);
220 oldbrk = PAGE_ALIGN(mm->brk);
221 if (oldbrk == newbrk) {
222 mm->brk = brk;
223 goto success;
224 }
225
226 /* Always allow shrinking brk. */
227 if (brk <= mm->brk) {
228 /* Search one past newbrk */
229 vma_iter_init(&vmi, mm, newbrk);
230 brkvma = vma_find(&vmi, oldbrk);
231 if (!brkvma || brkvma->vm_start >= oldbrk)
232 goto out; /* mapping intersects with an existing non-brk vma. */
233 /*
234 * mm->brk must be protected by write mmap_lock.
235 * do_vma_munmap() will drop the lock on success, so update it
236 * before calling do_vma_munmap().
237 */
238 mm->brk = brk;
239 if (do_vma_munmap(&vmi, brkvma, newbrk, oldbrk, &uf, true))
240 goto out;
241
242 goto success_unlocked;
243 }
244
245 if (check_brk_limits(oldbrk, newbrk - oldbrk))
246 goto out;
247
248 /*
249 * Only check if the next VMA is within the stack_guard_gap of the
250 * expansion area
251 */
252 vma_iter_init(&vmi, mm, oldbrk);
253 next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
254 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
255 goto out;
256
257 brkvma = vma_prev_limit(&vmi, mm->start_brk);
258 /* Ok, looks good - let it rip. */
259 if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
260 goto out;
261
262 mm->brk = brk;
263 if (mm->def_flags & VM_LOCKED)
264 populate = true;
265
266 success:
267 mmap_write_unlock(mm);
268 success_unlocked:
269 userfaultfd_unmap_complete(mm, &uf);
270 if (populate)
271 mm_populate(oldbrk, newbrk - oldbrk);
272 return brk;
273
274 out:
275 mm->brk = origbrk;
276 mmap_write_unlock(mm);
277 return origbrk;
278 }
279
280 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
validate_mm(struct mm_struct * mm)281 static void validate_mm(struct mm_struct *mm)
282 {
283 int bug = 0;
284 int i = 0;
285 struct vm_area_struct *vma;
286 VMA_ITERATOR(vmi, mm, 0);
287
288 mt_validate(&mm->mm_mt);
289 for_each_vma(vmi, vma) {
290 #ifdef CONFIG_DEBUG_VM_RB
291 struct anon_vma *anon_vma = vma->anon_vma;
292 struct anon_vma_chain *avc;
293 #endif
294 unsigned long vmi_start, vmi_end;
295 bool warn = 0;
296
297 vmi_start = vma_iter_addr(&vmi);
298 vmi_end = vma_iter_end(&vmi);
299 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
300 warn = 1;
301
302 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
303 warn = 1;
304
305 if (warn) {
306 pr_emerg("issue in %s\n", current->comm);
307 dump_stack();
308 dump_vma(vma);
309 pr_emerg("tree range: %px start %lx end %lx\n", vma,
310 vmi_start, vmi_end - 1);
311 vma_iter_dump_tree(&vmi);
312 }
313
314 #ifdef CONFIG_DEBUG_VM_RB
315 if (anon_vma) {
316 anon_vma_lock_read(anon_vma);
317 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
318 anon_vma_interval_tree_verify(avc);
319 anon_vma_unlock_read(anon_vma);
320 }
321 #endif
322 i++;
323 }
324 if (i != mm->map_count) {
325 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
326 bug = 1;
327 }
328 VM_BUG_ON_MM(bug, mm);
329 }
330
331 #else /* !CONFIG_DEBUG_VM_MAPLE_TREE */
332 #define validate_mm(mm) do { } while (0)
333 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
334
335 /*
336 * vma has some anon_vma assigned, and is already inserted on that
337 * anon_vma's interval trees.
338 *
339 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
340 * vma must be removed from the anon_vma's interval trees using
341 * anon_vma_interval_tree_pre_update_vma().
342 *
343 * After the update, the vma will be reinserted using
344 * anon_vma_interval_tree_post_update_vma().
345 *
346 * The entire update must be protected by exclusive mmap_lock and by
347 * the root anon_vma's mutex.
348 */
349 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)350 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
351 {
352 struct anon_vma_chain *avc;
353
354 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
355 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
356 }
357
358 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)359 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
360 {
361 struct anon_vma_chain *avc;
362
363 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
364 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
365 }
366
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)367 static unsigned long count_vma_pages_range(struct mm_struct *mm,
368 unsigned long addr, unsigned long end)
369 {
370 VMA_ITERATOR(vmi, mm, addr);
371 struct vm_area_struct *vma;
372 unsigned long nr_pages = 0;
373
374 for_each_vma_range(vmi, vma, end) {
375 unsigned long vm_start = max(addr, vma->vm_start);
376 unsigned long vm_end = min(end, vma->vm_end);
377
378 nr_pages += PHYS_PFN(vm_end - vm_start);
379 }
380
381 return nr_pages;
382 }
383
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)384 static void __vma_link_file(struct vm_area_struct *vma,
385 struct address_space *mapping)
386 {
387 if (vma->vm_flags & VM_SHARED)
388 mapping_allow_writable(mapping);
389
390 flush_dcache_mmap_lock(mapping);
391 vma_interval_tree_insert(vma, &mapping->i_mmap);
392 flush_dcache_mmap_unlock(mapping);
393 }
394
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)395 static int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
396 {
397 VMA_ITERATOR(vmi, mm, 0);
398 struct address_space *mapping = NULL;
399
400 vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
401 if (vma_iter_prealloc(&vmi, vma))
402 return -ENOMEM;
403
404 vma_start_write(vma);
405
406 vma_iter_store(&vmi, vma);
407
408 if (vma->vm_file) {
409 mapping = vma->vm_file->f_mapping;
410 i_mmap_lock_write(mapping);
411 __vma_link_file(vma, mapping);
412 i_mmap_unlock_write(mapping);
413 }
414
415 mm->map_count++;
416 validate_mm(mm);
417 return 0;
418 }
419
420 /*
421 * init_multi_vma_prep() - Initializer for struct vma_prepare
422 * @vp: The vma_prepare struct
423 * @vma: The vma that will be altered once locked
424 * @next: The next vma if it is to be adjusted
425 * @remove: The first vma to be removed
426 * @remove2: The second vma to be removed
427 */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vm_area_struct * next,struct vm_area_struct * remove,struct vm_area_struct * remove2)428 static inline void init_multi_vma_prep(struct vma_prepare *vp,
429 struct vm_area_struct *vma, struct vm_area_struct *next,
430 struct vm_area_struct *remove, struct vm_area_struct *remove2)
431 {
432 memset(vp, 0, sizeof(struct vma_prepare));
433 vp->vma = vma;
434 vp->anon_vma = vma->anon_vma;
435 vp->remove = remove;
436 vp->remove2 = remove2;
437 vp->adj_next = next;
438 if (!vp->anon_vma && next)
439 vp->anon_vma = next->anon_vma;
440
441 vp->file = vma->vm_file;
442 if (vp->file)
443 vp->mapping = vma->vm_file->f_mapping;
444
445 }
446
447 /*
448 * init_vma_prep() - Initializer wrapper for vma_prepare struct
449 * @vp: The vma_prepare struct
450 * @vma: The vma that will be altered once locked
451 */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)452 static inline void init_vma_prep(struct vma_prepare *vp,
453 struct vm_area_struct *vma)
454 {
455 init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
456 }
457
458
459 /*
460 * vma_prepare() - Helper function for handling locking VMAs prior to altering
461 * @vp: The initialized vma_prepare struct
462 */
vma_prepare(struct vma_prepare * vp)463 static inline void vma_prepare(struct vma_prepare *vp)
464 {
465 if (vp->file) {
466 uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
467
468 if (vp->adj_next)
469 uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
470 vp->adj_next->vm_end);
471
472 i_mmap_lock_write(vp->mapping);
473 if (vp->insert && vp->insert->vm_file) {
474 /*
475 * Put into interval tree now, so instantiated pages
476 * are visible to arm/parisc __flush_dcache_page
477 * throughout; but we cannot insert into address
478 * space until vma start or end is updated.
479 */
480 __vma_link_file(vp->insert,
481 vp->insert->vm_file->f_mapping);
482 }
483 }
484
485 if (vp->anon_vma) {
486 anon_vma_lock_write(vp->anon_vma);
487 anon_vma_interval_tree_pre_update_vma(vp->vma);
488 if (vp->adj_next)
489 anon_vma_interval_tree_pre_update_vma(vp->adj_next);
490 }
491
492 if (vp->file) {
493 flush_dcache_mmap_lock(vp->mapping);
494 vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
495 if (vp->adj_next)
496 vma_interval_tree_remove(vp->adj_next,
497 &vp->mapping->i_mmap);
498 }
499
500 }
501
502 /*
503 * vma_complete- Helper function for handling the unlocking after altering VMAs,
504 * or for inserting a VMA.
505 *
506 * @vp: The vma_prepare struct
507 * @vmi: The vma iterator
508 * @mm: The mm_struct
509 */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)510 static inline void vma_complete(struct vma_prepare *vp,
511 struct vma_iterator *vmi, struct mm_struct *mm)
512 {
513 if (vp->file) {
514 if (vp->adj_next)
515 vma_interval_tree_insert(vp->adj_next,
516 &vp->mapping->i_mmap);
517 vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
518 flush_dcache_mmap_unlock(vp->mapping);
519 }
520
521 if (vp->remove && vp->file) {
522 __remove_shared_vm_struct(vp->remove, vp->file, vp->mapping);
523 if (vp->remove2)
524 __remove_shared_vm_struct(vp->remove2, vp->file,
525 vp->mapping);
526 } else if (vp->insert) {
527 /*
528 * split_vma has split insert from vma, and needs
529 * us to insert it before dropping the locks
530 * (it may either follow vma or precede it).
531 */
532 vma_iter_store(vmi, vp->insert);
533 mm->map_count++;
534 }
535
536 if (vp->anon_vma) {
537 anon_vma_interval_tree_post_update_vma(vp->vma);
538 if (vp->adj_next)
539 anon_vma_interval_tree_post_update_vma(vp->adj_next);
540 anon_vma_unlock_write(vp->anon_vma);
541 }
542
543 if (vp->file) {
544 i_mmap_unlock_write(vp->mapping);
545 uprobe_mmap(vp->vma);
546
547 if (vp->adj_next)
548 uprobe_mmap(vp->adj_next);
549 }
550
551 if (vp->remove) {
552 again:
553 vma_mark_detached(vp->remove, true);
554 if (vp->file) {
555 uprobe_munmap(vp->remove, vp->remove->vm_start,
556 vp->remove->vm_end);
557 fput(vp->file);
558 }
559 if (vp->remove->anon_vma)
560 anon_vma_merge(vp->vma, vp->remove);
561 mm->map_count--;
562 mpol_put(vma_policy(vp->remove));
563 if (!vp->remove2)
564 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
565 vm_area_free(vp->remove);
566
567 /*
568 * In mprotect's case 6 (see comments on vma_merge),
569 * we are removing both mid and next vmas
570 */
571 if (vp->remove2) {
572 vp->remove = vp->remove2;
573 vp->remove2 = NULL;
574 goto again;
575 }
576 }
577 if (vp->insert && vp->file)
578 uprobe_mmap(vp->insert);
579 validate_mm(mm);
580 }
581
582 /*
583 * dup_anon_vma() - Helper function to duplicate anon_vma
584 * @dst: The destination VMA
585 * @src: The source VMA
586 * @dup: Pointer to the destination VMA when successful.
587 *
588 * Returns: 0 on success.
589 */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)590 static inline int dup_anon_vma(struct vm_area_struct *dst,
591 struct vm_area_struct *src, struct vm_area_struct **dup)
592 {
593 /*
594 * Easily overlooked: when mprotect shifts the boundary, make sure the
595 * expanding vma has anon_vma set if the shrinking vma had, to cover any
596 * anon pages imported.
597 */
598 if (src->anon_vma && !dst->anon_vma) {
599 int ret;
600
601 vma_assert_write_locked(dst);
602 dst->anon_vma = src->anon_vma;
603 ret = anon_vma_clone(dst, src);
604 if (ret)
605 return ret;
606
607 *dup = dst;
608 }
609
610 return 0;
611 }
612
613 /*
614 * vma_expand - Expand an existing VMA
615 *
616 * @vmi: The vma iterator
617 * @vma: The vma to expand
618 * @start: The start of the vma
619 * @end: The exclusive end of the vma
620 * @pgoff: The page offset of vma
621 * @next: The current of next vma.
622 *
623 * Expand @vma to @start and @end. Can expand off the start and end. Will
624 * expand over @next if it's different from @vma and @end == @next->vm_end.
625 * Checking if the @vma can expand and merge with @next needs to be handled by
626 * the caller.
627 *
628 * Returns: 0 on success
629 */
vma_expand(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * next)630 int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
631 unsigned long start, unsigned long end, pgoff_t pgoff,
632 struct vm_area_struct *next)
633 {
634 struct vm_area_struct *anon_dup = NULL;
635 bool remove_next = false;
636 struct vma_prepare vp;
637
638 vma_start_write(vma);
639 if (next && (vma != next) && (end == next->vm_end)) {
640 int ret;
641
642 remove_next = true;
643 vma_start_write(next);
644 ret = dup_anon_vma(vma, next, &anon_dup);
645 if (ret)
646 return ret;
647 }
648
649 init_multi_vma_prep(&vp, vma, NULL, remove_next ? next : NULL, NULL);
650 /* Not merging but overwriting any part of next is not handled. */
651 VM_WARN_ON(next && !vp.remove &&
652 next != vma && end > next->vm_start);
653 /* Only handles expanding */
654 VM_WARN_ON(vma->vm_start < start || vma->vm_end > end);
655
656 /* Note: vma iterator must be pointing to 'start' */
657 vma_iter_config(vmi, start, end);
658 if (vma_iter_prealloc(vmi, vma))
659 goto nomem;
660
661 vma_prepare(&vp);
662 vma_adjust_trans_huge(vma, start, end, 0);
663 vma->vm_start = start;
664 vma->vm_end = end;
665 vma->vm_pgoff = pgoff;
666 vma_iter_store(vmi, vma);
667
668 vma_complete(&vp, vmi, vma->vm_mm);
669 return 0;
670
671 nomem:
672 if (anon_dup)
673 unlink_anon_vmas(anon_dup);
674 return -ENOMEM;
675 }
676
677 /*
678 * vma_shrink() - Reduce an existing VMAs memory area
679 * @vmi: The vma iterator
680 * @vma: The VMA to modify
681 * @start: The new start
682 * @end: The new end
683 *
684 * Returns: 0 on success, -ENOMEM otherwise
685 */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)686 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
687 unsigned long start, unsigned long end, pgoff_t pgoff)
688 {
689 struct vma_prepare vp;
690
691 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
692
693 if (vma->vm_start < start)
694 vma_iter_config(vmi, vma->vm_start, start);
695 else
696 vma_iter_config(vmi, end, vma->vm_end);
697
698 if (vma_iter_prealloc(vmi, NULL))
699 return -ENOMEM;
700
701 vma_start_write(vma);
702
703 init_vma_prep(&vp, vma);
704 vma_prepare(&vp);
705 vma_adjust_trans_huge(vma, start, end, 0);
706
707 vma_iter_clear(vmi);
708 vma->vm_start = start;
709 vma->vm_end = end;
710 vma->vm_pgoff = pgoff;
711 vma_complete(&vp, vmi, vma->vm_mm);
712 return 0;
713 }
714
715 /*
716 * If the vma has a ->close operation then the driver probably needs to release
717 * per-vma resources, so we don't attempt to merge those if the caller indicates
718 * the current vma may be removed as part of the merge.
719 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name,bool may_remove_vma)720 static inline bool is_mergeable_vma(struct vm_area_struct *vma,
721 struct file *file, unsigned long vm_flags,
722 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
723 struct anon_vma_name *anon_name, bool may_remove_vma)
724 {
725 /*
726 * VM_SOFTDIRTY should not prevent from VMA merging, if we
727 * match the flags but dirty bit -- the caller should mark
728 * merged VMA as dirty. If dirty bit won't be excluded from
729 * comparison, we increase pressure on the memory system forcing
730 * the kernel to generate new VMAs when old one could be
731 * extended instead.
732 */
733 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
734 return false;
735 if (vma->vm_file != file)
736 return false;
737 if (may_remove_vma && vma->vm_ops && vma->vm_ops->close)
738 return false;
739 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
740 return false;
741 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
742 return false;
743 return true;
744 }
745
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)746 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
747 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
748 {
749 /*
750 * The list_is_singular() test is to avoid merging VMA cloned from
751 * parents. This can improve scalability caused by anon_vma lock.
752 */
753 if ((!anon_vma1 || !anon_vma2) && (!vma ||
754 list_is_singular(&vma->anon_vma_chain)))
755 return true;
756 return anon_vma1 == anon_vma2;
757 }
758
759 /*
760 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
761 * in front of (at a lower virtual address and file offset than) the vma.
762 *
763 * We cannot merge two vmas if they have differently assigned (non-NULL)
764 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
765 *
766 * We don't check here for the merged mmap wrapping around the end of pagecache
767 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
768 * wrap, nor mmaps which cover the final page at index -1UL.
769 *
770 * We assume the vma may be removed as part of the merge.
771 */
772 static bool
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)773 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
774 struct anon_vma *anon_vma, struct file *file,
775 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
776 struct anon_vma_name *anon_name)
777 {
778 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, true) &&
779 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
780 if (vma->vm_pgoff == vm_pgoff)
781 return true;
782 }
783 return false;
784 }
785
786 /*
787 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
788 * beyond (at a higher virtual address and file offset than) the vma.
789 *
790 * We cannot merge two vmas if they have differently assigned (non-NULL)
791 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
792 *
793 * We assume that vma is not removed as part of the merge.
794 */
795 static bool
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)796 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
797 struct anon_vma *anon_vma, struct file *file,
798 pgoff_t vm_pgoff, struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
799 struct anon_vma_name *anon_name)
800 {
801 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name, false) &&
802 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
803 pgoff_t vm_pglen;
804 vm_pglen = vma_pages(vma);
805 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
806 return true;
807 }
808 return false;
809 }
810
811 /*
812 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
813 * figure out whether that can be merged with its predecessor or its
814 * successor. Or both (it neatly fills a hole).
815 *
816 * In most cases - when called for mmap, brk or mremap - [addr,end) is
817 * certain not to be mapped by the time vma_merge is called; but when
818 * called for mprotect, it is certain to be already mapped (either at
819 * an offset within prev, or at the start of next), and the flags of
820 * this area are about to be changed to vm_flags - and the no-change
821 * case has already been eliminated.
822 *
823 * The following mprotect cases have to be considered, where **** is
824 * the area passed down from mprotect_fixup, never extending beyond one
825 * vma, PPPP is the previous vma, CCCC is a concurrent vma that starts
826 * at the same address as **** and is of the same or larger span, and
827 * NNNN the next vma after ****:
828 *
829 * **** **** ****
830 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPCCCCCC
831 * cannot merge might become might become
832 * PPNNNNNNNNNN PPPPPPPPPPCC
833 * mmap, brk or case 4 below case 5 below
834 * mremap move:
835 * **** ****
836 * PPPP NNNN PPPPCCCCNNNN
837 * might become might become
838 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
839 * PPPPPPPPNNNN 2 or PPPPPPPPNNNN 7 or
840 * PPPPNNNNNNNN 3 PPPPNNNNNNNN 8
841 *
842 * It is important for case 8 that the vma CCCC overlapping the
843 * region **** is never going to extended over NNNN. Instead NNNN must
844 * be extended in region **** and CCCC must be removed. This way in
845 * all cases where vma_merge succeeds, the moment vma_merge drops the
846 * rmap_locks, the properties of the merged vma will be already
847 * correct for the whole merged range. Some of those properties like
848 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
849 * be correct for the whole merged range immediately after the
850 * rmap_locks are released. Otherwise if NNNN would be removed and
851 * CCCC would be extended over the NNNN range, remove_migration_ptes
852 * or other rmap walkers (if working on addresses beyond the "end"
853 * parameter) may establish ptes with the wrong permissions of CCCC
854 * instead of the right permissions of NNNN.
855 *
856 * In the code below:
857 * PPPP is represented by *prev
858 * CCCC is represented by *curr or not represented at all (NULL)
859 * NNNN is represented by *next or not represented at all (NULL)
860 * **** is not represented - it will be merged and the vma containing the
861 * area is returned, or the function will return NULL
862 */
vma_merge(struct vma_iterator * vmi,struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)863 struct vm_area_struct *vma_merge(struct vma_iterator *vmi, struct mm_struct *mm,
864 struct vm_area_struct *prev, unsigned long addr,
865 unsigned long end, unsigned long vm_flags,
866 struct anon_vma *anon_vma, struct file *file,
867 pgoff_t pgoff, struct mempolicy *policy,
868 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
869 struct anon_vma_name *anon_name)
870 {
871 struct vm_area_struct *curr, *next, *res;
872 struct vm_area_struct *vma, *adjust, *remove, *remove2;
873 struct vm_area_struct *anon_dup = NULL;
874 struct vma_prepare vp;
875 pgoff_t vma_pgoff;
876 int err = 0;
877 bool merge_prev = false;
878 bool merge_next = false;
879 bool vma_expanded = false;
880 unsigned long vma_start = addr;
881 unsigned long vma_end = end;
882 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
883 long adj_start = 0;
884
885 /*
886 * We later require that vma->vm_flags == vm_flags,
887 * so this tests vma->vm_flags & VM_SPECIAL, too.
888 */
889 if (vm_flags & VM_SPECIAL)
890 return NULL;
891
892 /* Does the input range span an existing VMA? (cases 5 - 8) */
893 curr = find_vma_intersection(mm, prev ? prev->vm_end : 0, end);
894
895 if (!curr || /* cases 1 - 4 */
896 end == curr->vm_end) /* cases 6 - 8, adjacent VMA */
897 next = vma_lookup(mm, end);
898 else
899 next = NULL; /* case 5 */
900
901 if (prev) {
902 vma_start = prev->vm_start;
903 vma_pgoff = prev->vm_pgoff;
904
905 /* Can we merge the predecessor? */
906 if (addr == prev->vm_end && mpol_equal(vma_policy(prev), policy)
907 && can_vma_merge_after(prev, vm_flags, anon_vma, file,
908 pgoff, vm_userfaultfd_ctx, anon_name)) {
909 merge_prev = true;
910 vma_prev(vmi);
911 }
912 }
913
914 /* Can we merge the successor? */
915 if (next && mpol_equal(policy, vma_policy(next)) &&
916 can_vma_merge_before(next, vm_flags, anon_vma, file, pgoff+pglen,
917 vm_userfaultfd_ctx, anon_name)) {
918 merge_next = true;
919 }
920
921 /* Verify some invariant that must be enforced by the caller. */
922 VM_WARN_ON(prev && addr <= prev->vm_start);
923 VM_WARN_ON(curr && (addr != curr->vm_start || end > curr->vm_end));
924 VM_WARN_ON(addr >= end);
925
926 if (!merge_prev && !merge_next)
927 return NULL; /* Not mergeable. */
928
929 if (merge_prev)
930 vma_start_write(prev);
931
932 res = vma = prev;
933 remove = remove2 = adjust = NULL;
934
935 /* Can we merge both the predecessor and the successor? */
936 if (merge_prev && merge_next &&
937 is_mergeable_anon_vma(prev->anon_vma, next->anon_vma, NULL)) {
938 vma_start_write(next);
939 remove = next; /* case 1 */
940 vma_end = next->vm_end;
941 err = dup_anon_vma(prev, next, &anon_dup);
942 if (curr) { /* case 6 */
943 vma_start_write(curr);
944 remove = curr;
945 remove2 = next;
946 if (!next->anon_vma)
947 err = dup_anon_vma(prev, curr, &anon_dup);
948 }
949 } else if (merge_prev) { /* case 2 */
950 if (curr) {
951 vma_start_write(curr);
952 err = dup_anon_vma(prev, curr, &anon_dup);
953 if (end == curr->vm_end) { /* case 7 */
954 remove = curr;
955 } else { /* case 5 */
956 adjust = curr;
957 adj_start = (end - curr->vm_start);
958 }
959 }
960 } else { /* merge_next */
961 vma_start_write(next);
962 res = next;
963 if (prev && addr < prev->vm_end) { /* case 4 */
964 vma_start_write(prev);
965 vma_end = addr;
966 adjust = next;
967 adj_start = -(prev->vm_end - addr);
968 err = dup_anon_vma(next, prev, &anon_dup);
969 } else {
970 /*
971 * Note that cases 3 and 8 are the ONLY ones where prev
972 * is permitted to be (but is not necessarily) NULL.
973 */
974 vma = next; /* case 3 */
975 vma_start = addr;
976 vma_end = next->vm_end;
977 vma_pgoff = next->vm_pgoff - pglen;
978 if (curr) { /* case 8 */
979 vma_pgoff = curr->vm_pgoff;
980 vma_start_write(curr);
981 remove = curr;
982 err = dup_anon_vma(next, curr, &anon_dup);
983 }
984 }
985 }
986
987 /* Error in anon_vma clone. */
988 if (err)
989 goto anon_vma_fail;
990
991 if (vma_start < vma->vm_start || vma_end > vma->vm_end)
992 vma_expanded = true;
993
994 if (vma_expanded) {
995 vma_iter_config(vmi, vma_start, vma_end);
996 } else {
997 vma_iter_config(vmi, adjust->vm_start + adj_start,
998 adjust->vm_end);
999 }
1000
1001 if (vma_iter_prealloc(vmi, vma))
1002 goto prealloc_fail;
1003
1004 init_multi_vma_prep(&vp, vma, adjust, remove, remove2);
1005 VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
1006 vp.anon_vma != adjust->anon_vma);
1007
1008 vma_prepare(&vp);
1009 vma_adjust_trans_huge(vma, vma_start, vma_end, adj_start);
1010
1011 vma->vm_start = vma_start;
1012 vma->vm_end = vma_end;
1013 vma->vm_pgoff = vma_pgoff;
1014
1015 if (vma_expanded)
1016 vma_iter_store(vmi, vma);
1017
1018 if (adj_start) {
1019 adjust->vm_start += adj_start;
1020 adjust->vm_pgoff += adj_start >> PAGE_SHIFT;
1021 if (adj_start < 0) {
1022 WARN_ON(vma_expanded);
1023 vma_iter_store(vmi, next);
1024 }
1025 }
1026
1027 vma_complete(&vp, vmi, mm);
1028 khugepaged_enter_vma(res, vm_flags);
1029 return res;
1030
1031 prealloc_fail:
1032 if (anon_dup)
1033 unlink_anon_vmas(anon_dup);
1034
1035 anon_vma_fail:
1036 vma_iter_set(vmi, addr);
1037 vma_iter_load(vmi);
1038 return NULL;
1039 }
1040
1041 /*
1042 * Rough compatibility check to quickly see if it's even worth looking
1043 * at sharing an anon_vma.
1044 *
1045 * They need to have the same vm_file, and the flags can only differ
1046 * in things that mprotect may change.
1047 *
1048 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1049 * we can merge the two vma's. For example, we refuse to merge a vma if
1050 * there is a vm_ops->close() function, because that indicates that the
1051 * driver is doing some kind of reference counting. But that doesn't
1052 * really matter for the anon_vma sharing case.
1053 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1054 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1055 {
1056 return a->vm_end == b->vm_start &&
1057 mpol_equal(vma_policy(a), vma_policy(b)) &&
1058 a->vm_file == b->vm_file &&
1059 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1060 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1061 }
1062
1063 /*
1064 * Do some basic sanity checking to see if we can re-use the anon_vma
1065 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1066 * the same as 'old', the other will be the new one that is trying
1067 * to share the anon_vma.
1068 *
1069 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1070 * the anon_vma of 'old' is concurrently in the process of being set up
1071 * by another page fault trying to merge _that_. But that's ok: if it
1072 * is being set up, that automatically means that it will be a singleton
1073 * acceptable for merging, so we can do all of this optimistically. But
1074 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1075 *
1076 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1077 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1078 * is to return an anon_vma that is "complex" due to having gone through
1079 * a fork).
1080 *
1081 * We also make sure that the two vma's are compatible (adjacent,
1082 * and with the same memory policies). That's all stable, even with just
1083 * a read lock on the mmap_lock.
1084 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1085 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1086 {
1087 if (anon_vma_compatible(a, b)) {
1088 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1089
1090 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1091 return anon_vma;
1092 }
1093 return NULL;
1094 }
1095
1096 /*
1097 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1098 * neighbouring vmas for a suitable anon_vma, before it goes off
1099 * to allocate a new anon_vma. It checks because a repetitive
1100 * sequence of mprotects and faults may otherwise lead to distinct
1101 * anon_vmas being allocated, preventing vma merge in subsequent
1102 * mprotect.
1103 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1104 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1105 {
1106 MA_STATE(mas, &vma->vm_mm->mm_mt, vma->vm_end, vma->vm_end);
1107 struct anon_vma *anon_vma = NULL;
1108 struct vm_area_struct *prev, *next;
1109
1110 /* Try next first. */
1111 next = mas_walk(&mas);
1112 if (next) {
1113 anon_vma = reusable_anon_vma(next, vma, next);
1114 if (anon_vma)
1115 return anon_vma;
1116 }
1117
1118 prev = mas_prev(&mas, 0);
1119 VM_BUG_ON_VMA(prev != vma, vma);
1120 prev = mas_prev(&mas, 0);
1121 /* Try prev next. */
1122 if (prev)
1123 anon_vma = reusable_anon_vma(prev, prev, vma);
1124
1125 /*
1126 * We might reach here with anon_vma == NULL if we can't find
1127 * any reusable anon_vma.
1128 * There's no absolute need to look only at touching neighbours:
1129 * we could search further afield for "compatible" anon_vmas.
1130 * But it would probably just be a waste of time searching,
1131 * or lead to too many vmas hanging off the same anon_vma.
1132 * We're trying to allow mprotect remerging later on,
1133 * not trying to minimize memory used for anon_vmas.
1134 */
1135 return anon_vma;
1136 }
1137
1138 /*
1139 * If a hint addr is less than mmap_min_addr change hint to be as
1140 * low as possible but still greater than mmap_min_addr
1141 */
round_hint_to_min(unsigned long hint)1142 static inline unsigned long round_hint_to_min(unsigned long hint)
1143 {
1144 hint &= PAGE_MASK;
1145 if (((void *)hint != NULL) &&
1146 (hint < mmap_min_addr))
1147 return PAGE_ALIGN(mmap_min_addr);
1148 return hint;
1149 }
1150
mlock_future_ok(struct mm_struct * mm,unsigned long flags,unsigned long bytes)1151 bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
1152 unsigned long bytes)
1153 {
1154 unsigned long locked_pages, limit_pages;
1155
1156 if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
1157 return true;
1158
1159 locked_pages = bytes >> PAGE_SHIFT;
1160 locked_pages += mm->locked_vm;
1161
1162 limit_pages = rlimit(RLIMIT_MEMLOCK);
1163 limit_pages >>= PAGE_SHIFT;
1164
1165 return locked_pages <= limit_pages;
1166 }
1167
file_mmap_size_max(struct file * file,struct inode * inode)1168 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1169 {
1170 if (S_ISREG(inode->i_mode))
1171 return MAX_LFS_FILESIZE;
1172
1173 if (S_ISBLK(inode->i_mode))
1174 return MAX_LFS_FILESIZE;
1175
1176 if (S_ISSOCK(inode->i_mode))
1177 return MAX_LFS_FILESIZE;
1178
1179 /* Special "we do even unsigned file positions" case */
1180 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1181 return 0;
1182
1183 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1184 return ULONG_MAX;
1185 }
1186
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1187 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1188 unsigned long pgoff, unsigned long len)
1189 {
1190 u64 maxsize = file_mmap_size_max(file, inode);
1191
1192 if (maxsize && len > maxsize)
1193 return false;
1194 maxsize -= len;
1195 if (pgoff > maxsize >> PAGE_SHIFT)
1196 return false;
1197 return true;
1198 }
1199
1200 /*
1201 * The caller must write-lock current->mm->mmap_lock.
1202 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1203 unsigned long do_mmap(struct file *file, unsigned long addr,
1204 unsigned long len, unsigned long prot,
1205 unsigned long flags, vm_flags_t vm_flags,
1206 unsigned long pgoff, unsigned long *populate,
1207 struct list_head *uf)
1208 {
1209 struct mm_struct *mm = current->mm;
1210 int pkey = 0;
1211
1212 *populate = 0;
1213
1214 if (!len)
1215 return -EINVAL;
1216
1217 /*
1218 * Does the application expect PROT_READ to imply PROT_EXEC?
1219 *
1220 * (the exception is when the underlying filesystem is noexec
1221 * mounted, in which case we dont add PROT_EXEC.)
1222 */
1223 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1224 if (!(file && path_noexec(&file->f_path)))
1225 prot |= PROT_EXEC;
1226
1227 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1228 if (flags & MAP_FIXED_NOREPLACE)
1229 flags |= MAP_FIXED;
1230
1231 if (!(flags & MAP_FIXED))
1232 addr = round_hint_to_min(addr);
1233
1234 /* Careful about overflows.. */
1235 len = PAGE_ALIGN(len);
1236 if (!len)
1237 return -ENOMEM;
1238
1239 /* offset overflow? */
1240 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1241 return -EOVERFLOW;
1242
1243 /* Too many mappings? */
1244 if (mm->map_count > sysctl_max_map_count)
1245 return -ENOMEM;
1246
1247 /* Obtain the address to map to. we verify (or select) it and ensure
1248 * that it represents a valid section of the address space.
1249 */
1250 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1251 if (IS_ERR_VALUE(addr))
1252 return addr;
1253
1254 if (flags & MAP_FIXED_NOREPLACE) {
1255 if (find_vma_intersection(mm, addr, addr + len))
1256 return -EEXIST;
1257 }
1258
1259 if (prot == PROT_EXEC) {
1260 pkey = execute_only_pkey(mm);
1261 if (pkey < 0)
1262 pkey = 0;
1263 }
1264
1265 /* Do simple checking here so the lower-level routines won't have
1266 * to. we assume access permissions have been handled by the open
1267 * of the memory object, so we don't do any here.
1268 */
1269 vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1270 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1271
1272 if (flags & MAP_LOCKED)
1273 if (!can_do_mlock())
1274 return -EPERM;
1275
1276 if (!mlock_future_ok(mm, vm_flags, len))
1277 return -EAGAIN;
1278
1279 if (file) {
1280 struct inode *inode = file_inode(file);
1281 unsigned long flags_mask;
1282
1283 if (!file_mmap_ok(file, inode, pgoff, len))
1284 return -EOVERFLOW;
1285
1286 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1287
1288 switch (flags & MAP_TYPE) {
1289 case MAP_SHARED:
1290 /*
1291 * Force use of MAP_SHARED_VALIDATE with non-legacy
1292 * flags. E.g. MAP_SYNC is dangerous to use with
1293 * MAP_SHARED as you don't know which consistency model
1294 * you will get. We silently ignore unsupported flags
1295 * with MAP_SHARED to preserve backward compatibility.
1296 */
1297 flags &= LEGACY_MAP_MASK;
1298 fallthrough;
1299 case MAP_SHARED_VALIDATE:
1300 if (flags & ~flags_mask)
1301 return -EOPNOTSUPP;
1302 if (prot & PROT_WRITE) {
1303 if (!(file->f_mode & FMODE_WRITE))
1304 return -EACCES;
1305 if (IS_SWAPFILE(file->f_mapping->host))
1306 return -ETXTBSY;
1307 }
1308
1309 /*
1310 * Make sure we don't allow writing to an append-only
1311 * file..
1312 */
1313 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1314 return -EACCES;
1315
1316 vm_flags |= VM_SHARED | VM_MAYSHARE;
1317 if (!(file->f_mode & FMODE_WRITE))
1318 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1319 fallthrough;
1320 case MAP_PRIVATE:
1321 if (!(file->f_mode & FMODE_READ))
1322 return -EACCES;
1323 if (path_noexec(&file->f_path)) {
1324 if (vm_flags & VM_EXEC)
1325 return -EPERM;
1326 vm_flags &= ~VM_MAYEXEC;
1327 }
1328
1329 if (!file->f_op->mmap)
1330 return -ENODEV;
1331 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1332 return -EINVAL;
1333 break;
1334
1335 default:
1336 return -EINVAL;
1337 }
1338 } else {
1339 switch (flags & MAP_TYPE) {
1340 case MAP_SHARED:
1341 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1342 return -EINVAL;
1343 /*
1344 * Ignore pgoff.
1345 */
1346 pgoff = 0;
1347 vm_flags |= VM_SHARED | VM_MAYSHARE;
1348 break;
1349 case MAP_PRIVATE:
1350 /*
1351 * Set pgoff according to addr for anon_vma.
1352 */
1353 pgoff = addr >> PAGE_SHIFT;
1354 break;
1355 default:
1356 return -EINVAL;
1357 }
1358 }
1359
1360 /*
1361 * Set 'VM_NORESERVE' if we should not account for the
1362 * memory use of this mapping.
1363 */
1364 if (flags & MAP_NORESERVE) {
1365 /* We honor MAP_NORESERVE if allowed to overcommit */
1366 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1367 vm_flags |= VM_NORESERVE;
1368
1369 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1370 if (file && is_file_hugepages(file))
1371 vm_flags |= VM_NORESERVE;
1372 }
1373
1374 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1375 if (!IS_ERR_VALUE(addr) &&
1376 ((vm_flags & VM_LOCKED) ||
1377 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1378 *populate = len;
1379 return addr;
1380 }
1381
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1382 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1383 unsigned long prot, unsigned long flags,
1384 unsigned long fd, unsigned long pgoff)
1385 {
1386 struct file *file = NULL;
1387 unsigned long retval;
1388
1389 if (!(flags & MAP_ANONYMOUS)) {
1390 audit_mmap_fd(fd, flags);
1391 file = fget(fd);
1392 if (!file)
1393 return -EBADF;
1394 if (is_file_hugepages(file)) {
1395 len = ALIGN(len, huge_page_size(hstate_file(file)));
1396 } else if (unlikely(flags & MAP_HUGETLB)) {
1397 retval = -EINVAL;
1398 goto out_fput;
1399 }
1400 } else if (flags & MAP_HUGETLB) {
1401 struct hstate *hs;
1402
1403 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1404 if (!hs)
1405 return -EINVAL;
1406
1407 len = ALIGN(len, huge_page_size(hs));
1408 /*
1409 * VM_NORESERVE is used because the reservations will be
1410 * taken when vm_ops->mmap() is called
1411 */
1412 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1413 VM_NORESERVE,
1414 HUGETLB_ANONHUGE_INODE,
1415 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1416 if (IS_ERR(file))
1417 return PTR_ERR(file);
1418 }
1419
1420 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1421 out_fput:
1422 if (file)
1423 fput(file);
1424 return retval;
1425 }
1426
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1427 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1428 unsigned long, prot, unsigned long, flags,
1429 unsigned long, fd, unsigned long, pgoff)
1430 {
1431 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1432 }
1433
1434 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1435 struct mmap_arg_struct {
1436 unsigned long addr;
1437 unsigned long len;
1438 unsigned long prot;
1439 unsigned long flags;
1440 unsigned long fd;
1441 unsigned long offset;
1442 };
1443
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1444 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1445 {
1446 struct mmap_arg_struct a;
1447
1448 if (copy_from_user(&a, arg, sizeof(a)))
1449 return -EFAULT;
1450 if (offset_in_page(a.offset))
1451 return -EINVAL;
1452
1453 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1454 a.offset >> PAGE_SHIFT);
1455 }
1456 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1457
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)1458 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1459 {
1460 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1461 }
1462
vma_is_shared_writable(struct vm_area_struct * vma)1463 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1464 {
1465 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1466 (VM_WRITE | VM_SHARED);
1467 }
1468
vma_fs_can_writeback(struct vm_area_struct * vma)1469 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1470 {
1471 /* No managed pages to writeback. */
1472 if (vma->vm_flags & VM_PFNMAP)
1473 return false;
1474
1475 return vma->vm_file && vma->vm_file->f_mapping &&
1476 mapping_can_writeback(vma->vm_file->f_mapping);
1477 }
1478
1479 /*
1480 * Does this VMA require the underlying folios to have their dirty state
1481 * tracked?
1482 */
vma_needs_dirty_tracking(struct vm_area_struct * vma)1483 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1484 {
1485 /* Only shared, writable VMAs require dirty tracking. */
1486 if (!vma_is_shared_writable(vma))
1487 return false;
1488
1489 /* Does the filesystem need to be notified? */
1490 if (vm_ops_needs_writenotify(vma->vm_ops))
1491 return true;
1492
1493 /*
1494 * Even if the filesystem doesn't indicate a need for writenotify, if it
1495 * can writeback, dirty tracking is still required.
1496 */
1497 return vma_fs_can_writeback(vma);
1498 }
1499
1500 /*
1501 * Some shared mappings will want the pages marked read-only
1502 * to track write events. If so, we'll downgrade vm_page_prot
1503 * to the private version (using protection_map[] without the
1504 * VM_SHARED bit).
1505 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1506 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1507 {
1508 /* If it was private or non-writable, the write bit is already clear */
1509 if (!vma_is_shared_writable(vma))
1510 return 0;
1511
1512 /* The backer wishes to know when pages are first written to? */
1513 if (vm_ops_needs_writenotify(vma->vm_ops))
1514 return 1;
1515
1516 /* The open routine did something to the protections that pgprot_modify
1517 * won't preserve? */
1518 if (pgprot_val(vm_page_prot) !=
1519 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1520 return 0;
1521
1522 /*
1523 * Do we need to track softdirty? hugetlb does not support softdirty
1524 * tracking yet.
1525 */
1526 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1527 return 1;
1528
1529 /* Do we need write faults for uffd-wp tracking? */
1530 if (userfaultfd_wp(vma))
1531 return 1;
1532
1533 /* Can the mapping track the dirty pages? */
1534 return vma_fs_can_writeback(vma);
1535 }
1536
1537 /*
1538 * We account for memory if it's a private writeable mapping,
1539 * not hugepages and VM_NORESERVE wasn't set.
1540 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1541 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1542 {
1543 /*
1544 * hugetlb has its own accounting separate from the core VM
1545 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1546 */
1547 if (file && is_file_hugepages(file))
1548 return 0;
1549
1550 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1551 }
1552
1553 /**
1554 * unmapped_area() - Find an area between the low_limit and the high_limit with
1555 * the correct alignment and offset, all from @info. Note: current->mm is used
1556 * for the search.
1557 *
1558 * @info: The unmapped area information including the range [low_limit -
1559 * high_limit), the alignment offset and mask.
1560 *
1561 * Return: A memory address or -ENOMEM.
1562 */
unmapped_area(struct vm_unmapped_area_info * info)1563 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1564 {
1565 unsigned long length, gap;
1566 unsigned long low_limit, high_limit;
1567 struct vm_area_struct *tmp;
1568
1569 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1570
1571 /* Adjust search length to account for worst case alignment overhead */
1572 length = info->length + info->align_mask;
1573 if (length < info->length)
1574 return -ENOMEM;
1575
1576 low_limit = info->low_limit;
1577 if (low_limit < mmap_min_addr)
1578 low_limit = mmap_min_addr;
1579 high_limit = info->high_limit;
1580 retry:
1581 if (mas_empty_area(&mas, low_limit, high_limit - 1, length))
1582 return -ENOMEM;
1583
1584 gap = mas.index;
1585 gap += (info->align_offset - gap) & info->align_mask;
1586 tmp = mas_next(&mas, ULONG_MAX);
1587 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1588 if (vm_start_gap(tmp) < gap + length - 1) {
1589 low_limit = tmp->vm_end;
1590 mas_reset(&mas);
1591 goto retry;
1592 }
1593 } else {
1594 tmp = mas_prev(&mas, 0);
1595 if (tmp && vm_end_gap(tmp) > gap) {
1596 low_limit = vm_end_gap(tmp);
1597 mas_reset(&mas);
1598 goto retry;
1599 }
1600 }
1601
1602 return gap;
1603 }
1604
1605 /**
1606 * unmapped_area_topdown() - Find an area between the low_limit and the
1607 * high_limit with the correct alignment and offset at the highest available
1608 * address, all from @info. Note: current->mm is used for the search.
1609 *
1610 * @info: The unmapped area information including the range [low_limit -
1611 * high_limit), the alignment offset and mask.
1612 *
1613 * Return: A memory address or -ENOMEM.
1614 */
unmapped_area_topdown(struct vm_unmapped_area_info * info)1615 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1616 {
1617 unsigned long length, gap, gap_end;
1618 unsigned long low_limit, high_limit;
1619 struct vm_area_struct *tmp;
1620
1621 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
1622 /* Adjust search length to account for worst case alignment overhead */
1623 length = info->length + info->align_mask;
1624 if (length < info->length)
1625 return -ENOMEM;
1626
1627 low_limit = info->low_limit;
1628 if (low_limit < mmap_min_addr)
1629 low_limit = mmap_min_addr;
1630 high_limit = info->high_limit;
1631 retry:
1632 if (mas_empty_area_rev(&mas, low_limit, high_limit - 1, length))
1633 return -ENOMEM;
1634
1635 gap = mas.last + 1 - info->length;
1636 gap -= (gap - info->align_offset) & info->align_mask;
1637 gap_end = mas.last;
1638 tmp = mas_next(&mas, ULONG_MAX);
1639 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
1640 if (vm_start_gap(tmp) <= gap_end) {
1641 high_limit = vm_start_gap(tmp);
1642 mas_reset(&mas);
1643 goto retry;
1644 }
1645 } else {
1646 tmp = mas_prev(&mas, 0);
1647 if (tmp && vm_end_gap(tmp) > gap) {
1648 high_limit = tmp->vm_start;
1649 mas_reset(&mas);
1650 goto retry;
1651 }
1652 }
1653
1654 return gap;
1655 }
1656
1657 /*
1658 * Search for an unmapped address range.
1659 *
1660 * We are looking for a range that:
1661 * - does not intersect with any VMA;
1662 * - is contained within the [low_limit, high_limit) interval;
1663 * - is at least the desired size.
1664 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1665 */
vm_unmapped_area(struct vm_unmapped_area_info * info)1666 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
1667 {
1668 unsigned long addr;
1669
1670 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1671 addr = unmapped_area_topdown(info);
1672 else
1673 addr = unmapped_area(info);
1674
1675 trace_vm_unmapped_area(addr, info);
1676 return addr;
1677 }
1678
1679 /* Get an address range which is currently unmapped.
1680 * For shmat() with addr=0.
1681 *
1682 * Ugly calling convention alert:
1683 * Return value with the low bits set means error value,
1684 * ie
1685 * if (ret & ~PAGE_MASK)
1686 * error = ret;
1687 *
1688 * This function "knows" that -ENOMEM has the bits set.
1689 */
1690 unsigned long
generic_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1691 generic_get_unmapped_area(struct file *filp, unsigned long addr,
1692 unsigned long len, unsigned long pgoff,
1693 unsigned long flags)
1694 {
1695 struct mm_struct *mm = current->mm;
1696 struct vm_area_struct *vma, *prev;
1697 struct vm_unmapped_area_info info;
1698 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1699
1700 if (len > mmap_end - mmap_min_addr)
1701 return -ENOMEM;
1702
1703 if (flags & MAP_FIXED)
1704 return addr;
1705
1706 if (addr) {
1707 addr = PAGE_ALIGN(addr);
1708 vma = find_vma_prev(mm, addr, &prev);
1709 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1710 (!vma || addr + len <= vm_start_gap(vma)) &&
1711 (!prev || addr >= vm_end_gap(prev)))
1712 return addr;
1713 }
1714
1715 info.flags = 0;
1716 info.length = len;
1717 info.low_limit = mm->mmap_base;
1718 info.high_limit = mmap_end;
1719 info.align_mask = 0;
1720 info.align_offset = 0;
1721 return vm_unmapped_area(&info);
1722 }
1723
1724 #ifndef HAVE_ARCH_UNMAPPED_AREA
1725 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1726 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1727 unsigned long len, unsigned long pgoff,
1728 unsigned long flags)
1729 {
1730 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
1731 }
1732 #endif
1733
1734 /*
1735 * This mmap-allocator allocates new areas top-down from below the
1736 * stack's low limit (the base):
1737 */
1738 unsigned long
generic_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1739 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1740 unsigned long len, unsigned long pgoff,
1741 unsigned long flags)
1742 {
1743 struct vm_area_struct *vma, *prev;
1744 struct mm_struct *mm = current->mm;
1745 struct vm_unmapped_area_info info;
1746 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
1747
1748 /* requested length too big for entire address space */
1749 if (len > mmap_end - mmap_min_addr)
1750 return -ENOMEM;
1751
1752 if (flags & MAP_FIXED)
1753 return addr;
1754
1755 /* requesting a specific address */
1756 if (addr) {
1757 addr = PAGE_ALIGN(addr);
1758 vma = find_vma_prev(mm, addr, &prev);
1759 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
1760 (!vma || addr + len <= vm_start_gap(vma)) &&
1761 (!prev || addr >= vm_end_gap(prev)))
1762 return addr;
1763 }
1764
1765 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1766 info.length = len;
1767 info.low_limit = PAGE_SIZE;
1768 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
1769 info.align_mask = 0;
1770 info.align_offset = 0;
1771 addr = vm_unmapped_area(&info);
1772
1773 /*
1774 * A failed mmap() very likely causes application failure,
1775 * so fall back to the bottom-up function here. This scenario
1776 * can happen with large stack limits and large mmap()
1777 * allocations.
1778 */
1779 if (offset_in_page(addr)) {
1780 VM_BUG_ON(addr != -ENOMEM);
1781 info.flags = 0;
1782 info.low_limit = TASK_UNMAPPED_BASE;
1783 info.high_limit = mmap_end;
1784 addr = vm_unmapped_area(&info);
1785 }
1786
1787 return addr;
1788 }
1789
1790 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1791 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1792 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
1793 unsigned long len, unsigned long pgoff,
1794 unsigned long flags)
1795 {
1796 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
1797 }
1798 #endif
1799
1800 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1801 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1802 unsigned long pgoff, unsigned long flags)
1803 {
1804 unsigned long (*get_area)(struct file *, unsigned long,
1805 unsigned long, unsigned long, unsigned long);
1806
1807 unsigned long error = arch_mmap_check(addr, len, flags);
1808 if (error)
1809 return error;
1810
1811 /* Careful about overflows.. */
1812 if (len > TASK_SIZE)
1813 return -ENOMEM;
1814
1815 get_area = current->mm->get_unmapped_area;
1816 if (file) {
1817 if (file->f_op->get_unmapped_area)
1818 get_area = file->f_op->get_unmapped_area;
1819 } else if (flags & MAP_SHARED) {
1820 /*
1821 * mmap_region() will call shmem_zero_setup() to create a file,
1822 * so use shmem's get_unmapped_area in case it can be huge.
1823 * do_mmap() will clear pgoff, so match alignment.
1824 */
1825 pgoff = 0;
1826 get_area = shmem_get_unmapped_area;
1827 }
1828
1829 addr = get_area(file, addr, len, pgoff, flags);
1830 if (IS_ERR_VALUE(addr))
1831 return addr;
1832
1833 if (addr > TASK_SIZE - len)
1834 return -ENOMEM;
1835 if (offset_in_page(addr))
1836 return -EINVAL;
1837
1838 error = security_mmap_addr(addr);
1839 return error ? error : addr;
1840 }
1841
1842 EXPORT_SYMBOL(get_unmapped_area);
1843
1844 /**
1845 * find_vma_intersection() - Look up the first VMA which intersects the interval
1846 * @mm: The process address space.
1847 * @start_addr: The inclusive start user address.
1848 * @end_addr: The exclusive end user address.
1849 *
1850 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes
1851 * start_addr < end_addr.
1852 */
find_vma_intersection(struct mm_struct * mm,unsigned long start_addr,unsigned long end_addr)1853 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
1854 unsigned long start_addr,
1855 unsigned long end_addr)
1856 {
1857 unsigned long index = start_addr;
1858
1859 mmap_assert_locked(mm);
1860 return mt_find(&mm->mm_mt, &index, end_addr - 1);
1861 }
1862 EXPORT_SYMBOL(find_vma_intersection);
1863
1864 /**
1865 * find_vma() - Find the VMA for a given address, or the next VMA.
1866 * @mm: The mm_struct to check
1867 * @addr: The address
1868 *
1869 * Returns: The VMA associated with addr, or the next VMA.
1870 * May return %NULL in the case of no VMA at addr or above.
1871 */
find_vma(struct mm_struct * mm,unsigned long addr)1872 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1873 {
1874 unsigned long index = addr;
1875
1876 mmap_assert_locked(mm);
1877 return mt_find(&mm->mm_mt, &index, ULONG_MAX);
1878 }
1879 EXPORT_SYMBOL(find_vma);
1880
1881 /**
1882 * find_vma_prev() - Find the VMA for a given address, or the next vma and
1883 * set %pprev to the previous VMA, if any.
1884 * @mm: The mm_struct to check
1885 * @addr: The address
1886 * @pprev: The pointer to set to the previous VMA
1887 *
1888 * Note that RCU lock is missing here since the external mmap_lock() is used
1889 * instead.
1890 *
1891 * Returns: The VMA associated with @addr, or the next vma.
1892 * May return %NULL in the case of no vma at addr or above.
1893 */
1894 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1895 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1896 struct vm_area_struct **pprev)
1897 {
1898 struct vm_area_struct *vma;
1899 MA_STATE(mas, &mm->mm_mt, addr, addr);
1900
1901 vma = mas_walk(&mas);
1902 *pprev = mas_prev(&mas, 0);
1903 if (!vma)
1904 vma = mas_next(&mas, ULONG_MAX);
1905 return vma;
1906 }
1907
1908 /*
1909 * Verify that the stack growth is acceptable and
1910 * update accounting. This is shared with both the
1911 * grow-up and grow-down cases.
1912 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1913 static int acct_stack_growth(struct vm_area_struct *vma,
1914 unsigned long size, unsigned long grow)
1915 {
1916 struct mm_struct *mm = vma->vm_mm;
1917 unsigned long new_start;
1918
1919 /* address space limit tests */
1920 if (!may_expand_vm(mm, vma->vm_flags, grow))
1921 return -ENOMEM;
1922
1923 /* Stack limit test */
1924 if (size > rlimit(RLIMIT_STACK))
1925 return -ENOMEM;
1926
1927 /* mlock limit tests */
1928 if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1929 return -ENOMEM;
1930
1931 /* Check to ensure the stack will not grow into a hugetlb-only region */
1932 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1933 vma->vm_end - size;
1934 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1935 return -EFAULT;
1936
1937 /*
1938 * Overcommit.. This must be the final test, as it will
1939 * update security statistics.
1940 */
1941 if (security_vm_enough_memory_mm(mm, grow))
1942 return -ENOMEM;
1943
1944 return 0;
1945 }
1946
1947 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1948 /*
1949 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1950 * vma is the last one with address > vma->vm_end. Have to extend vma.
1951 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1952 static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1953 {
1954 struct mm_struct *mm = vma->vm_mm;
1955 struct vm_area_struct *next;
1956 unsigned long gap_addr;
1957 int error = 0;
1958 MA_STATE(mas, &mm->mm_mt, vma->vm_start, address);
1959
1960 if (!(vma->vm_flags & VM_GROWSUP))
1961 return -EFAULT;
1962
1963 /* Guard against exceeding limits of the address space. */
1964 address &= PAGE_MASK;
1965 if (address >= (TASK_SIZE & PAGE_MASK))
1966 return -ENOMEM;
1967 address += PAGE_SIZE;
1968
1969 /* Enforce stack_guard_gap */
1970 gap_addr = address + stack_guard_gap;
1971
1972 /* Guard against overflow */
1973 if (gap_addr < address || gap_addr > TASK_SIZE)
1974 gap_addr = TASK_SIZE;
1975
1976 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1977 if (next && vma_is_accessible(next)) {
1978 if (!(next->vm_flags & VM_GROWSUP))
1979 return -ENOMEM;
1980 /* Check that both stack segments have the same anon_vma? */
1981 }
1982
1983 if (next)
1984 mas_prev_range(&mas, address);
1985
1986 __mas_set_range(&mas, vma->vm_start, address - 1);
1987 if (mas_preallocate(&mas, vma, GFP_KERNEL))
1988 return -ENOMEM;
1989
1990 /* We must make sure the anon_vma is allocated. */
1991 if (unlikely(anon_vma_prepare(vma))) {
1992 mas_destroy(&mas);
1993 return -ENOMEM;
1994 }
1995
1996 /* Lock the VMA before expanding to prevent concurrent page faults */
1997 vma_start_write(vma);
1998 /*
1999 * vma->vm_start/vm_end cannot change under us because the caller
2000 * is required to hold the mmap_lock in read mode. We need the
2001 * anon_vma lock to serialize against concurrent expand_stacks.
2002 */
2003 anon_vma_lock_write(vma->anon_vma);
2004
2005 /* Somebody else might have raced and expanded it already */
2006 if (address > vma->vm_end) {
2007 unsigned long size, grow;
2008
2009 size = address - vma->vm_start;
2010 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2011
2012 error = -ENOMEM;
2013 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2014 error = acct_stack_growth(vma, size, grow);
2015 if (!error) {
2016 /*
2017 * We only hold a shared mmap_lock lock here, so
2018 * we need to protect against concurrent vma
2019 * expansions. anon_vma_lock_write() doesn't
2020 * help here, as we don't guarantee that all
2021 * growable vmas in a mm share the same root
2022 * anon vma. So, we reuse mm->page_table_lock
2023 * to guard against concurrent vma expansions.
2024 */
2025 spin_lock(&mm->page_table_lock);
2026 if (vma->vm_flags & VM_LOCKED)
2027 mm->locked_vm += grow;
2028 vm_stat_account(mm, vma->vm_flags, grow);
2029 anon_vma_interval_tree_pre_update_vma(vma);
2030 vma->vm_end = address;
2031 /* Overwrite old entry in mtree. */
2032 mas_store_prealloc(&mas, vma);
2033 anon_vma_interval_tree_post_update_vma(vma);
2034 spin_unlock(&mm->page_table_lock);
2035
2036 perf_event_mmap(vma);
2037 }
2038 }
2039 }
2040 anon_vma_unlock_write(vma->anon_vma);
2041 khugepaged_enter_vma(vma, vma->vm_flags);
2042 mas_destroy(&mas);
2043 validate_mm(mm);
2044 return error;
2045 }
2046 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2047
2048 /*
2049 * vma is the first one with address < vma->vm_start. Have to extend vma.
2050 * mmap_lock held for writing.
2051 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2052 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2053 {
2054 struct mm_struct *mm = vma->vm_mm;
2055 MA_STATE(mas, &mm->mm_mt, vma->vm_start, vma->vm_start);
2056 struct vm_area_struct *prev;
2057 int error = 0;
2058
2059 if (!(vma->vm_flags & VM_GROWSDOWN))
2060 return -EFAULT;
2061
2062 address &= PAGE_MASK;
2063 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2064 return -EPERM;
2065
2066 /* Enforce stack_guard_gap */
2067 prev = mas_prev(&mas, 0);
2068 /* Check that both stack segments have the same anon_vma? */
2069 if (prev) {
2070 if (!(prev->vm_flags & VM_GROWSDOWN) &&
2071 vma_is_accessible(prev) &&
2072 (address - prev->vm_end < stack_guard_gap))
2073 return -ENOMEM;
2074 }
2075
2076 if (prev)
2077 mas_next_range(&mas, vma->vm_start);
2078
2079 __mas_set_range(&mas, address, vma->vm_end - 1);
2080 if (mas_preallocate(&mas, vma, GFP_KERNEL))
2081 return -ENOMEM;
2082
2083 /* We must make sure the anon_vma is allocated. */
2084 if (unlikely(anon_vma_prepare(vma))) {
2085 mas_destroy(&mas);
2086 return -ENOMEM;
2087 }
2088
2089 /* Lock the VMA before expanding to prevent concurrent page faults */
2090 vma_start_write(vma);
2091 /*
2092 * vma->vm_start/vm_end cannot change under us because the caller
2093 * is required to hold the mmap_lock in read mode. We need the
2094 * anon_vma lock to serialize against concurrent expand_stacks.
2095 */
2096 anon_vma_lock_write(vma->anon_vma);
2097
2098 /* Somebody else might have raced and expanded it already */
2099 if (address < vma->vm_start) {
2100 unsigned long size, grow;
2101
2102 size = vma->vm_end - address;
2103 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2104
2105 error = -ENOMEM;
2106 if (grow <= vma->vm_pgoff) {
2107 error = acct_stack_growth(vma, size, grow);
2108 if (!error) {
2109 /*
2110 * We only hold a shared mmap_lock lock here, so
2111 * we need to protect against concurrent vma
2112 * expansions. anon_vma_lock_write() doesn't
2113 * help here, as we don't guarantee that all
2114 * growable vmas in a mm share the same root
2115 * anon vma. So, we reuse mm->page_table_lock
2116 * to guard against concurrent vma expansions.
2117 */
2118 spin_lock(&mm->page_table_lock);
2119 if (vma->vm_flags & VM_LOCKED)
2120 mm->locked_vm += grow;
2121 vm_stat_account(mm, vma->vm_flags, grow);
2122 anon_vma_interval_tree_pre_update_vma(vma);
2123 vma->vm_start = address;
2124 vma->vm_pgoff -= grow;
2125 /* Overwrite old entry in mtree. */
2126 mas_store_prealloc(&mas, vma);
2127 anon_vma_interval_tree_post_update_vma(vma);
2128 spin_unlock(&mm->page_table_lock);
2129
2130 perf_event_mmap(vma);
2131 }
2132 }
2133 }
2134 anon_vma_unlock_write(vma->anon_vma);
2135 khugepaged_enter_vma(vma, vma->vm_flags);
2136 mas_destroy(&mas);
2137 validate_mm(mm);
2138 return error;
2139 }
2140
2141 /* enforced gap between the expanding stack and other mappings. */
2142 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2143
cmdline_parse_stack_guard_gap(char * p)2144 static int __init cmdline_parse_stack_guard_gap(char *p)
2145 {
2146 unsigned long val;
2147 char *endptr;
2148
2149 val = simple_strtoul(p, &endptr, 10);
2150 if (!*endptr)
2151 stack_guard_gap = val << PAGE_SHIFT;
2152
2153 return 1;
2154 }
2155 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2156
2157 #ifdef CONFIG_STACK_GROWSUP
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)2158 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2159 {
2160 return expand_upwards(vma, address);
2161 }
2162
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)2163 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2164 {
2165 struct vm_area_struct *vma, *prev;
2166
2167 addr &= PAGE_MASK;
2168 vma = find_vma_prev(mm, addr, &prev);
2169 if (vma && (vma->vm_start <= addr))
2170 return vma;
2171 if (!prev)
2172 return NULL;
2173 if (expand_stack_locked(prev, addr))
2174 return NULL;
2175 if (prev->vm_flags & VM_LOCKED)
2176 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2177 return prev;
2178 }
2179 #else
expand_stack_locked(struct vm_area_struct * vma,unsigned long address)2180 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
2181 {
2182 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
2183 return -EINVAL;
2184 return expand_downwards(vma, address);
2185 }
2186
find_extend_vma_locked(struct mm_struct * mm,unsigned long addr)2187 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
2188 {
2189 struct vm_area_struct *vma;
2190 unsigned long start;
2191
2192 addr &= PAGE_MASK;
2193 vma = find_vma(mm, addr);
2194 if (!vma)
2195 return NULL;
2196 if (vma->vm_start <= addr)
2197 return vma;
2198 start = vma->vm_start;
2199 if (expand_stack_locked(vma, addr))
2200 return NULL;
2201 if (vma->vm_flags & VM_LOCKED)
2202 populate_vma_page_range(vma, addr, start, NULL);
2203 return vma;
2204 }
2205 #endif
2206
2207 /*
2208 * IA64 has some horrid mapping rules: it can expand both up and down,
2209 * but with various special rules.
2210 *
2211 * We'll get rid of this architecture eventually, so the ugliness is
2212 * temporary.
2213 */
2214 #ifdef CONFIG_IA64
vma_expand_ok(struct vm_area_struct * vma,unsigned long addr)2215 static inline bool vma_expand_ok(struct vm_area_struct *vma, unsigned long addr)
2216 {
2217 return REGION_NUMBER(addr) == REGION_NUMBER(vma->vm_start) &&
2218 REGION_OFFSET(addr) < RGN_MAP_LIMIT;
2219 }
2220
2221 /*
2222 * IA64 stacks grow down, but there's a special register backing store
2223 * that can grow up. Only sequentially, though, so the new address must
2224 * match vm_end.
2225 */
vma_expand_up(struct vm_area_struct * vma,unsigned long addr)2226 static inline int vma_expand_up(struct vm_area_struct *vma, unsigned long addr)
2227 {
2228 if (!vma_expand_ok(vma, addr))
2229 return -EFAULT;
2230 if (vma->vm_end != (addr & PAGE_MASK))
2231 return -EFAULT;
2232 return expand_upwards(vma, addr);
2233 }
2234
vma_expand_down(struct vm_area_struct * vma,unsigned long addr)2235 static inline bool vma_expand_down(struct vm_area_struct *vma, unsigned long addr)
2236 {
2237 if (!vma_expand_ok(vma, addr))
2238 return -EFAULT;
2239 return expand_downwards(vma, addr);
2240 }
2241
2242 #elif defined(CONFIG_STACK_GROWSUP)
2243
2244 #define vma_expand_up(vma,addr) expand_upwards(vma, addr)
2245 #define vma_expand_down(vma, addr) (-EFAULT)
2246
2247 #else
2248
2249 #define vma_expand_up(vma,addr) (-EFAULT)
2250 #define vma_expand_down(vma, addr) expand_downwards(vma, addr)
2251
2252 #endif
2253
2254 /*
2255 * expand_stack(): legacy interface for page faulting. Don't use unless
2256 * you have to.
2257 *
2258 * This is called with the mm locked for reading, drops the lock, takes
2259 * the lock for writing, tries to look up a vma again, expands it if
2260 * necessary, and downgrades the lock to reading again.
2261 *
2262 * If no vma is found or it can't be expanded, it returns NULL and has
2263 * dropped the lock.
2264 */
expand_stack(struct mm_struct * mm,unsigned long addr)2265 struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
2266 {
2267 struct vm_area_struct *vma, *prev;
2268
2269 mmap_read_unlock(mm);
2270 if (mmap_write_lock_killable(mm))
2271 return NULL;
2272
2273 vma = find_vma_prev(mm, addr, &prev);
2274 if (vma && vma->vm_start <= addr)
2275 goto success;
2276
2277 if (prev && !vma_expand_up(prev, addr)) {
2278 vma = prev;
2279 goto success;
2280 }
2281
2282 if (vma && !vma_expand_down(vma, addr))
2283 goto success;
2284
2285 mmap_write_unlock(mm);
2286 return NULL;
2287
2288 success:
2289 mmap_write_downgrade(mm);
2290 return vma;
2291 }
2292
2293 /*
2294 * Ok - we have the memory areas we should free on a maple tree so release them,
2295 * and do the vma updates.
2296 *
2297 * Called with the mm semaphore held.
2298 */
remove_mt(struct mm_struct * mm,struct ma_state * mas)2299 static inline void remove_mt(struct mm_struct *mm, struct ma_state *mas)
2300 {
2301 unsigned long nr_accounted = 0;
2302 struct vm_area_struct *vma;
2303
2304 /* Update high watermark before we lower total_vm */
2305 update_hiwater_vm(mm);
2306 mas_for_each(mas, vma, ULONG_MAX) {
2307 long nrpages = vma_pages(vma);
2308
2309 if (vma->vm_flags & VM_ACCOUNT)
2310 nr_accounted += nrpages;
2311 vm_stat_account(mm, vma->vm_flags, -nrpages);
2312 remove_vma(vma, false);
2313 }
2314 vm_unacct_memory(nr_accounted);
2315 }
2316
2317 /*
2318 * Get rid of page table information in the indicated region.
2319 *
2320 * Called with the mm semaphore held.
2321 */
unmap_region(struct mm_struct * mm,struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next,unsigned long start,unsigned long end,unsigned long tree_end,bool mm_wr_locked)2322 static void unmap_region(struct mm_struct *mm, struct ma_state *mas,
2323 struct vm_area_struct *vma, struct vm_area_struct *prev,
2324 struct vm_area_struct *next, unsigned long start,
2325 unsigned long end, unsigned long tree_end, bool mm_wr_locked)
2326 {
2327 struct mmu_gather tlb;
2328 unsigned long mt_start = mas->index;
2329
2330 lru_add_drain();
2331 tlb_gather_mmu(&tlb, mm);
2332 update_hiwater_rss(mm);
2333 unmap_vmas(&tlb, mas, vma, start, end, tree_end, mm_wr_locked);
2334 mas_set(mas, mt_start);
2335 free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2336 next ? next->vm_start : USER_PGTABLES_CEILING,
2337 mm_wr_locked);
2338 tlb_finish_mmu(&tlb);
2339 }
2340
2341 /*
2342 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2343 * has already been checked or doesn't make sense to fail.
2344 * VMA Iterator will point to the end VMA.
2345 */
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)2346 int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2347 unsigned long addr, int new_below)
2348 {
2349 struct vma_prepare vp;
2350 struct vm_area_struct *new;
2351 int err;
2352
2353 WARN_ON(vma->vm_start >= addr);
2354 WARN_ON(vma->vm_end <= addr);
2355
2356 if (vma->vm_ops && vma->vm_ops->may_split) {
2357 err = vma->vm_ops->may_split(vma, addr);
2358 if (err)
2359 return err;
2360 }
2361
2362 new = vm_area_dup(vma);
2363 if (!new)
2364 return -ENOMEM;
2365
2366 if (new_below) {
2367 new->vm_end = addr;
2368 } else {
2369 new->vm_start = addr;
2370 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2371 }
2372
2373 err = -ENOMEM;
2374 vma_iter_config(vmi, new->vm_start, new->vm_end);
2375 if (vma_iter_prealloc(vmi, new))
2376 goto out_free_vma;
2377
2378 err = vma_dup_policy(vma, new);
2379 if (err)
2380 goto out_free_vmi;
2381
2382 err = anon_vma_clone(new, vma);
2383 if (err)
2384 goto out_free_mpol;
2385
2386 if (new->vm_file)
2387 get_file(new->vm_file);
2388
2389 if (new->vm_ops && new->vm_ops->open)
2390 new->vm_ops->open(new);
2391
2392 vma_start_write(vma);
2393 vma_start_write(new);
2394
2395 init_vma_prep(&vp, vma);
2396 vp.insert = new;
2397 vma_prepare(&vp);
2398 vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
2399
2400 if (new_below) {
2401 vma->vm_start = addr;
2402 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
2403 } else {
2404 vma->vm_end = addr;
2405 }
2406
2407 /* vma_complete stores the new vma */
2408 vma_complete(&vp, vmi, vma->vm_mm);
2409
2410 /* Success. */
2411 if (new_below)
2412 vma_next(vmi);
2413 return 0;
2414
2415 out_free_mpol:
2416 mpol_put(vma_policy(new));
2417 out_free_vmi:
2418 vma_iter_free(vmi);
2419 out_free_vma:
2420 vm_area_free(new);
2421 return err;
2422 }
2423
2424 /*
2425 * Split a vma into two pieces at address 'addr', a new vma is allocated
2426 * either for the first part or the tail.
2427 */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)2428 int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
2429 unsigned long addr, int new_below)
2430 {
2431 if (vma->vm_mm->map_count >= sysctl_max_map_count)
2432 return -ENOMEM;
2433
2434 return __split_vma(vmi, vma, addr, new_below);
2435 }
2436
2437 /*
2438 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
2439 * @vmi: The vma iterator
2440 * @vma: The starting vm_area_struct
2441 * @mm: The mm_struct
2442 * @start: The aligned start address to munmap.
2443 * @end: The aligned end address to munmap.
2444 * @uf: The userfaultfd list_head
2445 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
2446 * success.
2447 *
2448 * Return: 0 on success and drops the lock if so directed, error and leaves the
2449 * lock held otherwise.
2450 */
2451 static int
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)2452 do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
2453 struct mm_struct *mm, unsigned long start,
2454 unsigned long end, struct list_head *uf, bool unlock)
2455 {
2456 struct vm_area_struct *prev, *next = NULL;
2457 struct maple_tree mt_detach;
2458 int count = 0;
2459 int error = -ENOMEM;
2460 unsigned long locked_vm = 0;
2461 MA_STATE(mas_detach, &mt_detach, 0, 0);
2462 mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2463 mt_on_stack(mt_detach);
2464
2465 /*
2466 * If we need to split any vma, do it now to save pain later.
2467 *
2468 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2469 * unmapped vm_area_struct will remain in use: so lower split_vma
2470 * places tmp vma above, and higher split_vma places tmp vma below.
2471 */
2472
2473 /* Does it split the first one? */
2474 if (start > vma->vm_start) {
2475
2476 /*
2477 * Make sure that map_count on return from munmap() will
2478 * not exceed its limit; but let map_count go just above
2479 * its limit temporarily, to help free resources as expected.
2480 */
2481 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2482 goto map_count_exceeded;
2483
2484 error = __split_vma(vmi, vma, start, 1);
2485 if (error)
2486 goto start_split_failed;
2487 }
2488
2489 /*
2490 * Detach a range of VMAs from the mm. Using next as a temp variable as
2491 * it is always overwritten.
2492 */
2493 next = vma;
2494 do {
2495 /* Does it split the end? */
2496 if (next->vm_end > end) {
2497 error = __split_vma(vmi, next, end, 0);
2498 if (error)
2499 goto end_split_failed;
2500 }
2501 vma_start_write(next);
2502 mas_set(&mas_detach, count);
2503 error = mas_store_gfp(&mas_detach, next, GFP_KERNEL);
2504 if (error)
2505 goto munmap_gather_failed;
2506 vma_mark_detached(next, true);
2507 if (next->vm_flags & VM_LOCKED)
2508 locked_vm += vma_pages(next);
2509
2510 count++;
2511 if (unlikely(uf)) {
2512 /*
2513 * If userfaultfd_unmap_prep returns an error the vmas
2514 * will remain split, but userland will get a
2515 * highly unexpected error anyway. This is no
2516 * different than the case where the first of the two
2517 * __split_vma fails, but we don't undo the first
2518 * split, despite we could. This is unlikely enough
2519 * failure that it's not worth optimizing it for.
2520 */
2521 error = userfaultfd_unmap_prep(next, start, end, uf);
2522
2523 if (error)
2524 goto userfaultfd_error;
2525 }
2526 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
2527 BUG_ON(next->vm_start < start);
2528 BUG_ON(next->vm_start > end);
2529 #endif
2530 } for_each_vma_range(*vmi, next, end);
2531
2532 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
2533 /* Make sure no VMAs are about to be lost. */
2534 {
2535 MA_STATE(test, &mt_detach, 0, 0);
2536 struct vm_area_struct *vma_mas, *vma_test;
2537 int test_count = 0;
2538
2539 vma_iter_set(vmi, start);
2540 rcu_read_lock();
2541 vma_test = mas_find(&test, count - 1);
2542 for_each_vma_range(*vmi, vma_mas, end) {
2543 BUG_ON(vma_mas != vma_test);
2544 test_count++;
2545 vma_test = mas_next(&test, count - 1);
2546 }
2547 rcu_read_unlock();
2548 BUG_ON(count != test_count);
2549 }
2550 #endif
2551
2552 while (vma_iter_addr(vmi) > start)
2553 vma_iter_prev_range(vmi);
2554
2555 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
2556 if (error)
2557 goto clear_tree_failed;
2558
2559 /* Point of no return */
2560 mm->locked_vm -= locked_vm;
2561 mm->map_count -= count;
2562 if (unlock)
2563 mmap_write_downgrade(mm);
2564
2565 prev = vma_iter_prev_range(vmi);
2566 next = vma_next(vmi);
2567 if (next)
2568 vma_iter_prev_range(vmi);
2569
2570 /*
2571 * We can free page tables without write-locking mmap_lock because VMAs
2572 * were isolated before we downgraded mmap_lock.
2573 */
2574 mas_set(&mas_detach, 1);
2575 unmap_region(mm, &mas_detach, vma, prev, next, start, end, count,
2576 !unlock);
2577 /* Statistics and freeing VMAs */
2578 mas_set(&mas_detach, 0);
2579 remove_mt(mm, &mas_detach);
2580 validate_mm(mm);
2581 if (unlock)
2582 mmap_read_unlock(mm);
2583
2584 __mt_destroy(&mt_detach);
2585 return 0;
2586
2587 clear_tree_failed:
2588 userfaultfd_error:
2589 munmap_gather_failed:
2590 end_split_failed:
2591 mas_set(&mas_detach, 0);
2592 mas_for_each(&mas_detach, next, end)
2593 vma_mark_detached(next, false);
2594
2595 __mt_destroy(&mt_detach);
2596 start_split_failed:
2597 map_count_exceeded:
2598 validate_mm(mm);
2599 return error;
2600 }
2601
2602 /*
2603 * do_vmi_munmap() - munmap a given range.
2604 * @vmi: The vma iterator
2605 * @mm: The mm_struct
2606 * @start: The start address to munmap
2607 * @len: The length of the range to munmap
2608 * @uf: The userfaultfd list_head
2609 * @unlock: set to true if the user wants to drop the mmap_lock on success
2610 *
2611 * This function takes a @mas that is either pointing to the previous VMA or set
2612 * to MA_START and sets it up to remove the mapping(s). The @len will be
2613 * aligned and any arch_unmap work will be preformed.
2614 *
2615 * Return: 0 on success and drops the lock if so directed, error and leaves the
2616 * lock held otherwise.
2617 */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)2618 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
2619 unsigned long start, size_t len, struct list_head *uf,
2620 bool unlock)
2621 {
2622 unsigned long end;
2623 struct vm_area_struct *vma;
2624
2625 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2626 return -EINVAL;
2627
2628 end = start + PAGE_ALIGN(len);
2629 if (end == start)
2630 return -EINVAL;
2631
2632 /* arch_unmap() might do unmaps itself. */
2633 arch_unmap(mm, start, end);
2634
2635 /* Find the first overlapping VMA */
2636 vma = vma_find(vmi, end);
2637 if (!vma) {
2638 if (unlock)
2639 mmap_write_unlock(mm);
2640 return 0;
2641 }
2642
2643 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
2644 }
2645
2646 /* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
2647 * @mm: The mm_struct
2648 * @start: The start address to munmap
2649 * @len: The length to be munmapped.
2650 * @uf: The userfaultfd list_head
2651 *
2652 * Return: 0 on success, error otherwise.
2653 */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2654 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2655 struct list_head *uf)
2656 {
2657 VMA_ITERATOR(vmi, mm, start);
2658
2659 return do_vmi_munmap(&vmi, mm, start, len, uf, false);
2660 }
2661
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2662 unsigned long mmap_region(struct file *file, unsigned long addr,
2663 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2664 struct list_head *uf)
2665 {
2666 struct mm_struct *mm = current->mm;
2667 struct vm_area_struct *vma = NULL;
2668 struct vm_area_struct *next, *prev, *merge;
2669 pgoff_t pglen = len >> PAGE_SHIFT;
2670 unsigned long charged = 0;
2671 unsigned long end = addr + len;
2672 unsigned long merge_start = addr, merge_end = end;
2673 pgoff_t vm_pgoff;
2674 int error;
2675 VMA_ITERATOR(vmi, mm, addr);
2676
2677 /* Check against address space limit. */
2678 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
2679 unsigned long nr_pages;
2680
2681 /*
2682 * MAP_FIXED may remove pages of mappings that intersects with
2683 * requested mapping. Account for the pages it would unmap.
2684 */
2685 nr_pages = count_vma_pages_range(mm, addr, end);
2686
2687 if (!may_expand_vm(mm, vm_flags,
2688 (len >> PAGE_SHIFT) - nr_pages))
2689 return -ENOMEM;
2690 }
2691
2692 /* Unmap any existing mapping in the area */
2693 if (do_vmi_munmap(&vmi, mm, addr, len, uf, false))
2694 return -ENOMEM;
2695
2696 /*
2697 * Private writable mapping: check memory availability
2698 */
2699 if (accountable_mapping(file, vm_flags)) {
2700 charged = len >> PAGE_SHIFT;
2701 if (security_vm_enough_memory_mm(mm, charged))
2702 return -ENOMEM;
2703 vm_flags |= VM_ACCOUNT;
2704 }
2705
2706 next = vma_next(&vmi);
2707 prev = vma_prev(&vmi);
2708 if (vm_flags & VM_SPECIAL) {
2709 if (prev)
2710 vma_iter_next_range(&vmi);
2711 goto cannot_expand;
2712 }
2713
2714 /* Attempt to expand an old mapping */
2715 /* Check next */
2716 if (next && next->vm_start == end && !vma_policy(next) &&
2717 can_vma_merge_before(next, vm_flags, NULL, file, pgoff+pglen,
2718 NULL_VM_UFFD_CTX, NULL)) {
2719 merge_end = next->vm_end;
2720 vma = next;
2721 vm_pgoff = next->vm_pgoff - pglen;
2722 }
2723
2724 /* Check prev */
2725 if (prev && prev->vm_end == addr && !vma_policy(prev) &&
2726 (vma ? can_vma_merge_after(prev, vm_flags, vma->anon_vma, file,
2727 pgoff, vma->vm_userfaultfd_ctx, NULL) :
2728 can_vma_merge_after(prev, vm_flags, NULL, file, pgoff,
2729 NULL_VM_UFFD_CTX, NULL))) {
2730 merge_start = prev->vm_start;
2731 vma = prev;
2732 vm_pgoff = prev->vm_pgoff;
2733 } else if (prev) {
2734 vma_iter_next_range(&vmi);
2735 }
2736
2737 /* Actually expand, if possible */
2738 if (vma &&
2739 !vma_expand(&vmi, vma, merge_start, merge_end, vm_pgoff, next)) {
2740 khugepaged_enter_vma(vma, vm_flags);
2741 goto expanded;
2742 }
2743
2744 if (vma == prev)
2745 vma_iter_set(&vmi, addr);
2746 cannot_expand:
2747
2748 /*
2749 * Determine the object being mapped and call the appropriate
2750 * specific mapper. the address has already been validated, but
2751 * not unmapped, but the maps are removed from the list.
2752 */
2753 vma = vm_area_alloc(mm);
2754 if (!vma) {
2755 error = -ENOMEM;
2756 goto unacct_error;
2757 }
2758
2759 vma_iter_config(&vmi, addr, end);
2760 vma->vm_start = addr;
2761 vma->vm_end = end;
2762 vm_flags_init(vma, vm_flags);
2763 vma->vm_page_prot = vm_get_page_prot(vm_flags);
2764 vma->vm_pgoff = pgoff;
2765
2766 if (file) {
2767 if (vm_flags & VM_SHARED) {
2768 error = mapping_map_writable(file->f_mapping);
2769 if (error)
2770 goto free_vma;
2771 }
2772
2773 vma->vm_file = get_file(file);
2774 error = call_mmap(file, vma);
2775 if (error)
2776 goto unmap_and_free_vma;
2777
2778 /*
2779 * Expansion is handled above, merging is handled below.
2780 * Drivers should not alter the address of the VMA.
2781 */
2782 error = -EINVAL;
2783 if (WARN_ON((addr != vma->vm_start)))
2784 goto close_and_free_vma;
2785
2786 vma_iter_config(&vmi, addr, end);
2787 /*
2788 * If vm_flags changed after call_mmap(), we should try merge
2789 * vma again as we may succeed this time.
2790 */
2791 if (unlikely(vm_flags != vma->vm_flags && prev)) {
2792 merge = vma_merge(&vmi, mm, prev, vma->vm_start,
2793 vma->vm_end, vma->vm_flags, NULL,
2794 vma->vm_file, vma->vm_pgoff, NULL,
2795 NULL_VM_UFFD_CTX, NULL);
2796 if (merge) {
2797 /*
2798 * ->mmap() can change vma->vm_file and fput
2799 * the original file. So fput the vma->vm_file
2800 * here or we would add an extra fput for file
2801 * and cause general protection fault
2802 * ultimately.
2803 */
2804 fput(vma->vm_file);
2805 vm_area_free(vma);
2806 vma = merge;
2807 /* Update vm_flags to pick up the change. */
2808 vm_flags = vma->vm_flags;
2809 goto unmap_writable;
2810 }
2811 }
2812
2813 vm_flags = vma->vm_flags;
2814 } else if (vm_flags & VM_SHARED) {
2815 error = shmem_zero_setup(vma);
2816 if (error)
2817 goto free_vma;
2818 } else {
2819 vma_set_anonymous(vma);
2820 }
2821
2822 if (map_deny_write_exec(vma, vma->vm_flags)) {
2823 error = -EACCES;
2824 goto close_and_free_vma;
2825 }
2826
2827 /* Allow architectures to sanity-check the vm_flags */
2828 error = -EINVAL;
2829 if (!arch_validate_flags(vma->vm_flags))
2830 goto close_and_free_vma;
2831
2832 error = -ENOMEM;
2833 if (vma_iter_prealloc(&vmi, vma))
2834 goto close_and_free_vma;
2835
2836 /* Lock the VMA since it is modified after insertion into VMA tree */
2837 vma_start_write(vma);
2838 vma_iter_store(&vmi, vma);
2839 mm->map_count++;
2840 if (vma->vm_file) {
2841 i_mmap_lock_write(vma->vm_file->f_mapping);
2842 if (vma->vm_flags & VM_SHARED)
2843 mapping_allow_writable(vma->vm_file->f_mapping);
2844
2845 flush_dcache_mmap_lock(vma->vm_file->f_mapping);
2846 vma_interval_tree_insert(vma, &vma->vm_file->f_mapping->i_mmap);
2847 flush_dcache_mmap_unlock(vma->vm_file->f_mapping);
2848 i_mmap_unlock_write(vma->vm_file->f_mapping);
2849 }
2850
2851 /*
2852 * vma_merge() calls khugepaged_enter_vma() either, the below
2853 * call covers the non-merge case.
2854 */
2855 khugepaged_enter_vma(vma, vma->vm_flags);
2856
2857 /* Once vma denies write, undo our temporary denial count */
2858 unmap_writable:
2859 if (file && vm_flags & VM_SHARED)
2860 mapping_unmap_writable(file->f_mapping);
2861 file = vma->vm_file;
2862 ksm_add_vma(vma);
2863 expanded:
2864 perf_event_mmap(vma);
2865
2866 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
2867 if (vm_flags & VM_LOCKED) {
2868 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2869 is_vm_hugetlb_page(vma) ||
2870 vma == get_gate_vma(current->mm))
2871 vm_flags_clear(vma, VM_LOCKED_MASK);
2872 else
2873 mm->locked_vm += (len >> PAGE_SHIFT);
2874 }
2875
2876 if (file)
2877 uprobe_mmap(vma);
2878
2879 /*
2880 * New (or expanded) vma always get soft dirty status.
2881 * Otherwise user-space soft-dirty page tracker won't
2882 * be able to distinguish situation when vma area unmapped,
2883 * then new mapped in-place (which must be aimed as
2884 * a completely new data area).
2885 */
2886 vm_flags_set(vma, VM_SOFTDIRTY);
2887
2888 vma_set_page_prot(vma);
2889
2890 validate_mm(mm);
2891 return addr;
2892
2893 close_and_free_vma:
2894 if (file && vma->vm_ops && vma->vm_ops->close)
2895 vma->vm_ops->close(vma);
2896
2897 if (file || vma->vm_file) {
2898 unmap_and_free_vma:
2899 fput(vma->vm_file);
2900 vma->vm_file = NULL;
2901
2902 vma_iter_set(&vmi, vma->vm_end);
2903 /* Undo any partial mapping done by a device driver. */
2904 unmap_region(mm, &vmi.mas, vma, prev, next, vma->vm_start,
2905 vma->vm_end, vma->vm_end, true);
2906 }
2907 if (file && (vm_flags & VM_SHARED))
2908 mapping_unmap_writable(file->f_mapping);
2909 free_vma:
2910 vm_area_free(vma);
2911 unacct_error:
2912 if (charged)
2913 vm_unacct_memory(charged);
2914 validate_mm(mm);
2915 return error;
2916 }
2917
__vm_munmap(unsigned long start,size_t len,bool unlock)2918 static int __vm_munmap(unsigned long start, size_t len, bool unlock)
2919 {
2920 int ret;
2921 struct mm_struct *mm = current->mm;
2922 LIST_HEAD(uf);
2923 VMA_ITERATOR(vmi, mm, start);
2924
2925 if (mmap_write_lock_killable(mm))
2926 return -EINTR;
2927
2928 ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2929 if (ret || !unlock)
2930 mmap_write_unlock(mm);
2931
2932 userfaultfd_unmap_complete(mm, &uf);
2933 return ret;
2934 }
2935
vm_munmap(unsigned long start,size_t len)2936 int vm_munmap(unsigned long start, size_t len)
2937 {
2938 return __vm_munmap(start, len, false);
2939 }
2940 EXPORT_SYMBOL(vm_munmap);
2941
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2942 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2943 {
2944 addr = untagged_addr(addr);
2945 return __vm_munmap(addr, len, true);
2946 }
2947
2948
2949 /*
2950 * Emulation of deprecated remap_file_pages() syscall.
2951 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2952 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2953 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2954 {
2955
2956 struct mm_struct *mm = current->mm;
2957 struct vm_area_struct *vma;
2958 unsigned long populate = 0;
2959 unsigned long ret = -EINVAL;
2960 struct file *file;
2961
2962 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
2963 current->comm, current->pid);
2964
2965 if (prot)
2966 return ret;
2967 start = start & PAGE_MASK;
2968 size = size & PAGE_MASK;
2969
2970 if (start + size <= start)
2971 return ret;
2972
2973 /* Does pgoff wrap? */
2974 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2975 return ret;
2976
2977 if (mmap_write_lock_killable(mm))
2978 return -EINTR;
2979
2980 vma = vma_lookup(mm, start);
2981
2982 if (!vma || !(vma->vm_flags & VM_SHARED))
2983 goto out;
2984
2985 if (start + size > vma->vm_end) {
2986 VMA_ITERATOR(vmi, mm, vma->vm_end);
2987 struct vm_area_struct *next, *prev = vma;
2988
2989 for_each_vma_range(vmi, next, start + size) {
2990 /* hole between vmas ? */
2991 if (next->vm_start != prev->vm_end)
2992 goto out;
2993
2994 if (next->vm_file != vma->vm_file)
2995 goto out;
2996
2997 if (next->vm_flags != vma->vm_flags)
2998 goto out;
2999
3000 if (start + size <= next->vm_end)
3001 break;
3002
3003 prev = next;
3004 }
3005
3006 if (!next)
3007 goto out;
3008 }
3009
3010 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3011 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3012 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3013
3014 flags &= MAP_NONBLOCK;
3015 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3016 if (vma->vm_flags & VM_LOCKED)
3017 flags |= MAP_LOCKED;
3018
3019 file = get_file(vma->vm_file);
3020 ret = do_mmap(vma->vm_file, start, size,
3021 prot, flags, 0, pgoff, &populate, NULL);
3022 fput(file);
3023 out:
3024 mmap_write_unlock(mm);
3025 if (populate)
3026 mm_populate(ret, populate);
3027 if (!IS_ERR_VALUE(ret))
3028 ret = 0;
3029 return ret;
3030 }
3031
3032 /*
3033 * do_vma_munmap() - Unmap a full or partial vma.
3034 * @vmi: The vma iterator pointing at the vma
3035 * @vma: The first vma to be munmapped
3036 * @start: the start of the address to unmap
3037 * @end: The end of the address to unmap
3038 * @uf: The userfaultfd list_head
3039 * @unlock: Drop the lock on success
3040 *
3041 * unmaps a VMA mapping when the vma iterator is already in position.
3042 * Does not handle alignment.
3043 *
3044 * Return: 0 on success drops the lock of so directed, error on failure and will
3045 * still hold the lock.
3046 */
do_vma_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)3047 int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3048 unsigned long start, unsigned long end, struct list_head *uf,
3049 bool unlock)
3050 {
3051 struct mm_struct *mm = vma->vm_mm;
3052
3053 arch_unmap(mm, start, end);
3054 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
3055 }
3056
3057 /*
3058 * do_brk_flags() - Increase the brk vma if the flags match.
3059 * @vmi: The vma iterator
3060 * @addr: The start address
3061 * @len: The length of the increase
3062 * @vma: The vma,
3063 * @flags: The VMA Flags
3064 *
3065 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
3066 * do not match then create a new anonymous VMA. Eventually we may be able to
3067 * do some brk-specific accounting here.
3068 */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,unsigned long flags)3069 static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
3070 unsigned long addr, unsigned long len, unsigned long flags)
3071 {
3072 struct mm_struct *mm = current->mm;
3073 struct vma_prepare vp;
3074
3075 /*
3076 * Check against address space limits by the changed size
3077 * Note: This happens *after* clearing old mappings in some code paths.
3078 */
3079 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3080 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3081 return -ENOMEM;
3082
3083 if (mm->map_count > sysctl_max_map_count)
3084 return -ENOMEM;
3085
3086 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3087 return -ENOMEM;
3088
3089 /*
3090 * Expand the existing vma if possible; Note that singular lists do not
3091 * occur after forking, so the expand will only happen on new VMAs.
3092 */
3093 if (vma && vma->vm_end == addr && !vma_policy(vma) &&
3094 can_vma_merge_after(vma, flags, NULL, NULL,
3095 addr >> PAGE_SHIFT, NULL_VM_UFFD_CTX, NULL)) {
3096 vma_iter_config(vmi, vma->vm_start, addr + len);
3097 if (vma_iter_prealloc(vmi, vma))
3098 goto unacct_fail;
3099
3100 vma_start_write(vma);
3101
3102 init_vma_prep(&vp, vma);
3103 vma_prepare(&vp);
3104 vma_adjust_trans_huge(vma, vma->vm_start, addr + len, 0);
3105 vma->vm_end = addr + len;
3106 vm_flags_set(vma, VM_SOFTDIRTY);
3107 vma_iter_store(vmi, vma);
3108
3109 vma_complete(&vp, vmi, mm);
3110 khugepaged_enter_vma(vma, flags);
3111 goto out;
3112 }
3113
3114 if (vma)
3115 vma_iter_next_range(vmi);
3116 /* create a vma struct for an anonymous mapping */
3117 vma = vm_area_alloc(mm);
3118 if (!vma)
3119 goto unacct_fail;
3120
3121 vma_set_anonymous(vma);
3122 vma->vm_start = addr;
3123 vma->vm_end = addr + len;
3124 vma->vm_pgoff = addr >> PAGE_SHIFT;
3125 vm_flags_init(vma, flags);
3126 vma->vm_page_prot = vm_get_page_prot(flags);
3127 vma_start_write(vma);
3128 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
3129 goto mas_store_fail;
3130
3131 mm->map_count++;
3132 validate_mm(mm);
3133 ksm_add_vma(vma);
3134 out:
3135 perf_event_mmap(vma);
3136 mm->total_vm += len >> PAGE_SHIFT;
3137 mm->data_vm += len >> PAGE_SHIFT;
3138 if (flags & VM_LOCKED)
3139 mm->locked_vm += (len >> PAGE_SHIFT);
3140 vm_flags_set(vma, VM_SOFTDIRTY);
3141 return 0;
3142
3143 mas_store_fail:
3144 vm_area_free(vma);
3145 unacct_fail:
3146 vm_unacct_memory(len >> PAGE_SHIFT);
3147 return -ENOMEM;
3148 }
3149
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3150 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3151 {
3152 struct mm_struct *mm = current->mm;
3153 struct vm_area_struct *vma = NULL;
3154 unsigned long len;
3155 int ret;
3156 bool populate;
3157 LIST_HEAD(uf);
3158 VMA_ITERATOR(vmi, mm, addr);
3159
3160 len = PAGE_ALIGN(request);
3161 if (len < request)
3162 return -ENOMEM;
3163 if (!len)
3164 return 0;
3165
3166 /* Until we need other flags, refuse anything except VM_EXEC. */
3167 if ((flags & (~VM_EXEC)) != 0)
3168 return -EINVAL;
3169
3170 if (mmap_write_lock_killable(mm))
3171 return -EINTR;
3172
3173 ret = check_brk_limits(addr, len);
3174 if (ret)
3175 goto limits_failed;
3176
3177 ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
3178 if (ret)
3179 goto munmap_failed;
3180
3181 vma = vma_prev(&vmi);
3182 ret = do_brk_flags(&vmi, vma, addr, len, flags);
3183 populate = ((mm->def_flags & VM_LOCKED) != 0);
3184 mmap_write_unlock(mm);
3185 userfaultfd_unmap_complete(mm, &uf);
3186 if (populate && !ret)
3187 mm_populate(addr, len);
3188 return ret;
3189
3190 munmap_failed:
3191 limits_failed:
3192 mmap_write_unlock(mm);
3193 return ret;
3194 }
3195 EXPORT_SYMBOL(vm_brk_flags);
3196
vm_brk(unsigned long addr,unsigned long len)3197 int vm_brk(unsigned long addr, unsigned long len)
3198 {
3199 return vm_brk_flags(addr, len, 0);
3200 }
3201 EXPORT_SYMBOL(vm_brk);
3202
3203 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3204 void exit_mmap(struct mm_struct *mm)
3205 {
3206 struct mmu_gather tlb;
3207 struct vm_area_struct *vma;
3208 unsigned long nr_accounted = 0;
3209 MA_STATE(mas, &mm->mm_mt, 0, 0);
3210 int count = 0;
3211
3212 /* mm's last user has gone, and its about to be pulled down */
3213 mmu_notifier_release(mm);
3214
3215 mmap_read_lock(mm);
3216 arch_exit_mmap(mm);
3217
3218 vma = mas_find(&mas, ULONG_MAX);
3219 if (!vma) {
3220 /* Can happen if dup_mmap() received an OOM */
3221 mmap_read_unlock(mm);
3222 return;
3223 }
3224
3225 lru_add_drain();
3226 flush_cache_mm(mm);
3227 tlb_gather_mmu_fullmm(&tlb, mm);
3228 /* update_hiwater_rss(mm) here? but nobody should be looking */
3229 /* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
3230 unmap_vmas(&tlb, &mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
3231 mmap_read_unlock(mm);
3232
3233 /*
3234 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
3235 * because the memory has been already freed.
3236 */
3237 set_bit(MMF_OOM_SKIP, &mm->flags);
3238 mmap_write_lock(mm);
3239 mt_clear_in_rcu(&mm->mm_mt);
3240 mas_set(&mas, vma->vm_end);
3241 free_pgtables(&tlb, &mas, vma, FIRST_USER_ADDRESS,
3242 USER_PGTABLES_CEILING, true);
3243 tlb_finish_mmu(&tlb);
3244
3245 /*
3246 * Walk the list again, actually closing and freeing it, with preemption
3247 * enabled, without holding any MM locks besides the unreachable
3248 * mmap_write_lock.
3249 */
3250 mas_set(&mas, vma->vm_end);
3251 do {
3252 if (vma->vm_flags & VM_ACCOUNT)
3253 nr_accounted += vma_pages(vma);
3254 remove_vma(vma, true);
3255 count++;
3256 cond_resched();
3257 } while ((vma = mas_find(&mas, ULONG_MAX)) != NULL);
3258
3259 BUG_ON(count != mm->map_count);
3260
3261 trace_exit_mmap(mm);
3262 __mt_destroy(&mm->mm_mt);
3263 mmap_write_unlock(mm);
3264 vm_unacct_memory(nr_accounted);
3265 }
3266
3267 /* Insert vm structure into process list sorted by address
3268 * and into the inode's i_mmap tree. If vm_file is non-NULL
3269 * then i_mmap_rwsem is taken here.
3270 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3271 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3272 {
3273 unsigned long charged = vma_pages(vma);
3274
3275
3276 if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
3277 return -ENOMEM;
3278
3279 if ((vma->vm_flags & VM_ACCOUNT) &&
3280 security_vm_enough_memory_mm(mm, charged))
3281 return -ENOMEM;
3282
3283 /*
3284 * The vm_pgoff of a purely anonymous vma should be irrelevant
3285 * until its first write fault, when page's anon_vma and index
3286 * are set. But now set the vm_pgoff it will almost certainly
3287 * end up with (unless mremap moves it elsewhere before that
3288 * first wfault), so /proc/pid/maps tells a consistent story.
3289 *
3290 * By setting it to reflect the virtual start address of the
3291 * vma, merges and splits can happen in a seamless way, just
3292 * using the existing file pgoff checks and manipulations.
3293 * Similarly in do_mmap and in do_brk_flags.
3294 */
3295 if (vma_is_anonymous(vma)) {
3296 BUG_ON(vma->anon_vma);
3297 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3298 }
3299
3300 if (vma_link(mm, vma)) {
3301 vm_unacct_memory(charged);
3302 return -ENOMEM;
3303 }
3304
3305 return 0;
3306 }
3307
3308 /*
3309 * Copy the vma structure to a new location in the same mm,
3310 * prior to moving page table entries, to effect an mremap move.
3311 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3312 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3313 unsigned long addr, unsigned long len, pgoff_t pgoff,
3314 bool *need_rmap_locks)
3315 {
3316 struct vm_area_struct *vma = *vmap;
3317 unsigned long vma_start = vma->vm_start;
3318 struct mm_struct *mm = vma->vm_mm;
3319 struct vm_area_struct *new_vma, *prev;
3320 bool faulted_in_anon_vma = true;
3321 VMA_ITERATOR(vmi, mm, addr);
3322
3323 /*
3324 * If anonymous vma has not yet been faulted, update new pgoff
3325 * to match new location, to increase its chance of merging.
3326 */
3327 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3328 pgoff = addr >> PAGE_SHIFT;
3329 faulted_in_anon_vma = false;
3330 }
3331
3332 new_vma = find_vma_prev(mm, addr, &prev);
3333 if (new_vma && new_vma->vm_start < addr + len)
3334 return NULL; /* should never get here */
3335
3336 new_vma = vma_merge(&vmi, mm, prev, addr, addr + len, vma->vm_flags,
3337 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3338 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3339 if (new_vma) {
3340 /*
3341 * Source vma may have been merged into new_vma
3342 */
3343 if (unlikely(vma_start >= new_vma->vm_start &&
3344 vma_start < new_vma->vm_end)) {
3345 /*
3346 * The only way we can get a vma_merge with
3347 * self during an mremap is if the vma hasn't
3348 * been faulted in yet and we were allowed to
3349 * reset the dst vma->vm_pgoff to the
3350 * destination address of the mremap to allow
3351 * the merge to happen. mremap must change the
3352 * vm_pgoff linearity between src and dst vmas
3353 * (in turn preventing a vma_merge) to be
3354 * safe. It is only safe to keep the vm_pgoff
3355 * linear if there are no pages mapped yet.
3356 */
3357 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3358 *vmap = vma = new_vma;
3359 }
3360 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3361 } else {
3362 new_vma = vm_area_dup(vma);
3363 if (!new_vma)
3364 goto out;
3365 new_vma->vm_start = addr;
3366 new_vma->vm_end = addr + len;
3367 new_vma->vm_pgoff = pgoff;
3368 if (vma_dup_policy(vma, new_vma))
3369 goto out_free_vma;
3370 if (anon_vma_clone(new_vma, vma))
3371 goto out_free_mempol;
3372 if (new_vma->vm_file)
3373 get_file(new_vma->vm_file);
3374 if (new_vma->vm_ops && new_vma->vm_ops->open)
3375 new_vma->vm_ops->open(new_vma);
3376 if (vma_link(mm, new_vma))
3377 goto out_vma_link;
3378 *need_rmap_locks = false;
3379 }
3380 return new_vma;
3381
3382 out_vma_link:
3383 if (new_vma->vm_ops && new_vma->vm_ops->close)
3384 new_vma->vm_ops->close(new_vma);
3385
3386 if (new_vma->vm_file)
3387 fput(new_vma->vm_file);
3388
3389 unlink_anon_vmas(new_vma);
3390 out_free_mempol:
3391 mpol_put(vma_policy(new_vma));
3392 out_free_vma:
3393 vm_area_free(new_vma);
3394 out:
3395 return NULL;
3396 }
3397
3398 /*
3399 * Return true if the calling process may expand its vm space by the passed
3400 * number of pages
3401 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3402 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3403 {
3404 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3405 return false;
3406
3407 if (is_data_mapping(flags) &&
3408 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3409 /* Workaround for Valgrind */
3410 if (rlimit(RLIMIT_DATA) == 0 &&
3411 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3412 return true;
3413
3414 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3415 current->comm, current->pid,
3416 (mm->data_vm + npages) << PAGE_SHIFT,
3417 rlimit(RLIMIT_DATA),
3418 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3419
3420 if (!ignore_rlimit_data)
3421 return false;
3422 }
3423
3424 return true;
3425 }
3426
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3427 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3428 {
3429 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3430
3431 if (is_exec_mapping(flags))
3432 mm->exec_vm += npages;
3433 else if (is_stack_mapping(flags))
3434 mm->stack_vm += npages;
3435 else if (is_data_mapping(flags))
3436 mm->data_vm += npages;
3437 }
3438
3439 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3440
3441 /*
3442 * Having a close hook prevents vma merging regardless of flags.
3443 */
special_mapping_close(struct vm_area_struct * vma)3444 static void special_mapping_close(struct vm_area_struct *vma)
3445 {
3446 }
3447
special_mapping_name(struct vm_area_struct * vma)3448 static const char *special_mapping_name(struct vm_area_struct *vma)
3449 {
3450 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3451 }
3452
special_mapping_mremap(struct vm_area_struct * new_vma)3453 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3454 {
3455 struct vm_special_mapping *sm = new_vma->vm_private_data;
3456
3457 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3458 return -EFAULT;
3459
3460 if (sm->mremap)
3461 return sm->mremap(sm, new_vma);
3462
3463 return 0;
3464 }
3465
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3466 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3467 {
3468 /*
3469 * Forbid splitting special mappings - kernel has expectations over
3470 * the number of pages in mapping. Together with VM_DONTEXPAND
3471 * the size of vma should stay the same over the special mapping's
3472 * lifetime.
3473 */
3474 return -EINVAL;
3475 }
3476
3477 static const struct vm_operations_struct special_mapping_vmops = {
3478 .close = special_mapping_close,
3479 .fault = special_mapping_fault,
3480 .mremap = special_mapping_mremap,
3481 .name = special_mapping_name,
3482 /* vDSO code relies that VVAR can't be accessed remotely */
3483 .access = NULL,
3484 .may_split = special_mapping_split,
3485 };
3486
3487 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3488 .close = special_mapping_close,
3489 .fault = special_mapping_fault,
3490 };
3491
special_mapping_fault(struct vm_fault * vmf)3492 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3493 {
3494 struct vm_area_struct *vma = vmf->vma;
3495 pgoff_t pgoff;
3496 struct page **pages;
3497
3498 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3499 pages = vma->vm_private_data;
3500 } else {
3501 struct vm_special_mapping *sm = vma->vm_private_data;
3502
3503 if (sm->fault)
3504 return sm->fault(sm, vmf->vma, vmf);
3505
3506 pages = sm->pages;
3507 }
3508
3509 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3510 pgoff--;
3511
3512 if (*pages) {
3513 struct page *page = *pages;
3514 get_page(page);
3515 vmf->page = page;
3516 return 0;
3517 }
3518
3519 return VM_FAULT_SIGBUS;
3520 }
3521
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3522 static struct vm_area_struct *__install_special_mapping(
3523 struct mm_struct *mm,
3524 unsigned long addr, unsigned long len,
3525 unsigned long vm_flags, void *priv,
3526 const struct vm_operations_struct *ops)
3527 {
3528 int ret;
3529 struct vm_area_struct *vma;
3530
3531 vma = vm_area_alloc(mm);
3532 if (unlikely(vma == NULL))
3533 return ERR_PTR(-ENOMEM);
3534
3535 vma->vm_start = addr;
3536 vma->vm_end = addr + len;
3537
3538 vm_flags_init(vma, (vm_flags | mm->def_flags |
3539 VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
3540 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3541
3542 vma->vm_ops = ops;
3543 vma->vm_private_data = priv;
3544
3545 ret = insert_vm_struct(mm, vma);
3546 if (ret)
3547 goto out;
3548
3549 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3550
3551 perf_event_mmap(vma);
3552
3553 return vma;
3554
3555 out:
3556 vm_area_free(vma);
3557 return ERR_PTR(ret);
3558 }
3559
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3560 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3561 const struct vm_special_mapping *sm)
3562 {
3563 return vma->vm_private_data == sm &&
3564 (vma->vm_ops == &special_mapping_vmops ||
3565 vma->vm_ops == &legacy_special_mapping_vmops);
3566 }
3567
3568 /*
3569 * Called with mm->mmap_lock held for writing.
3570 * Insert a new vma covering the given region, with the given flags.
3571 * Its pages are supplied by the given array of struct page *.
3572 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3573 * The region past the last page supplied will always produce SIGBUS.
3574 * The array pointer and the pages it points to are assumed to stay alive
3575 * for as long as this mapping might exist.
3576 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3577 struct vm_area_struct *_install_special_mapping(
3578 struct mm_struct *mm,
3579 unsigned long addr, unsigned long len,
3580 unsigned long vm_flags, const struct vm_special_mapping *spec)
3581 {
3582 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3583 &special_mapping_vmops);
3584 }
3585
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3586 int install_special_mapping(struct mm_struct *mm,
3587 unsigned long addr, unsigned long len,
3588 unsigned long vm_flags, struct page **pages)
3589 {
3590 struct vm_area_struct *vma = __install_special_mapping(
3591 mm, addr, len, vm_flags, (void *)pages,
3592 &legacy_special_mapping_vmops);
3593
3594 return PTR_ERR_OR_ZERO(vma);
3595 }
3596
3597 static DEFINE_MUTEX(mm_all_locks_mutex);
3598
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3599 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3600 {
3601 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3602 /*
3603 * The LSB of head.next can't change from under us
3604 * because we hold the mm_all_locks_mutex.
3605 */
3606 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3607 /*
3608 * We can safely modify head.next after taking the
3609 * anon_vma->root->rwsem. If some other vma in this mm shares
3610 * the same anon_vma we won't take it again.
3611 *
3612 * No need of atomic instructions here, head.next
3613 * can't change from under us thanks to the
3614 * anon_vma->root->rwsem.
3615 */
3616 if (__test_and_set_bit(0, (unsigned long *)
3617 &anon_vma->root->rb_root.rb_root.rb_node))
3618 BUG();
3619 }
3620 }
3621
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3622 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3623 {
3624 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3625 /*
3626 * AS_MM_ALL_LOCKS can't change from under us because
3627 * we hold the mm_all_locks_mutex.
3628 *
3629 * Operations on ->flags have to be atomic because
3630 * even if AS_MM_ALL_LOCKS is stable thanks to the
3631 * mm_all_locks_mutex, there may be other cpus
3632 * changing other bitflags in parallel to us.
3633 */
3634 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3635 BUG();
3636 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3637 }
3638 }
3639
3640 /*
3641 * This operation locks against the VM for all pte/vma/mm related
3642 * operations that could ever happen on a certain mm. This includes
3643 * vmtruncate, try_to_unmap, and all page faults.
3644 *
3645 * The caller must take the mmap_lock in write mode before calling
3646 * mm_take_all_locks(). The caller isn't allowed to release the
3647 * mmap_lock until mm_drop_all_locks() returns.
3648 *
3649 * mmap_lock in write mode is required in order to block all operations
3650 * that could modify pagetables and free pages without need of
3651 * altering the vma layout. It's also needed in write mode to avoid new
3652 * anon_vmas to be associated with existing vmas.
3653 *
3654 * A single task can't take more than one mm_take_all_locks() in a row
3655 * or it would deadlock.
3656 *
3657 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3658 * mapping->flags avoid to take the same lock twice, if more than one
3659 * vma in this mm is backed by the same anon_vma or address_space.
3660 *
3661 * We take locks in following order, accordingly to comment at beginning
3662 * of mm/rmap.c:
3663 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3664 * hugetlb mapping);
3665 * - all vmas marked locked
3666 * - all i_mmap_rwsem locks;
3667 * - all anon_vma->rwseml
3668 *
3669 * We can take all locks within these types randomly because the VM code
3670 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3671 * mm_all_locks_mutex.
3672 *
3673 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3674 * that may have to take thousand of locks.
3675 *
3676 * mm_take_all_locks() can fail if it's interrupted by signals.
3677 */
mm_take_all_locks(struct mm_struct * mm)3678 int mm_take_all_locks(struct mm_struct *mm)
3679 {
3680 struct vm_area_struct *vma;
3681 struct anon_vma_chain *avc;
3682 MA_STATE(mas, &mm->mm_mt, 0, 0);
3683
3684 mmap_assert_write_locked(mm);
3685
3686 mutex_lock(&mm_all_locks_mutex);
3687
3688 /*
3689 * vma_start_write() does not have a complement in mm_drop_all_locks()
3690 * because vma_start_write() is always asymmetrical; it marks a VMA as
3691 * being written to until mmap_write_unlock() or mmap_write_downgrade()
3692 * is reached.
3693 */
3694 mas_for_each(&mas, vma, ULONG_MAX) {
3695 if (signal_pending(current))
3696 goto out_unlock;
3697 vma_start_write(vma);
3698 }
3699
3700 mas_set(&mas, 0);
3701 mas_for_each(&mas, vma, ULONG_MAX) {
3702 if (signal_pending(current))
3703 goto out_unlock;
3704 if (vma->vm_file && vma->vm_file->f_mapping &&
3705 is_vm_hugetlb_page(vma))
3706 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3707 }
3708
3709 mas_set(&mas, 0);
3710 mas_for_each(&mas, vma, ULONG_MAX) {
3711 if (signal_pending(current))
3712 goto out_unlock;
3713 if (vma->vm_file && vma->vm_file->f_mapping &&
3714 !is_vm_hugetlb_page(vma))
3715 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3716 }
3717
3718 mas_set(&mas, 0);
3719 mas_for_each(&mas, vma, ULONG_MAX) {
3720 if (signal_pending(current))
3721 goto out_unlock;
3722 if (vma->anon_vma)
3723 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3724 vm_lock_anon_vma(mm, avc->anon_vma);
3725 }
3726
3727 return 0;
3728
3729 out_unlock:
3730 mm_drop_all_locks(mm);
3731 return -EINTR;
3732 }
3733
vm_unlock_anon_vma(struct anon_vma * anon_vma)3734 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3735 {
3736 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3737 /*
3738 * The LSB of head.next can't change to 0 from under
3739 * us because we hold the mm_all_locks_mutex.
3740 *
3741 * We must however clear the bitflag before unlocking
3742 * the vma so the users using the anon_vma->rb_root will
3743 * never see our bitflag.
3744 *
3745 * No need of atomic instructions here, head.next
3746 * can't change from under us until we release the
3747 * anon_vma->root->rwsem.
3748 */
3749 if (!__test_and_clear_bit(0, (unsigned long *)
3750 &anon_vma->root->rb_root.rb_root.rb_node))
3751 BUG();
3752 anon_vma_unlock_write(anon_vma);
3753 }
3754 }
3755
vm_unlock_mapping(struct address_space * mapping)3756 static void vm_unlock_mapping(struct address_space *mapping)
3757 {
3758 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3759 /*
3760 * AS_MM_ALL_LOCKS can't change to 0 from under us
3761 * because we hold the mm_all_locks_mutex.
3762 */
3763 i_mmap_unlock_write(mapping);
3764 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3765 &mapping->flags))
3766 BUG();
3767 }
3768 }
3769
3770 /*
3771 * The mmap_lock cannot be released by the caller until
3772 * mm_drop_all_locks() returns.
3773 */
mm_drop_all_locks(struct mm_struct * mm)3774 void mm_drop_all_locks(struct mm_struct *mm)
3775 {
3776 struct vm_area_struct *vma;
3777 struct anon_vma_chain *avc;
3778 MA_STATE(mas, &mm->mm_mt, 0, 0);
3779
3780 mmap_assert_write_locked(mm);
3781 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3782
3783 mas_for_each(&mas, vma, ULONG_MAX) {
3784 if (vma->anon_vma)
3785 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3786 vm_unlock_anon_vma(avc->anon_vma);
3787 if (vma->vm_file && vma->vm_file->f_mapping)
3788 vm_unlock_mapping(vma->vm_file->f_mapping);
3789 }
3790
3791 mutex_unlock(&mm_all_locks_mutex);
3792 }
3793
3794 /*
3795 * initialise the percpu counter for VM
3796 */
mmap_init(void)3797 void __init mmap_init(void)
3798 {
3799 int ret;
3800
3801 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3802 VM_BUG_ON(ret);
3803 }
3804
3805 /*
3806 * Initialise sysctl_user_reserve_kbytes.
3807 *
3808 * This is intended to prevent a user from starting a single memory hogging
3809 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3810 * mode.
3811 *
3812 * The default value is min(3% of free memory, 128MB)
3813 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3814 */
init_user_reserve(void)3815 static int init_user_reserve(void)
3816 {
3817 unsigned long free_kbytes;
3818
3819 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3820
3821 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3822 return 0;
3823 }
3824 subsys_initcall(init_user_reserve);
3825
3826 /*
3827 * Initialise sysctl_admin_reserve_kbytes.
3828 *
3829 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3830 * to log in and kill a memory hogging process.
3831 *
3832 * Systems with more than 256MB will reserve 8MB, enough to recover
3833 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3834 * only reserve 3% of free pages by default.
3835 */
init_admin_reserve(void)3836 static int init_admin_reserve(void)
3837 {
3838 unsigned long free_kbytes;
3839
3840 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3841
3842 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3843 return 0;
3844 }
3845 subsys_initcall(init_admin_reserve);
3846
3847 /*
3848 * Reinititalise user and admin reserves if memory is added or removed.
3849 *
3850 * The default user reserve max is 128MB, and the default max for the
3851 * admin reserve is 8MB. These are usually, but not always, enough to
3852 * enable recovery from a memory hogging process using login/sshd, a shell,
3853 * and tools like top. It may make sense to increase or even disable the
3854 * reserve depending on the existence of swap or variations in the recovery
3855 * tools. So, the admin may have changed them.
3856 *
3857 * If memory is added and the reserves have been eliminated or increased above
3858 * the default max, then we'll trust the admin.
3859 *
3860 * If memory is removed and there isn't enough free memory, then we
3861 * need to reset the reserves.
3862 *
3863 * Otherwise keep the reserve set by the admin.
3864 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3865 static int reserve_mem_notifier(struct notifier_block *nb,
3866 unsigned long action, void *data)
3867 {
3868 unsigned long tmp, free_kbytes;
3869
3870 switch (action) {
3871 case MEM_ONLINE:
3872 /* Default max is 128MB. Leave alone if modified by operator. */
3873 tmp = sysctl_user_reserve_kbytes;
3874 if (0 < tmp && tmp < (1UL << 17))
3875 init_user_reserve();
3876
3877 /* Default max is 8MB. Leave alone if modified by operator. */
3878 tmp = sysctl_admin_reserve_kbytes;
3879 if (0 < tmp && tmp < (1UL << 13))
3880 init_admin_reserve();
3881
3882 break;
3883 case MEM_OFFLINE:
3884 free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
3885
3886 if (sysctl_user_reserve_kbytes > free_kbytes) {
3887 init_user_reserve();
3888 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3889 sysctl_user_reserve_kbytes);
3890 }
3891
3892 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3893 init_admin_reserve();
3894 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3895 sysctl_admin_reserve_kbytes);
3896 }
3897 break;
3898 default:
3899 break;
3900 }
3901 return NOTIFY_OK;
3902 }
3903
init_reserve_notifier(void)3904 static int __meminit init_reserve_notifier(void)
3905 {
3906 if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
3907 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3908
3909 return 0;
3910 }
3911 subsys_initcall(init_reserve_notifier);
3912