1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
38
39 #include <asm/page.h>
40 #include <asm/pgalloc.h>
41 #include <asm/tlb.h>
42
43 #include <linux/io.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
48 #include "internal.h"
49 #include "hugetlb_vmemmap.h"
50
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
54
55 #ifdef CONFIG_CMA
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
hugetlb_cma_folio(struct folio * folio,unsigned int order)58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 {
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61 1 << order);
62 }
63 #else
hugetlb_cma_folio(struct folio * folio,unsigned int order)64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65 {
66 return false;
67 }
68 #endif
69 static unsigned long hugetlb_cma_size __initdata;
70
71 __initdata LIST_HEAD(huge_boot_pages);
72
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80 /*
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
83 */
84 DEFINE_SPINLOCK(hugetlb_lock);
85
86 /*
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 */
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
100 static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
subpool_is_free(struct hugepage_subpool * spool)102 static inline bool subpool_is_free(struct hugepage_subpool *spool)
103 {
104 if (spool->count)
105 return false;
106 if (spool->max_hpages != -1)
107 return spool->used_hpages == 0;
108 if (spool->min_hpages != -1)
109 return spool->rsv_hpages == spool->min_hpages;
110
111 return true;
112 }
113
unlock_or_release_subpool(struct hugepage_subpool * spool,unsigned long irq_flags)114 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115 unsigned long irq_flags)
116 {
117 spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119 /* If no pages are used, and no other handles to the subpool
120 * remain, give up any reservations based on minimum size and
121 * free the subpool */
122 if (subpool_is_free(spool)) {
123 if (spool->min_hpages != -1)
124 hugetlb_acct_memory(spool->hstate,
125 -spool->min_hpages);
126 kfree(spool);
127 }
128 }
129
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)130 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 long min_hpages)
132 {
133 struct hugepage_subpool *spool;
134
135 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136 if (!spool)
137 return NULL;
138
139 spin_lock_init(&spool->lock);
140 spool->count = 1;
141 spool->max_hpages = max_hpages;
142 spool->hstate = h;
143 spool->min_hpages = min_hpages;
144
145 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146 kfree(spool);
147 return NULL;
148 }
149 spool->rsv_hpages = min_hpages;
150
151 return spool;
152 }
153
hugepage_put_subpool(struct hugepage_subpool * spool)154 void hugepage_put_subpool(struct hugepage_subpool *spool)
155 {
156 unsigned long flags;
157
158 spin_lock_irqsave(&spool->lock, flags);
159 BUG_ON(!spool->count);
160 spool->count--;
161 unlock_or_release_subpool(spool, flags);
162 }
163
164 /*
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request. Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward). The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
171 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)172 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173 long delta)
174 {
175 long ret = delta;
176
177 if (!spool)
178 return ret;
179
180 spin_lock_irq(&spool->lock);
181
182 if (spool->max_hpages != -1) { /* maximum size accounting */
183 if ((spool->used_hpages + delta) <= spool->max_hpages)
184 spool->used_hpages += delta;
185 else {
186 ret = -ENOMEM;
187 goto unlock_ret;
188 }
189 }
190
191 /* minimum size accounting */
192 if (spool->min_hpages != -1 && spool->rsv_hpages) {
193 if (delta > spool->rsv_hpages) {
194 /*
195 * Asking for more reserves than those already taken on
196 * behalf of subpool. Return difference.
197 */
198 ret = delta - spool->rsv_hpages;
199 spool->rsv_hpages = 0;
200 } else {
201 ret = 0; /* reserves already accounted for */
202 spool->rsv_hpages -= delta;
203 }
204 }
205
206 unlock_ret:
207 spin_unlock_irq(&spool->lock);
208 return ret;
209 }
210
211 /*
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
216 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)217 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218 long delta)
219 {
220 long ret = delta;
221 unsigned long flags;
222
223 if (!spool)
224 return delta;
225
226 spin_lock_irqsave(&spool->lock, flags);
227
228 if (spool->max_hpages != -1) /* maximum size accounting */
229 spool->used_hpages -= delta;
230
231 /* minimum size accounting */
232 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = 0;
235 else
236 ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238 spool->rsv_hpages += delta;
239 if (spool->rsv_hpages > spool->min_hpages)
240 spool->rsv_hpages = spool->min_hpages;
241 }
242
243 /*
244 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245 * quota reference, free it now.
246 */
247 unlock_or_release_subpool(spool, flags);
248
249 return ret;
250 }
251
subpool_inode(struct inode * inode)252 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 {
254 return HUGETLBFS_SB(inode->i_sb)->spool;
255 }
256
subpool_vma(struct vm_area_struct * vma)257 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 {
259 return subpool_inode(file_inode(vma->vm_file));
260 }
261
262 /*
263 * hugetlb vma_lock helper routines
264 */
hugetlb_vma_lock_read(struct vm_area_struct * vma)265 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 {
267 if (__vma_shareable_lock(vma)) {
268 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270 down_read(&vma_lock->rw_sema);
271 } else if (__vma_private_lock(vma)) {
272 struct resv_map *resv_map = vma_resv_map(vma);
273
274 down_read(&resv_map->rw_sema);
275 }
276 }
277
hugetlb_vma_unlock_read(struct vm_area_struct * vma)278 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279 {
280 if (__vma_shareable_lock(vma)) {
281 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283 up_read(&vma_lock->rw_sema);
284 } else if (__vma_private_lock(vma)) {
285 struct resv_map *resv_map = vma_resv_map(vma);
286
287 up_read(&resv_map->rw_sema);
288 }
289 }
290
hugetlb_vma_lock_write(struct vm_area_struct * vma)291 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292 {
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296 down_write(&vma_lock->rw_sema);
297 } else if (__vma_private_lock(vma)) {
298 struct resv_map *resv_map = vma_resv_map(vma);
299
300 down_write(&resv_map->rw_sema);
301 }
302 }
303
hugetlb_vma_unlock_write(struct vm_area_struct * vma)304 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305 {
306 if (__vma_shareable_lock(vma)) {
307 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309 up_write(&vma_lock->rw_sema);
310 } else if (__vma_private_lock(vma)) {
311 struct resv_map *resv_map = vma_resv_map(vma);
312
313 up_write(&resv_map->rw_sema);
314 }
315 }
316
hugetlb_vma_trylock_write(struct vm_area_struct * vma)317 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318 {
319
320 if (__vma_shareable_lock(vma)) {
321 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323 return down_write_trylock(&vma_lock->rw_sema);
324 } else if (__vma_private_lock(vma)) {
325 struct resv_map *resv_map = vma_resv_map(vma);
326
327 return down_write_trylock(&resv_map->rw_sema);
328 }
329
330 return 1;
331 }
332
hugetlb_vma_assert_locked(struct vm_area_struct * vma)333 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334 {
335 if (__vma_shareable_lock(vma)) {
336 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338 lockdep_assert_held(&vma_lock->rw_sema);
339 } else if (__vma_private_lock(vma)) {
340 struct resv_map *resv_map = vma_resv_map(vma);
341
342 lockdep_assert_held(&resv_map->rw_sema);
343 }
344 }
345
hugetlb_vma_lock_release(struct kref * kref)346 void hugetlb_vma_lock_release(struct kref *kref)
347 {
348 struct hugetlb_vma_lock *vma_lock = container_of(kref,
349 struct hugetlb_vma_lock, refs);
350
351 kfree(vma_lock);
352 }
353
__hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock * vma_lock)354 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355 {
356 struct vm_area_struct *vma = vma_lock->vma;
357
358 /*
359 * vma_lock structure may or not be released as a result of put,
360 * it certainly will no longer be attached to vma so clear pointer.
361 * Semaphore synchronizes access to vma_lock->vma field.
362 */
363 vma_lock->vma = NULL;
364 vma->vm_private_data = NULL;
365 up_write(&vma_lock->rw_sema);
366 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367 }
368
__hugetlb_vma_unlock_write_free(struct vm_area_struct * vma)369 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370 {
371 if (__vma_shareable_lock(vma)) {
372 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374 __hugetlb_vma_unlock_write_put(vma_lock);
375 } else if (__vma_private_lock(vma)) {
376 struct resv_map *resv_map = vma_resv_map(vma);
377
378 /* no free for anon vmas, but still need to unlock */
379 up_write(&resv_map->rw_sema);
380 }
381 }
382
hugetlb_vma_lock_free(struct vm_area_struct * vma)383 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384 {
385 /*
386 * Only present in sharable vmas.
387 */
388 if (!vma || !__vma_shareable_lock(vma))
389 return;
390
391 if (vma->vm_private_data) {
392 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394 down_write(&vma_lock->rw_sema);
395 __hugetlb_vma_unlock_write_put(vma_lock);
396 }
397 }
398
hugetlb_vma_lock_alloc(struct vm_area_struct * vma)399 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400 {
401 struct hugetlb_vma_lock *vma_lock;
402
403 /* Only establish in (flags) sharable vmas */
404 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405 return;
406
407 /* Should never get here with non-NULL vm_private_data */
408 if (vma->vm_private_data)
409 return;
410
411 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412 if (!vma_lock) {
413 /*
414 * If we can not allocate structure, then vma can not
415 * participate in pmd sharing. This is only a possible
416 * performance enhancement and memory saving issue.
417 * However, the lock is also used to synchronize page
418 * faults with truncation. If the lock is not present,
419 * unlikely races could leave pages in a file past i_size
420 * until the file is removed. Warn in the unlikely case of
421 * allocation failure.
422 */
423 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424 return;
425 }
426
427 kref_init(&vma_lock->refs);
428 init_rwsem(&vma_lock->rw_sema);
429 vma_lock->vma = vma;
430 vma->vm_private_data = vma_lock;
431 }
432
433 /* Helper that removes a struct file_region from the resv_map cache and returns
434 * it for use.
435 */
436 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)437 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438 {
439 struct file_region *nrg;
440
441 VM_BUG_ON(resv->region_cache_count <= 0);
442
443 resv->region_cache_count--;
444 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445 list_del(&nrg->link);
446
447 nrg->from = from;
448 nrg->to = to;
449
450 return nrg;
451 }
452
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)453 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454 struct file_region *rg)
455 {
456 #ifdef CONFIG_CGROUP_HUGETLB
457 nrg->reservation_counter = rg->reservation_counter;
458 nrg->css = rg->css;
459 if (rg->css)
460 css_get(rg->css);
461 #endif
462 }
463
464 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)465 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466 struct hstate *h,
467 struct resv_map *resv,
468 struct file_region *nrg)
469 {
470 #ifdef CONFIG_CGROUP_HUGETLB
471 if (h_cg) {
472 nrg->reservation_counter =
473 &h_cg->rsvd_hugepage[hstate_index(h)];
474 nrg->css = &h_cg->css;
475 /*
476 * The caller will hold exactly one h_cg->css reference for the
477 * whole contiguous reservation region. But this area might be
478 * scattered when there are already some file_regions reside in
479 * it. As a result, many file_regions may share only one css
480 * reference. In order to ensure that one file_region must hold
481 * exactly one h_cg->css reference, we should do css_get for
482 * each file_region and leave the reference held by caller
483 * untouched.
484 */
485 css_get(&h_cg->css);
486 if (!resv->pages_per_hpage)
487 resv->pages_per_hpage = pages_per_huge_page(h);
488 /* pages_per_hpage should be the same for all entries in
489 * a resv_map.
490 */
491 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492 } else {
493 nrg->reservation_counter = NULL;
494 nrg->css = NULL;
495 }
496 #endif
497 }
498
put_uncharge_info(struct file_region * rg)499 static void put_uncharge_info(struct file_region *rg)
500 {
501 #ifdef CONFIG_CGROUP_HUGETLB
502 if (rg->css)
503 css_put(rg->css);
504 #endif
505 }
506
has_same_uncharge_info(struct file_region * rg,struct file_region * org)507 static bool has_same_uncharge_info(struct file_region *rg,
508 struct file_region *org)
509 {
510 #ifdef CONFIG_CGROUP_HUGETLB
511 return rg->reservation_counter == org->reservation_counter &&
512 rg->css == org->css;
513
514 #else
515 return true;
516 #endif
517 }
518
coalesce_file_region(struct resv_map * resv,struct file_region * rg)519 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520 {
521 struct file_region *nrg, *prg;
522
523 prg = list_prev_entry(rg, link);
524 if (&prg->link != &resv->regions && prg->to == rg->from &&
525 has_same_uncharge_info(prg, rg)) {
526 prg->to = rg->to;
527
528 list_del(&rg->link);
529 put_uncharge_info(rg);
530 kfree(rg);
531
532 rg = prg;
533 }
534
535 nrg = list_next_entry(rg, link);
536 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537 has_same_uncharge_info(nrg, rg)) {
538 nrg->from = rg->from;
539
540 list_del(&rg->link);
541 put_uncharge_info(rg);
542 kfree(rg);
543 }
544 }
545
546 static inline long
hugetlb_resv_map_add(struct resv_map * map,struct list_head * rg,long from,long to,struct hstate * h,struct hugetlb_cgroup * cg,long * regions_needed)547 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548 long to, struct hstate *h, struct hugetlb_cgroup *cg,
549 long *regions_needed)
550 {
551 struct file_region *nrg;
552
553 if (!regions_needed) {
554 nrg = get_file_region_entry_from_cache(map, from, to);
555 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556 list_add(&nrg->link, rg);
557 coalesce_file_region(map, nrg);
558 } else
559 *regions_needed += 1;
560
561 return to - from;
562 }
563
564 /*
565 * Must be called with resv->lock held.
566 *
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
571 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)572 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573 struct hugetlb_cgroup *h_cg,
574 struct hstate *h, long *regions_needed)
575 {
576 long add = 0;
577 struct list_head *head = &resv->regions;
578 long last_accounted_offset = f;
579 struct file_region *iter, *trg = NULL;
580 struct list_head *rg = NULL;
581
582 if (regions_needed)
583 *regions_needed = 0;
584
585 /* In this loop, we essentially handle an entry for the range
586 * [last_accounted_offset, iter->from), at every iteration, with some
587 * bounds checking.
588 */
589 list_for_each_entry_safe(iter, trg, head, link) {
590 /* Skip irrelevant regions that start before our range. */
591 if (iter->from < f) {
592 /* If this region ends after the last accounted offset,
593 * then we need to update last_accounted_offset.
594 */
595 if (iter->to > last_accounted_offset)
596 last_accounted_offset = iter->to;
597 continue;
598 }
599
600 /* When we find a region that starts beyond our range, we've
601 * finished.
602 */
603 if (iter->from >= t) {
604 rg = iter->link.prev;
605 break;
606 }
607
608 /* Add an entry for last_accounted_offset -> iter->from, and
609 * update last_accounted_offset.
610 */
611 if (iter->from > last_accounted_offset)
612 add += hugetlb_resv_map_add(resv, iter->link.prev,
613 last_accounted_offset,
614 iter->from, h, h_cg,
615 regions_needed);
616
617 last_accounted_offset = iter->to;
618 }
619
620 /* Handle the case where our range extends beyond
621 * last_accounted_offset.
622 */
623 if (!rg)
624 rg = head->prev;
625 if (last_accounted_offset < t)
626 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627 t, h, h_cg, regions_needed);
628
629 return add;
630 }
631
632 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)634 static int allocate_file_region_entries(struct resv_map *resv,
635 int regions_needed)
636 __must_hold(&resv->lock)
637 {
638 LIST_HEAD(allocated_regions);
639 int to_allocate = 0, i = 0;
640 struct file_region *trg = NULL, *rg = NULL;
641
642 VM_BUG_ON(regions_needed < 0);
643
644 /*
645 * Check for sufficient descriptors in the cache to accommodate
646 * the number of in progress add operations plus regions_needed.
647 *
648 * This is a while loop because when we drop the lock, some other call
649 * to region_add or region_del may have consumed some region_entries,
650 * so we keep looping here until we finally have enough entries for
651 * (adds_in_progress + regions_needed).
652 */
653 while (resv->region_cache_count <
654 (resv->adds_in_progress + regions_needed)) {
655 to_allocate = resv->adds_in_progress + regions_needed -
656 resv->region_cache_count;
657
658 /* At this point, we should have enough entries in the cache
659 * for all the existing adds_in_progress. We should only be
660 * needing to allocate for regions_needed.
661 */
662 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664 spin_unlock(&resv->lock);
665 for (i = 0; i < to_allocate; i++) {
666 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667 if (!trg)
668 goto out_of_memory;
669 list_add(&trg->link, &allocated_regions);
670 }
671
672 spin_lock(&resv->lock);
673
674 list_splice(&allocated_regions, &resv->region_cache);
675 resv->region_cache_count += to_allocate;
676 }
677
678 return 0;
679
680 out_of_memory:
681 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682 list_del(&rg->link);
683 kfree(rg);
684 }
685 return -ENOMEM;
686 }
687
688 /*
689 * Add the huge page range represented by [f, t) to the reserve
690 * map. Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del. The extra needed entries will be allocated.
695 *
696 * regions_needed is the out value provided by a previous call to region_chg.
697 *
698 * Return the number of new huge pages added to the map. This number is greater
699 * than or equal to zero. If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
704 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)705 static long region_add(struct resv_map *resv, long f, long t,
706 long in_regions_needed, struct hstate *h,
707 struct hugetlb_cgroup *h_cg)
708 {
709 long add = 0, actual_regions_needed = 0;
710
711 spin_lock(&resv->lock);
712 retry:
713
714 /* Count how many regions are actually needed to execute this add. */
715 add_reservation_in_range(resv, f, t, NULL, NULL,
716 &actual_regions_needed);
717
718 /*
719 * Check for sufficient descriptors in the cache to accommodate
720 * this add operation. Note that actual_regions_needed may be greater
721 * than in_regions_needed, as the resv_map may have been modified since
722 * the region_chg call. In this case, we need to make sure that we
723 * allocate extra entries, such that we have enough for all the
724 * existing adds_in_progress, plus the excess needed for this
725 * operation.
726 */
727 if (actual_regions_needed > in_regions_needed &&
728 resv->region_cache_count <
729 resv->adds_in_progress +
730 (actual_regions_needed - in_regions_needed)) {
731 /* region_add operation of range 1 should never need to
732 * allocate file_region entries.
733 */
734 VM_BUG_ON(t - f <= 1);
735
736 if (allocate_file_region_entries(
737 resv, actual_regions_needed - in_regions_needed)) {
738 return -ENOMEM;
739 }
740
741 goto retry;
742 }
743
744 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746 resv->adds_in_progress -= in_regions_needed;
747
748 spin_unlock(&resv->lock);
749 return add;
750 }
751
752 /*
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented. This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t). region_chg does
758 * not change the number of huge pages represented by the
759 * map. A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
762 *
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress. This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
766 *
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t). This number is greater or equal to
769 * zero. -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
771 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)772 static long region_chg(struct resv_map *resv, long f, long t,
773 long *out_regions_needed)
774 {
775 long chg = 0;
776
777 spin_lock(&resv->lock);
778
779 /* Count how many hugepages in this range are NOT represented. */
780 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781 out_regions_needed);
782
783 if (*out_regions_needed == 0)
784 *out_regions_needed = 1;
785
786 if (allocate_file_region_entries(resv, *out_regions_needed))
787 return -ENOMEM;
788
789 resv->adds_in_progress += *out_regions_needed;
790
791 spin_unlock(&resv->lock);
792 return chg;
793 }
794
795 /*
796 * Abort the in progress add operation. The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add. Operations are sometimes
799 * aborted after the call to region_chg. In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
803 *
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine. They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
807 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)808 static void region_abort(struct resv_map *resv, long f, long t,
809 long regions_needed)
810 {
811 spin_lock(&resv->lock);
812 VM_BUG_ON(!resv->region_cache_count);
813 resv->adds_in_progress -= regions_needed;
814 spin_unlock(&resv->lock);
815 }
816
817 /*
818 * Delete the specified range [f, t) from the reserve map. If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted. Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
822 *
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more. In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated. If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM. Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
830 */
region_del(struct resv_map * resv,long f,long t)831 static long region_del(struct resv_map *resv, long f, long t)
832 {
833 struct list_head *head = &resv->regions;
834 struct file_region *rg, *trg;
835 struct file_region *nrg = NULL;
836 long del = 0;
837
838 retry:
839 spin_lock(&resv->lock);
840 list_for_each_entry_safe(rg, trg, head, link) {
841 /*
842 * Skip regions before the range to be deleted. file_region
843 * ranges are normally of the form [from, to). However, there
844 * may be a "placeholder" entry in the map which is of the form
845 * (from, to) with from == to. Check for placeholder entries
846 * at the beginning of the range to be deleted.
847 */
848 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849 continue;
850
851 if (rg->from >= t)
852 break;
853
854 if (f > rg->from && t < rg->to) { /* Must split region */
855 /*
856 * Check for an entry in the cache before dropping
857 * lock and attempting allocation.
858 */
859 if (!nrg &&
860 resv->region_cache_count > resv->adds_in_progress) {
861 nrg = list_first_entry(&resv->region_cache,
862 struct file_region,
863 link);
864 list_del(&nrg->link);
865 resv->region_cache_count--;
866 }
867
868 if (!nrg) {
869 spin_unlock(&resv->lock);
870 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871 if (!nrg)
872 return -ENOMEM;
873 goto retry;
874 }
875
876 del += t - f;
877 hugetlb_cgroup_uncharge_file_region(
878 resv, rg, t - f, false);
879
880 /* New entry for end of split region */
881 nrg->from = t;
882 nrg->to = rg->to;
883
884 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886 INIT_LIST_HEAD(&nrg->link);
887
888 /* Original entry is trimmed */
889 rg->to = f;
890
891 list_add(&nrg->link, &rg->link);
892 nrg = NULL;
893 break;
894 }
895
896 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897 del += rg->to - rg->from;
898 hugetlb_cgroup_uncharge_file_region(resv, rg,
899 rg->to - rg->from, true);
900 list_del(&rg->link);
901 kfree(rg);
902 continue;
903 }
904
905 if (f <= rg->from) { /* Trim beginning of region */
906 hugetlb_cgroup_uncharge_file_region(resv, rg,
907 t - rg->from, false);
908
909 del += t - rg->from;
910 rg->from = t;
911 } else { /* Trim end of region */
912 hugetlb_cgroup_uncharge_file_region(resv, rg,
913 rg->to - f, false);
914
915 del += rg->to - f;
916 rg->to = f;
917 }
918 }
919
920 spin_unlock(&resv->lock);
921 kfree(nrg);
922 return del;
923 }
924
925 /*
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page. The huge page itself was free'ed
928 * and removed from the page cache. This routine will adjust the subpool
929 * usage count, and the global reserve count if needed. By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
932 * counts.
933 */
hugetlb_fix_reserve_counts(struct inode * inode)934 void hugetlb_fix_reserve_counts(struct inode *inode)
935 {
936 struct hugepage_subpool *spool = subpool_inode(inode);
937 long rsv_adjust;
938 bool reserved = false;
939
940 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941 if (rsv_adjust > 0) {
942 struct hstate *h = hstate_inode(inode);
943
944 if (!hugetlb_acct_memory(h, 1))
945 reserved = true;
946 } else if (!rsv_adjust) {
947 reserved = true;
948 }
949
950 if (!reserved)
951 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952 }
953
954 /*
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
957 */
region_count(struct resv_map * resv,long f,long t)958 static long region_count(struct resv_map *resv, long f, long t)
959 {
960 struct list_head *head = &resv->regions;
961 struct file_region *rg;
962 long chg = 0;
963
964 spin_lock(&resv->lock);
965 /* Locate each segment we overlap with, and count that overlap. */
966 list_for_each_entry(rg, head, link) {
967 long seg_from;
968 long seg_to;
969
970 if (rg->to <= f)
971 continue;
972 if (rg->from >= t)
973 break;
974
975 seg_from = max(rg->from, f);
976 seg_to = min(rg->to, t);
977
978 chg += seg_to - seg_from;
979 }
980 spin_unlock(&resv->lock);
981
982 return chg;
983 }
984
985 /*
986 * Convert the address within this vma to the page offset within
987 * the mapping, in pagecache page units; huge pages here.
988 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)989 static pgoff_t vma_hugecache_offset(struct hstate *h,
990 struct vm_area_struct *vma, unsigned long address)
991 {
992 return ((address - vma->vm_start) >> huge_page_shift(h)) +
993 (vma->vm_pgoff >> huge_page_order(h));
994 }
995
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)996 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997 unsigned long address)
998 {
999 return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000 }
1001 EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002
1003 /**
1004 * vma_kernel_pagesize - Page size granularity for this VMA.
1005 * @vma: The user mapping.
1006 *
1007 * Folios in this VMA will be aligned to, and at least the size of the
1008 * number of bytes returned by this function.
1009 *
1010 * Return: The default size of the folios allocated when backing a VMA.
1011 */
vma_kernel_pagesize(struct vm_area_struct * vma)1012 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013 {
1014 if (vma->vm_ops && vma->vm_ops->pagesize)
1015 return vma->vm_ops->pagesize(vma);
1016 return PAGE_SIZE;
1017 }
1018 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019
1020 /*
1021 * Return the page size being used by the MMU to back a VMA. In the majority
1022 * of cases, the page size used by the kernel matches the MMU size. On
1023 * architectures where it differs, an architecture-specific 'strong'
1024 * version of this symbol is required.
1025 */
vma_mmu_pagesize(struct vm_area_struct * vma)1026 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027 {
1028 return vma_kernel_pagesize(vma);
1029 }
1030
1031 /*
1032 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1033 * bits of the reservation map pointer, which are always clear due to
1034 * alignment.
1035 */
1036 #define HPAGE_RESV_OWNER (1UL << 0)
1037 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1038 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039
1040 /*
1041 * These helpers are used to track how many pages are reserved for
1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043 * is guaranteed to have their future faults succeed.
1044 *
1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046 * the reserve counters are updated with the hugetlb_lock held. It is safe
1047 * to reset the VMA at fork() time as it is not in use yet and there is no
1048 * chance of the global counters getting corrupted as a result of the values.
1049 *
1050 * The private mapping reservation is represented in a subtly different
1051 * manner to a shared mapping. A shared mapping has a region map associated
1052 * with the underlying file, this region map represents the backing file
1053 * pages which have ever had a reservation assigned which this persists even
1054 * after the page is instantiated. A private mapping has a region map
1055 * associated with the original mmap which is attached to all VMAs which
1056 * reference it, this region map represents those offsets which have consumed
1057 * reservation ie. where pages have been instantiated.
1058 */
get_vma_private_data(struct vm_area_struct * vma)1059 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060 {
1061 return (unsigned long)vma->vm_private_data;
1062 }
1063
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)1064 static void set_vma_private_data(struct vm_area_struct *vma,
1065 unsigned long value)
1066 {
1067 vma->vm_private_data = (void *)value;
1068 }
1069
1070 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)1071 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072 struct hugetlb_cgroup *h_cg,
1073 struct hstate *h)
1074 {
1075 #ifdef CONFIG_CGROUP_HUGETLB
1076 if (!h_cg || !h) {
1077 resv_map->reservation_counter = NULL;
1078 resv_map->pages_per_hpage = 0;
1079 resv_map->css = NULL;
1080 } else {
1081 resv_map->reservation_counter =
1082 &h_cg->rsvd_hugepage[hstate_index(h)];
1083 resv_map->pages_per_hpage = pages_per_huge_page(h);
1084 resv_map->css = &h_cg->css;
1085 }
1086 #endif
1087 }
1088
resv_map_alloc(void)1089 struct resv_map *resv_map_alloc(void)
1090 {
1091 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093
1094 if (!resv_map || !rg) {
1095 kfree(resv_map);
1096 kfree(rg);
1097 return NULL;
1098 }
1099
1100 kref_init(&resv_map->refs);
1101 spin_lock_init(&resv_map->lock);
1102 INIT_LIST_HEAD(&resv_map->regions);
1103 init_rwsem(&resv_map->rw_sema);
1104
1105 resv_map->adds_in_progress = 0;
1106 /*
1107 * Initialize these to 0. On shared mappings, 0's here indicate these
1108 * fields don't do cgroup accounting. On private mappings, these will be
1109 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110 * reservations are to be un-charged from here.
1111 */
1112 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113
1114 INIT_LIST_HEAD(&resv_map->region_cache);
1115 list_add(&rg->link, &resv_map->region_cache);
1116 resv_map->region_cache_count = 1;
1117
1118 return resv_map;
1119 }
1120
resv_map_release(struct kref * ref)1121 void resv_map_release(struct kref *ref)
1122 {
1123 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124 struct list_head *head = &resv_map->region_cache;
1125 struct file_region *rg, *trg;
1126
1127 /* Clear out any active regions before we release the map. */
1128 region_del(resv_map, 0, LONG_MAX);
1129
1130 /* ... and any entries left in the cache */
1131 list_for_each_entry_safe(rg, trg, head, link) {
1132 list_del(&rg->link);
1133 kfree(rg);
1134 }
1135
1136 VM_BUG_ON(resv_map->adds_in_progress);
1137
1138 kfree(resv_map);
1139 }
1140
inode_resv_map(struct inode * inode)1141 static inline struct resv_map *inode_resv_map(struct inode *inode)
1142 {
1143 /*
1144 * At inode evict time, i_mapping may not point to the original
1145 * address space within the inode. This original address space
1146 * contains the pointer to the resv_map. So, always use the
1147 * address space embedded within the inode.
1148 * The VERY common case is inode->mapping == &inode->i_data but,
1149 * this may not be true for device special inodes.
1150 */
1151 return (struct resv_map *)(&inode->i_data)->private_data;
1152 }
1153
vma_resv_map(struct vm_area_struct * vma)1154 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155 {
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 struct address_space *mapping = vma->vm_file->f_mapping;
1159 struct inode *inode = mapping->host;
1160
1161 return inode_resv_map(inode);
1162
1163 } else {
1164 return (struct resv_map *)(get_vma_private_data(vma) &
1165 ~HPAGE_RESV_MASK);
1166 }
1167 }
1168
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)1169 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170 {
1171 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173
1174 set_vma_private_data(vma, (unsigned long)map);
1175 }
1176
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)1177 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178 {
1179 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181
1182 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183 }
1184
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)1185 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186 {
1187 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188
1189 return (get_vma_private_data(vma) & flag) != 0;
1190 }
1191
__vma_private_lock(struct vm_area_struct * vma)1192 bool __vma_private_lock(struct vm_area_struct *vma)
1193 {
1194 return !(vma->vm_flags & VM_MAYSHARE) &&
1195 get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196 is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1197 }
1198
hugetlb_dup_vma_private(struct vm_area_struct * vma)1199 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1200 {
1201 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1202 /*
1203 * Clear vm_private_data
1204 * - For shared mappings this is a per-vma semaphore that may be
1205 * allocated in a subsequent call to hugetlb_vm_op_open.
1206 * Before clearing, make sure pointer is not associated with vma
1207 * as this will leak the structure. This is the case when called
1208 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209 * been called to allocate a new structure.
1210 * - For MAP_PRIVATE mappings, this is the reserve map which does
1211 * not apply to children. Faults generated by the children are
1212 * not guaranteed to succeed, even if read-only.
1213 */
1214 if (vma->vm_flags & VM_MAYSHARE) {
1215 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1216
1217 if (vma_lock && vma_lock->vma != vma)
1218 vma->vm_private_data = NULL;
1219 } else
1220 vma->vm_private_data = NULL;
1221 }
1222
1223 /*
1224 * Reset and decrement one ref on hugepage private reservation.
1225 * Called with mm->mmap_lock writer semaphore held.
1226 * This function should be only used by move_vma() and operate on
1227 * same sized vma. It should never come here with last ref on the
1228 * reservation.
1229 */
clear_vma_resv_huge_pages(struct vm_area_struct * vma)1230 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1231 {
1232 /*
1233 * Clear the old hugetlb private page reservation.
1234 * It has already been transferred to new_vma.
1235 *
1236 * During a mremap() operation of a hugetlb vma we call move_vma()
1237 * which copies vma into new_vma and unmaps vma. After the copy
1238 * operation both new_vma and vma share a reference to the resv_map
1239 * struct, and at that point vma is about to be unmapped. We don't
1240 * want to return the reservation to the pool at unmap of vma because
1241 * the reservation still lives on in new_vma, so simply decrement the
1242 * ref here and remove the resv_map reference from this vma.
1243 */
1244 struct resv_map *reservations = vma_resv_map(vma);
1245
1246 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248 kref_put(&reservations->refs, resv_map_release);
1249 }
1250
1251 hugetlb_dup_vma_private(vma);
1252 }
1253
1254 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1255 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1256 {
1257 if (vma->vm_flags & VM_NORESERVE) {
1258 /*
1259 * This address is already reserved by other process(chg == 0),
1260 * so, we should decrement reserved count. Without decrementing,
1261 * reserve count remains after releasing inode, because this
1262 * allocated page will go into page cache and is regarded as
1263 * coming from reserved pool in releasing step. Currently, we
1264 * don't have any other solution to deal with this situation
1265 * properly, so add work-around here.
1266 */
1267 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1268 return true;
1269 else
1270 return false;
1271 }
1272
1273 /* Shared mappings always use reserves */
1274 if (vma->vm_flags & VM_MAYSHARE) {
1275 /*
1276 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1277 * be a region map for all pages. The only situation where
1278 * there is no region map is if a hole was punched via
1279 * fallocate. In this case, there really are no reserves to
1280 * use. This situation is indicated if chg != 0.
1281 */
1282 if (chg)
1283 return false;
1284 else
1285 return true;
1286 }
1287
1288 /*
1289 * Only the process that called mmap() has reserves for
1290 * private mappings.
1291 */
1292 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1293 /*
1294 * Like the shared case above, a hole punch or truncate
1295 * could have been performed on the private mapping.
1296 * Examine the value of chg to determine if reserves
1297 * actually exist or were previously consumed.
1298 * Very Subtle - The value of chg comes from a previous
1299 * call to vma_needs_reserves(). The reserve map for
1300 * private mappings has different (opposite) semantics
1301 * than that of shared mappings. vma_needs_reserves()
1302 * has already taken this difference in semantics into
1303 * account. Therefore, the meaning of chg is the same
1304 * as in the shared case above. Code could easily be
1305 * combined, but keeping it separate draws attention to
1306 * subtle differences.
1307 */
1308 if (chg)
1309 return false;
1310 else
1311 return true;
1312 }
1313
1314 return false;
1315 }
1316
enqueue_hugetlb_folio(struct hstate * h,struct folio * folio)1317 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1318 {
1319 int nid = folio_nid(folio);
1320
1321 lockdep_assert_held(&hugetlb_lock);
1322 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1323
1324 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325 h->free_huge_pages++;
1326 h->free_huge_pages_node[nid]++;
1327 folio_set_hugetlb_freed(folio);
1328 }
1329
dequeue_hugetlb_folio_node_exact(struct hstate * h,int nid)1330 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1331 int nid)
1332 {
1333 struct folio *folio;
1334 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1335
1336 lockdep_assert_held(&hugetlb_lock);
1337 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338 if (pin && !folio_is_longterm_pinnable(folio))
1339 continue;
1340
1341 if (folio_test_hwpoison(folio))
1342 continue;
1343
1344 list_move(&folio->lru, &h->hugepage_activelist);
1345 folio_ref_unfreeze(folio, 1);
1346 folio_clear_hugetlb_freed(folio);
1347 h->free_huge_pages--;
1348 h->free_huge_pages_node[nid]--;
1349 return folio;
1350 }
1351
1352 return NULL;
1353 }
1354
dequeue_hugetlb_folio_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1355 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356 int nid, nodemask_t *nmask)
1357 {
1358 unsigned int cpuset_mems_cookie;
1359 struct zonelist *zonelist;
1360 struct zone *zone;
1361 struct zoneref *z;
1362 int node = NUMA_NO_NODE;
1363
1364 zonelist = node_zonelist(nid, gfp_mask);
1365
1366 retry_cpuset:
1367 cpuset_mems_cookie = read_mems_allowed_begin();
1368 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369 struct folio *folio;
1370
1371 if (!cpuset_zone_allowed(zone, gfp_mask))
1372 continue;
1373 /*
1374 * no need to ask again on the same node. Pool is node rather than
1375 * zone aware
1376 */
1377 if (zone_to_nid(zone) == node)
1378 continue;
1379 node = zone_to_nid(zone);
1380
1381 folio = dequeue_hugetlb_folio_node_exact(h, node);
1382 if (folio)
1383 return folio;
1384 }
1385 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1386 goto retry_cpuset;
1387
1388 return NULL;
1389 }
1390
available_huge_pages(struct hstate * h)1391 static unsigned long available_huge_pages(struct hstate *h)
1392 {
1393 return h->free_huge_pages - h->resv_huge_pages;
1394 }
1395
dequeue_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1396 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397 struct vm_area_struct *vma,
1398 unsigned long address, int avoid_reserve,
1399 long chg)
1400 {
1401 struct folio *folio = NULL;
1402 struct mempolicy *mpol;
1403 gfp_t gfp_mask;
1404 nodemask_t *nodemask;
1405 int nid;
1406
1407 /*
1408 * A child process with MAP_PRIVATE mappings created by their parent
1409 * have no page reserves. This check ensures that reservations are
1410 * not "stolen". The child may still get SIGKILLed
1411 */
1412 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413 goto err;
1414
1415 /* If reserves cannot be used, ensure enough pages are in the pool */
1416 if (avoid_reserve && !available_huge_pages(h))
1417 goto err;
1418
1419 gfp_mask = htlb_alloc_mask(h);
1420 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1421
1422 if (mpol_is_preferred_many(mpol)) {
1423 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424 nid, nodemask);
1425
1426 /* Fallback to all nodes if page==NULL */
1427 nodemask = NULL;
1428 }
1429
1430 if (!folio)
1431 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432 nid, nodemask);
1433
1434 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435 folio_set_hugetlb_restore_reserve(folio);
1436 h->resv_huge_pages--;
1437 }
1438
1439 mpol_cond_put(mpol);
1440 return folio;
1441
1442 err:
1443 return NULL;
1444 }
1445
1446 /*
1447 * common helper functions for hstate_next_node_to_{alloc|free}.
1448 * We may have allocated or freed a huge page based on a different
1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450 * be outside of *nodes_allowed. Ensure that we use an allowed
1451 * node for alloc or free.
1452 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1453 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1454 {
1455 nid = next_node_in(nid, *nodes_allowed);
1456 VM_BUG_ON(nid >= MAX_NUMNODES);
1457
1458 return nid;
1459 }
1460
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1461 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1462 {
1463 if (!node_isset(nid, *nodes_allowed))
1464 nid = next_node_allowed(nid, nodes_allowed);
1465 return nid;
1466 }
1467
1468 /*
1469 * returns the previously saved node ["this node"] from which to
1470 * allocate a persistent huge page for the pool and advance the
1471 * next node from which to allocate, handling wrap at end of node
1472 * mask.
1473 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1474 static int hstate_next_node_to_alloc(struct hstate *h,
1475 nodemask_t *nodes_allowed)
1476 {
1477 int nid;
1478
1479 VM_BUG_ON(!nodes_allowed);
1480
1481 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1483
1484 return nid;
1485 }
1486
1487 /*
1488 * helper for remove_pool_huge_page() - return the previously saved
1489 * node ["this node"] from which to free a huge page. Advance the
1490 * next node id whether or not we find a free huge page to free so
1491 * that the next attempt to free addresses the next node.
1492 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1493 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1494 {
1495 int nid;
1496
1497 VM_BUG_ON(!nodes_allowed);
1498
1499 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1501
1502 return nid;
1503 }
1504
1505 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1506 for (nr_nodes = nodes_weight(*mask); \
1507 nr_nodes > 0 && \
1508 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1509 nr_nodes--)
1510
1511 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1512 for (nr_nodes = nodes_weight(*mask); \
1513 nr_nodes > 0 && \
1514 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1515 nr_nodes--)
1516
1517 /* used to demote non-gigantic_huge pages as well */
__destroy_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1518 static void __destroy_compound_gigantic_folio(struct folio *folio,
1519 unsigned int order, bool demote)
1520 {
1521 int i;
1522 int nr_pages = 1 << order;
1523 struct page *p;
1524
1525 atomic_set(&folio->_entire_mapcount, 0);
1526 atomic_set(&folio->_nr_pages_mapped, 0);
1527 atomic_set(&folio->_pincount, 0);
1528
1529 for (i = 1; i < nr_pages; i++) {
1530 p = folio_page(folio, i);
1531 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1532 p->mapping = NULL;
1533 clear_compound_head(p);
1534 if (!demote)
1535 set_page_refcounted(p);
1536 }
1537
1538 __folio_clear_head(folio);
1539 }
1540
destroy_compound_hugetlb_folio_for_demote(struct folio * folio,unsigned int order)1541 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542 unsigned int order)
1543 {
1544 __destroy_compound_gigantic_folio(folio, order, true);
1545 }
1546
1547 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1548 static void destroy_compound_gigantic_folio(struct folio *folio,
1549 unsigned int order)
1550 {
1551 __destroy_compound_gigantic_folio(folio, order, false);
1552 }
1553
free_gigantic_folio(struct folio * folio,unsigned int order)1554 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555 {
1556 /*
1557 * If the page isn't allocated using the cma allocator,
1558 * cma_release() returns false.
1559 */
1560 #ifdef CONFIG_CMA
1561 int nid = folio_nid(folio);
1562
1563 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1564 return;
1565 #endif
1566
1567 free_contig_range(folio_pfn(folio), 1 << order);
1568 }
1569
1570 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 int nid, nodemask_t *nodemask)
1573 {
1574 struct page *page;
1575 unsigned long nr_pages = pages_per_huge_page(h);
1576 if (nid == NUMA_NO_NODE)
1577 nid = numa_mem_id();
1578
1579 #ifdef CONFIG_CMA
1580 {
1581 int node;
1582
1583 if (hugetlb_cma[nid]) {
1584 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585 huge_page_order(h), true);
1586 if (page)
1587 return page_folio(page);
1588 }
1589
1590 if (!(gfp_mask & __GFP_THISNODE)) {
1591 for_each_node_mask(node, *nodemask) {
1592 if (node == nid || !hugetlb_cma[node])
1593 continue;
1594
1595 page = cma_alloc(hugetlb_cma[node], nr_pages,
1596 huge_page_order(h), true);
1597 if (page)
1598 return page_folio(page);
1599 }
1600 }
1601 }
1602 #endif
1603
1604 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605 return page ? page_folio(page) : NULL;
1606 }
1607
1608 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1609 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610 int nid, nodemask_t *nodemask)
1611 {
1612 return NULL;
1613 }
1614 #endif /* CONFIG_CONTIG_ALLOC */
1615
1616 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1617 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618 int nid, nodemask_t *nodemask)
1619 {
1620 return NULL;
1621 }
free_gigantic_folio(struct folio * folio,unsigned int order)1622 static inline void free_gigantic_folio(struct folio *folio,
1623 unsigned int order) { }
destroy_compound_gigantic_folio(struct folio * folio,unsigned int order)1624 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625 unsigned int order) { }
1626 #endif
1627
__clear_hugetlb_destructor(struct hstate * h,struct folio * folio)1628 static inline void __clear_hugetlb_destructor(struct hstate *h,
1629 struct folio *folio)
1630 {
1631 lockdep_assert_held(&hugetlb_lock);
1632
1633 folio_clear_hugetlb(folio);
1634 }
1635
1636 /*
1637 * Remove hugetlb folio from lists.
1638 * If vmemmap exists for the folio, update dtor so that the folio appears
1639 * as just a compound page. Otherwise, wait until after allocating vmemmap
1640 * to update dtor.
1641 *
1642 * A reference is held on the folio, except in the case of demote.
1643 *
1644 * Must be called with hugetlb lock held.
1645 */
__remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus,bool demote)1646 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus,
1648 bool demote)
1649 {
1650 int nid = folio_nid(folio);
1651
1652 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1654
1655 lockdep_assert_held(&hugetlb_lock);
1656 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657 return;
1658
1659 list_del(&folio->lru);
1660
1661 if (folio_test_hugetlb_freed(folio)) {
1662 h->free_huge_pages--;
1663 h->free_huge_pages_node[nid]--;
1664 }
1665 if (adjust_surplus) {
1666 h->surplus_huge_pages--;
1667 h->surplus_huge_pages_node[nid]--;
1668 }
1669
1670 /*
1671 * We can only clear the hugetlb destructor after allocating vmemmap
1672 * pages. Otherwise, someone (memory error handling) may try to write
1673 * to tail struct pages.
1674 */
1675 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676 __clear_hugetlb_destructor(h, folio);
1677
1678 /*
1679 * In the case of demote we do not ref count the page as it will soon
1680 * be turned into a page of smaller size.
1681 */
1682 if (!demote)
1683 folio_ref_unfreeze(folio, 1);
1684
1685 h->nr_huge_pages--;
1686 h->nr_huge_pages_node[nid]--;
1687 }
1688
remove_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1689 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690 bool adjust_surplus)
1691 {
1692 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1693 }
1694
remove_hugetlb_folio_for_demote(struct hstate * h,struct folio * folio,bool adjust_surplus)1695 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696 bool adjust_surplus)
1697 {
1698 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1699 }
1700
add_hugetlb_folio(struct hstate * h,struct folio * folio,bool adjust_surplus)1701 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702 bool adjust_surplus)
1703 {
1704 int zeroed;
1705 int nid = folio_nid(folio);
1706
1707 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1708
1709 lockdep_assert_held(&hugetlb_lock);
1710
1711 INIT_LIST_HEAD(&folio->lru);
1712 h->nr_huge_pages++;
1713 h->nr_huge_pages_node[nid]++;
1714
1715 if (adjust_surplus) {
1716 h->surplus_huge_pages++;
1717 h->surplus_huge_pages_node[nid]++;
1718 }
1719
1720 folio_set_hugetlb(folio);
1721 folio_change_private(folio, NULL);
1722 /*
1723 * We have to set hugetlb_vmemmap_optimized again as above
1724 * folio_change_private(folio, NULL) cleared it.
1725 */
1726 folio_set_hugetlb_vmemmap_optimized(folio);
1727
1728 /*
1729 * This folio is about to be managed by the hugetlb allocator and
1730 * should have no users. Drop our reference, and check for others
1731 * just in case.
1732 */
1733 zeroed = folio_put_testzero(folio);
1734 if (unlikely(!zeroed))
1735 /*
1736 * It is VERY unlikely soneone else has taken a ref
1737 * on the folio. In this case, we simply return as
1738 * free_huge_folio() will be called when this other ref
1739 * is dropped.
1740 */
1741 return;
1742
1743 arch_clear_hugepage_flags(&folio->page);
1744 enqueue_hugetlb_folio(h, folio);
1745 }
1746
__update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio)1747 static void __update_and_free_hugetlb_folio(struct hstate *h,
1748 struct folio *folio)
1749 {
1750 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1751
1752 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1753 return;
1754
1755 /*
1756 * If we don't know which subpages are hwpoisoned, we can't free
1757 * the hugepage, so it's leaked intentionally.
1758 */
1759 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1760 return;
1761
1762 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1763 spin_lock_irq(&hugetlb_lock);
1764 /*
1765 * If we cannot allocate vmemmap pages, just refuse to free the
1766 * page and put the page back on the hugetlb free list and treat
1767 * as a surplus page.
1768 */
1769 add_hugetlb_folio(h, folio, true);
1770 spin_unlock_irq(&hugetlb_lock);
1771 return;
1772 }
1773
1774 /*
1775 * Move PageHWPoison flag from head page to the raw error pages,
1776 * which makes any healthy subpages reusable.
1777 */
1778 if (unlikely(folio_test_hwpoison(folio)))
1779 folio_clear_hugetlb_hwpoison(folio);
1780
1781 /*
1782 * If vmemmap pages were allocated above, then we need to clear the
1783 * hugetlb destructor under the hugetlb lock.
1784 */
1785 if (clear_dtor) {
1786 spin_lock_irq(&hugetlb_lock);
1787 __clear_hugetlb_destructor(h, folio);
1788 spin_unlock_irq(&hugetlb_lock);
1789 }
1790
1791 /*
1792 * Non-gigantic pages demoted from CMA allocated gigantic pages
1793 * need to be given back to CMA in free_gigantic_folio.
1794 */
1795 if (hstate_is_gigantic(h) ||
1796 hugetlb_cma_folio(folio, huge_page_order(h))) {
1797 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1798 free_gigantic_folio(folio, huge_page_order(h));
1799 } else {
1800 __free_pages(&folio->page, huge_page_order(h));
1801 }
1802 }
1803
1804 /*
1805 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1806 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1807 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1808 * the vmemmap pages.
1809 *
1810 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1811 * freed and frees them one-by-one. As the page->mapping pointer is going
1812 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1813 * structure of a lockless linked list of huge pages to be freed.
1814 */
1815 static LLIST_HEAD(hpage_freelist);
1816
free_hpage_workfn(struct work_struct * work)1817 static void free_hpage_workfn(struct work_struct *work)
1818 {
1819 struct llist_node *node;
1820
1821 node = llist_del_all(&hpage_freelist);
1822
1823 while (node) {
1824 struct page *page;
1825 struct hstate *h;
1826
1827 page = container_of((struct address_space **)node,
1828 struct page, mapping);
1829 node = node->next;
1830 page->mapping = NULL;
1831 /*
1832 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1833 * folio_hstate() is going to trigger because a previous call to
1834 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1835 * not use folio_hstate() directly.
1836 */
1837 h = size_to_hstate(page_size(page));
1838
1839 __update_and_free_hugetlb_folio(h, page_folio(page));
1840
1841 cond_resched();
1842 }
1843 }
1844 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1845
flush_free_hpage_work(struct hstate * h)1846 static inline void flush_free_hpage_work(struct hstate *h)
1847 {
1848 if (hugetlb_vmemmap_optimizable(h))
1849 flush_work(&free_hpage_work);
1850 }
1851
update_and_free_hugetlb_folio(struct hstate * h,struct folio * folio,bool atomic)1852 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1853 bool atomic)
1854 {
1855 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1856 __update_and_free_hugetlb_folio(h, folio);
1857 return;
1858 }
1859
1860 /*
1861 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1862 *
1863 * Only call schedule_work() if hpage_freelist is previously
1864 * empty. Otherwise, schedule_work() had been called but the workfn
1865 * hasn't retrieved the list yet.
1866 */
1867 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1868 schedule_work(&free_hpage_work);
1869 }
1870
update_and_free_pages_bulk(struct hstate * h,struct list_head * list)1871 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1872 {
1873 struct page *page, *t_page;
1874 struct folio *folio;
1875
1876 list_for_each_entry_safe(page, t_page, list, lru) {
1877 folio = page_folio(page);
1878 update_and_free_hugetlb_folio(h, folio, false);
1879 cond_resched();
1880 }
1881 }
1882
size_to_hstate(unsigned long size)1883 struct hstate *size_to_hstate(unsigned long size)
1884 {
1885 struct hstate *h;
1886
1887 for_each_hstate(h) {
1888 if (huge_page_size(h) == size)
1889 return h;
1890 }
1891 return NULL;
1892 }
1893
free_huge_folio(struct folio * folio)1894 void free_huge_folio(struct folio *folio)
1895 {
1896 /*
1897 * Can't pass hstate in here because it is called from the
1898 * compound page destructor.
1899 */
1900 struct hstate *h = folio_hstate(folio);
1901 int nid = folio_nid(folio);
1902 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1903 bool restore_reserve;
1904 unsigned long flags;
1905
1906 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1907 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1908
1909 hugetlb_set_folio_subpool(folio, NULL);
1910 if (folio_test_anon(folio))
1911 __ClearPageAnonExclusive(&folio->page);
1912 folio->mapping = NULL;
1913 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1914 folio_clear_hugetlb_restore_reserve(folio);
1915
1916 /*
1917 * If HPageRestoreReserve was set on page, page allocation consumed a
1918 * reservation. If the page was associated with a subpool, there
1919 * would have been a page reserved in the subpool before allocation
1920 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1921 * reservation, do not call hugepage_subpool_put_pages() as this will
1922 * remove the reserved page from the subpool.
1923 */
1924 if (!restore_reserve) {
1925 /*
1926 * A return code of zero implies that the subpool will be
1927 * under its minimum size if the reservation is not restored
1928 * after page is free. Therefore, force restore_reserve
1929 * operation.
1930 */
1931 if (hugepage_subpool_put_pages(spool, 1) == 0)
1932 restore_reserve = true;
1933 }
1934
1935 spin_lock_irqsave(&hugetlb_lock, flags);
1936 folio_clear_hugetlb_migratable(folio);
1937 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1938 pages_per_huge_page(h), folio);
1939 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1940 pages_per_huge_page(h), folio);
1941 if (restore_reserve)
1942 h->resv_huge_pages++;
1943
1944 if (folio_test_hugetlb_temporary(folio)) {
1945 remove_hugetlb_folio(h, folio, false);
1946 spin_unlock_irqrestore(&hugetlb_lock, flags);
1947 update_and_free_hugetlb_folio(h, folio, true);
1948 } else if (h->surplus_huge_pages_node[nid]) {
1949 /* remove the page from active list */
1950 remove_hugetlb_folio(h, folio, true);
1951 spin_unlock_irqrestore(&hugetlb_lock, flags);
1952 update_and_free_hugetlb_folio(h, folio, true);
1953 } else {
1954 arch_clear_hugepage_flags(&folio->page);
1955 enqueue_hugetlb_folio(h, folio);
1956 spin_unlock_irqrestore(&hugetlb_lock, flags);
1957 }
1958 }
1959
1960 /*
1961 * Must be called with the hugetlb lock held
1962 */
__prep_account_new_huge_page(struct hstate * h,int nid)1963 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1964 {
1965 lockdep_assert_held(&hugetlb_lock);
1966 h->nr_huge_pages++;
1967 h->nr_huge_pages_node[nid]++;
1968 }
1969
__prep_new_hugetlb_folio(struct hstate * h,struct folio * folio)1970 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1971 {
1972 hugetlb_vmemmap_optimize(h, &folio->page);
1973 INIT_LIST_HEAD(&folio->lru);
1974 folio_set_hugetlb(folio);
1975 hugetlb_set_folio_subpool(folio, NULL);
1976 set_hugetlb_cgroup(folio, NULL);
1977 set_hugetlb_cgroup_rsvd(folio, NULL);
1978 }
1979
prep_new_hugetlb_folio(struct hstate * h,struct folio * folio,int nid)1980 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1981 {
1982 __prep_new_hugetlb_folio(h, folio);
1983 spin_lock_irq(&hugetlb_lock);
1984 __prep_account_new_huge_page(h, nid);
1985 spin_unlock_irq(&hugetlb_lock);
1986 }
1987
__prep_compound_gigantic_folio(struct folio * folio,unsigned int order,bool demote)1988 static bool __prep_compound_gigantic_folio(struct folio *folio,
1989 unsigned int order, bool demote)
1990 {
1991 int i, j;
1992 int nr_pages = 1 << order;
1993 struct page *p;
1994
1995 __folio_clear_reserved(folio);
1996 for (i = 0; i < nr_pages; i++) {
1997 p = folio_page(folio, i);
1998
1999 /*
2000 * For gigantic hugepages allocated through bootmem at
2001 * boot, it's safer to be consistent with the not-gigantic
2002 * hugepages and clear the PG_reserved bit from all tail pages
2003 * too. Otherwise drivers using get_user_pages() to access tail
2004 * pages may get the reference counting wrong if they see
2005 * PG_reserved set on a tail page (despite the head page not
2006 * having PG_reserved set). Enforcing this consistency between
2007 * head and tail pages allows drivers to optimize away a check
2008 * on the head page when they need know if put_page() is needed
2009 * after get_user_pages().
2010 */
2011 if (i != 0) /* head page cleared above */
2012 __ClearPageReserved(p);
2013 /*
2014 * Subtle and very unlikely
2015 *
2016 * Gigantic 'page allocators' such as memblock or cma will
2017 * return a set of pages with each page ref counted. We need
2018 * to turn this set of pages into a compound page with tail
2019 * page ref counts set to zero. Code such as speculative page
2020 * cache adding could take a ref on a 'to be' tail page.
2021 * We need to respect any increased ref count, and only set
2022 * the ref count to zero if count is currently 1. If count
2023 * is not 1, we return an error. An error return indicates
2024 * the set of pages can not be converted to a gigantic page.
2025 * The caller who allocated the pages should then discard the
2026 * pages using the appropriate free interface.
2027 *
2028 * In the case of demote, the ref count will be zero.
2029 */
2030 if (!demote) {
2031 if (!page_ref_freeze(p, 1)) {
2032 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2033 goto out_error;
2034 }
2035 } else {
2036 VM_BUG_ON_PAGE(page_count(p), p);
2037 }
2038 if (i != 0)
2039 set_compound_head(p, &folio->page);
2040 }
2041 __folio_set_head(folio);
2042 /* we rely on prep_new_hugetlb_folio to set the destructor */
2043 folio_set_order(folio, order);
2044 atomic_set(&folio->_entire_mapcount, -1);
2045 atomic_set(&folio->_nr_pages_mapped, 0);
2046 atomic_set(&folio->_pincount, 0);
2047 return true;
2048
2049 out_error:
2050 /* undo page modifications made above */
2051 for (j = 0; j < i; j++) {
2052 p = folio_page(folio, j);
2053 if (j != 0)
2054 clear_compound_head(p);
2055 set_page_refcounted(p);
2056 }
2057 /* need to clear PG_reserved on remaining tail pages */
2058 for (; j < nr_pages; j++) {
2059 p = folio_page(folio, j);
2060 __ClearPageReserved(p);
2061 }
2062 return false;
2063 }
2064
prep_compound_gigantic_folio(struct folio * folio,unsigned int order)2065 static bool prep_compound_gigantic_folio(struct folio *folio,
2066 unsigned int order)
2067 {
2068 return __prep_compound_gigantic_folio(folio, order, false);
2069 }
2070
prep_compound_gigantic_folio_for_demote(struct folio * folio,unsigned int order)2071 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2072 unsigned int order)
2073 {
2074 return __prep_compound_gigantic_folio(folio, order, true);
2075 }
2076
2077 /*
2078 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2079 * transparent huge pages. See the PageTransHuge() documentation for more
2080 * details.
2081 */
PageHuge(struct page * page)2082 int PageHuge(struct page *page)
2083 {
2084 struct folio *folio;
2085
2086 if (!PageCompound(page))
2087 return 0;
2088 folio = page_folio(page);
2089 return folio_test_hugetlb(folio);
2090 }
2091 EXPORT_SYMBOL_GPL(PageHuge);
2092
2093 /*
2094 * Find and lock address space (mapping) in write mode.
2095 *
2096 * Upon entry, the page is locked which means that page_mapping() is
2097 * stable. Due to locking order, we can only trylock_write. If we can
2098 * not get the lock, simply return NULL to caller.
2099 */
hugetlb_page_mapping_lock_write(struct page * hpage)2100 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2101 {
2102 struct address_space *mapping = page_mapping(hpage);
2103
2104 if (!mapping)
2105 return mapping;
2106
2107 if (i_mmap_trylock_write(mapping))
2108 return mapping;
2109
2110 return NULL;
2111 }
2112
hugetlb_basepage_index(struct page * page)2113 pgoff_t hugetlb_basepage_index(struct page *page)
2114 {
2115 struct page *page_head = compound_head(page);
2116 pgoff_t index = page_index(page_head);
2117 unsigned long compound_idx;
2118
2119 if (compound_order(page_head) > MAX_ORDER)
2120 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2121 else
2122 compound_idx = page - page_head;
2123
2124 return (index << compound_order(page_head)) + compound_idx;
2125 }
2126
alloc_buddy_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2127 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2128 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2129 nodemask_t *node_alloc_noretry)
2130 {
2131 int order = huge_page_order(h);
2132 struct page *page;
2133 bool alloc_try_hard = true;
2134 bool retry = true;
2135
2136 /*
2137 * By default we always try hard to allocate the page with
2138 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2139 * a loop (to adjust global huge page counts) and previous allocation
2140 * failed, do not continue to try hard on the same node. Use the
2141 * node_alloc_noretry bitmap to manage this state information.
2142 */
2143 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2144 alloc_try_hard = false;
2145 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2146 if (alloc_try_hard)
2147 gfp_mask |= __GFP_RETRY_MAYFAIL;
2148 if (nid == NUMA_NO_NODE)
2149 nid = numa_mem_id();
2150 retry:
2151 page = __alloc_pages(gfp_mask, order, nid, nmask);
2152
2153 /* Freeze head page */
2154 if (page && !page_ref_freeze(page, 1)) {
2155 __free_pages(page, order);
2156 if (retry) { /* retry once */
2157 retry = false;
2158 goto retry;
2159 }
2160 /* WOW! twice in a row. */
2161 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2162 page = NULL;
2163 }
2164
2165 /*
2166 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2167 * indicates an overall state change. Clear bit so that we resume
2168 * normal 'try hard' allocations.
2169 */
2170 if (node_alloc_noretry && page && !alloc_try_hard)
2171 node_clear(nid, *node_alloc_noretry);
2172
2173 /*
2174 * If we tried hard to get a page but failed, set bit so that
2175 * subsequent attempts will not try as hard until there is an
2176 * overall state change.
2177 */
2178 if (node_alloc_noretry && !page && alloc_try_hard)
2179 node_set(nid, *node_alloc_noretry);
2180
2181 if (!page) {
2182 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2183 return NULL;
2184 }
2185
2186 __count_vm_event(HTLB_BUDDY_PGALLOC);
2187 return page_folio(page);
2188 }
2189
2190 /*
2191 * Common helper to allocate a fresh hugetlb page. All specific allocators
2192 * should use this function to get new hugetlb pages
2193 *
2194 * Note that returned page is 'frozen': ref count of head page and all tail
2195 * pages is zero.
2196 */
alloc_fresh_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)2197 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2198 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199 nodemask_t *node_alloc_noretry)
2200 {
2201 struct folio *folio;
2202 bool retry = false;
2203
2204 retry:
2205 if (hstate_is_gigantic(h))
2206 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2207 else
2208 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2209 nid, nmask, node_alloc_noretry);
2210 if (!folio)
2211 return NULL;
2212 if (hstate_is_gigantic(h)) {
2213 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2214 /*
2215 * Rare failure to convert pages to compound page.
2216 * Free pages and try again - ONCE!
2217 */
2218 free_gigantic_folio(folio, huge_page_order(h));
2219 if (!retry) {
2220 retry = true;
2221 goto retry;
2222 }
2223 return NULL;
2224 }
2225 }
2226 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2227
2228 return folio;
2229 }
2230
2231 /*
2232 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2233 * manner.
2234 */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)2235 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2236 nodemask_t *node_alloc_noretry)
2237 {
2238 struct folio *folio;
2239 int nr_nodes, node;
2240 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2241
2242 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2243 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2244 nodes_allowed, node_alloc_noretry);
2245 if (folio) {
2246 free_huge_folio(folio); /* free it into the hugepage allocator */
2247 return 1;
2248 }
2249 }
2250
2251 return 0;
2252 }
2253
2254 /*
2255 * Remove huge page from pool from next node to free. Attempt to keep
2256 * persistent huge pages more or less balanced over allowed nodes.
2257 * This routine only 'removes' the hugetlb page. The caller must make
2258 * an additional call to free the page to low level allocators.
2259 * Called with hugetlb_lock locked.
2260 */
remove_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)2261 static struct page *remove_pool_huge_page(struct hstate *h,
2262 nodemask_t *nodes_allowed,
2263 bool acct_surplus)
2264 {
2265 int nr_nodes, node;
2266 struct page *page = NULL;
2267 struct folio *folio;
2268
2269 lockdep_assert_held(&hugetlb_lock);
2270 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2271 /*
2272 * If we're returning unused surplus pages, only examine
2273 * nodes with surplus pages.
2274 */
2275 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2276 !list_empty(&h->hugepage_freelists[node])) {
2277 page = list_entry(h->hugepage_freelists[node].next,
2278 struct page, lru);
2279 folio = page_folio(page);
2280 remove_hugetlb_folio(h, folio, acct_surplus);
2281 break;
2282 }
2283 }
2284
2285 return page;
2286 }
2287
2288 /*
2289 * Dissolve a given free hugepage into free buddy pages. This function does
2290 * nothing for in-use hugepages and non-hugepages.
2291 * This function returns values like below:
2292 *
2293 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2294 * when the system is under memory pressure and the feature of
2295 * freeing unused vmemmap pages associated with each hugetlb page
2296 * is enabled.
2297 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2298 * (allocated or reserved.)
2299 * 0: successfully dissolved free hugepages or the page is not a
2300 * hugepage (considered as already dissolved)
2301 */
dissolve_free_huge_page(struct page * page)2302 int dissolve_free_huge_page(struct page *page)
2303 {
2304 int rc = -EBUSY;
2305 struct folio *folio = page_folio(page);
2306
2307 retry:
2308 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2309 if (!folio_test_hugetlb(folio))
2310 return 0;
2311
2312 spin_lock_irq(&hugetlb_lock);
2313 if (!folio_test_hugetlb(folio)) {
2314 rc = 0;
2315 goto out;
2316 }
2317
2318 if (!folio_ref_count(folio)) {
2319 struct hstate *h = folio_hstate(folio);
2320 if (!available_huge_pages(h))
2321 goto out;
2322
2323 /*
2324 * We should make sure that the page is already on the free list
2325 * when it is dissolved.
2326 */
2327 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2328 spin_unlock_irq(&hugetlb_lock);
2329 cond_resched();
2330
2331 /*
2332 * Theoretically, we should return -EBUSY when we
2333 * encounter this race. In fact, we have a chance
2334 * to successfully dissolve the page if we do a
2335 * retry. Because the race window is quite small.
2336 * If we seize this opportunity, it is an optimization
2337 * for increasing the success rate of dissolving page.
2338 */
2339 goto retry;
2340 }
2341
2342 remove_hugetlb_folio(h, folio, false);
2343 h->max_huge_pages--;
2344 spin_unlock_irq(&hugetlb_lock);
2345
2346 /*
2347 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2348 * before freeing the page. update_and_free_hugtlb_folio will fail to
2349 * free the page if it can not allocate required vmemmap. We
2350 * need to adjust max_huge_pages if the page is not freed.
2351 * Attempt to allocate vmemmmap here so that we can take
2352 * appropriate action on failure.
2353 */
2354 rc = hugetlb_vmemmap_restore(h, &folio->page);
2355 if (!rc) {
2356 update_and_free_hugetlb_folio(h, folio, false);
2357 } else {
2358 spin_lock_irq(&hugetlb_lock);
2359 add_hugetlb_folio(h, folio, false);
2360 h->max_huge_pages++;
2361 spin_unlock_irq(&hugetlb_lock);
2362 }
2363
2364 return rc;
2365 }
2366 out:
2367 spin_unlock_irq(&hugetlb_lock);
2368 return rc;
2369 }
2370
2371 /*
2372 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2373 * make specified memory blocks removable from the system.
2374 * Note that this will dissolve a free gigantic hugepage completely, if any
2375 * part of it lies within the given range.
2376 * Also note that if dissolve_free_huge_page() returns with an error, all
2377 * free hugepages that were dissolved before that error are lost.
2378 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)2379 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2380 {
2381 unsigned long pfn;
2382 struct page *page;
2383 int rc = 0;
2384 unsigned int order;
2385 struct hstate *h;
2386
2387 if (!hugepages_supported())
2388 return rc;
2389
2390 order = huge_page_order(&default_hstate);
2391 for_each_hstate(h)
2392 order = min(order, huge_page_order(h));
2393
2394 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2395 page = pfn_to_page(pfn);
2396 rc = dissolve_free_huge_page(page);
2397 if (rc)
2398 break;
2399 }
2400
2401 return rc;
2402 }
2403
2404 /*
2405 * Allocates a fresh surplus page from the page allocator.
2406 */
alloc_surplus_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2407 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2408 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2409 {
2410 struct folio *folio = NULL;
2411
2412 if (hstate_is_gigantic(h))
2413 return NULL;
2414
2415 spin_lock_irq(&hugetlb_lock);
2416 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2417 goto out_unlock;
2418 spin_unlock_irq(&hugetlb_lock);
2419
2420 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2421 if (!folio)
2422 return NULL;
2423
2424 spin_lock_irq(&hugetlb_lock);
2425 /*
2426 * We could have raced with the pool size change.
2427 * Double check that and simply deallocate the new page
2428 * if we would end up overcommiting the surpluses. Abuse
2429 * temporary page to workaround the nasty free_huge_folio
2430 * codeflow
2431 */
2432 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2433 folio_set_hugetlb_temporary(folio);
2434 spin_unlock_irq(&hugetlb_lock);
2435 free_huge_folio(folio);
2436 return NULL;
2437 }
2438
2439 h->surplus_huge_pages++;
2440 h->surplus_huge_pages_node[folio_nid(folio)]++;
2441
2442 out_unlock:
2443 spin_unlock_irq(&hugetlb_lock);
2444
2445 return folio;
2446 }
2447
alloc_migrate_hugetlb_folio(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)2448 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2449 int nid, nodemask_t *nmask)
2450 {
2451 struct folio *folio;
2452
2453 if (hstate_is_gigantic(h))
2454 return NULL;
2455
2456 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2457 if (!folio)
2458 return NULL;
2459
2460 /* fresh huge pages are frozen */
2461 folio_ref_unfreeze(folio, 1);
2462 /*
2463 * We do not account these pages as surplus because they are only
2464 * temporary and will be released properly on the last reference
2465 */
2466 folio_set_hugetlb_temporary(folio);
2467
2468 return folio;
2469 }
2470
2471 /*
2472 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2473 */
2474 static
alloc_buddy_hugetlb_folio_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2475 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2476 struct vm_area_struct *vma, unsigned long addr)
2477 {
2478 struct folio *folio = NULL;
2479 struct mempolicy *mpol;
2480 gfp_t gfp_mask = htlb_alloc_mask(h);
2481 int nid;
2482 nodemask_t *nodemask;
2483
2484 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2485 if (mpol_is_preferred_many(mpol)) {
2486 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2487
2488 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2489 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2490
2491 /* Fallback to all nodes if page==NULL */
2492 nodemask = NULL;
2493 }
2494
2495 if (!folio)
2496 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2497 mpol_cond_put(mpol);
2498 return folio;
2499 }
2500
2501 /* folio migration callback function */
alloc_hugetlb_folio_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)2502 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2503 nodemask_t *nmask, gfp_t gfp_mask)
2504 {
2505 spin_lock_irq(&hugetlb_lock);
2506 if (available_huge_pages(h)) {
2507 struct folio *folio;
2508
2509 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2510 preferred_nid, nmask);
2511 if (folio) {
2512 spin_unlock_irq(&hugetlb_lock);
2513 return folio;
2514 }
2515 }
2516 spin_unlock_irq(&hugetlb_lock);
2517
2518 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2519 }
2520
2521 /* mempolicy aware migration callback */
alloc_hugetlb_folio_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)2522 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2523 unsigned long address)
2524 {
2525 struct mempolicy *mpol;
2526 nodemask_t *nodemask;
2527 struct folio *folio;
2528 gfp_t gfp_mask;
2529 int node;
2530
2531 gfp_mask = htlb_alloc_mask(h);
2532 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2533 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2534 mpol_cond_put(mpol);
2535
2536 return folio;
2537 }
2538
2539 /*
2540 * Increase the hugetlb pool such that it can accommodate a reservation
2541 * of size 'delta'.
2542 */
gather_surplus_pages(struct hstate * h,long delta)2543 static int gather_surplus_pages(struct hstate *h, long delta)
2544 __must_hold(&hugetlb_lock)
2545 {
2546 LIST_HEAD(surplus_list);
2547 struct folio *folio, *tmp;
2548 int ret;
2549 long i;
2550 long needed, allocated;
2551 bool alloc_ok = true;
2552
2553 lockdep_assert_held(&hugetlb_lock);
2554 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2555 if (needed <= 0) {
2556 h->resv_huge_pages += delta;
2557 return 0;
2558 }
2559
2560 allocated = 0;
2561
2562 ret = -ENOMEM;
2563 retry:
2564 spin_unlock_irq(&hugetlb_lock);
2565 for (i = 0; i < needed; i++) {
2566 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2567 NUMA_NO_NODE, NULL);
2568 if (!folio) {
2569 alloc_ok = false;
2570 break;
2571 }
2572 list_add(&folio->lru, &surplus_list);
2573 cond_resched();
2574 }
2575 allocated += i;
2576
2577 /*
2578 * After retaking hugetlb_lock, we need to recalculate 'needed'
2579 * because either resv_huge_pages or free_huge_pages may have changed.
2580 */
2581 spin_lock_irq(&hugetlb_lock);
2582 needed = (h->resv_huge_pages + delta) -
2583 (h->free_huge_pages + allocated);
2584 if (needed > 0) {
2585 if (alloc_ok)
2586 goto retry;
2587 /*
2588 * We were not able to allocate enough pages to
2589 * satisfy the entire reservation so we free what
2590 * we've allocated so far.
2591 */
2592 goto free;
2593 }
2594 /*
2595 * The surplus_list now contains _at_least_ the number of extra pages
2596 * needed to accommodate the reservation. Add the appropriate number
2597 * of pages to the hugetlb pool and free the extras back to the buddy
2598 * allocator. Commit the entire reservation here to prevent another
2599 * process from stealing the pages as they are added to the pool but
2600 * before they are reserved.
2601 */
2602 needed += allocated;
2603 h->resv_huge_pages += delta;
2604 ret = 0;
2605
2606 /* Free the needed pages to the hugetlb pool */
2607 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2608 if ((--needed) < 0)
2609 break;
2610 /* Add the page to the hugetlb allocator */
2611 enqueue_hugetlb_folio(h, folio);
2612 }
2613 free:
2614 spin_unlock_irq(&hugetlb_lock);
2615
2616 /*
2617 * Free unnecessary surplus pages to the buddy allocator.
2618 * Pages have no ref count, call free_huge_folio directly.
2619 */
2620 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2621 free_huge_folio(folio);
2622 spin_lock_irq(&hugetlb_lock);
2623
2624 return ret;
2625 }
2626
2627 /*
2628 * This routine has two main purposes:
2629 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2630 * in unused_resv_pages. This corresponds to the prior adjustments made
2631 * to the associated reservation map.
2632 * 2) Free any unused surplus pages that may have been allocated to satisfy
2633 * the reservation. As many as unused_resv_pages may be freed.
2634 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2635 static void return_unused_surplus_pages(struct hstate *h,
2636 unsigned long unused_resv_pages)
2637 {
2638 unsigned long nr_pages;
2639 struct page *page;
2640 LIST_HEAD(page_list);
2641
2642 lockdep_assert_held(&hugetlb_lock);
2643 /* Uncommit the reservation */
2644 h->resv_huge_pages -= unused_resv_pages;
2645
2646 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2647 goto out;
2648
2649 /*
2650 * Part (or even all) of the reservation could have been backed
2651 * by pre-allocated pages. Only free surplus pages.
2652 */
2653 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2654
2655 /*
2656 * We want to release as many surplus pages as possible, spread
2657 * evenly across all nodes with memory. Iterate across these nodes
2658 * until we can no longer free unreserved surplus pages. This occurs
2659 * when the nodes with surplus pages have no free pages.
2660 * remove_pool_huge_page() will balance the freed pages across the
2661 * on-line nodes with memory and will handle the hstate accounting.
2662 */
2663 while (nr_pages--) {
2664 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2665 if (!page)
2666 goto out;
2667
2668 list_add(&page->lru, &page_list);
2669 }
2670
2671 out:
2672 spin_unlock_irq(&hugetlb_lock);
2673 update_and_free_pages_bulk(h, &page_list);
2674 spin_lock_irq(&hugetlb_lock);
2675 }
2676
2677
2678 /*
2679 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2680 * are used by the huge page allocation routines to manage reservations.
2681 *
2682 * vma_needs_reservation is called to determine if the huge page at addr
2683 * within the vma has an associated reservation. If a reservation is
2684 * needed, the value 1 is returned. The caller is then responsible for
2685 * managing the global reservation and subpool usage counts. After
2686 * the huge page has been allocated, vma_commit_reservation is called
2687 * to add the page to the reservation map. If the page allocation fails,
2688 * the reservation must be ended instead of committed. vma_end_reservation
2689 * is called in such cases.
2690 *
2691 * In the normal case, vma_commit_reservation returns the same value
2692 * as the preceding vma_needs_reservation call. The only time this
2693 * is not the case is if a reserve map was changed between calls. It
2694 * is the responsibility of the caller to notice the difference and
2695 * take appropriate action.
2696 *
2697 * vma_add_reservation is used in error paths where a reservation must
2698 * be restored when a newly allocated huge page must be freed. It is
2699 * to be called after calling vma_needs_reservation to determine if a
2700 * reservation exists.
2701 *
2702 * vma_del_reservation is used in error paths where an entry in the reserve
2703 * map was created during huge page allocation and must be removed. It is to
2704 * be called after calling vma_needs_reservation to determine if a reservation
2705 * exists.
2706 */
2707 enum vma_resv_mode {
2708 VMA_NEEDS_RESV,
2709 VMA_COMMIT_RESV,
2710 VMA_END_RESV,
2711 VMA_ADD_RESV,
2712 VMA_DEL_RESV,
2713 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2714 static long __vma_reservation_common(struct hstate *h,
2715 struct vm_area_struct *vma, unsigned long addr,
2716 enum vma_resv_mode mode)
2717 {
2718 struct resv_map *resv;
2719 pgoff_t idx;
2720 long ret;
2721 long dummy_out_regions_needed;
2722
2723 resv = vma_resv_map(vma);
2724 if (!resv)
2725 return 1;
2726
2727 idx = vma_hugecache_offset(h, vma, addr);
2728 switch (mode) {
2729 case VMA_NEEDS_RESV:
2730 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2731 /* We assume that vma_reservation_* routines always operate on
2732 * 1 page, and that adding to resv map a 1 page entry can only
2733 * ever require 1 region.
2734 */
2735 VM_BUG_ON(dummy_out_regions_needed != 1);
2736 break;
2737 case VMA_COMMIT_RESV:
2738 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739 /* region_add calls of range 1 should never fail. */
2740 VM_BUG_ON(ret < 0);
2741 break;
2742 case VMA_END_RESV:
2743 region_abort(resv, idx, idx + 1, 1);
2744 ret = 0;
2745 break;
2746 case VMA_ADD_RESV:
2747 if (vma->vm_flags & VM_MAYSHARE) {
2748 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2749 /* region_add calls of range 1 should never fail. */
2750 VM_BUG_ON(ret < 0);
2751 } else {
2752 region_abort(resv, idx, idx + 1, 1);
2753 ret = region_del(resv, idx, idx + 1);
2754 }
2755 break;
2756 case VMA_DEL_RESV:
2757 if (vma->vm_flags & VM_MAYSHARE) {
2758 region_abort(resv, idx, idx + 1, 1);
2759 ret = region_del(resv, idx, idx + 1);
2760 } else {
2761 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2762 /* region_add calls of range 1 should never fail. */
2763 VM_BUG_ON(ret < 0);
2764 }
2765 break;
2766 default:
2767 BUG();
2768 }
2769
2770 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2771 return ret;
2772 /*
2773 * We know private mapping must have HPAGE_RESV_OWNER set.
2774 *
2775 * In most cases, reserves always exist for private mappings.
2776 * However, a file associated with mapping could have been
2777 * hole punched or truncated after reserves were consumed.
2778 * As subsequent fault on such a range will not use reserves.
2779 * Subtle - The reserve map for private mappings has the
2780 * opposite meaning than that of shared mappings. If NO
2781 * entry is in the reserve map, it means a reservation exists.
2782 * If an entry exists in the reserve map, it means the
2783 * reservation has already been consumed. As a result, the
2784 * return value of this routine is the opposite of the
2785 * value returned from reserve map manipulation routines above.
2786 */
2787 if (ret > 0)
2788 return 0;
2789 if (ret == 0)
2790 return 1;
2791 return ret;
2792 }
2793
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2794 static long vma_needs_reservation(struct hstate *h,
2795 struct vm_area_struct *vma, unsigned long addr)
2796 {
2797 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2798 }
2799
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2800 static long vma_commit_reservation(struct hstate *h,
2801 struct vm_area_struct *vma, unsigned long addr)
2802 {
2803 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2804 }
2805
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2806 static void vma_end_reservation(struct hstate *h,
2807 struct vm_area_struct *vma, unsigned long addr)
2808 {
2809 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2810 }
2811
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2812 static long vma_add_reservation(struct hstate *h,
2813 struct vm_area_struct *vma, unsigned long addr)
2814 {
2815 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2816 }
2817
vma_del_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2818 static long vma_del_reservation(struct hstate *h,
2819 struct vm_area_struct *vma, unsigned long addr)
2820 {
2821 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2822 }
2823
2824 /*
2825 * This routine is called to restore reservation information on error paths.
2826 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2827 * and the hugetlb mutex should remain held when calling this routine.
2828 *
2829 * It handles two specific cases:
2830 * 1) A reservation was in place and the folio consumed the reservation.
2831 * hugetlb_restore_reserve is set in the folio.
2832 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2833 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2834 *
2835 * In case 1, free_huge_folio later in the error path will increment the
2836 * global reserve count. But, free_huge_folio does not have enough context
2837 * to adjust the reservation map. This case deals primarily with private
2838 * mappings. Adjust the reserve map here to be consistent with global
2839 * reserve count adjustments to be made by free_huge_folio. Make sure the
2840 * reserve map indicates there is a reservation present.
2841 *
2842 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2843 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct folio * folio)2844 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2845 unsigned long address, struct folio *folio)
2846 {
2847 long rc = vma_needs_reservation(h, vma, address);
2848
2849 if (folio_test_hugetlb_restore_reserve(folio)) {
2850 if (unlikely(rc < 0))
2851 /*
2852 * Rare out of memory condition in reserve map
2853 * manipulation. Clear hugetlb_restore_reserve so
2854 * that global reserve count will not be incremented
2855 * by free_huge_folio. This will make it appear
2856 * as though the reservation for this folio was
2857 * consumed. This may prevent the task from
2858 * faulting in the folio at a later time. This
2859 * is better than inconsistent global huge page
2860 * accounting of reserve counts.
2861 */
2862 folio_clear_hugetlb_restore_reserve(folio);
2863 else if (rc)
2864 (void)vma_add_reservation(h, vma, address);
2865 else
2866 vma_end_reservation(h, vma, address);
2867 } else {
2868 if (!rc) {
2869 /*
2870 * This indicates there is an entry in the reserve map
2871 * not added by alloc_hugetlb_folio. We know it was added
2872 * before the alloc_hugetlb_folio call, otherwise
2873 * hugetlb_restore_reserve would be set on the folio.
2874 * Remove the entry so that a subsequent allocation
2875 * does not consume a reservation.
2876 */
2877 rc = vma_del_reservation(h, vma, address);
2878 if (rc < 0)
2879 /*
2880 * VERY rare out of memory condition. Since
2881 * we can not delete the entry, set
2882 * hugetlb_restore_reserve so that the reserve
2883 * count will be incremented when the folio
2884 * is freed. This reserve will be consumed
2885 * on a subsequent allocation.
2886 */
2887 folio_set_hugetlb_restore_reserve(folio);
2888 } else if (rc < 0) {
2889 /*
2890 * Rare out of memory condition from
2891 * vma_needs_reservation call. Memory allocation is
2892 * only attempted if a new entry is needed. Therefore,
2893 * this implies there is not an entry in the
2894 * reserve map.
2895 *
2896 * For shared mappings, no entry in the map indicates
2897 * no reservation. We are done.
2898 */
2899 if (!(vma->vm_flags & VM_MAYSHARE))
2900 /*
2901 * For private mappings, no entry indicates
2902 * a reservation is present. Since we can
2903 * not add an entry, set hugetlb_restore_reserve
2904 * on the folio so reserve count will be
2905 * incremented when freed. This reserve will
2906 * be consumed on a subsequent allocation.
2907 */
2908 folio_set_hugetlb_restore_reserve(folio);
2909 } else
2910 /*
2911 * No reservation present, do nothing
2912 */
2913 vma_end_reservation(h, vma, address);
2914 }
2915 }
2916
2917 /*
2918 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2919 * the old one
2920 * @h: struct hstate old page belongs to
2921 * @old_folio: Old folio to dissolve
2922 * @list: List to isolate the page in case we need to
2923 * Returns 0 on success, otherwise negated error.
2924 */
alloc_and_dissolve_hugetlb_folio(struct hstate * h,struct folio * old_folio,struct list_head * list)2925 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2926 struct folio *old_folio, struct list_head *list)
2927 {
2928 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2929 int nid = folio_nid(old_folio);
2930 struct folio *new_folio;
2931 int ret = 0;
2932
2933 /*
2934 * Before dissolving the folio, we need to allocate a new one for the
2935 * pool to remain stable. Here, we allocate the folio and 'prep' it
2936 * by doing everything but actually updating counters and adding to
2937 * the pool. This simplifies and let us do most of the processing
2938 * under the lock.
2939 */
2940 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2941 if (!new_folio)
2942 return -ENOMEM;
2943 __prep_new_hugetlb_folio(h, new_folio);
2944
2945 retry:
2946 spin_lock_irq(&hugetlb_lock);
2947 if (!folio_test_hugetlb(old_folio)) {
2948 /*
2949 * Freed from under us. Drop new_folio too.
2950 */
2951 goto free_new;
2952 } else if (folio_ref_count(old_folio)) {
2953 bool isolated;
2954
2955 /*
2956 * Someone has grabbed the folio, try to isolate it here.
2957 * Fail with -EBUSY if not possible.
2958 */
2959 spin_unlock_irq(&hugetlb_lock);
2960 isolated = isolate_hugetlb(old_folio, list);
2961 ret = isolated ? 0 : -EBUSY;
2962 spin_lock_irq(&hugetlb_lock);
2963 goto free_new;
2964 } else if (!folio_test_hugetlb_freed(old_folio)) {
2965 /*
2966 * Folio's refcount is 0 but it has not been enqueued in the
2967 * freelist yet. Race window is small, so we can succeed here if
2968 * we retry.
2969 */
2970 spin_unlock_irq(&hugetlb_lock);
2971 cond_resched();
2972 goto retry;
2973 } else {
2974 /*
2975 * Ok, old_folio is still a genuine free hugepage. Remove it from
2976 * the freelist and decrease the counters. These will be
2977 * incremented again when calling __prep_account_new_huge_page()
2978 * and enqueue_hugetlb_folio() for new_folio. The counters will
2979 * remain stable since this happens under the lock.
2980 */
2981 remove_hugetlb_folio(h, old_folio, false);
2982
2983 /*
2984 * Ref count on new_folio is already zero as it was dropped
2985 * earlier. It can be directly added to the pool free list.
2986 */
2987 __prep_account_new_huge_page(h, nid);
2988 enqueue_hugetlb_folio(h, new_folio);
2989
2990 /*
2991 * Folio has been replaced, we can safely free the old one.
2992 */
2993 spin_unlock_irq(&hugetlb_lock);
2994 update_and_free_hugetlb_folio(h, old_folio, false);
2995 }
2996
2997 return ret;
2998
2999 free_new:
3000 spin_unlock_irq(&hugetlb_lock);
3001 /* Folio has a zero ref count, but needs a ref to be freed */
3002 folio_ref_unfreeze(new_folio, 1);
3003 update_and_free_hugetlb_folio(h, new_folio, false);
3004
3005 return ret;
3006 }
3007
isolate_or_dissolve_huge_page(struct page * page,struct list_head * list)3008 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3009 {
3010 struct hstate *h;
3011 struct folio *folio = page_folio(page);
3012 int ret = -EBUSY;
3013
3014 /*
3015 * The page might have been dissolved from under our feet, so make sure
3016 * to carefully check the state under the lock.
3017 * Return success when racing as if we dissolved the page ourselves.
3018 */
3019 spin_lock_irq(&hugetlb_lock);
3020 if (folio_test_hugetlb(folio)) {
3021 h = folio_hstate(folio);
3022 } else {
3023 spin_unlock_irq(&hugetlb_lock);
3024 return 0;
3025 }
3026 spin_unlock_irq(&hugetlb_lock);
3027
3028 /*
3029 * Fence off gigantic pages as there is a cyclic dependency between
3030 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3031 * of bailing out right away without further retrying.
3032 */
3033 if (hstate_is_gigantic(h))
3034 return -ENOMEM;
3035
3036 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3037 ret = 0;
3038 else if (!folio_ref_count(folio))
3039 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3040
3041 return ret;
3042 }
3043
alloc_hugetlb_folio(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)3044 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3045 unsigned long addr, int avoid_reserve)
3046 {
3047 struct hugepage_subpool *spool = subpool_vma(vma);
3048 struct hstate *h = hstate_vma(vma);
3049 struct folio *folio;
3050 long map_chg, map_commit;
3051 long gbl_chg;
3052 int ret, idx;
3053 struct hugetlb_cgroup *h_cg = NULL;
3054 bool deferred_reserve;
3055
3056 idx = hstate_index(h);
3057 /*
3058 * Examine the region/reserve map to determine if the process
3059 * has a reservation for the page to be allocated. A return
3060 * code of zero indicates a reservation exists (no change).
3061 */
3062 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3063 if (map_chg < 0)
3064 return ERR_PTR(-ENOMEM);
3065
3066 /*
3067 * Processes that did not create the mapping will have no
3068 * reserves as indicated by the region/reserve map. Check
3069 * that the allocation will not exceed the subpool limit.
3070 * Allocations for MAP_NORESERVE mappings also need to be
3071 * checked against any subpool limit.
3072 */
3073 if (map_chg || avoid_reserve) {
3074 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3075 if (gbl_chg < 0) {
3076 vma_end_reservation(h, vma, addr);
3077 return ERR_PTR(-ENOSPC);
3078 }
3079
3080 /*
3081 * Even though there was no reservation in the region/reserve
3082 * map, there could be reservations associated with the
3083 * subpool that can be used. This would be indicated if the
3084 * return value of hugepage_subpool_get_pages() is zero.
3085 * However, if avoid_reserve is specified we still avoid even
3086 * the subpool reservations.
3087 */
3088 if (avoid_reserve)
3089 gbl_chg = 1;
3090 }
3091
3092 /* If this allocation is not consuming a reservation, charge it now.
3093 */
3094 deferred_reserve = map_chg || avoid_reserve;
3095 if (deferred_reserve) {
3096 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3097 idx, pages_per_huge_page(h), &h_cg);
3098 if (ret)
3099 goto out_subpool_put;
3100 }
3101
3102 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3103 if (ret)
3104 goto out_uncharge_cgroup_reservation;
3105
3106 spin_lock_irq(&hugetlb_lock);
3107 /*
3108 * glb_chg is passed to indicate whether or not a page must be taken
3109 * from the global free pool (global change). gbl_chg == 0 indicates
3110 * a reservation exists for the allocation.
3111 */
3112 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3113 if (!folio) {
3114 spin_unlock_irq(&hugetlb_lock);
3115 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3116 if (!folio)
3117 goto out_uncharge_cgroup;
3118 spin_lock_irq(&hugetlb_lock);
3119 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3120 folio_set_hugetlb_restore_reserve(folio);
3121 h->resv_huge_pages--;
3122 }
3123 list_add(&folio->lru, &h->hugepage_activelist);
3124 folio_ref_unfreeze(folio, 1);
3125 /* Fall through */
3126 }
3127
3128 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3129 /* If allocation is not consuming a reservation, also store the
3130 * hugetlb_cgroup pointer on the page.
3131 */
3132 if (deferred_reserve) {
3133 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3134 h_cg, folio);
3135 }
3136
3137 spin_unlock_irq(&hugetlb_lock);
3138
3139 hugetlb_set_folio_subpool(folio, spool);
3140
3141 map_commit = vma_commit_reservation(h, vma, addr);
3142 if (unlikely(map_chg > map_commit)) {
3143 /*
3144 * The page was added to the reservation map between
3145 * vma_needs_reservation and vma_commit_reservation.
3146 * This indicates a race with hugetlb_reserve_pages.
3147 * Adjust for the subpool count incremented above AND
3148 * in hugetlb_reserve_pages for the same page. Also,
3149 * the reservation count added in hugetlb_reserve_pages
3150 * no longer applies.
3151 */
3152 long rsv_adjust;
3153
3154 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3155 hugetlb_acct_memory(h, -rsv_adjust);
3156 if (deferred_reserve)
3157 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3158 pages_per_huge_page(h), folio);
3159 }
3160 return folio;
3161
3162 out_uncharge_cgroup:
3163 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3164 out_uncharge_cgroup_reservation:
3165 if (deferred_reserve)
3166 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3167 h_cg);
3168 out_subpool_put:
3169 if (map_chg || avoid_reserve)
3170 hugepage_subpool_put_pages(spool, 1);
3171 vma_end_reservation(h, vma, addr);
3172 return ERR_PTR(-ENOSPC);
3173 }
3174
3175 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3176 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h,int nid)3177 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3178 {
3179 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3180 int nr_nodes, node;
3181
3182 /* do node specific alloc */
3183 if (nid != NUMA_NO_NODE) {
3184 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3185 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3186 if (!m)
3187 return 0;
3188 goto found;
3189 }
3190 /* allocate from next node when distributing huge pages */
3191 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3192 m = memblock_alloc_try_nid_raw(
3193 huge_page_size(h), huge_page_size(h),
3194 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3195 /*
3196 * Use the beginning of the huge page to store the
3197 * huge_bootmem_page struct (until gather_bootmem
3198 * puts them into the mem_map).
3199 */
3200 if (!m)
3201 return 0;
3202 goto found;
3203 }
3204
3205 found:
3206 /* Put them into a private list first because mem_map is not up yet */
3207 INIT_LIST_HEAD(&m->list);
3208 list_add(&m->list, &huge_boot_pages);
3209 m->hstate = h;
3210 return 1;
3211 }
3212
3213 /*
3214 * Put bootmem huge pages into the standard lists after mem_map is up.
3215 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3216 */
gather_bootmem_prealloc(void)3217 static void __init gather_bootmem_prealloc(void)
3218 {
3219 struct huge_bootmem_page *m;
3220
3221 list_for_each_entry(m, &huge_boot_pages, list) {
3222 struct page *page = virt_to_page(m);
3223 struct folio *folio = page_folio(page);
3224 struct hstate *h = m->hstate;
3225
3226 VM_BUG_ON(!hstate_is_gigantic(h));
3227 WARN_ON(folio_ref_count(folio) != 1);
3228 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3229 WARN_ON(folio_test_reserved(folio));
3230 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3231 free_huge_folio(folio); /* add to the hugepage allocator */
3232 } else {
3233 /* VERY unlikely inflated ref count on a tail page */
3234 free_gigantic_folio(folio, huge_page_order(h));
3235 }
3236
3237 /*
3238 * We need to restore the 'stolen' pages to totalram_pages
3239 * in order to fix confusing memory reports from free(1) and
3240 * other side-effects, like CommitLimit going negative.
3241 */
3242 adjust_managed_page_count(page, pages_per_huge_page(h));
3243 cond_resched();
3244 }
3245 }
hugetlb_hstate_alloc_pages_onenode(struct hstate * h,int nid)3246 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3247 {
3248 unsigned long i;
3249 char buf[32];
3250
3251 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3252 if (hstate_is_gigantic(h)) {
3253 if (!alloc_bootmem_huge_page(h, nid))
3254 break;
3255 } else {
3256 struct folio *folio;
3257 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3258
3259 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3260 &node_states[N_MEMORY], NULL);
3261 if (!folio)
3262 break;
3263 free_huge_folio(folio); /* free it into the hugepage allocator */
3264 }
3265 cond_resched();
3266 }
3267 if (i == h->max_huge_pages_node[nid])
3268 return;
3269
3270 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3271 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3272 h->max_huge_pages_node[nid], buf, nid, i);
3273 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3274 h->max_huge_pages_node[nid] = i;
3275 }
3276
hugetlb_hstate_alloc_pages(struct hstate * h)3277 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3278 {
3279 unsigned long i;
3280 nodemask_t *node_alloc_noretry;
3281 bool node_specific_alloc = false;
3282
3283 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3284 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3285 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3286 return;
3287 }
3288
3289 /* do node specific alloc */
3290 for_each_online_node(i) {
3291 if (h->max_huge_pages_node[i] > 0) {
3292 hugetlb_hstate_alloc_pages_onenode(h, i);
3293 node_specific_alloc = true;
3294 }
3295 }
3296
3297 if (node_specific_alloc)
3298 return;
3299
3300 /* below will do all node balanced alloc */
3301 if (!hstate_is_gigantic(h)) {
3302 /*
3303 * Bit mask controlling how hard we retry per-node allocations.
3304 * Ignore errors as lower level routines can deal with
3305 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3306 * time, we are likely in bigger trouble.
3307 */
3308 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3309 GFP_KERNEL);
3310 } else {
3311 /* allocations done at boot time */
3312 node_alloc_noretry = NULL;
3313 }
3314
3315 /* bit mask controlling how hard we retry per-node allocations */
3316 if (node_alloc_noretry)
3317 nodes_clear(*node_alloc_noretry);
3318
3319 for (i = 0; i < h->max_huge_pages; ++i) {
3320 if (hstate_is_gigantic(h)) {
3321 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3322 break;
3323 } else if (!alloc_pool_huge_page(h,
3324 &node_states[N_MEMORY],
3325 node_alloc_noretry))
3326 break;
3327 cond_resched();
3328 }
3329 if (i < h->max_huge_pages) {
3330 char buf[32];
3331
3332 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3333 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3334 h->max_huge_pages, buf, i);
3335 h->max_huge_pages = i;
3336 }
3337 kfree(node_alloc_noretry);
3338 }
3339
hugetlb_init_hstates(void)3340 static void __init hugetlb_init_hstates(void)
3341 {
3342 struct hstate *h, *h2;
3343
3344 for_each_hstate(h) {
3345 /* oversize hugepages were init'ed in early boot */
3346 if (!hstate_is_gigantic(h))
3347 hugetlb_hstate_alloc_pages(h);
3348
3349 /*
3350 * Set demote order for each hstate. Note that
3351 * h->demote_order is initially 0.
3352 * - We can not demote gigantic pages if runtime freeing
3353 * is not supported, so skip this.
3354 * - If CMA allocation is possible, we can not demote
3355 * HUGETLB_PAGE_ORDER or smaller size pages.
3356 */
3357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3358 continue;
3359 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3360 continue;
3361 for_each_hstate(h2) {
3362 if (h2 == h)
3363 continue;
3364 if (h2->order < h->order &&
3365 h2->order > h->demote_order)
3366 h->demote_order = h2->order;
3367 }
3368 }
3369 }
3370
report_hugepages(void)3371 static void __init report_hugepages(void)
3372 {
3373 struct hstate *h;
3374
3375 for_each_hstate(h) {
3376 char buf[32];
3377
3378 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3379 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3380 buf, h->free_huge_pages);
3381 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3382 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3383 }
3384 }
3385
3386 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3387 static void try_to_free_low(struct hstate *h, unsigned long count,
3388 nodemask_t *nodes_allowed)
3389 {
3390 int i;
3391 LIST_HEAD(page_list);
3392
3393 lockdep_assert_held(&hugetlb_lock);
3394 if (hstate_is_gigantic(h))
3395 return;
3396
3397 /*
3398 * Collect pages to be freed on a list, and free after dropping lock
3399 */
3400 for_each_node_mask(i, *nodes_allowed) {
3401 struct page *page, *next;
3402 struct list_head *freel = &h->hugepage_freelists[i];
3403 list_for_each_entry_safe(page, next, freel, lru) {
3404 if (count >= h->nr_huge_pages)
3405 goto out;
3406 if (PageHighMem(page))
3407 continue;
3408 remove_hugetlb_folio(h, page_folio(page), false);
3409 list_add(&page->lru, &page_list);
3410 }
3411 }
3412
3413 out:
3414 spin_unlock_irq(&hugetlb_lock);
3415 update_and_free_pages_bulk(h, &page_list);
3416 spin_lock_irq(&hugetlb_lock);
3417 }
3418 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)3419 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3420 nodemask_t *nodes_allowed)
3421 {
3422 }
3423 #endif
3424
3425 /*
3426 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3427 * balanced by operating on them in a round-robin fashion.
3428 * Returns 1 if an adjustment was made.
3429 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)3430 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3431 int delta)
3432 {
3433 int nr_nodes, node;
3434
3435 lockdep_assert_held(&hugetlb_lock);
3436 VM_BUG_ON(delta != -1 && delta != 1);
3437
3438 if (delta < 0) {
3439 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3440 if (h->surplus_huge_pages_node[node])
3441 goto found;
3442 }
3443 } else {
3444 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3445 if (h->surplus_huge_pages_node[node] <
3446 h->nr_huge_pages_node[node])
3447 goto found;
3448 }
3449 }
3450 return 0;
3451
3452 found:
3453 h->surplus_huge_pages += delta;
3454 h->surplus_huge_pages_node[node] += delta;
3455 return 1;
3456 }
3457
3458 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)3459 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3460 nodemask_t *nodes_allowed)
3461 {
3462 unsigned long min_count, ret;
3463 struct page *page;
3464 LIST_HEAD(page_list);
3465 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3466
3467 /*
3468 * Bit mask controlling how hard we retry per-node allocations.
3469 * If we can not allocate the bit mask, do not attempt to allocate
3470 * the requested huge pages.
3471 */
3472 if (node_alloc_noretry)
3473 nodes_clear(*node_alloc_noretry);
3474 else
3475 return -ENOMEM;
3476
3477 /*
3478 * resize_lock mutex prevents concurrent adjustments to number of
3479 * pages in hstate via the proc/sysfs interfaces.
3480 */
3481 mutex_lock(&h->resize_lock);
3482 flush_free_hpage_work(h);
3483 spin_lock_irq(&hugetlb_lock);
3484
3485 /*
3486 * Check for a node specific request.
3487 * Changing node specific huge page count may require a corresponding
3488 * change to the global count. In any case, the passed node mask
3489 * (nodes_allowed) will restrict alloc/free to the specified node.
3490 */
3491 if (nid != NUMA_NO_NODE) {
3492 unsigned long old_count = count;
3493
3494 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3495 /*
3496 * User may have specified a large count value which caused the
3497 * above calculation to overflow. In this case, they wanted
3498 * to allocate as many huge pages as possible. Set count to
3499 * largest possible value to align with their intention.
3500 */
3501 if (count < old_count)
3502 count = ULONG_MAX;
3503 }
3504
3505 /*
3506 * Gigantic pages runtime allocation depend on the capability for large
3507 * page range allocation.
3508 * If the system does not provide this feature, return an error when
3509 * the user tries to allocate gigantic pages but let the user free the
3510 * boottime allocated gigantic pages.
3511 */
3512 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3513 if (count > persistent_huge_pages(h)) {
3514 spin_unlock_irq(&hugetlb_lock);
3515 mutex_unlock(&h->resize_lock);
3516 NODEMASK_FREE(node_alloc_noretry);
3517 return -EINVAL;
3518 }
3519 /* Fall through to decrease pool */
3520 }
3521
3522 /*
3523 * Increase the pool size
3524 * First take pages out of surplus state. Then make up the
3525 * remaining difference by allocating fresh huge pages.
3526 *
3527 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3528 * to convert a surplus huge page to a normal huge page. That is
3529 * not critical, though, it just means the overall size of the
3530 * pool might be one hugepage larger than it needs to be, but
3531 * within all the constraints specified by the sysctls.
3532 */
3533 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3534 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3535 break;
3536 }
3537
3538 while (count > persistent_huge_pages(h)) {
3539 /*
3540 * If this allocation races such that we no longer need the
3541 * page, free_huge_folio will handle it by freeing the page
3542 * and reducing the surplus.
3543 */
3544 spin_unlock_irq(&hugetlb_lock);
3545
3546 /* yield cpu to avoid soft lockup */
3547 cond_resched();
3548
3549 ret = alloc_pool_huge_page(h, nodes_allowed,
3550 node_alloc_noretry);
3551 spin_lock_irq(&hugetlb_lock);
3552 if (!ret)
3553 goto out;
3554
3555 /* Bail for signals. Probably ctrl-c from user */
3556 if (signal_pending(current))
3557 goto out;
3558 }
3559
3560 /*
3561 * Decrease the pool size
3562 * First return free pages to the buddy allocator (being careful
3563 * to keep enough around to satisfy reservations). Then place
3564 * pages into surplus state as needed so the pool will shrink
3565 * to the desired size as pages become free.
3566 *
3567 * By placing pages into the surplus state independent of the
3568 * overcommit value, we are allowing the surplus pool size to
3569 * exceed overcommit. There are few sane options here. Since
3570 * alloc_surplus_hugetlb_folio() is checking the global counter,
3571 * though, we'll note that we're not allowed to exceed surplus
3572 * and won't grow the pool anywhere else. Not until one of the
3573 * sysctls are changed, or the surplus pages go out of use.
3574 */
3575 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3576 min_count = max(count, min_count);
3577 try_to_free_low(h, min_count, nodes_allowed);
3578
3579 /*
3580 * Collect pages to be removed on list without dropping lock
3581 */
3582 while (min_count < persistent_huge_pages(h)) {
3583 page = remove_pool_huge_page(h, nodes_allowed, 0);
3584 if (!page)
3585 break;
3586
3587 list_add(&page->lru, &page_list);
3588 }
3589 /* free the pages after dropping lock */
3590 spin_unlock_irq(&hugetlb_lock);
3591 update_and_free_pages_bulk(h, &page_list);
3592 flush_free_hpage_work(h);
3593 spin_lock_irq(&hugetlb_lock);
3594
3595 while (count < persistent_huge_pages(h)) {
3596 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3597 break;
3598 }
3599 out:
3600 h->max_huge_pages = persistent_huge_pages(h);
3601 spin_unlock_irq(&hugetlb_lock);
3602 mutex_unlock(&h->resize_lock);
3603
3604 NODEMASK_FREE(node_alloc_noretry);
3605
3606 return 0;
3607 }
3608
demote_free_hugetlb_folio(struct hstate * h,struct folio * folio)3609 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3610 {
3611 int i, nid = folio_nid(folio);
3612 struct hstate *target_hstate;
3613 struct page *subpage;
3614 struct folio *inner_folio;
3615 int rc = 0;
3616
3617 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3618
3619 remove_hugetlb_folio_for_demote(h, folio, false);
3620 spin_unlock_irq(&hugetlb_lock);
3621
3622 rc = hugetlb_vmemmap_restore(h, &folio->page);
3623 if (rc) {
3624 /* Allocation of vmemmmap failed, we can not demote folio */
3625 spin_lock_irq(&hugetlb_lock);
3626 folio_ref_unfreeze(folio, 1);
3627 add_hugetlb_folio(h, folio, false);
3628 return rc;
3629 }
3630
3631 /*
3632 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3633 * sizes as it will not ref count folios.
3634 */
3635 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3636
3637 /*
3638 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3639 * Without the mutex, pages added to target hstate could be marked
3640 * as surplus.
3641 *
3642 * Note that we already hold h->resize_lock. To prevent deadlock,
3643 * use the convention of always taking larger size hstate mutex first.
3644 */
3645 mutex_lock(&target_hstate->resize_lock);
3646 for (i = 0; i < pages_per_huge_page(h);
3647 i += pages_per_huge_page(target_hstate)) {
3648 subpage = folio_page(folio, i);
3649 inner_folio = page_folio(subpage);
3650 if (hstate_is_gigantic(target_hstate))
3651 prep_compound_gigantic_folio_for_demote(inner_folio,
3652 target_hstate->order);
3653 else
3654 prep_compound_page(subpage, target_hstate->order);
3655 folio_change_private(inner_folio, NULL);
3656 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3657 free_huge_folio(inner_folio);
3658 }
3659 mutex_unlock(&target_hstate->resize_lock);
3660
3661 spin_lock_irq(&hugetlb_lock);
3662
3663 /*
3664 * Not absolutely necessary, but for consistency update max_huge_pages
3665 * based on pool changes for the demoted page.
3666 */
3667 h->max_huge_pages--;
3668 target_hstate->max_huge_pages +=
3669 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3670
3671 return rc;
3672 }
3673
demote_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed)3674 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3675 __must_hold(&hugetlb_lock)
3676 {
3677 int nr_nodes, node;
3678 struct folio *folio;
3679
3680 lockdep_assert_held(&hugetlb_lock);
3681
3682 /* We should never get here if no demote order */
3683 if (!h->demote_order) {
3684 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3685 return -EINVAL; /* internal error */
3686 }
3687
3688 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3689 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3690 if (folio_test_hwpoison(folio))
3691 continue;
3692 return demote_free_hugetlb_folio(h, folio);
3693 }
3694 }
3695
3696 /*
3697 * Only way to get here is if all pages on free lists are poisoned.
3698 * Return -EBUSY so that caller will not retry.
3699 */
3700 return -EBUSY;
3701 }
3702
3703 #define HSTATE_ATTR_RO(_name) \
3704 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3705
3706 #define HSTATE_ATTR_WO(_name) \
3707 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3708
3709 #define HSTATE_ATTR(_name) \
3710 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3711
3712 static struct kobject *hugepages_kobj;
3713 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3714
3715 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3716
kobj_to_hstate(struct kobject * kobj,int * nidp)3717 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3718 {
3719 int i;
3720
3721 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3722 if (hstate_kobjs[i] == kobj) {
3723 if (nidp)
3724 *nidp = NUMA_NO_NODE;
3725 return &hstates[i];
3726 }
3727
3728 return kobj_to_node_hstate(kobj, nidp);
3729 }
3730
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3731 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3732 struct kobj_attribute *attr, char *buf)
3733 {
3734 struct hstate *h;
3735 unsigned long nr_huge_pages;
3736 int nid;
3737
3738 h = kobj_to_hstate(kobj, &nid);
3739 if (nid == NUMA_NO_NODE)
3740 nr_huge_pages = h->nr_huge_pages;
3741 else
3742 nr_huge_pages = h->nr_huge_pages_node[nid];
3743
3744 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3745 }
3746
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)3747 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3748 struct hstate *h, int nid,
3749 unsigned long count, size_t len)
3750 {
3751 int err;
3752 nodemask_t nodes_allowed, *n_mask;
3753
3754 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3755 return -EINVAL;
3756
3757 if (nid == NUMA_NO_NODE) {
3758 /*
3759 * global hstate attribute
3760 */
3761 if (!(obey_mempolicy &&
3762 init_nodemask_of_mempolicy(&nodes_allowed)))
3763 n_mask = &node_states[N_MEMORY];
3764 else
3765 n_mask = &nodes_allowed;
3766 } else {
3767 /*
3768 * Node specific request. count adjustment happens in
3769 * set_max_huge_pages() after acquiring hugetlb_lock.
3770 */
3771 init_nodemask_of_node(&nodes_allowed, nid);
3772 n_mask = &nodes_allowed;
3773 }
3774
3775 err = set_max_huge_pages(h, count, nid, n_mask);
3776
3777 return err ? err : len;
3778 }
3779
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)3780 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3781 struct kobject *kobj, const char *buf,
3782 size_t len)
3783 {
3784 struct hstate *h;
3785 unsigned long count;
3786 int nid;
3787 int err;
3788
3789 err = kstrtoul(buf, 10, &count);
3790 if (err)
3791 return err;
3792
3793 h = kobj_to_hstate(kobj, &nid);
3794 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3795 }
3796
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3797 static ssize_t nr_hugepages_show(struct kobject *kobj,
3798 struct kobj_attribute *attr, char *buf)
3799 {
3800 return nr_hugepages_show_common(kobj, attr, buf);
3801 }
3802
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3803 static ssize_t nr_hugepages_store(struct kobject *kobj,
3804 struct kobj_attribute *attr, const char *buf, size_t len)
3805 {
3806 return nr_hugepages_store_common(false, kobj, buf, len);
3807 }
3808 HSTATE_ATTR(nr_hugepages);
3809
3810 #ifdef CONFIG_NUMA
3811
3812 /*
3813 * hstate attribute for optionally mempolicy-based constraint on persistent
3814 * huge page alloc/free.
3815 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3816 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3817 struct kobj_attribute *attr,
3818 char *buf)
3819 {
3820 return nr_hugepages_show_common(kobj, attr, buf);
3821 }
3822
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3823 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3824 struct kobj_attribute *attr, const char *buf, size_t len)
3825 {
3826 return nr_hugepages_store_common(true, kobj, buf, len);
3827 }
3828 HSTATE_ATTR(nr_hugepages_mempolicy);
3829 #endif
3830
3831
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3832 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3833 struct kobj_attribute *attr, char *buf)
3834 {
3835 struct hstate *h = kobj_to_hstate(kobj, NULL);
3836 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3837 }
3838
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3839 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3840 struct kobj_attribute *attr, const char *buf, size_t count)
3841 {
3842 int err;
3843 unsigned long input;
3844 struct hstate *h = kobj_to_hstate(kobj, NULL);
3845
3846 if (hstate_is_gigantic(h))
3847 return -EINVAL;
3848
3849 err = kstrtoul(buf, 10, &input);
3850 if (err)
3851 return err;
3852
3853 spin_lock_irq(&hugetlb_lock);
3854 h->nr_overcommit_huge_pages = input;
3855 spin_unlock_irq(&hugetlb_lock);
3856
3857 return count;
3858 }
3859 HSTATE_ATTR(nr_overcommit_hugepages);
3860
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3861 static ssize_t free_hugepages_show(struct kobject *kobj,
3862 struct kobj_attribute *attr, char *buf)
3863 {
3864 struct hstate *h;
3865 unsigned long free_huge_pages;
3866 int nid;
3867
3868 h = kobj_to_hstate(kobj, &nid);
3869 if (nid == NUMA_NO_NODE)
3870 free_huge_pages = h->free_huge_pages;
3871 else
3872 free_huge_pages = h->free_huge_pages_node[nid];
3873
3874 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3875 }
3876 HSTATE_ATTR_RO(free_hugepages);
3877
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3878 static ssize_t resv_hugepages_show(struct kobject *kobj,
3879 struct kobj_attribute *attr, char *buf)
3880 {
3881 struct hstate *h = kobj_to_hstate(kobj, NULL);
3882 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3883 }
3884 HSTATE_ATTR_RO(resv_hugepages);
3885
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3886 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3887 struct kobj_attribute *attr, char *buf)
3888 {
3889 struct hstate *h;
3890 unsigned long surplus_huge_pages;
3891 int nid;
3892
3893 h = kobj_to_hstate(kobj, &nid);
3894 if (nid == NUMA_NO_NODE)
3895 surplus_huge_pages = h->surplus_huge_pages;
3896 else
3897 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3898
3899 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3900 }
3901 HSTATE_ATTR_RO(surplus_hugepages);
3902
demote_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)3903 static ssize_t demote_store(struct kobject *kobj,
3904 struct kobj_attribute *attr, const char *buf, size_t len)
3905 {
3906 unsigned long nr_demote;
3907 unsigned long nr_available;
3908 nodemask_t nodes_allowed, *n_mask;
3909 struct hstate *h;
3910 int err;
3911 int nid;
3912
3913 err = kstrtoul(buf, 10, &nr_demote);
3914 if (err)
3915 return err;
3916 h = kobj_to_hstate(kobj, &nid);
3917
3918 if (nid != NUMA_NO_NODE) {
3919 init_nodemask_of_node(&nodes_allowed, nid);
3920 n_mask = &nodes_allowed;
3921 } else {
3922 n_mask = &node_states[N_MEMORY];
3923 }
3924
3925 /* Synchronize with other sysfs operations modifying huge pages */
3926 mutex_lock(&h->resize_lock);
3927 spin_lock_irq(&hugetlb_lock);
3928
3929 while (nr_demote) {
3930 /*
3931 * Check for available pages to demote each time thorough the
3932 * loop as demote_pool_huge_page will drop hugetlb_lock.
3933 */
3934 if (nid != NUMA_NO_NODE)
3935 nr_available = h->free_huge_pages_node[nid];
3936 else
3937 nr_available = h->free_huge_pages;
3938 nr_available -= h->resv_huge_pages;
3939 if (!nr_available)
3940 break;
3941
3942 err = demote_pool_huge_page(h, n_mask);
3943 if (err)
3944 break;
3945
3946 nr_demote--;
3947 }
3948
3949 spin_unlock_irq(&hugetlb_lock);
3950 mutex_unlock(&h->resize_lock);
3951
3952 if (err)
3953 return err;
3954 return len;
3955 }
3956 HSTATE_ATTR_WO(demote);
3957
demote_size_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3958 static ssize_t demote_size_show(struct kobject *kobj,
3959 struct kobj_attribute *attr, char *buf)
3960 {
3961 struct hstate *h = kobj_to_hstate(kobj, NULL);
3962 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3963
3964 return sysfs_emit(buf, "%lukB\n", demote_size);
3965 }
3966
demote_size_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3967 static ssize_t demote_size_store(struct kobject *kobj,
3968 struct kobj_attribute *attr,
3969 const char *buf, size_t count)
3970 {
3971 struct hstate *h, *demote_hstate;
3972 unsigned long demote_size;
3973 unsigned int demote_order;
3974
3975 demote_size = (unsigned long)memparse(buf, NULL);
3976
3977 demote_hstate = size_to_hstate(demote_size);
3978 if (!demote_hstate)
3979 return -EINVAL;
3980 demote_order = demote_hstate->order;
3981 if (demote_order < HUGETLB_PAGE_ORDER)
3982 return -EINVAL;
3983
3984 /* demote order must be smaller than hstate order */
3985 h = kobj_to_hstate(kobj, NULL);
3986 if (demote_order >= h->order)
3987 return -EINVAL;
3988
3989 /* resize_lock synchronizes access to demote size and writes */
3990 mutex_lock(&h->resize_lock);
3991 h->demote_order = demote_order;
3992 mutex_unlock(&h->resize_lock);
3993
3994 return count;
3995 }
3996 HSTATE_ATTR(demote_size);
3997
3998 static struct attribute *hstate_attrs[] = {
3999 &nr_hugepages_attr.attr,
4000 &nr_overcommit_hugepages_attr.attr,
4001 &free_hugepages_attr.attr,
4002 &resv_hugepages_attr.attr,
4003 &surplus_hugepages_attr.attr,
4004 #ifdef CONFIG_NUMA
4005 &nr_hugepages_mempolicy_attr.attr,
4006 #endif
4007 NULL,
4008 };
4009
4010 static const struct attribute_group hstate_attr_group = {
4011 .attrs = hstate_attrs,
4012 };
4013
4014 static struct attribute *hstate_demote_attrs[] = {
4015 &demote_size_attr.attr,
4016 &demote_attr.attr,
4017 NULL,
4018 };
4019
4020 static const struct attribute_group hstate_demote_attr_group = {
4021 .attrs = hstate_demote_attrs,
4022 };
4023
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)4024 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4025 struct kobject **hstate_kobjs,
4026 const struct attribute_group *hstate_attr_group)
4027 {
4028 int retval;
4029 int hi = hstate_index(h);
4030
4031 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4032 if (!hstate_kobjs[hi])
4033 return -ENOMEM;
4034
4035 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4036 if (retval) {
4037 kobject_put(hstate_kobjs[hi]);
4038 hstate_kobjs[hi] = NULL;
4039 return retval;
4040 }
4041
4042 if (h->demote_order) {
4043 retval = sysfs_create_group(hstate_kobjs[hi],
4044 &hstate_demote_attr_group);
4045 if (retval) {
4046 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4047 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4048 kobject_put(hstate_kobjs[hi]);
4049 hstate_kobjs[hi] = NULL;
4050 return retval;
4051 }
4052 }
4053
4054 return 0;
4055 }
4056
4057 #ifdef CONFIG_NUMA
4058 static bool hugetlb_sysfs_initialized __ro_after_init;
4059
4060 /*
4061 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4062 * with node devices in node_devices[] using a parallel array. The array
4063 * index of a node device or _hstate == node id.
4064 * This is here to avoid any static dependency of the node device driver, in
4065 * the base kernel, on the hugetlb module.
4066 */
4067 struct node_hstate {
4068 struct kobject *hugepages_kobj;
4069 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4070 };
4071 static struct node_hstate node_hstates[MAX_NUMNODES];
4072
4073 /*
4074 * A subset of global hstate attributes for node devices
4075 */
4076 static struct attribute *per_node_hstate_attrs[] = {
4077 &nr_hugepages_attr.attr,
4078 &free_hugepages_attr.attr,
4079 &surplus_hugepages_attr.attr,
4080 NULL,
4081 };
4082
4083 static const struct attribute_group per_node_hstate_attr_group = {
4084 .attrs = per_node_hstate_attrs,
4085 };
4086
4087 /*
4088 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4089 * Returns node id via non-NULL nidp.
4090 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4091 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4092 {
4093 int nid;
4094
4095 for (nid = 0; nid < nr_node_ids; nid++) {
4096 struct node_hstate *nhs = &node_hstates[nid];
4097 int i;
4098 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4099 if (nhs->hstate_kobjs[i] == kobj) {
4100 if (nidp)
4101 *nidp = nid;
4102 return &hstates[i];
4103 }
4104 }
4105
4106 BUG();
4107 return NULL;
4108 }
4109
4110 /*
4111 * Unregister hstate attributes from a single node device.
4112 * No-op if no hstate attributes attached.
4113 */
hugetlb_unregister_node(struct node * node)4114 void hugetlb_unregister_node(struct node *node)
4115 {
4116 struct hstate *h;
4117 struct node_hstate *nhs = &node_hstates[node->dev.id];
4118
4119 if (!nhs->hugepages_kobj)
4120 return; /* no hstate attributes */
4121
4122 for_each_hstate(h) {
4123 int idx = hstate_index(h);
4124 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4125
4126 if (!hstate_kobj)
4127 continue;
4128 if (h->demote_order)
4129 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4130 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4131 kobject_put(hstate_kobj);
4132 nhs->hstate_kobjs[idx] = NULL;
4133 }
4134
4135 kobject_put(nhs->hugepages_kobj);
4136 nhs->hugepages_kobj = NULL;
4137 }
4138
4139
4140 /*
4141 * Register hstate attributes for a single node device.
4142 * No-op if attributes already registered.
4143 */
hugetlb_register_node(struct node * node)4144 void hugetlb_register_node(struct node *node)
4145 {
4146 struct hstate *h;
4147 struct node_hstate *nhs = &node_hstates[node->dev.id];
4148 int err;
4149
4150 if (!hugetlb_sysfs_initialized)
4151 return;
4152
4153 if (nhs->hugepages_kobj)
4154 return; /* already allocated */
4155
4156 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4157 &node->dev.kobj);
4158 if (!nhs->hugepages_kobj)
4159 return;
4160
4161 for_each_hstate(h) {
4162 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4163 nhs->hstate_kobjs,
4164 &per_node_hstate_attr_group);
4165 if (err) {
4166 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4167 h->name, node->dev.id);
4168 hugetlb_unregister_node(node);
4169 break;
4170 }
4171 }
4172 }
4173
4174 /*
4175 * hugetlb init time: register hstate attributes for all registered node
4176 * devices of nodes that have memory. All on-line nodes should have
4177 * registered their associated device by this time.
4178 */
hugetlb_register_all_nodes(void)4179 static void __init hugetlb_register_all_nodes(void)
4180 {
4181 int nid;
4182
4183 for_each_online_node(nid)
4184 hugetlb_register_node(node_devices[nid]);
4185 }
4186 #else /* !CONFIG_NUMA */
4187
kobj_to_node_hstate(struct kobject * kobj,int * nidp)4188 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4189 {
4190 BUG();
4191 if (nidp)
4192 *nidp = -1;
4193 return NULL;
4194 }
4195
hugetlb_register_all_nodes(void)4196 static void hugetlb_register_all_nodes(void) { }
4197
4198 #endif
4199
4200 #ifdef CONFIG_CMA
4201 static void __init hugetlb_cma_check(void);
4202 #else
hugetlb_cma_check(void)4203 static inline __init void hugetlb_cma_check(void)
4204 {
4205 }
4206 #endif
4207
hugetlb_sysfs_init(void)4208 static void __init hugetlb_sysfs_init(void)
4209 {
4210 struct hstate *h;
4211 int err;
4212
4213 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4214 if (!hugepages_kobj)
4215 return;
4216
4217 for_each_hstate(h) {
4218 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4219 hstate_kobjs, &hstate_attr_group);
4220 if (err)
4221 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4222 }
4223
4224 #ifdef CONFIG_NUMA
4225 hugetlb_sysfs_initialized = true;
4226 #endif
4227 hugetlb_register_all_nodes();
4228 }
4229
4230 #ifdef CONFIG_SYSCTL
4231 static void hugetlb_sysctl_init(void);
4232 #else
hugetlb_sysctl_init(void)4233 static inline void hugetlb_sysctl_init(void) { }
4234 #endif
4235
hugetlb_init(void)4236 static int __init hugetlb_init(void)
4237 {
4238 int i;
4239
4240 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4241 __NR_HPAGEFLAGS);
4242
4243 if (!hugepages_supported()) {
4244 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4245 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4246 return 0;
4247 }
4248
4249 /*
4250 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4251 * architectures depend on setup being done here.
4252 */
4253 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4254 if (!parsed_default_hugepagesz) {
4255 /*
4256 * If we did not parse a default huge page size, set
4257 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4258 * number of huge pages for this default size was implicitly
4259 * specified, set that here as well.
4260 * Note that the implicit setting will overwrite an explicit
4261 * setting. A warning will be printed in this case.
4262 */
4263 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4264 if (default_hstate_max_huge_pages) {
4265 if (default_hstate.max_huge_pages) {
4266 char buf[32];
4267
4268 string_get_size(huge_page_size(&default_hstate),
4269 1, STRING_UNITS_2, buf, 32);
4270 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4271 default_hstate.max_huge_pages, buf);
4272 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4273 default_hstate_max_huge_pages);
4274 }
4275 default_hstate.max_huge_pages =
4276 default_hstate_max_huge_pages;
4277
4278 for_each_online_node(i)
4279 default_hstate.max_huge_pages_node[i] =
4280 default_hugepages_in_node[i];
4281 }
4282 }
4283
4284 hugetlb_cma_check();
4285 hugetlb_init_hstates();
4286 gather_bootmem_prealloc();
4287 report_hugepages();
4288
4289 hugetlb_sysfs_init();
4290 hugetlb_cgroup_file_init();
4291 hugetlb_sysctl_init();
4292
4293 #ifdef CONFIG_SMP
4294 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4295 #else
4296 num_fault_mutexes = 1;
4297 #endif
4298 hugetlb_fault_mutex_table =
4299 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4300 GFP_KERNEL);
4301 BUG_ON(!hugetlb_fault_mutex_table);
4302
4303 for (i = 0; i < num_fault_mutexes; i++)
4304 mutex_init(&hugetlb_fault_mutex_table[i]);
4305 return 0;
4306 }
4307 subsys_initcall(hugetlb_init);
4308
4309 /* Overwritten by architectures with more huge page sizes */
__init(weak)4310 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4311 {
4312 return size == HPAGE_SIZE;
4313 }
4314
hugetlb_add_hstate(unsigned int order)4315 void __init hugetlb_add_hstate(unsigned int order)
4316 {
4317 struct hstate *h;
4318 unsigned long i;
4319
4320 if (size_to_hstate(PAGE_SIZE << order)) {
4321 return;
4322 }
4323 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4324 BUG_ON(order == 0);
4325 h = &hstates[hugetlb_max_hstate++];
4326 mutex_init(&h->resize_lock);
4327 h->order = order;
4328 h->mask = ~(huge_page_size(h) - 1);
4329 for (i = 0; i < MAX_NUMNODES; ++i)
4330 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4331 INIT_LIST_HEAD(&h->hugepage_activelist);
4332 h->next_nid_to_alloc = first_memory_node;
4333 h->next_nid_to_free = first_memory_node;
4334 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4335 huge_page_size(h)/SZ_1K);
4336
4337 parsed_hstate = h;
4338 }
4339
hugetlb_node_alloc_supported(void)4340 bool __init __weak hugetlb_node_alloc_supported(void)
4341 {
4342 return true;
4343 }
4344
hugepages_clear_pages_in_node(void)4345 static void __init hugepages_clear_pages_in_node(void)
4346 {
4347 if (!hugetlb_max_hstate) {
4348 default_hstate_max_huge_pages = 0;
4349 memset(default_hugepages_in_node, 0,
4350 sizeof(default_hugepages_in_node));
4351 } else {
4352 parsed_hstate->max_huge_pages = 0;
4353 memset(parsed_hstate->max_huge_pages_node, 0,
4354 sizeof(parsed_hstate->max_huge_pages_node));
4355 }
4356 }
4357
4358 /*
4359 * hugepages command line processing
4360 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4361 * specification. If not, ignore the hugepages value. hugepages can also
4362 * be the first huge page command line option in which case it implicitly
4363 * specifies the number of huge pages for the default size.
4364 */
hugepages_setup(char * s)4365 static int __init hugepages_setup(char *s)
4366 {
4367 unsigned long *mhp;
4368 static unsigned long *last_mhp;
4369 int node = NUMA_NO_NODE;
4370 int count;
4371 unsigned long tmp;
4372 char *p = s;
4373
4374 if (!parsed_valid_hugepagesz) {
4375 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4376 parsed_valid_hugepagesz = true;
4377 return 1;
4378 }
4379
4380 /*
4381 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4382 * yet, so this hugepages= parameter goes to the "default hstate".
4383 * Otherwise, it goes with the previously parsed hugepagesz or
4384 * default_hugepagesz.
4385 */
4386 else if (!hugetlb_max_hstate)
4387 mhp = &default_hstate_max_huge_pages;
4388 else
4389 mhp = &parsed_hstate->max_huge_pages;
4390
4391 if (mhp == last_mhp) {
4392 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4393 return 1;
4394 }
4395
4396 while (*p) {
4397 count = 0;
4398 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4399 goto invalid;
4400 /* Parameter is node format */
4401 if (p[count] == ':') {
4402 if (!hugetlb_node_alloc_supported()) {
4403 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4404 return 1;
4405 }
4406 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4407 goto invalid;
4408 node = array_index_nospec(tmp, MAX_NUMNODES);
4409 p += count + 1;
4410 /* Parse hugepages */
4411 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4412 goto invalid;
4413 if (!hugetlb_max_hstate)
4414 default_hugepages_in_node[node] = tmp;
4415 else
4416 parsed_hstate->max_huge_pages_node[node] = tmp;
4417 *mhp += tmp;
4418 /* Go to parse next node*/
4419 if (p[count] == ',')
4420 p += count + 1;
4421 else
4422 break;
4423 } else {
4424 if (p != s)
4425 goto invalid;
4426 *mhp = tmp;
4427 break;
4428 }
4429 }
4430
4431 /*
4432 * Global state is always initialized later in hugetlb_init.
4433 * But we need to allocate gigantic hstates here early to still
4434 * use the bootmem allocator.
4435 */
4436 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4437 hugetlb_hstate_alloc_pages(parsed_hstate);
4438
4439 last_mhp = mhp;
4440
4441 return 1;
4442
4443 invalid:
4444 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4445 hugepages_clear_pages_in_node();
4446 return 1;
4447 }
4448 __setup("hugepages=", hugepages_setup);
4449
4450 /*
4451 * hugepagesz command line processing
4452 * A specific huge page size can only be specified once with hugepagesz.
4453 * hugepagesz is followed by hugepages on the command line. The global
4454 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4455 * hugepagesz argument was valid.
4456 */
hugepagesz_setup(char * s)4457 static int __init hugepagesz_setup(char *s)
4458 {
4459 unsigned long size;
4460 struct hstate *h;
4461
4462 parsed_valid_hugepagesz = false;
4463 size = (unsigned long)memparse(s, NULL);
4464
4465 if (!arch_hugetlb_valid_size(size)) {
4466 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4467 return 1;
4468 }
4469
4470 h = size_to_hstate(size);
4471 if (h) {
4472 /*
4473 * hstate for this size already exists. This is normally
4474 * an error, but is allowed if the existing hstate is the
4475 * default hstate. More specifically, it is only allowed if
4476 * the number of huge pages for the default hstate was not
4477 * previously specified.
4478 */
4479 if (!parsed_default_hugepagesz || h != &default_hstate ||
4480 default_hstate.max_huge_pages) {
4481 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4482 return 1;
4483 }
4484
4485 /*
4486 * No need to call hugetlb_add_hstate() as hstate already
4487 * exists. But, do set parsed_hstate so that a following
4488 * hugepages= parameter will be applied to this hstate.
4489 */
4490 parsed_hstate = h;
4491 parsed_valid_hugepagesz = true;
4492 return 1;
4493 }
4494
4495 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4496 parsed_valid_hugepagesz = true;
4497 return 1;
4498 }
4499 __setup("hugepagesz=", hugepagesz_setup);
4500
4501 /*
4502 * default_hugepagesz command line input
4503 * Only one instance of default_hugepagesz allowed on command line.
4504 */
default_hugepagesz_setup(char * s)4505 static int __init default_hugepagesz_setup(char *s)
4506 {
4507 unsigned long size;
4508 int i;
4509
4510 parsed_valid_hugepagesz = false;
4511 if (parsed_default_hugepagesz) {
4512 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4513 return 1;
4514 }
4515
4516 size = (unsigned long)memparse(s, NULL);
4517
4518 if (!arch_hugetlb_valid_size(size)) {
4519 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4520 return 1;
4521 }
4522
4523 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4524 parsed_valid_hugepagesz = true;
4525 parsed_default_hugepagesz = true;
4526 default_hstate_idx = hstate_index(size_to_hstate(size));
4527
4528 /*
4529 * The number of default huge pages (for this size) could have been
4530 * specified as the first hugetlb parameter: hugepages=X. If so,
4531 * then default_hstate_max_huge_pages is set. If the default huge
4532 * page size is gigantic (> MAX_ORDER), then the pages must be
4533 * allocated here from bootmem allocator.
4534 */
4535 if (default_hstate_max_huge_pages) {
4536 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4537 for_each_online_node(i)
4538 default_hstate.max_huge_pages_node[i] =
4539 default_hugepages_in_node[i];
4540 if (hstate_is_gigantic(&default_hstate))
4541 hugetlb_hstate_alloc_pages(&default_hstate);
4542 default_hstate_max_huge_pages = 0;
4543 }
4544
4545 return 1;
4546 }
4547 __setup("default_hugepagesz=", default_hugepagesz_setup);
4548
policy_mbind_nodemask(gfp_t gfp)4549 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4550 {
4551 #ifdef CONFIG_NUMA
4552 struct mempolicy *mpol = get_task_policy(current);
4553
4554 /*
4555 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4556 * (from policy_nodemask) specifically for hugetlb case
4557 */
4558 if (mpol->mode == MPOL_BIND &&
4559 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4560 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4561 return &mpol->nodes;
4562 #endif
4563 return NULL;
4564 }
4565
allowed_mems_nr(struct hstate * h)4566 static unsigned int allowed_mems_nr(struct hstate *h)
4567 {
4568 int node;
4569 unsigned int nr = 0;
4570 nodemask_t *mbind_nodemask;
4571 unsigned int *array = h->free_huge_pages_node;
4572 gfp_t gfp_mask = htlb_alloc_mask(h);
4573
4574 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4575 for_each_node_mask(node, cpuset_current_mems_allowed) {
4576 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4577 nr += array[node];
4578 }
4579
4580 return nr;
4581 }
4582
4583 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)4584 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4585 void *buffer, size_t *length,
4586 loff_t *ppos, unsigned long *out)
4587 {
4588 struct ctl_table dup_table;
4589
4590 /*
4591 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4592 * can duplicate the @table and alter the duplicate of it.
4593 */
4594 dup_table = *table;
4595 dup_table.data = out;
4596
4597 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4598 }
4599
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4600 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4601 struct ctl_table *table, int write,
4602 void *buffer, size_t *length, loff_t *ppos)
4603 {
4604 struct hstate *h = &default_hstate;
4605 unsigned long tmp = h->max_huge_pages;
4606 int ret;
4607
4608 if (!hugepages_supported())
4609 return -EOPNOTSUPP;
4610
4611 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4612 &tmp);
4613 if (ret)
4614 goto out;
4615
4616 if (write)
4617 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4618 NUMA_NO_NODE, tmp, *length);
4619 out:
4620 return ret;
4621 }
4622
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4623 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4624 void *buffer, size_t *length, loff_t *ppos)
4625 {
4626
4627 return hugetlb_sysctl_handler_common(false, table, write,
4628 buffer, length, ppos);
4629 }
4630
4631 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4632 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4633 void *buffer, size_t *length, loff_t *ppos)
4634 {
4635 return hugetlb_sysctl_handler_common(true, table, write,
4636 buffer, length, ppos);
4637 }
4638 #endif /* CONFIG_NUMA */
4639
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)4640 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4641 void *buffer, size_t *length, loff_t *ppos)
4642 {
4643 struct hstate *h = &default_hstate;
4644 unsigned long tmp;
4645 int ret;
4646
4647 if (!hugepages_supported())
4648 return -EOPNOTSUPP;
4649
4650 tmp = h->nr_overcommit_huge_pages;
4651
4652 if (write && hstate_is_gigantic(h))
4653 return -EINVAL;
4654
4655 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4656 &tmp);
4657 if (ret)
4658 goto out;
4659
4660 if (write) {
4661 spin_lock_irq(&hugetlb_lock);
4662 h->nr_overcommit_huge_pages = tmp;
4663 spin_unlock_irq(&hugetlb_lock);
4664 }
4665 out:
4666 return ret;
4667 }
4668
4669 static struct ctl_table hugetlb_table[] = {
4670 {
4671 .procname = "nr_hugepages",
4672 .data = NULL,
4673 .maxlen = sizeof(unsigned long),
4674 .mode = 0644,
4675 .proc_handler = hugetlb_sysctl_handler,
4676 },
4677 #ifdef CONFIG_NUMA
4678 {
4679 .procname = "nr_hugepages_mempolicy",
4680 .data = NULL,
4681 .maxlen = sizeof(unsigned long),
4682 .mode = 0644,
4683 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4684 },
4685 #endif
4686 {
4687 .procname = "hugetlb_shm_group",
4688 .data = &sysctl_hugetlb_shm_group,
4689 .maxlen = sizeof(gid_t),
4690 .mode = 0644,
4691 .proc_handler = proc_dointvec,
4692 },
4693 {
4694 .procname = "nr_overcommit_hugepages",
4695 .data = NULL,
4696 .maxlen = sizeof(unsigned long),
4697 .mode = 0644,
4698 .proc_handler = hugetlb_overcommit_handler,
4699 },
4700 { }
4701 };
4702
hugetlb_sysctl_init(void)4703 static void hugetlb_sysctl_init(void)
4704 {
4705 register_sysctl_init("vm", hugetlb_table);
4706 }
4707 #endif /* CONFIG_SYSCTL */
4708
hugetlb_report_meminfo(struct seq_file * m)4709 void hugetlb_report_meminfo(struct seq_file *m)
4710 {
4711 struct hstate *h;
4712 unsigned long total = 0;
4713
4714 if (!hugepages_supported())
4715 return;
4716
4717 for_each_hstate(h) {
4718 unsigned long count = h->nr_huge_pages;
4719
4720 total += huge_page_size(h) * count;
4721
4722 if (h == &default_hstate)
4723 seq_printf(m,
4724 "HugePages_Total: %5lu\n"
4725 "HugePages_Free: %5lu\n"
4726 "HugePages_Rsvd: %5lu\n"
4727 "HugePages_Surp: %5lu\n"
4728 "Hugepagesize: %8lu kB\n",
4729 count,
4730 h->free_huge_pages,
4731 h->resv_huge_pages,
4732 h->surplus_huge_pages,
4733 huge_page_size(h) / SZ_1K);
4734 }
4735
4736 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4737 }
4738
hugetlb_report_node_meminfo(char * buf,int len,int nid)4739 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4740 {
4741 struct hstate *h = &default_hstate;
4742
4743 if (!hugepages_supported())
4744 return 0;
4745
4746 return sysfs_emit_at(buf, len,
4747 "Node %d HugePages_Total: %5u\n"
4748 "Node %d HugePages_Free: %5u\n"
4749 "Node %d HugePages_Surp: %5u\n",
4750 nid, h->nr_huge_pages_node[nid],
4751 nid, h->free_huge_pages_node[nid],
4752 nid, h->surplus_huge_pages_node[nid]);
4753 }
4754
hugetlb_show_meminfo_node(int nid)4755 void hugetlb_show_meminfo_node(int nid)
4756 {
4757 struct hstate *h;
4758
4759 if (!hugepages_supported())
4760 return;
4761
4762 for_each_hstate(h)
4763 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4764 nid,
4765 h->nr_huge_pages_node[nid],
4766 h->free_huge_pages_node[nid],
4767 h->surplus_huge_pages_node[nid],
4768 huge_page_size(h) / SZ_1K);
4769 }
4770
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)4771 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4772 {
4773 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4774 K(atomic_long_read(&mm->hugetlb_usage)));
4775 }
4776
4777 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)4778 unsigned long hugetlb_total_pages(void)
4779 {
4780 struct hstate *h;
4781 unsigned long nr_total_pages = 0;
4782
4783 for_each_hstate(h)
4784 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4785 return nr_total_pages;
4786 }
4787
hugetlb_acct_memory(struct hstate * h,long delta)4788 static int hugetlb_acct_memory(struct hstate *h, long delta)
4789 {
4790 int ret = -ENOMEM;
4791
4792 if (!delta)
4793 return 0;
4794
4795 spin_lock_irq(&hugetlb_lock);
4796 /*
4797 * When cpuset is configured, it breaks the strict hugetlb page
4798 * reservation as the accounting is done on a global variable. Such
4799 * reservation is completely rubbish in the presence of cpuset because
4800 * the reservation is not checked against page availability for the
4801 * current cpuset. Application can still potentially OOM'ed by kernel
4802 * with lack of free htlb page in cpuset that the task is in.
4803 * Attempt to enforce strict accounting with cpuset is almost
4804 * impossible (or too ugly) because cpuset is too fluid that
4805 * task or memory node can be dynamically moved between cpusets.
4806 *
4807 * The change of semantics for shared hugetlb mapping with cpuset is
4808 * undesirable. However, in order to preserve some of the semantics,
4809 * we fall back to check against current free page availability as
4810 * a best attempt and hopefully to minimize the impact of changing
4811 * semantics that cpuset has.
4812 *
4813 * Apart from cpuset, we also have memory policy mechanism that
4814 * also determines from which node the kernel will allocate memory
4815 * in a NUMA system. So similar to cpuset, we also should consider
4816 * the memory policy of the current task. Similar to the description
4817 * above.
4818 */
4819 if (delta > 0) {
4820 if (gather_surplus_pages(h, delta) < 0)
4821 goto out;
4822
4823 if (delta > allowed_mems_nr(h)) {
4824 return_unused_surplus_pages(h, delta);
4825 goto out;
4826 }
4827 }
4828
4829 ret = 0;
4830 if (delta < 0)
4831 return_unused_surplus_pages(h, (unsigned long) -delta);
4832
4833 out:
4834 spin_unlock_irq(&hugetlb_lock);
4835 return ret;
4836 }
4837
hugetlb_vm_op_open(struct vm_area_struct * vma)4838 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4839 {
4840 struct resv_map *resv = vma_resv_map(vma);
4841
4842 /*
4843 * HPAGE_RESV_OWNER indicates a private mapping.
4844 * This new VMA should share its siblings reservation map if present.
4845 * The VMA will only ever have a valid reservation map pointer where
4846 * it is being copied for another still existing VMA. As that VMA
4847 * has a reference to the reservation map it cannot disappear until
4848 * after this open call completes. It is therefore safe to take a
4849 * new reference here without additional locking.
4850 */
4851 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4852 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4853 kref_get(&resv->refs);
4854 }
4855
4856 /*
4857 * vma_lock structure for sharable mappings is vma specific.
4858 * Clear old pointer (if copied via vm_area_dup) and allocate
4859 * new structure. Before clearing, make sure vma_lock is not
4860 * for this vma.
4861 */
4862 if (vma->vm_flags & VM_MAYSHARE) {
4863 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4864
4865 if (vma_lock) {
4866 if (vma_lock->vma != vma) {
4867 vma->vm_private_data = NULL;
4868 hugetlb_vma_lock_alloc(vma);
4869 } else
4870 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4871 } else
4872 hugetlb_vma_lock_alloc(vma);
4873 }
4874 }
4875
hugetlb_vm_op_close(struct vm_area_struct * vma)4876 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4877 {
4878 struct hstate *h = hstate_vma(vma);
4879 struct resv_map *resv;
4880 struct hugepage_subpool *spool = subpool_vma(vma);
4881 unsigned long reserve, start, end;
4882 long gbl_reserve;
4883
4884 hugetlb_vma_lock_free(vma);
4885
4886 resv = vma_resv_map(vma);
4887 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4888 return;
4889
4890 start = vma_hugecache_offset(h, vma, vma->vm_start);
4891 end = vma_hugecache_offset(h, vma, vma->vm_end);
4892
4893 reserve = (end - start) - region_count(resv, start, end);
4894 hugetlb_cgroup_uncharge_counter(resv, start, end);
4895 if (reserve) {
4896 /*
4897 * Decrement reserve counts. The global reserve count may be
4898 * adjusted if the subpool has a minimum size.
4899 */
4900 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4901 hugetlb_acct_memory(h, -gbl_reserve);
4902 }
4903
4904 kref_put(&resv->refs, resv_map_release);
4905 }
4906
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)4907 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4908 {
4909 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4910 return -EINVAL;
4911
4912 /*
4913 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4914 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4915 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4916 */
4917 if (addr & ~PUD_MASK) {
4918 /*
4919 * hugetlb_vm_op_split is called right before we attempt to
4920 * split the VMA. We will need to unshare PMDs in the old and
4921 * new VMAs, so let's unshare before we split.
4922 */
4923 unsigned long floor = addr & PUD_MASK;
4924 unsigned long ceil = floor + PUD_SIZE;
4925
4926 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4927 hugetlb_unshare_pmds(vma, floor, ceil);
4928 }
4929
4930 return 0;
4931 }
4932
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)4933 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4934 {
4935 return huge_page_size(hstate_vma(vma));
4936 }
4937
4938 /*
4939 * We cannot handle pagefaults against hugetlb pages at all. They cause
4940 * handle_mm_fault() to try to instantiate regular-sized pages in the
4941 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4942 * this far.
4943 */
hugetlb_vm_op_fault(struct vm_fault * vmf)4944 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4945 {
4946 BUG();
4947 return 0;
4948 }
4949
4950 /*
4951 * When a new function is introduced to vm_operations_struct and added
4952 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4953 * This is because under System V memory model, mappings created via
4954 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4955 * their original vm_ops are overwritten with shm_vm_ops.
4956 */
4957 const struct vm_operations_struct hugetlb_vm_ops = {
4958 .fault = hugetlb_vm_op_fault,
4959 .open = hugetlb_vm_op_open,
4960 .close = hugetlb_vm_op_close,
4961 .may_split = hugetlb_vm_op_split,
4962 .pagesize = hugetlb_vm_op_pagesize,
4963 };
4964
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)4965 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4966 int writable)
4967 {
4968 pte_t entry;
4969 unsigned int shift = huge_page_shift(hstate_vma(vma));
4970
4971 if (writable) {
4972 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4973 vma->vm_page_prot)));
4974 } else {
4975 entry = huge_pte_wrprotect(mk_huge_pte(page,
4976 vma->vm_page_prot));
4977 }
4978 entry = pte_mkyoung(entry);
4979 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4980
4981 return entry;
4982 }
4983
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)4984 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4985 unsigned long address, pte_t *ptep)
4986 {
4987 pte_t entry;
4988
4989 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4990 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4991 update_mmu_cache(vma, address, ptep);
4992 }
4993
is_hugetlb_entry_migration(pte_t pte)4994 bool is_hugetlb_entry_migration(pte_t pte)
4995 {
4996 swp_entry_t swp;
4997
4998 if (huge_pte_none(pte) || pte_present(pte))
4999 return false;
5000 swp = pte_to_swp_entry(pte);
5001 if (is_migration_entry(swp))
5002 return true;
5003 else
5004 return false;
5005 }
5006
is_hugetlb_entry_hwpoisoned(pte_t pte)5007 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5008 {
5009 swp_entry_t swp;
5010
5011 if (huge_pte_none(pte) || pte_present(pte))
5012 return false;
5013 swp = pte_to_swp_entry(pte);
5014 if (is_hwpoison_entry(swp))
5015 return true;
5016 else
5017 return false;
5018 }
5019
5020 static void
hugetlb_install_folio(struct vm_area_struct * vma,pte_t * ptep,unsigned long addr,struct folio * new_folio,pte_t old,unsigned long sz)5021 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5022 struct folio *new_folio, pte_t old, unsigned long sz)
5023 {
5024 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5025
5026 __folio_mark_uptodate(new_folio);
5027 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5028 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5029 newpte = huge_pte_mkuffd_wp(newpte);
5030 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5031 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5032 folio_set_hugetlb_migratable(new_folio);
5033 }
5034
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)5035 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5036 struct vm_area_struct *dst_vma,
5037 struct vm_area_struct *src_vma)
5038 {
5039 pte_t *src_pte, *dst_pte, entry;
5040 struct folio *pte_folio;
5041 unsigned long addr;
5042 bool cow = is_cow_mapping(src_vma->vm_flags);
5043 struct hstate *h = hstate_vma(src_vma);
5044 unsigned long sz = huge_page_size(h);
5045 unsigned long npages = pages_per_huge_page(h);
5046 struct mmu_notifier_range range;
5047 unsigned long last_addr_mask;
5048 int ret = 0;
5049
5050 if (cow) {
5051 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5052 src_vma->vm_start,
5053 src_vma->vm_end);
5054 mmu_notifier_invalidate_range_start(&range);
5055 vma_assert_write_locked(src_vma);
5056 raw_write_seqcount_begin(&src->write_protect_seq);
5057 } else {
5058 /*
5059 * For shared mappings the vma lock must be held before
5060 * calling hugetlb_walk() in the src vma. Otherwise, the
5061 * returned ptep could go away if part of a shared pmd and
5062 * another thread calls huge_pmd_unshare.
5063 */
5064 hugetlb_vma_lock_read(src_vma);
5065 }
5066
5067 last_addr_mask = hugetlb_mask_last_page(h);
5068 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5069 spinlock_t *src_ptl, *dst_ptl;
5070 src_pte = hugetlb_walk(src_vma, addr, sz);
5071 if (!src_pte) {
5072 addr |= last_addr_mask;
5073 continue;
5074 }
5075 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5076 if (!dst_pte) {
5077 ret = -ENOMEM;
5078 break;
5079 }
5080
5081 /*
5082 * If the pagetables are shared don't copy or take references.
5083 *
5084 * dst_pte == src_pte is the common case of src/dest sharing.
5085 * However, src could have 'unshared' and dst shares with
5086 * another vma. So page_count of ptep page is checked instead
5087 * to reliably determine whether pte is shared.
5088 */
5089 if (page_count(virt_to_page(dst_pte)) > 1) {
5090 addr |= last_addr_mask;
5091 continue;
5092 }
5093
5094 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5095 src_ptl = huge_pte_lockptr(h, src, src_pte);
5096 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5097 entry = huge_ptep_get(src_pte);
5098 again:
5099 if (huge_pte_none(entry)) {
5100 /*
5101 * Skip if src entry none.
5102 */
5103 ;
5104 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5105 if (!userfaultfd_wp(dst_vma))
5106 entry = huge_pte_clear_uffd_wp(entry);
5107 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5108 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5109 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5110 bool uffd_wp = pte_swp_uffd_wp(entry);
5111
5112 if (!is_readable_migration_entry(swp_entry) && cow) {
5113 /*
5114 * COW mappings require pages in both
5115 * parent and child to be set to read.
5116 */
5117 swp_entry = make_readable_migration_entry(
5118 swp_offset(swp_entry));
5119 entry = swp_entry_to_pte(swp_entry);
5120 if (userfaultfd_wp(src_vma) && uffd_wp)
5121 entry = pte_swp_mkuffd_wp(entry);
5122 set_huge_pte_at(src, addr, src_pte, entry, sz);
5123 }
5124 if (!userfaultfd_wp(dst_vma))
5125 entry = huge_pte_clear_uffd_wp(entry);
5126 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5127 } else if (unlikely(is_pte_marker(entry))) {
5128 pte_marker marker = copy_pte_marker(
5129 pte_to_swp_entry(entry), dst_vma);
5130
5131 if (marker)
5132 set_huge_pte_at(dst, addr, dst_pte,
5133 make_pte_marker(marker), sz);
5134 } else {
5135 entry = huge_ptep_get(src_pte);
5136 pte_folio = page_folio(pte_page(entry));
5137 folio_get(pte_folio);
5138
5139 /*
5140 * Failing to duplicate the anon rmap is a rare case
5141 * where we see pinned hugetlb pages while they're
5142 * prone to COW. We need to do the COW earlier during
5143 * fork.
5144 *
5145 * When pre-allocating the page or copying data, we
5146 * need to be without the pgtable locks since we could
5147 * sleep during the process.
5148 */
5149 if (!folio_test_anon(pte_folio)) {
5150 page_dup_file_rmap(&pte_folio->page, true);
5151 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5152 true, src_vma)) {
5153 pte_t src_pte_old = entry;
5154 struct folio *new_folio;
5155
5156 spin_unlock(src_ptl);
5157 spin_unlock(dst_ptl);
5158 /* Do not use reserve as it's private owned */
5159 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5160 if (IS_ERR(new_folio)) {
5161 folio_put(pte_folio);
5162 ret = PTR_ERR(new_folio);
5163 break;
5164 }
5165 ret = copy_user_large_folio(new_folio,
5166 pte_folio,
5167 addr, dst_vma);
5168 folio_put(pte_folio);
5169 if (ret) {
5170 folio_put(new_folio);
5171 break;
5172 }
5173
5174 /* Install the new hugetlb folio if src pte stable */
5175 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5176 src_ptl = huge_pte_lockptr(h, src, src_pte);
5177 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5178 entry = huge_ptep_get(src_pte);
5179 if (!pte_same(src_pte_old, entry)) {
5180 restore_reserve_on_error(h, dst_vma, addr,
5181 new_folio);
5182 folio_put(new_folio);
5183 /* huge_ptep of dst_pte won't change as in child */
5184 goto again;
5185 }
5186 hugetlb_install_folio(dst_vma, dst_pte, addr,
5187 new_folio, src_pte_old, sz);
5188 spin_unlock(src_ptl);
5189 spin_unlock(dst_ptl);
5190 continue;
5191 }
5192
5193 if (cow) {
5194 /*
5195 * No need to notify as we are downgrading page
5196 * table protection not changing it to point
5197 * to a new page.
5198 *
5199 * See Documentation/mm/mmu_notifier.rst
5200 */
5201 huge_ptep_set_wrprotect(src, addr, src_pte);
5202 entry = huge_pte_wrprotect(entry);
5203 }
5204
5205 if (!userfaultfd_wp(dst_vma))
5206 entry = huge_pte_clear_uffd_wp(entry);
5207
5208 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5209 hugetlb_count_add(npages, dst);
5210 }
5211 spin_unlock(src_ptl);
5212 spin_unlock(dst_ptl);
5213 }
5214
5215 if (cow) {
5216 raw_write_seqcount_end(&src->write_protect_seq);
5217 mmu_notifier_invalidate_range_end(&range);
5218 } else {
5219 hugetlb_vma_unlock_read(src_vma);
5220 }
5221
5222 return ret;
5223 }
5224
move_huge_pte(struct vm_area_struct * vma,unsigned long old_addr,unsigned long new_addr,pte_t * src_pte,pte_t * dst_pte,unsigned long sz)5225 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5226 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5227 unsigned long sz)
5228 {
5229 struct hstate *h = hstate_vma(vma);
5230 struct mm_struct *mm = vma->vm_mm;
5231 spinlock_t *src_ptl, *dst_ptl;
5232 pte_t pte;
5233
5234 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5235 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5236
5237 /*
5238 * We don't have to worry about the ordering of src and dst ptlocks
5239 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5240 */
5241 if (src_ptl != dst_ptl)
5242 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5243
5244 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5245 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5246
5247 if (src_ptl != dst_ptl)
5248 spin_unlock(src_ptl);
5249 spin_unlock(dst_ptl);
5250 }
5251
move_hugetlb_page_tables(struct vm_area_struct * vma,struct vm_area_struct * new_vma,unsigned long old_addr,unsigned long new_addr,unsigned long len)5252 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5253 struct vm_area_struct *new_vma,
5254 unsigned long old_addr, unsigned long new_addr,
5255 unsigned long len)
5256 {
5257 struct hstate *h = hstate_vma(vma);
5258 struct address_space *mapping = vma->vm_file->f_mapping;
5259 unsigned long sz = huge_page_size(h);
5260 struct mm_struct *mm = vma->vm_mm;
5261 unsigned long old_end = old_addr + len;
5262 unsigned long last_addr_mask;
5263 pte_t *src_pte, *dst_pte;
5264 struct mmu_notifier_range range;
5265 bool shared_pmd = false;
5266
5267 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5268 old_end);
5269 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5270 /*
5271 * In case of shared PMDs, we should cover the maximum possible
5272 * range.
5273 */
5274 flush_cache_range(vma, range.start, range.end);
5275
5276 mmu_notifier_invalidate_range_start(&range);
5277 last_addr_mask = hugetlb_mask_last_page(h);
5278 /* Prevent race with file truncation */
5279 hugetlb_vma_lock_write(vma);
5280 i_mmap_lock_write(mapping);
5281 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5282 src_pte = hugetlb_walk(vma, old_addr, sz);
5283 if (!src_pte) {
5284 old_addr |= last_addr_mask;
5285 new_addr |= last_addr_mask;
5286 continue;
5287 }
5288 if (huge_pte_none(huge_ptep_get(src_pte)))
5289 continue;
5290
5291 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5292 shared_pmd = true;
5293 old_addr |= last_addr_mask;
5294 new_addr |= last_addr_mask;
5295 continue;
5296 }
5297
5298 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5299 if (!dst_pte)
5300 break;
5301
5302 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5303 }
5304
5305 if (shared_pmd)
5306 flush_hugetlb_tlb_range(vma, range.start, range.end);
5307 else
5308 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5309 mmu_notifier_invalidate_range_end(&range);
5310 i_mmap_unlock_write(mapping);
5311 hugetlb_vma_unlock_write(vma);
5312
5313 return len + old_addr - old_end;
5314 }
5315
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5316 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5317 unsigned long start, unsigned long end,
5318 struct page *ref_page, zap_flags_t zap_flags)
5319 {
5320 struct mm_struct *mm = vma->vm_mm;
5321 unsigned long address;
5322 pte_t *ptep;
5323 pte_t pte;
5324 spinlock_t *ptl;
5325 struct page *page;
5326 struct hstate *h = hstate_vma(vma);
5327 unsigned long sz = huge_page_size(h);
5328 unsigned long last_addr_mask;
5329 bool force_flush = false;
5330
5331 WARN_ON(!is_vm_hugetlb_page(vma));
5332 BUG_ON(start & ~huge_page_mask(h));
5333 BUG_ON(end & ~huge_page_mask(h));
5334
5335 /*
5336 * This is a hugetlb vma, all the pte entries should point
5337 * to huge page.
5338 */
5339 tlb_change_page_size(tlb, sz);
5340 tlb_start_vma(tlb, vma);
5341
5342 last_addr_mask = hugetlb_mask_last_page(h);
5343 address = start;
5344 for (; address < end; address += sz) {
5345 ptep = hugetlb_walk(vma, address, sz);
5346 if (!ptep) {
5347 address |= last_addr_mask;
5348 continue;
5349 }
5350
5351 ptl = huge_pte_lock(h, mm, ptep);
5352 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5353 spin_unlock(ptl);
5354 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5355 force_flush = true;
5356 address |= last_addr_mask;
5357 continue;
5358 }
5359
5360 pte = huge_ptep_get(ptep);
5361 if (huge_pte_none(pte)) {
5362 spin_unlock(ptl);
5363 continue;
5364 }
5365
5366 /*
5367 * Migrating hugepage or HWPoisoned hugepage is already
5368 * unmapped and its refcount is dropped, so just clear pte here.
5369 */
5370 if (unlikely(!pte_present(pte))) {
5371 /*
5372 * If the pte was wr-protected by uffd-wp in any of the
5373 * swap forms, meanwhile the caller does not want to
5374 * drop the uffd-wp bit in this zap, then replace the
5375 * pte with a marker.
5376 */
5377 if (pte_swp_uffd_wp_any(pte) &&
5378 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5379 set_huge_pte_at(mm, address, ptep,
5380 make_pte_marker(PTE_MARKER_UFFD_WP),
5381 sz);
5382 else
5383 huge_pte_clear(mm, address, ptep, sz);
5384 spin_unlock(ptl);
5385 continue;
5386 }
5387
5388 page = pte_page(pte);
5389 /*
5390 * If a reference page is supplied, it is because a specific
5391 * page is being unmapped, not a range. Ensure the page we
5392 * are about to unmap is the actual page of interest.
5393 */
5394 if (ref_page) {
5395 if (page != ref_page) {
5396 spin_unlock(ptl);
5397 continue;
5398 }
5399 /*
5400 * Mark the VMA as having unmapped its page so that
5401 * future faults in this VMA will fail rather than
5402 * looking like data was lost
5403 */
5404 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5405 }
5406
5407 pte = huge_ptep_get_and_clear(mm, address, ptep);
5408 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5409 if (huge_pte_dirty(pte))
5410 set_page_dirty(page);
5411 /* Leave a uffd-wp pte marker if needed */
5412 if (huge_pte_uffd_wp(pte) &&
5413 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5414 set_huge_pte_at(mm, address, ptep,
5415 make_pte_marker(PTE_MARKER_UFFD_WP),
5416 sz);
5417 hugetlb_count_sub(pages_per_huge_page(h), mm);
5418 page_remove_rmap(page, vma, true);
5419
5420 spin_unlock(ptl);
5421 tlb_remove_page_size(tlb, page, huge_page_size(h));
5422 /*
5423 * Bail out after unmapping reference page if supplied
5424 */
5425 if (ref_page)
5426 break;
5427 }
5428 tlb_end_vma(tlb, vma);
5429
5430 /*
5431 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5432 * could defer the flush until now, since by holding i_mmap_rwsem we
5433 * guaranteed that the last refernece would not be dropped. But we must
5434 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5435 * dropped and the last reference to the shared PMDs page might be
5436 * dropped as well.
5437 *
5438 * In theory we could defer the freeing of the PMD pages as well, but
5439 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5440 * detect sharing, so we cannot defer the release of the page either.
5441 * Instead, do flush now.
5442 */
5443 if (force_flush)
5444 tlb_flush_mmu_tlbonly(tlb);
5445 }
5446
__hugetlb_zap_begin(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5447 void __hugetlb_zap_begin(struct vm_area_struct *vma,
5448 unsigned long *start, unsigned long *end)
5449 {
5450 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5451 return;
5452
5453 adjust_range_if_pmd_sharing_possible(vma, start, end);
5454 hugetlb_vma_lock_write(vma);
5455 if (vma->vm_file)
5456 i_mmap_lock_write(vma->vm_file->f_mapping);
5457 }
5458
__hugetlb_zap_end(struct vm_area_struct * vma,struct zap_details * details)5459 void __hugetlb_zap_end(struct vm_area_struct *vma,
5460 struct zap_details *details)
5461 {
5462 zap_flags_t zap_flags = details ? details->zap_flags : 0;
5463
5464 if (!vma->vm_file) /* hugetlbfs_file_mmap error */
5465 return;
5466
5467 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5468 /*
5469 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5470 * When the vma_lock is freed, this makes the vma ineligible
5471 * for pmd sharing. And, i_mmap_rwsem is required to set up
5472 * pmd sharing. This is important as page tables for this
5473 * unmapped range will be asynchrously deleted. If the page
5474 * tables are shared, there will be issues when accessed by
5475 * someone else.
5476 */
5477 __hugetlb_vma_unlock_write_free(vma);
5478 } else {
5479 hugetlb_vma_unlock_write(vma);
5480 }
5481
5482 if (vma->vm_file)
5483 i_mmap_unlock_write(vma->vm_file->f_mapping);
5484 }
5485
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page,zap_flags_t zap_flags)5486 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5487 unsigned long end, struct page *ref_page,
5488 zap_flags_t zap_flags)
5489 {
5490 struct mmu_notifier_range range;
5491 struct mmu_gather tlb;
5492
5493 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5494 start, end);
5495 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5496 mmu_notifier_invalidate_range_start(&range);
5497 tlb_gather_mmu(&tlb, vma->vm_mm);
5498
5499 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5500
5501 mmu_notifier_invalidate_range_end(&range);
5502 tlb_finish_mmu(&tlb);
5503 }
5504
5505 /*
5506 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5507 * mapping it owns the reserve page for. The intention is to unmap the page
5508 * from other VMAs and let the children be SIGKILLed if they are faulting the
5509 * same region.
5510 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)5511 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5512 struct page *page, unsigned long address)
5513 {
5514 struct hstate *h = hstate_vma(vma);
5515 struct vm_area_struct *iter_vma;
5516 struct address_space *mapping;
5517 pgoff_t pgoff;
5518
5519 /*
5520 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5521 * from page cache lookup which is in HPAGE_SIZE units.
5522 */
5523 address = address & huge_page_mask(h);
5524 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5525 vma->vm_pgoff;
5526 mapping = vma->vm_file->f_mapping;
5527
5528 /*
5529 * Take the mapping lock for the duration of the table walk. As
5530 * this mapping should be shared between all the VMAs,
5531 * __unmap_hugepage_range() is called as the lock is already held
5532 */
5533 i_mmap_lock_write(mapping);
5534 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5535 /* Do not unmap the current VMA */
5536 if (iter_vma == vma)
5537 continue;
5538
5539 /*
5540 * Shared VMAs have their own reserves and do not affect
5541 * MAP_PRIVATE accounting but it is possible that a shared
5542 * VMA is using the same page so check and skip such VMAs.
5543 */
5544 if (iter_vma->vm_flags & VM_MAYSHARE)
5545 continue;
5546
5547 /*
5548 * Unmap the page from other VMAs without their own reserves.
5549 * They get marked to be SIGKILLed if they fault in these
5550 * areas. This is because a future no-page fault on this VMA
5551 * could insert a zeroed page instead of the data existing
5552 * from the time of fork. This would look like data corruption
5553 */
5554 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5555 unmap_hugepage_range(iter_vma, address,
5556 address + huge_page_size(h), page, 0);
5557 }
5558 i_mmap_unlock_write(mapping);
5559 }
5560
5561 /*
5562 * hugetlb_wp() should be called with page lock of the original hugepage held.
5563 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5564 * cannot race with other handlers or page migration.
5565 * Keep the pte_same checks anyway to make transition from the mutex easier.
5566 */
hugetlb_wp(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int flags,struct folio * pagecache_folio,spinlock_t * ptl)5567 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5568 unsigned long address, pte_t *ptep, unsigned int flags,
5569 struct folio *pagecache_folio, spinlock_t *ptl)
5570 {
5571 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5572 pte_t pte = huge_ptep_get(ptep);
5573 struct hstate *h = hstate_vma(vma);
5574 struct folio *old_folio;
5575 struct folio *new_folio;
5576 int outside_reserve = 0;
5577 vm_fault_t ret = 0;
5578 unsigned long haddr = address & huge_page_mask(h);
5579 struct mmu_notifier_range range;
5580
5581 /*
5582 * Never handle CoW for uffd-wp protected pages. It should be only
5583 * handled when the uffd-wp protection is removed.
5584 *
5585 * Note that only the CoW optimization path (in hugetlb_no_page())
5586 * can trigger this, because hugetlb_fault() will always resolve
5587 * uffd-wp bit first.
5588 */
5589 if (!unshare && huge_pte_uffd_wp(pte))
5590 return 0;
5591
5592 /*
5593 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5594 * PTE mapped R/O such as maybe_mkwrite() would do.
5595 */
5596 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5597 return VM_FAULT_SIGSEGV;
5598
5599 /* Let's take out MAP_SHARED mappings first. */
5600 if (vma->vm_flags & VM_MAYSHARE) {
5601 set_huge_ptep_writable(vma, haddr, ptep);
5602 return 0;
5603 }
5604
5605 old_folio = page_folio(pte_page(pte));
5606
5607 delayacct_wpcopy_start();
5608
5609 retry_avoidcopy:
5610 /*
5611 * If no-one else is actually using this page, we're the exclusive
5612 * owner and can reuse this page.
5613 */
5614 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5615 if (!PageAnonExclusive(&old_folio->page))
5616 page_move_anon_rmap(&old_folio->page, vma);
5617 if (likely(!unshare))
5618 set_huge_ptep_writable(vma, haddr, ptep);
5619
5620 delayacct_wpcopy_end();
5621 return 0;
5622 }
5623 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5624 PageAnonExclusive(&old_folio->page), &old_folio->page);
5625
5626 /*
5627 * If the process that created a MAP_PRIVATE mapping is about to
5628 * perform a COW due to a shared page count, attempt to satisfy
5629 * the allocation without using the existing reserves. The pagecache
5630 * page is used to determine if the reserve at this address was
5631 * consumed or not. If reserves were used, a partial faulted mapping
5632 * at the time of fork() could consume its reserves on COW instead
5633 * of the full address range.
5634 */
5635 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5636 old_folio != pagecache_folio)
5637 outside_reserve = 1;
5638
5639 folio_get(old_folio);
5640
5641 /*
5642 * Drop page table lock as buddy allocator may be called. It will
5643 * be acquired again before returning to the caller, as expected.
5644 */
5645 spin_unlock(ptl);
5646 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5647
5648 if (IS_ERR(new_folio)) {
5649 /*
5650 * If a process owning a MAP_PRIVATE mapping fails to COW,
5651 * it is due to references held by a child and an insufficient
5652 * huge page pool. To guarantee the original mappers
5653 * reliability, unmap the page from child processes. The child
5654 * may get SIGKILLed if it later faults.
5655 */
5656 if (outside_reserve) {
5657 struct address_space *mapping = vma->vm_file->f_mapping;
5658 pgoff_t idx;
5659 u32 hash;
5660
5661 folio_put(old_folio);
5662 /*
5663 * Drop hugetlb_fault_mutex and vma_lock before
5664 * unmapping. unmapping needs to hold vma_lock
5665 * in write mode. Dropping vma_lock in read mode
5666 * here is OK as COW mappings do not interact with
5667 * PMD sharing.
5668 *
5669 * Reacquire both after unmap operation.
5670 */
5671 idx = vma_hugecache_offset(h, vma, haddr);
5672 hash = hugetlb_fault_mutex_hash(mapping, idx);
5673 hugetlb_vma_unlock_read(vma);
5674 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5675
5676 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5677
5678 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5679 hugetlb_vma_lock_read(vma);
5680 spin_lock(ptl);
5681 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5682 if (likely(ptep &&
5683 pte_same(huge_ptep_get(ptep), pte)))
5684 goto retry_avoidcopy;
5685 /*
5686 * race occurs while re-acquiring page table
5687 * lock, and our job is done.
5688 */
5689 delayacct_wpcopy_end();
5690 return 0;
5691 }
5692
5693 ret = vmf_error(PTR_ERR(new_folio));
5694 goto out_release_old;
5695 }
5696
5697 /*
5698 * When the original hugepage is shared one, it does not have
5699 * anon_vma prepared.
5700 */
5701 if (unlikely(anon_vma_prepare(vma))) {
5702 ret = VM_FAULT_OOM;
5703 goto out_release_all;
5704 }
5705
5706 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5707 ret = VM_FAULT_HWPOISON_LARGE;
5708 goto out_release_all;
5709 }
5710 __folio_mark_uptodate(new_folio);
5711
5712 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5713 haddr + huge_page_size(h));
5714 mmu_notifier_invalidate_range_start(&range);
5715
5716 /*
5717 * Retake the page table lock to check for racing updates
5718 * before the page tables are altered
5719 */
5720 spin_lock(ptl);
5721 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5722 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5723 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5724
5725 /* Break COW or unshare */
5726 huge_ptep_clear_flush(vma, haddr, ptep);
5727 page_remove_rmap(&old_folio->page, vma, true);
5728 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5729 if (huge_pte_uffd_wp(pte))
5730 newpte = huge_pte_mkuffd_wp(newpte);
5731 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5732 folio_set_hugetlb_migratable(new_folio);
5733 /* Make the old page be freed below */
5734 new_folio = old_folio;
5735 }
5736 spin_unlock(ptl);
5737 mmu_notifier_invalidate_range_end(&range);
5738 out_release_all:
5739 /*
5740 * No restore in case of successful pagetable update (Break COW or
5741 * unshare)
5742 */
5743 if (new_folio != old_folio)
5744 restore_reserve_on_error(h, vma, haddr, new_folio);
5745 folio_put(new_folio);
5746 out_release_old:
5747 folio_put(old_folio);
5748
5749 spin_lock(ptl); /* Caller expects lock to be held */
5750
5751 delayacct_wpcopy_end();
5752 return ret;
5753 }
5754
5755 /*
5756 * Return whether there is a pagecache page to back given address within VMA.
5757 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)5758 static bool hugetlbfs_pagecache_present(struct hstate *h,
5759 struct vm_area_struct *vma, unsigned long address)
5760 {
5761 struct address_space *mapping = vma->vm_file->f_mapping;
5762 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5763 struct folio *folio;
5764
5765 folio = filemap_get_folio(mapping, idx);
5766 if (IS_ERR(folio))
5767 return false;
5768 folio_put(folio);
5769 return true;
5770 }
5771
hugetlb_add_to_page_cache(struct folio * folio,struct address_space * mapping,pgoff_t idx)5772 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5773 pgoff_t idx)
5774 {
5775 struct inode *inode = mapping->host;
5776 struct hstate *h = hstate_inode(inode);
5777 int err;
5778
5779 __folio_set_locked(folio);
5780 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5781
5782 if (unlikely(err)) {
5783 __folio_clear_locked(folio);
5784 return err;
5785 }
5786 folio_clear_hugetlb_restore_reserve(folio);
5787
5788 /*
5789 * mark folio dirty so that it will not be removed from cache/file
5790 * by non-hugetlbfs specific code paths.
5791 */
5792 folio_mark_dirty(folio);
5793
5794 spin_lock(&inode->i_lock);
5795 inode->i_blocks += blocks_per_huge_page(h);
5796 spin_unlock(&inode->i_lock);
5797 return 0;
5798 }
5799
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long addr,unsigned long reason)5800 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5801 struct address_space *mapping,
5802 pgoff_t idx,
5803 unsigned int flags,
5804 unsigned long haddr,
5805 unsigned long addr,
5806 unsigned long reason)
5807 {
5808 u32 hash;
5809 struct vm_fault vmf = {
5810 .vma = vma,
5811 .address = haddr,
5812 .real_address = addr,
5813 .flags = flags,
5814
5815 /*
5816 * Hard to debug if it ends up being
5817 * used by a callee that assumes
5818 * something about the other
5819 * uninitialized fields... same as in
5820 * memory.c
5821 */
5822 };
5823
5824 /*
5825 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5826 * userfault. Also mmap_lock could be dropped due to handling
5827 * userfault, any vma operation should be careful from here.
5828 */
5829 hugetlb_vma_unlock_read(vma);
5830 hash = hugetlb_fault_mutex_hash(mapping, idx);
5831 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5832 return handle_userfault(&vmf, reason);
5833 }
5834
5835 /*
5836 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5837 * false if pte changed or is changing.
5838 */
hugetlb_pte_stable(struct hstate * h,struct mm_struct * mm,pte_t * ptep,pte_t old_pte)5839 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5840 pte_t *ptep, pte_t old_pte)
5841 {
5842 spinlock_t *ptl;
5843 bool same;
5844
5845 ptl = huge_pte_lock(h, mm, ptep);
5846 same = pte_same(huge_ptep_get(ptep), old_pte);
5847 spin_unlock(ptl);
5848
5849 return same;
5850 }
5851
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,pte_t old_pte,unsigned int flags)5852 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5853 struct vm_area_struct *vma,
5854 struct address_space *mapping, pgoff_t idx,
5855 unsigned long address, pte_t *ptep,
5856 pte_t old_pte, unsigned int flags)
5857 {
5858 struct hstate *h = hstate_vma(vma);
5859 vm_fault_t ret = VM_FAULT_SIGBUS;
5860 int anon_rmap = 0;
5861 unsigned long size;
5862 struct folio *folio;
5863 pte_t new_pte;
5864 spinlock_t *ptl;
5865 unsigned long haddr = address & huge_page_mask(h);
5866 bool new_folio, new_pagecache_folio = false;
5867 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5868
5869 /*
5870 * Currently, we are forced to kill the process in the event the
5871 * original mapper has unmapped pages from the child due to a failed
5872 * COW/unsharing. Warn that such a situation has occurred as it may not
5873 * be obvious.
5874 */
5875 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5876 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5877 current->pid);
5878 goto out;
5879 }
5880
5881 /*
5882 * Use page lock to guard against racing truncation
5883 * before we get page_table_lock.
5884 */
5885 new_folio = false;
5886 folio = filemap_lock_folio(mapping, idx);
5887 if (IS_ERR(folio)) {
5888 size = i_size_read(mapping->host) >> huge_page_shift(h);
5889 if (idx >= size)
5890 goto out;
5891 /* Check for page in userfault range */
5892 if (userfaultfd_missing(vma)) {
5893 /*
5894 * Since hugetlb_no_page() was examining pte
5895 * without pgtable lock, we need to re-test under
5896 * lock because the pte may not be stable and could
5897 * have changed from under us. Try to detect
5898 * either changed or during-changing ptes and retry
5899 * properly when needed.
5900 *
5901 * Note that userfaultfd is actually fine with
5902 * false positives (e.g. caused by pte changed),
5903 * but not wrong logical events (e.g. caused by
5904 * reading a pte during changing). The latter can
5905 * confuse the userspace, so the strictness is very
5906 * much preferred. E.g., MISSING event should
5907 * never happen on the page after UFFDIO_COPY has
5908 * correctly installed the page and returned.
5909 */
5910 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5911 ret = 0;
5912 goto out;
5913 }
5914
5915 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5916 haddr, address,
5917 VM_UFFD_MISSING);
5918 }
5919
5920 folio = alloc_hugetlb_folio(vma, haddr, 0);
5921 if (IS_ERR(folio)) {
5922 /*
5923 * Returning error will result in faulting task being
5924 * sent SIGBUS. The hugetlb fault mutex prevents two
5925 * tasks from racing to fault in the same page which
5926 * could result in false unable to allocate errors.
5927 * Page migration does not take the fault mutex, but
5928 * does a clear then write of pte's under page table
5929 * lock. Page fault code could race with migration,
5930 * notice the clear pte and try to allocate a page
5931 * here. Before returning error, get ptl and make
5932 * sure there really is no pte entry.
5933 */
5934 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5935 ret = vmf_error(PTR_ERR(folio));
5936 else
5937 ret = 0;
5938 goto out;
5939 }
5940 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5941 __folio_mark_uptodate(folio);
5942 new_folio = true;
5943
5944 if (vma->vm_flags & VM_MAYSHARE) {
5945 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5946 if (err) {
5947 /*
5948 * err can't be -EEXIST which implies someone
5949 * else consumed the reservation since hugetlb
5950 * fault mutex is held when add a hugetlb page
5951 * to the page cache. So it's safe to call
5952 * restore_reserve_on_error() here.
5953 */
5954 restore_reserve_on_error(h, vma, haddr, folio);
5955 folio_put(folio);
5956 goto out;
5957 }
5958 new_pagecache_folio = true;
5959 } else {
5960 folio_lock(folio);
5961 if (unlikely(anon_vma_prepare(vma))) {
5962 ret = VM_FAULT_OOM;
5963 goto backout_unlocked;
5964 }
5965 anon_rmap = 1;
5966 }
5967 } else {
5968 /*
5969 * If memory error occurs between mmap() and fault, some process
5970 * don't have hwpoisoned swap entry for errored virtual address.
5971 * So we need to block hugepage fault by PG_hwpoison bit check.
5972 */
5973 if (unlikely(folio_test_hwpoison(folio))) {
5974 ret = VM_FAULT_HWPOISON_LARGE |
5975 VM_FAULT_SET_HINDEX(hstate_index(h));
5976 goto backout_unlocked;
5977 }
5978
5979 /* Check for page in userfault range. */
5980 if (userfaultfd_minor(vma)) {
5981 folio_unlock(folio);
5982 folio_put(folio);
5983 /* See comment in userfaultfd_missing() block above */
5984 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5985 ret = 0;
5986 goto out;
5987 }
5988 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5989 haddr, address,
5990 VM_UFFD_MINOR);
5991 }
5992 }
5993
5994 /*
5995 * If we are going to COW a private mapping later, we examine the
5996 * pending reservations for this page now. This will ensure that
5997 * any allocations necessary to record that reservation occur outside
5998 * the spinlock.
5999 */
6000 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6001 if (vma_needs_reservation(h, vma, haddr) < 0) {
6002 ret = VM_FAULT_OOM;
6003 goto backout_unlocked;
6004 }
6005 /* Just decrements count, does not deallocate */
6006 vma_end_reservation(h, vma, haddr);
6007 }
6008
6009 ptl = huge_pte_lock(h, mm, ptep);
6010 ret = 0;
6011 /* If pte changed from under us, retry */
6012 if (!pte_same(huge_ptep_get(ptep), old_pte))
6013 goto backout;
6014
6015 if (anon_rmap)
6016 hugepage_add_new_anon_rmap(folio, vma, haddr);
6017 else
6018 page_dup_file_rmap(&folio->page, true);
6019 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6020 && (vma->vm_flags & VM_SHARED)));
6021 /*
6022 * If this pte was previously wr-protected, keep it wr-protected even
6023 * if populated.
6024 */
6025 if (unlikely(pte_marker_uffd_wp(old_pte)))
6026 new_pte = huge_pte_mkuffd_wp(new_pte);
6027 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6028
6029 hugetlb_count_add(pages_per_huge_page(h), mm);
6030 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6031 /* Optimization, do the COW without a second fault */
6032 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6033 }
6034
6035 spin_unlock(ptl);
6036
6037 /*
6038 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6039 * found in the pagecache may not have hugetlb_migratable if they have
6040 * been isolated for migration.
6041 */
6042 if (new_folio)
6043 folio_set_hugetlb_migratable(folio);
6044
6045 folio_unlock(folio);
6046 out:
6047 hugetlb_vma_unlock_read(vma);
6048 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6049 return ret;
6050
6051 backout:
6052 spin_unlock(ptl);
6053 backout_unlocked:
6054 if (new_folio && !new_pagecache_folio)
6055 restore_reserve_on_error(h, vma, haddr, folio);
6056
6057 folio_unlock(folio);
6058 folio_put(folio);
6059 goto out;
6060 }
6061
6062 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6063 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6064 {
6065 unsigned long key[2];
6066 u32 hash;
6067
6068 key[0] = (unsigned long) mapping;
6069 key[1] = idx;
6070
6071 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6072
6073 return hash & (num_fault_mutexes - 1);
6074 }
6075 #else
6076 /*
6077 * For uniprocessor systems we always use a single mutex, so just
6078 * return 0 and avoid the hashing overhead.
6079 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)6080 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6081 {
6082 return 0;
6083 }
6084 #endif
6085
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)6086 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6087 unsigned long address, unsigned int flags)
6088 {
6089 pte_t *ptep, entry;
6090 spinlock_t *ptl;
6091 vm_fault_t ret;
6092 u32 hash;
6093 pgoff_t idx;
6094 struct folio *folio = NULL;
6095 struct folio *pagecache_folio = NULL;
6096 struct hstate *h = hstate_vma(vma);
6097 struct address_space *mapping;
6098 int need_wait_lock = 0;
6099 unsigned long haddr = address & huge_page_mask(h);
6100
6101 /* TODO: Handle faults under the VMA lock */
6102 if (flags & FAULT_FLAG_VMA_LOCK) {
6103 vma_end_read(vma);
6104 return VM_FAULT_RETRY;
6105 }
6106
6107 /*
6108 * Serialize hugepage allocation and instantiation, so that we don't
6109 * get spurious allocation failures if two CPUs race to instantiate
6110 * the same page in the page cache.
6111 */
6112 mapping = vma->vm_file->f_mapping;
6113 idx = vma_hugecache_offset(h, vma, haddr);
6114 hash = hugetlb_fault_mutex_hash(mapping, idx);
6115 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6116
6117 /*
6118 * Acquire vma lock before calling huge_pte_alloc and hold
6119 * until finished with ptep. This prevents huge_pmd_unshare from
6120 * being called elsewhere and making the ptep no longer valid.
6121 */
6122 hugetlb_vma_lock_read(vma);
6123 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6124 if (!ptep) {
6125 hugetlb_vma_unlock_read(vma);
6126 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6127 return VM_FAULT_OOM;
6128 }
6129
6130 entry = huge_ptep_get(ptep);
6131 if (huge_pte_none_mostly(entry)) {
6132 if (is_pte_marker(entry)) {
6133 pte_marker marker =
6134 pte_marker_get(pte_to_swp_entry(entry));
6135
6136 if (marker & PTE_MARKER_POISONED) {
6137 ret = VM_FAULT_HWPOISON_LARGE;
6138 goto out_mutex;
6139 }
6140 }
6141
6142 /*
6143 * Other PTE markers should be handled the same way as none PTE.
6144 *
6145 * hugetlb_no_page will drop vma lock and hugetlb fault
6146 * mutex internally, which make us return immediately.
6147 */
6148 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6149 entry, flags);
6150 }
6151
6152 ret = 0;
6153
6154 /*
6155 * entry could be a migration/hwpoison entry at this point, so this
6156 * check prevents the kernel from going below assuming that we have
6157 * an active hugepage in pagecache. This goto expects the 2nd page
6158 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6159 * properly handle it.
6160 */
6161 if (!pte_present(entry)) {
6162 if (unlikely(is_hugetlb_entry_migration(entry))) {
6163 /*
6164 * Release the hugetlb fault lock now, but retain
6165 * the vma lock, because it is needed to guard the
6166 * huge_pte_lockptr() later in
6167 * migration_entry_wait_huge(). The vma lock will
6168 * be released there.
6169 */
6170 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6171 migration_entry_wait_huge(vma, ptep);
6172 return 0;
6173 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6174 ret = VM_FAULT_HWPOISON_LARGE |
6175 VM_FAULT_SET_HINDEX(hstate_index(h));
6176 goto out_mutex;
6177 }
6178
6179 /*
6180 * If we are going to COW/unshare the mapping later, we examine the
6181 * pending reservations for this page now. This will ensure that any
6182 * allocations necessary to record that reservation occur outside the
6183 * spinlock. Also lookup the pagecache page now as it is used to
6184 * determine if a reservation has been consumed.
6185 */
6186 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6187 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6188 if (vma_needs_reservation(h, vma, haddr) < 0) {
6189 ret = VM_FAULT_OOM;
6190 goto out_mutex;
6191 }
6192 /* Just decrements count, does not deallocate */
6193 vma_end_reservation(h, vma, haddr);
6194
6195 pagecache_folio = filemap_lock_folio(mapping, idx);
6196 if (IS_ERR(pagecache_folio))
6197 pagecache_folio = NULL;
6198 }
6199
6200 ptl = huge_pte_lock(h, mm, ptep);
6201
6202 /* Check for a racing update before calling hugetlb_wp() */
6203 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6204 goto out_ptl;
6205
6206 /* Handle userfault-wp first, before trying to lock more pages */
6207 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6208 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6209 struct vm_fault vmf = {
6210 .vma = vma,
6211 .address = haddr,
6212 .real_address = address,
6213 .flags = flags,
6214 };
6215
6216 spin_unlock(ptl);
6217 if (pagecache_folio) {
6218 folio_unlock(pagecache_folio);
6219 folio_put(pagecache_folio);
6220 }
6221 hugetlb_vma_unlock_read(vma);
6222 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6223 return handle_userfault(&vmf, VM_UFFD_WP);
6224 }
6225
6226 /*
6227 * hugetlb_wp() requires page locks of pte_page(entry) and
6228 * pagecache_folio, so here we need take the former one
6229 * when folio != pagecache_folio or !pagecache_folio.
6230 */
6231 folio = page_folio(pte_page(entry));
6232 if (folio != pagecache_folio)
6233 if (!folio_trylock(folio)) {
6234 need_wait_lock = 1;
6235 goto out_ptl;
6236 }
6237
6238 folio_get(folio);
6239
6240 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6241 if (!huge_pte_write(entry)) {
6242 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6243 pagecache_folio, ptl);
6244 goto out_put_page;
6245 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6246 entry = huge_pte_mkdirty(entry);
6247 }
6248 }
6249 entry = pte_mkyoung(entry);
6250 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6251 flags & FAULT_FLAG_WRITE))
6252 update_mmu_cache(vma, haddr, ptep);
6253 out_put_page:
6254 if (folio != pagecache_folio)
6255 folio_unlock(folio);
6256 folio_put(folio);
6257 out_ptl:
6258 spin_unlock(ptl);
6259
6260 if (pagecache_folio) {
6261 folio_unlock(pagecache_folio);
6262 folio_put(pagecache_folio);
6263 }
6264 out_mutex:
6265 hugetlb_vma_unlock_read(vma);
6266 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6267 /*
6268 * Generally it's safe to hold refcount during waiting page lock. But
6269 * here we just wait to defer the next page fault to avoid busy loop and
6270 * the page is not used after unlocked before returning from the current
6271 * page fault. So we are safe from accessing freed page, even if we wait
6272 * here without taking refcount.
6273 */
6274 if (need_wait_lock)
6275 folio_wait_locked(folio);
6276 return ret;
6277 }
6278
6279 #ifdef CONFIG_USERFAULTFD
6280 /*
6281 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6282 * with modifications for hugetlb pages.
6283 */
hugetlb_mfill_atomic_pte(pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)6284 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6285 struct vm_area_struct *dst_vma,
6286 unsigned long dst_addr,
6287 unsigned long src_addr,
6288 uffd_flags_t flags,
6289 struct folio **foliop)
6290 {
6291 struct mm_struct *dst_mm = dst_vma->vm_mm;
6292 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6293 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6294 struct hstate *h = hstate_vma(dst_vma);
6295 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6296 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6297 unsigned long size;
6298 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6299 pte_t _dst_pte;
6300 spinlock_t *ptl;
6301 int ret = -ENOMEM;
6302 struct folio *folio;
6303 int writable;
6304 bool folio_in_pagecache = false;
6305
6306 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6307 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6308
6309 /* Don't overwrite any existing PTEs (even markers) */
6310 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6311 spin_unlock(ptl);
6312 return -EEXIST;
6313 }
6314
6315 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6316 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6317 huge_page_size(h));
6318
6319 /* No need to invalidate - it was non-present before */
6320 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6321
6322 spin_unlock(ptl);
6323 return 0;
6324 }
6325
6326 if (is_continue) {
6327 ret = -EFAULT;
6328 folio = filemap_lock_folio(mapping, idx);
6329 if (IS_ERR(folio))
6330 goto out;
6331 folio_in_pagecache = true;
6332 } else if (!*foliop) {
6333 /* If a folio already exists, then it's UFFDIO_COPY for
6334 * a non-missing case. Return -EEXIST.
6335 */
6336 if (vm_shared &&
6337 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6338 ret = -EEXIST;
6339 goto out;
6340 }
6341
6342 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6343 if (IS_ERR(folio)) {
6344 ret = -ENOMEM;
6345 goto out;
6346 }
6347
6348 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6349 false);
6350
6351 /* fallback to copy_from_user outside mmap_lock */
6352 if (unlikely(ret)) {
6353 ret = -ENOENT;
6354 /* Free the allocated folio which may have
6355 * consumed a reservation.
6356 */
6357 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6358 folio_put(folio);
6359
6360 /* Allocate a temporary folio to hold the copied
6361 * contents.
6362 */
6363 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6364 if (!folio) {
6365 ret = -ENOMEM;
6366 goto out;
6367 }
6368 *foliop = folio;
6369 /* Set the outparam foliop and return to the caller to
6370 * copy the contents outside the lock. Don't free the
6371 * folio.
6372 */
6373 goto out;
6374 }
6375 } else {
6376 if (vm_shared &&
6377 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6378 folio_put(*foliop);
6379 ret = -EEXIST;
6380 *foliop = NULL;
6381 goto out;
6382 }
6383
6384 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6385 if (IS_ERR(folio)) {
6386 folio_put(*foliop);
6387 ret = -ENOMEM;
6388 *foliop = NULL;
6389 goto out;
6390 }
6391 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6392 folio_put(*foliop);
6393 *foliop = NULL;
6394 if (ret) {
6395 folio_put(folio);
6396 goto out;
6397 }
6398 }
6399
6400 /*
6401 * The memory barrier inside __folio_mark_uptodate makes sure that
6402 * preceding stores to the page contents become visible before
6403 * the set_pte_at() write.
6404 */
6405 __folio_mark_uptodate(folio);
6406
6407 /* Add shared, newly allocated pages to the page cache. */
6408 if (vm_shared && !is_continue) {
6409 size = i_size_read(mapping->host) >> huge_page_shift(h);
6410 ret = -EFAULT;
6411 if (idx >= size)
6412 goto out_release_nounlock;
6413
6414 /*
6415 * Serialization between remove_inode_hugepages() and
6416 * hugetlb_add_to_page_cache() below happens through the
6417 * hugetlb_fault_mutex_table that here must be hold by
6418 * the caller.
6419 */
6420 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6421 if (ret)
6422 goto out_release_nounlock;
6423 folio_in_pagecache = true;
6424 }
6425
6426 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6427
6428 ret = -EIO;
6429 if (folio_test_hwpoison(folio))
6430 goto out_release_unlock;
6431
6432 /*
6433 * We allow to overwrite a pte marker: consider when both MISSING|WP
6434 * registered, we firstly wr-protect a none pte which has no page cache
6435 * page backing it, then access the page.
6436 */
6437 ret = -EEXIST;
6438 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6439 goto out_release_unlock;
6440
6441 if (folio_in_pagecache)
6442 page_dup_file_rmap(&folio->page, true);
6443 else
6444 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6445
6446 /*
6447 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6448 * with wp flag set, don't set pte write bit.
6449 */
6450 if (wp_enabled || (is_continue && !vm_shared))
6451 writable = 0;
6452 else
6453 writable = dst_vma->vm_flags & VM_WRITE;
6454
6455 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6456 /*
6457 * Always mark UFFDIO_COPY page dirty; note that this may not be
6458 * extremely important for hugetlbfs for now since swapping is not
6459 * supported, but we should still be clear in that this page cannot be
6460 * thrown away at will, even if write bit not set.
6461 */
6462 _dst_pte = huge_pte_mkdirty(_dst_pte);
6463 _dst_pte = pte_mkyoung(_dst_pte);
6464
6465 if (wp_enabled)
6466 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6467
6468 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6469
6470 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6471
6472 /* No need to invalidate - it was non-present before */
6473 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6474
6475 spin_unlock(ptl);
6476 if (!is_continue)
6477 folio_set_hugetlb_migratable(folio);
6478 if (vm_shared || is_continue)
6479 folio_unlock(folio);
6480 ret = 0;
6481 out:
6482 return ret;
6483 out_release_unlock:
6484 spin_unlock(ptl);
6485 if (vm_shared || is_continue)
6486 folio_unlock(folio);
6487 out_release_nounlock:
6488 if (!folio_in_pagecache)
6489 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6490 folio_put(folio);
6491 goto out;
6492 }
6493 #endif /* CONFIG_USERFAULTFD */
6494
hugetlb_follow_page_mask(struct vm_area_struct * vma,unsigned long address,unsigned int flags,unsigned int * page_mask)6495 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6496 unsigned long address, unsigned int flags,
6497 unsigned int *page_mask)
6498 {
6499 struct hstate *h = hstate_vma(vma);
6500 struct mm_struct *mm = vma->vm_mm;
6501 unsigned long haddr = address & huge_page_mask(h);
6502 struct page *page = NULL;
6503 spinlock_t *ptl;
6504 pte_t *pte, entry;
6505 int ret;
6506
6507 hugetlb_vma_lock_read(vma);
6508 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6509 if (!pte)
6510 goto out_unlock;
6511
6512 ptl = huge_pte_lock(h, mm, pte);
6513 entry = huge_ptep_get(pte);
6514 if (pte_present(entry)) {
6515 page = pte_page(entry);
6516
6517 if (!huge_pte_write(entry)) {
6518 if (flags & FOLL_WRITE) {
6519 page = NULL;
6520 goto out;
6521 }
6522
6523 if (gup_must_unshare(vma, flags, page)) {
6524 /* Tell the caller to do unsharing */
6525 page = ERR_PTR(-EMLINK);
6526 goto out;
6527 }
6528 }
6529
6530 page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6531
6532 /*
6533 * Note that page may be a sub-page, and with vmemmap
6534 * optimizations the page struct may be read only.
6535 * try_grab_page() will increase the ref count on the
6536 * head page, so this will be OK.
6537 *
6538 * try_grab_page() should always be able to get the page here,
6539 * because we hold the ptl lock and have verified pte_present().
6540 */
6541 ret = try_grab_page(page, flags);
6542
6543 if (WARN_ON_ONCE(ret)) {
6544 page = ERR_PTR(ret);
6545 goto out;
6546 }
6547
6548 *page_mask = (1U << huge_page_order(h)) - 1;
6549 }
6550 out:
6551 spin_unlock(ptl);
6552 out_unlock:
6553 hugetlb_vma_unlock_read(vma);
6554
6555 /*
6556 * Fixup retval for dump requests: if pagecache doesn't exist,
6557 * don't try to allocate a new page but just skip it.
6558 */
6559 if (!page && (flags & FOLL_DUMP) &&
6560 !hugetlbfs_pagecache_present(h, vma, address))
6561 page = ERR_PTR(-EFAULT);
6562
6563 return page;
6564 }
6565
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot,unsigned long cp_flags)6566 long hugetlb_change_protection(struct vm_area_struct *vma,
6567 unsigned long address, unsigned long end,
6568 pgprot_t newprot, unsigned long cp_flags)
6569 {
6570 struct mm_struct *mm = vma->vm_mm;
6571 unsigned long start = address;
6572 pte_t *ptep;
6573 pte_t pte;
6574 struct hstate *h = hstate_vma(vma);
6575 long pages = 0, psize = huge_page_size(h);
6576 bool shared_pmd = false;
6577 struct mmu_notifier_range range;
6578 unsigned long last_addr_mask;
6579 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6580 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6581
6582 /*
6583 * In the case of shared PMDs, the area to flush could be beyond
6584 * start/end. Set range.start/range.end to cover the maximum possible
6585 * range if PMD sharing is possible.
6586 */
6587 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6588 0, mm, start, end);
6589 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6590
6591 BUG_ON(address >= end);
6592 flush_cache_range(vma, range.start, range.end);
6593
6594 mmu_notifier_invalidate_range_start(&range);
6595 hugetlb_vma_lock_write(vma);
6596 i_mmap_lock_write(vma->vm_file->f_mapping);
6597 last_addr_mask = hugetlb_mask_last_page(h);
6598 for (; address < end; address += psize) {
6599 spinlock_t *ptl;
6600 ptep = hugetlb_walk(vma, address, psize);
6601 if (!ptep) {
6602 if (!uffd_wp) {
6603 address |= last_addr_mask;
6604 continue;
6605 }
6606 /*
6607 * Userfaultfd wr-protect requires pgtable
6608 * pre-allocations to install pte markers.
6609 */
6610 ptep = huge_pte_alloc(mm, vma, address, psize);
6611 if (!ptep) {
6612 pages = -ENOMEM;
6613 break;
6614 }
6615 }
6616 ptl = huge_pte_lock(h, mm, ptep);
6617 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6618 /*
6619 * When uffd-wp is enabled on the vma, unshare
6620 * shouldn't happen at all. Warn about it if it
6621 * happened due to some reason.
6622 */
6623 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6624 pages++;
6625 spin_unlock(ptl);
6626 shared_pmd = true;
6627 address |= last_addr_mask;
6628 continue;
6629 }
6630 pte = huge_ptep_get(ptep);
6631 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6632 /* Nothing to do. */
6633 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6634 swp_entry_t entry = pte_to_swp_entry(pte);
6635 struct page *page = pfn_swap_entry_to_page(entry);
6636 pte_t newpte = pte;
6637
6638 if (is_writable_migration_entry(entry)) {
6639 if (PageAnon(page))
6640 entry = make_readable_exclusive_migration_entry(
6641 swp_offset(entry));
6642 else
6643 entry = make_readable_migration_entry(
6644 swp_offset(entry));
6645 newpte = swp_entry_to_pte(entry);
6646 pages++;
6647 }
6648
6649 if (uffd_wp)
6650 newpte = pte_swp_mkuffd_wp(newpte);
6651 else if (uffd_wp_resolve)
6652 newpte = pte_swp_clear_uffd_wp(newpte);
6653 if (!pte_same(pte, newpte))
6654 set_huge_pte_at(mm, address, ptep, newpte, psize);
6655 } else if (unlikely(is_pte_marker(pte))) {
6656 /* No other markers apply for now. */
6657 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6658 if (uffd_wp_resolve)
6659 /* Safe to modify directly (non-present->none). */
6660 huge_pte_clear(mm, address, ptep, psize);
6661 } else if (!huge_pte_none(pte)) {
6662 pte_t old_pte;
6663 unsigned int shift = huge_page_shift(hstate_vma(vma));
6664
6665 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6666 pte = huge_pte_modify(old_pte, newprot);
6667 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6668 if (uffd_wp)
6669 pte = huge_pte_mkuffd_wp(pte);
6670 else if (uffd_wp_resolve)
6671 pte = huge_pte_clear_uffd_wp(pte);
6672 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6673 pages++;
6674 } else {
6675 /* None pte */
6676 if (unlikely(uffd_wp))
6677 /* Safe to modify directly (none->non-present). */
6678 set_huge_pte_at(mm, address, ptep,
6679 make_pte_marker(PTE_MARKER_UFFD_WP),
6680 psize);
6681 }
6682 spin_unlock(ptl);
6683 }
6684 /*
6685 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6686 * may have cleared our pud entry and done put_page on the page table:
6687 * once we release i_mmap_rwsem, another task can do the final put_page
6688 * and that page table be reused and filled with junk. If we actually
6689 * did unshare a page of pmds, flush the range corresponding to the pud.
6690 */
6691 if (shared_pmd)
6692 flush_hugetlb_tlb_range(vma, range.start, range.end);
6693 else
6694 flush_hugetlb_tlb_range(vma, start, end);
6695 /*
6696 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6697 * downgrading page table protection not changing it to point to a new
6698 * page.
6699 *
6700 * See Documentation/mm/mmu_notifier.rst
6701 */
6702 i_mmap_unlock_write(vma->vm_file->f_mapping);
6703 hugetlb_vma_unlock_write(vma);
6704 mmu_notifier_invalidate_range_end(&range);
6705
6706 return pages > 0 ? (pages << h->order) : pages;
6707 }
6708
6709 /* Return true if reservation was successful, false otherwise. */
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)6710 bool hugetlb_reserve_pages(struct inode *inode,
6711 long from, long to,
6712 struct vm_area_struct *vma,
6713 vm_flags_t vm_flags)
6714 {
6715 long chg = -1, add = -1;
6716 struct hstate *h = hstate_inode(inode);
6717 struct hugepage_subpool *spool = subpool_inode(inode);
6718 struct resv_map *resv_map;
6719 struct hugetlb_cgroup *h_cg = NULL;
6720 long gbl_reserve, regions_needed = 0;
6721
6722 /* This should never happen */
6723 if (from > to) {
6724 VM_WARN(1, "%s called with a negative range\n", __func__);
6725 return false;
6726 }
6727
6728 /*
6729 * vma specific semaphore used for pmd sharing and fault/truncation
6730 * synchronization
6731 */
6732 hugetlb_vma_lock_alloc(vma);
6733
6734 /*
6735 * Only apply hugepage reservation if asked. At fault time, an
6736 * attempt will be made for VM_NORESERVE to allocate a page
6737 * without using reserves
6738 */
6739 if (vm_flags & VM_NORESERVE)
6740 return true;
6741
6742 /*
6743 * Shared mappings base their reservation on the number of pages that
6744 * are already allocated on behalf of the file. Private mappings need
6745 * to reserve the full area even if read-only as mprotect() may be
6746 * called to make the mapping read-write. Assume !vma is a shm mapping
6747 */
6748 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6749 /*
6750 * resv_map can not be NULL as hugetlb_reserve_pages is only
6751 * called for inodes for which resv_maps were created (see
6752 * hugetlbfs_get_inode).
6753 */
6754 resv_map = inode_resv_map(inode);
6755
6756 chg = region_chg(resv_map, from, to, ®ions_needed);
6757 } else {
6758 /* Private mapping. */
6759 resv_map = resv_map_alloc();
6760 if (!resv_map)
6761 goto out_err;
6762
6763 chg = to - from;
6764
6765 set_vma_resv_map(vma, resv_map);
6766 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6767 }
6768
6769 if (chg < 0)
6770 goto out_err;
6771
6772 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6773 chg * pages_per_huge_page(h), &h_cg) < 0)
6774 goto out_err;
6775
6776 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6777 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6778 * of the resv_map.
6779 */
6780 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6781 }
6782
6783 /*
6784 * There must be enough pages in the subpool for the mapping. If
6785 * the subpool has a minimum size, there may be some global
6786 * reservations already in place (gbl_reserve).
6787 */
6788 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6789 if (gbl_reserve < 0)
6790 goto out_uncharge_cgroup;
6791
6792 /*
6793 * Check enough hugepages are available for the reservation.
6794 * Hand the pages back to the subpool if there are not
6795 */
6796 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6797 goto out_put_pages;
6798
6799 /*
6800 * Account for the reservations made. Shared mappings record regions
6801 * that have reservations as they are shared by multiple VMAs.
6802 * When the last VMA disappears, the region map says how much
6803 * the reservation was and the page cache tells how much of
6804 * the reservation was consumed. Private mappings are per-VMA and
6805 * only the consumed reservations are tracked. When the VMA
6806 * disappears, the original reservation is the VMA size and the
6807 * consumed reservations are stored in the map. Hence, nothing
6808 * else has to be done for private mappings here
6809 */
6810 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6811 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6812
6813 if (unlikely(add < 0)) {
6814 hugetlb_acct_memory(h, -gbl_reserve);
6815 goto out_put_pages;
6816 } else if (unlikely(chg > add)) {
6817 /*
6818 * pages in this range were added to the reserve
6819 * map between region_chg and region_add. This
6820 * indicates a race with alloc_hugetlb_folio. Adjust
6821 * the subpool and reserve counts modified above
6822 * based on the difference.
6823 */
6824 long rsv_adjust;
6825
6826 /*
6827 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6828 * reference to h_cg->css. See comment below for detail.
6829 */
6830 hugetlb_cgroup_uncharge_cgroup_rsvd(
6831 hstate_index(h),
6832 (chg - add) * pages_per_huge_page(h), h_cg);
6833
6834 rsv_adjust = hugepage_subpool_put_pages(spool,
6835 chg - add);
6836 hugetlb_acct_memory(h, -rsv_adjust);
6837 } else if (h_cg) {
6838 /*
6839 * The file_regions will hold their own reference to
6840 * h_cg->css. So we should release the reference held
6841 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6842 * done.
6843 */
6844 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6845 }
6846 }
6847 return true;
6848
6849 out_put_pages:
6850 /* put back original number of pages, chg */
6851 (void)hugepage_subpool_put_pages(spool, chg);
6852 out_uncharge_cgroup:
6853 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6854 chg * pages_per_huge_page(h), h_cg);
6855 out_err:
6856 hugetlb_vma_lock_free(vma);
6857 if (!vma || vma->vm_flags & VM_MAYSHARE)
6858 /* Only call region_abort if the region_chg succeeded but the
6859 * region_add failed or didn't run.
6860 */
6861 if (chg >= 0 && add < 0)
6862 region_abort(resv_map, from, to, regions_needed);
6863 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6864 kref_put(&resv_map->refs, resv_map_release);
6865 set_vma_resv_map(vma, NULL);
6866 }
6867 return false;
6868 }
6869
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)6870 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6871 long freed)
6872 {
6873 struct hstate *h = hstate_inode(inode);
6874 struct resv_map *resv_map = inode_resv_map(inode);
6875 long chg = 0;
6876 struct hugepage_subpool *spool = subpool_inode(inode);
6877 long gbl_reserve;
6878
6879 /*
6880 * Since this routine can be called in the evict inode path for all
6881 * hugetlbfs inodes, resv_map could be NULL.
6882 */
6883 if (resv_map) {
6884 chg = region_del(resv_map, start, end);
6885 /*
6886 * region_del() can fail in the rare case where a region
6887 * must be split and another region descriptor can not be
6888 * allocated. If end == LONG_MAX, it will not fail.
6889 */
6890 if (chg < 0)
6891 return chg;
6892 }
6893
6894 spin_lock(&inode->i_lock);
6895 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6896 spin_unlock(&inode->i_lock);
6897
6898 /*
6899 * If the subpool has a minimum size, the number of global
6900 * reservations to be released may be adjusted.
6901 *
6902 * Note that !resv_map implies freed == 0. So (chg - freed)
6903 * won't go negative.
6904 */
6905 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6906 hugetlb_acct_memory(h, -gbl_reserve);
6907
6908 return 0;
6909 }
6910
6911 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)6912 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6913 struct vm_area_struct *vma,
6914 unsigned long addr, pgoff_t idx)
6915 {
6916 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6917 svma->vm_start;
6918 unsigned long sbase = saddr & PUD_MASK;
6919 unsigned long s_end = sbase + PUD_SIZE;
6920
6921 /* Allow segments to share if only one is marked locked */
6922 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6923 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6924
6925 /*
6926 * match the virtual addresses, permission and the alignment of the
6927 * page table page.
6928 *
6929 * Also, vma_lock (vm_private_data) is required for sharing.
6930 */
6931 if (pmd_index(addr) != pmd_index(saddr) ||
6932 vm_flags != svm_flags ||
6933 !range_in_vma(svma, sbase, s_end) ||
6934 !svma->vm_private_data)
6935 return 0;
6936
6937 return saddr;
6938 }
6939
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)6940 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6941 {
6942 unsigned long start = addr & PUD_MASK;
6943 unsigned long end = start + PUD_SIZE;
6944
6945 #ifdef CONFIG_USERFAULTFD
6946 if (uffd_disable_huge_pmd_share(vma))
6947 return false;
6948 #endif
6949 /*
6950 * check on proper vm_flags and page table alignment
6951 */
6952 if (!(vma->vm_flags & VM_MAYSHARE))
6953 return false;
6954 if (!vma->vm_private_data) /* vma lock required for sharing */
6955 return false;
6956 if (!range_in_vma(vma, start, end))
6957 return false;
6958 return true;
6959 }
6960
6961 /*
6962 * Determine if start,end range within vma could be mapped by shared pmd.
6963 * If yes, adjust start and end to cover range associated with possible
6964 * shared pmd mappings.
6965 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)6966 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6967 unsigned long *start, unsigned long *end)
6968 {
6969 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6970 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6971
6972 /*
6973 * vma needs to span at least one aligned PUD size, and the range
6974 * must be at least partially within in.
6975 */
6976 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6977 (*end <= v_start) || (*start >= v_end))
6978 return;
6979
6980 /* Extend the range to be PUD aligned for a worst case scenario */
6981 if (*start > v_start)
6982 *start = ALIGN_DOWN(*start, PUD_SIZE);
6983
6984 if (*end < v_end)
6985 *end = ALIGN(*end, PUD_SIZE);
6986 }
6987
6988 /*
6989 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6990 * and returns the corresponding pte. While this is not necessary for the
6991 * !shared pmd case because we can allocate the pmd later as well, it makes the
6992 * code much cleaner. pmd allocation is essential for the shared case because
6993 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6994 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6995 * bad pmd for sharing.
6996 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)6997 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6998 unsigned long addr, pud_t *pud)
6999 {
7000 struct address_space *mapping = vma->vm_file->f_mapping;
7001 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7002 vma->vm_pgoff;
7003 struct vm_area_struct *svma;
7004 unsigned long saddr;
7005 pte_t *spte = NULL;
7006 pte_t *pte;
7007
7008 i_mmap_lock_read(mapping);
7009 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7010 if (svma == vma)
7011 continue;
7012
7013 saddr = page_table_shareable(svma, vma, addr, idx);
7014 if (saddr) {
7015 spte = hugetlb_walk(svma, saddr,
7016 vma_mmu_pagesize(svma));
7017 if (spte) {
7018 get_page(virt_to_page(spte));
7019 break;
7020 }
7021 }
7022 }
7023
7024 if (!spte)
7025 goto out;
7026
7027 spin_lock(&mm->page_table_lock);
7028 if (pud_none(*pud)) {
7029 pud_populate(mm, pud,
7030 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7031 mm_inc_nr_pmds(mm);
7032 } else {
7033 put_page(virt_to_page(spte));
7034 }
7035 spin_unlock(&mm->page_table_lock);
7036 out:
7037 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7038 i_mmap_unlock_read(mapping);
7039 return pte;
7040 }
7041
7042 /*
7043 * unmap huge page backed by shared pte.
7044 *
7045 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7046 * indicated by page_count > 1, unmap is achieved by clearing pud and
7047 * decrementing the ref count. If count == 1, the pte page is not shared.
7048 *
7049 * Called with page table lock held.
7050 *
7051 * returns: 1 successfully unmapped a shared pte page
7052 * 0 the underlying pte page is not shared, or it is the last user
7053 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7054 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7055 unsigned long addr, pte_t *ptep)
7056 {
7057 pgd_t *pgd = pgd_offset(mm, addr);
7058 p4d_t *p4d = p4d_offset(pgd, addr);
7059 pud_t *pud = pud_offset(p4d, addr);
7060
7061 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7062 hugetlb_vma_assert_locked(vma);
7063 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7064 if (page_count(virt_to_page(ptep)) == 1)
7065 return 0;
7066
7067 pud_clear(pud);
7068 put_page(virt_to_page(ptep));
7069 mm_dec_nr_pmds(mm);
7070 return 1;
7071 }
7072
7073 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7074
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)7075 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7076 unsigned long addr, pud_t *pud)
7077 {
7078 return NULL;
7079 }
7080
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)7081 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7082 unsigned long addr, pte_t *ptep)
7083 {
7084 return 0;
7085 }
7086
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)7087 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7088 unsigned long *start, unsigned long *end)
7089 {
7090 }
7091
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)7092 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7093 {
7094 return false;
7095 }
7096 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7097
7098 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)7099 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7100 unsigned long addr, unsigned long sz)
7101 {
7102 pgd_t *pgd;
7103 p4d_t *p4d;
7104 pud_t *pud;
7105 pte_t *pte = NULL;
7106
7107 pgd = pgd_offset(mm, addr);
7108 p4d = p4d_alloc(mm, pgd, addr);
7109 if (!p4d)
7110 return NULL;
7111 pud = pud_alloc(mm, p4d, addr);
7112 if (pud) {
7113 if (sz == PUD_SIZE) {
7114 pte = (pte_t *)pud;
7115 } else {
7116 BUG_ON(sz != PMD_SIZE);
7117 if (want_pmd_share(vma, addr) && pud_none(*pud))
7118 pte = huge_pmd_share(mm, vma, addr, pud);
7119 else
7120 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7121 }
7122 }
7123
7124 if (pte) {
7125 pte_t pteval = ptep_get_lockless(pte);
7126
7127 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7128 }
7129
7130 return pte;
7131 }
7132
7133 /*
7134 * huge_pte_offset() - Walk the page table to resolve the hugepage
7135 * entry at address @addr
7136 *
7137 * Return: Pointer to page table entry (PUD or PMD) for
7138 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7139 * size @sz doesn't match the hugepage size at this level of the page
7140 * table.
7141 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)7142 pte_t *huge_pte_offset(struct mm_struct *mm,
7143 unsigned long addr, unsigned long sz)
7144 {
7145 pgd_t *pgd;
7146 p4d_t *p4d;
7147 pud_t *pud;
7148 pmd_t *pmd;
7149
7150 pgd = pgd_offset(mm, addr);
7151 if (!pgd_present(*pgd))
7152 return NULL;
7153 p4d = p4d_offset(pgd, addr);
7154 if (!p4d_present(*p4d))
7155 return NULL;
7156
7157 pud = pud_offset(p4d, addr);
7158 if (sz == PUD_SIZE)
7159 /* must be pud huge, non-present or none */
7160 return (pte_t *)pud;
7161 if (!pud_present(*pud))
7162 return NULL;
7163 /* must have a valid entry and size to go further */
7164
7165 pmd = pmd_offset(pud, addr);
7166 /* must be pmd huge, non-present or none */
7167 return (pte_t *)pmd;
7168 }
7169
7170 /*
7171 * Return a mask that can be used to update an address to the last huge
7172 * page in a page table page mapping size. Used to skip non-present
7173 * page table entries when linearly scanning address ranges. Architectures
7174 * with unique huge page to page table relationships can define their own
7175 * version of this routine.
7176 */
hugetlb_mask_last_page(struct hstate * h)7177 unsigned long hugetlb_mask_last_page(struct hstate *h)
7178 {
7179 unsigned long hp_size = huge_page_size(h);
7180
7181 if (hp_size == PUD_SIZE)
7182 return P4D_SIZE - PUD_SIZE;
7183 else if (hp_size == PMD_SIZE)
7184 return PUD_SIZE - PMD_SIZE;
7185 else
7186 return 0UL;
7187 }
7188
7189 #else
7190
7191 /* See description above. Architectures can provide their own version. */
hugetlb_mask_last_page(struct hstate * h)7192 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7193 {
7194 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7195 if (huge_page_size(h) == PMD_SIZE)
7196 return PUD_SIZE - PMD_SIZE;
7197 #endif
7198 return 0UL;
7199 }
7200
7201 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7202
7203 /*
7204 * These functions are overwritable if your architecture needs its own
7205 * behavior.
7206 */
isolate_hugetlb(struct folio * folio,struct list_head * list)7207 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7208 {
7209 bool ret = true;
7210
7211 spin_lock_irq(&hugetlb_lock);
7212 if (!folio_test_hugetlb(folio) ||
7213 !folio_test_hugetlb_migratable(folio) ||
7214 !folio_try_get(folio)) {
7215 ret = false;
7216 goto unlock;
7217 }
7218 folio_clear_hugetlb_migratable(folio);
7219 list_move_tail(&folio->lru, list);
7220 unlock:
7221 spin_unlock_irq(&hugetlb_lock);
7222 return ret;
7223 }
7224
get_hwpoison_hugetlb_folio(struct folio * folio,bool * hugetlb,bool unpoison)7225 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7226 {
7227 int ret = 0;
7228
7229 *hugetlb = false;
7230 spin_lock_irq(&hugetlb_lock);
7231 if (folio_test_hugetlb(folio)) {
7232 *hugetlb = true;
7233 if (folio_test_hugetlb_freed(folio))
7234 ret = 0;
7235 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7236 ret = folio_try_get(folio);
7237 else
7238 ret = -EBUSY;
7239 }
7240 spin_unlock_irq(&hugetlb_lock);
7241 return ret;
7242 }
7243
get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)7244 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7245 bool *migratable_cleared)
7246 {
7247 int ret;
7248
7249 spin_lock_irq(&hugetlb_lock);
7250 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7251 spin_unlock_irq(&hugetlb_lock);
7252 return ret;
7253 }
7254
folio_putback_active_hugetlb(struct folio * folio)7255 void folio_putback_active_hugetlb(struct folio *folio)
7256 {
7257 spin_lock_irq(&hugetlb_lock);
7258 folio_set_hugetlb_migratable(folio);
7259 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7260 spin_unlock_irq(&hugetlb_lock);
7261 folio_put(folio);
7262 }
7263
move_hugetlb_state(struct folio * old_folio,struct folio * new_folio,int reason)7264 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7265 {
7266 struct hstate *h = folio_hstate(old_folio);
7267
7268 hugetlb_cgroup_migrate(old_folio, new_folio);
7269 set_page_owner_migrate_reason(&new_folio->page, reason);
7270
7271 /*
7272 * transfer temporary state of the new hugetlb folio. This is
7273 * reverse to other transitions because the newpage is going to
7274 * be final while the old one will be freed so it takes over
7275 * the temporary status.
7276 *
7277 * Also note that we have to transfer the per-node surplus state
7278 * here as well otherwise the global surplus count will not match
7279 * the per-node's.
7280 */
7281 if (folio_test_hugetlb_temporary(new_folio)) {
7282 int old_nid = folio_nid(old_folio);
7283 int new_nid = folio_nid(new_folio);
7284
7285 folio_set_hugetlb_temporary(old_folio);
7286 folio_clear_hugetlb_temporary(new_folio);
7287
7288
7289 /*
7290 * There is no need to transfer the per-node surplus state
7291 * when we do not cross the node.
7292 */
7293 if (new_nid == old_nid)
7294 return;
7295 spin_lock_irq(&hugetlb_lock);
7296 if (h->surplus_huge_pages_node[old_nid]) {
7297 h->surplus_huge_pages_node[old_nid]--;
7298 h->surplus_huge_pages_node[new_nid]++;
7299 }
7300 spin_unlock_irq(&hugetlb_lock);
7301 }
7302 }
7303
hugetlb_unshare_pmds(struct vm_area_struct * vma,unsigned long start,unsigned long end)7304 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7305 unsigned long start,
7306 unsigned long end)
7307 {
7308 struct hstate *h = hstate_vma(vma);
7309 unsigned long sz = huge_page_size(h);
7310 struct mm_struct *mm = vma->vm_mm;
7311 struct mmu_notifier_range range;
7312 unsigned long address;
7313 spinlock_t *ptl;
7314 pte_t *ptep;
7315
7316 if (!(vma->vm_flags & VM_MAYSHARE))
7317 return;
7318
7319 if (start >= end)
7320 return;
7321
7322 flush_cache_range(vma, start, end);
7323 /*
7324 * No need to call adjust_range_if_pmd_sharing_possible(), because
7325 * we have already done the PUD_SIZE alignment.
7326 */
7327 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7328 start, end);
7329 mmu_notifier_invalidate_range_start(&range);
7330 hugetlb_vma_lock_write(vma);
7331 i_mmap_lock_write(vma->vm_file->f_mapping);
7332 for (address = start; address < end; address += PUD_SIZE) {
7333 ptep = hugetlb_walk(vma, address, sz);
7334 if (!ptep)
7335 continue;
7336 ptl = huge_pte_lock(h, mm, ptep);
7337 huge_pmd_unshare(mm, vma, address, ptep);
7338 spin_unlock(ptl);
7339 }
7340 flush_hugetlb_tlb_range(vma, start, end);
7341 i_mmap_unlock_write(vma->vm_file->f_mapping);
7342 hugetlb_vma_unlock_write(vma);
7343 /*
7344 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7345 * Documentation/mm/mmu_notifier.rst.
7346 */
7347 mmu_notifier_invalidate_range_end(&range);
7348 }
7349
7350 /*
7351 * This function will unconditionally remove all the shared pmd pgtable entries
7352 * within the specific vma for a hugetlbfs memory range.
7353 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)7354 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7355 {
7356 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7357 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7358 }
7359
7360 #ifdef CONFIG_CMA
7361 static bool cma_reserve_called __initdata;
7362
cmdline_parse_hugetlb_cma(char * p)7363 static int __init cmdline_parse_hugetlb_cma(char *p)
7364 {
7365 int nid, count = 0;
7366 unsigned long tmp;
7367 char *s = p;
7368
7369 while (*s) {
7370 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7371 break;
7372
7373 if (s[count] == ':') {
7374 if (tmp >= MAX_NUMNODES)
7375 break;
7376 nid = array_index_nospec(tmp, MAX_NUMNODES);
7377
7378 s += count + 1;
7379 tmp = memparse(s, &s);
7380 hugetlb_cma_size_in_node[nid] = tmp;
7381 hugetlb_cma_size += tmp;
7382
7383 /*
7384 * Skip the separator if have one, otherwise
7385 * break the parsing.
7386 */
7387 if (*s == ',')
7388 s++;
7389 else
7390 break;
7391 } else {
7392 hugetlb_cma_size = memparse(p, &p);
7393 break;
7394 }
7395 }
7396
7397 return 0;
7398 }
7399
7400 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7401
hugetlb_cma_reserve(int order)7402 void __init hugetlb_cma_reserve(int order)
7403 {
7404 unsigned long size, reserved, per_node;
7405 bool node_specific_cma_alloc = false;
7406 int nid;
7407
7408 cma_reserve_called = true;
7409
7410 if (!hugetlb_cma_size)
7411 return;
7412
7413 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7414 if (hugetlb_cma_size_in_node[nid] == 0)
7415 continue;
7416
7417 if (!node_online(nid)) {
7418 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7419 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7420 hugetlb_cma_size_in_node[nid] = 0;
7421 continue;
7422 }
7423
7424 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7425 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7426 nid, (PAGE_SIZE << order) / SZ_1M);
7427 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7428 hugetlb_cma_size_in_node[nid] = 0;
7429 } else {
7430 node_specific_cma_alloc = true;
7431 }
7432 }
7433
7434 /* Validate the CMA size again in case some invalid nodes specified. */
7435 if (!hugetlb_cma_size)
7436 return;
7437
7438 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7439 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7440 (PAGE_SIZE << order) / SZ_1M);
7441 hugetlb_cma_size = 0;
7442 return;
7443 }
7444
7445 if (!node_specific_cma_alloc) {
7446 /*
7447 * If 3 GB area is requested on a machine with 4 numa nodes,
7448 * let's allocate 1 GB on first three nodes and ignore the last one.
7449 */
7450 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7451 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7452 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7453 }
7454
7455 reserved = 0;
7456 for_each_online_node(nid) {
7457 int res;
7458 char name[CMA_MAX_NAME];
7459
7460 if (node_specific_cma_alloc) {
7461 if (hugetlb_cma_size_in_node[nid] == 0)
7462 continue;
7463
7464 size = hugetlb_cma_size_in_node[nid];
7465 } else {
7466 size = min(per_node, hugetlb_cma_size - reserved);
7467 }
7468
7469 size = round_up(size, PAGE_SIZE << order);
7470
7471 snprintf(name, sizeof(name), "hugetlb%d", nid);
7472 /*
7473 * Note that 'order per bit' is based on smallest size that
7474 * may be returned to CMA allocator in the case of
7475 * huge page demotion.
7476 */
7477 res = cma_declare_contiguous_nid(0, size, 0,
7478 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7479 0, false, name,
7480 &hugetlb_cma[nid], nid);
7481 if (res) {
7482 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7483 res, nid);
7484 continue;
7485 }
7486
7487 reserved += size;
7488 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7489 size / SZ_1M, nid);
7490
7491 if (reserved >= hugetlb_cma_size)
7492 break;
7493 }
7494
7495 if (!reserved)
7496 /*
7497 * hugetlb_cma_size is used to determine if allocations from
7498 * cma are possible. Set to zero if no cma regions are set up.
7499 */
7500 hugetlb_cma_size = 0;
7501 }
7502
hugetlb_cma_check(void)7503 static void __init hugetlb_cma_check(void)
7504 {
7505 if (!hugetlb_cma_size || cma_reserve_called)
7506 return;
7507
7508 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7509 }
7510
7511 #endif /* CONFIG_CMA */
7512