1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/mmap.c
4 *
5 * Written by obz.
6 *
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51
52 #include <linux/uaccess.h>
53 #include <asm/cacheflush.h>
54 #include <asm/tlb.h>
55 #include <asm/mmu_context.h>
56
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/mmap.h>
59
60 #include "internal.h"
61
62 #ifndef arch_mmap_check
63 #define arch_mmap_check(addr, len, flags) (0)
64 #endif
65
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
67 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
68 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
69 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
70 #endif
71 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
72 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
73 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
74 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
75 #endif
76
77 static bool ignore_rlimit_data;
78 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
79
80 static void unmap_region(struct mm_struct *mm,
81 struct vm_area_struct *vma, struct vm_area_struct *prev,
82 unsigned long start, unsigned long end);
83
84 /* description of effects of mapping type and prot in current implementation.
85 * this is due to the limited x86 page protection hardware. The expected
86 * behavior is in parens:
87 *
88 * map_type prot
89 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
90 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (yes) yes w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 *
94 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
95 * w: (no) no w: (no) no w: (copy) copy w: (no) no
96 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
97 *
98 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
99 * MAP_PRIVATE (with Enhanced PAN supported):
100 * r: (no) no
101 * w: (no) no
102 * x: (yes) yes
103 */
104 pgprot_t protection_map[16] __ro_after_init = {
105 [VM_NONE] = __P000,
106 [VM_READ] = __P001,
107 [VM_WRITE] = __P010,
108 [VM_WRITE | VM_READ] = __P011,
109 [VM_EXEC] = __P100,
110 [VM_EXEC | VM_READ] = __P101,
111 [VM_EXEC | VM_WRITE] = __P110,
112 [VM_EXEC | VM_WRITE | VM_READ] = __P111,
113 [VM_SHARED] = __S000,
114 [VM_SHARED | VM_READ] = __S001,
115 [VM_SHARED | VM_WRITE] = __S010,
116 [VM_SHARED | VM_WRITE | VM_READ] = __S011,
117 [VM_SHARED | VM_EXEC] = __S100,
118 [VM_SHARED | VM_EXEC | VM_READ] = __S101,
119 [VM_SHARED | VM_EXEC | VM_WRITE] = __S110,
120 [VM_SHARED | VM_EXEC | VM_WRITE | VM_READ] = __S111
121 };
122
123 #ifndef CONFIG_ARCH_HAS_VM_GET_PAGE_PROT
vm_get_page_prot(unsigned long vm_flags)124 pgprot_t vm_get_page_prot(unsigned long vm_flags)
125 {
126 return protection_map[vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)];
127 }
128 EXPORT_SYMBOL(vm_get_page_prot);
129 #endif /* CONFIG_ARCH_HAS_VM_GET_PAGE_PROT */
130
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)131 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
132 {
133 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
134 }
135
136 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)137 void vma_set_page_prot(struct vm_area_struct *vma)
138 {
139 unsigned long vm_flags = vma->vm_flags;
140 pgprot_t vm_page_prot;
141
142 vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
143 if (vma_wants_writenotify(vma, vm_page_prot)) {
144 vm_flags &= ~VM_SHARED;
145 vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
146 }
147 /* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
148 WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
149 }
150
151 /*
152 * Requires inode->i_mapping->i_mmap_rwsem
153 */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)154 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
155 struct file *file, struct address_space *mapping)
156 {
157 if (vma->vm_flags & VM_SHARED)
158 mapping_unmap_writable(mapping);
159
160 flush_dcache_mmap_lock(mapping);
161 vma_interval_tree_remove(vma, &mapping->i_mmap);
162 flush_dcache_mmap_unlock(mapping);
163 }
164
165 /*
166 * Unlink a file-based vm structure from its interval tree, to hide
167 * vma from rmap and vmtruncate before freeing its page tables.
168 */
unlink_file_vma(struct vm_area_struct * vma)169 void unlink_file_vma(struct vm_area_struct *vma)
170 {
171 struct file *file = vma->vm_file;
172
173 if (file) {
174 struct address_space *mapping = file->f_mapping;
175 i_mmap_lock_write(mapping);
176 __remove_shared_vm_struct(vma, file, mapping);
177 i_mmap_unlock_write(mapping);
178 }
179 }
180
181 /*
182 * Close a vm structure and free it, returning the next.
183 */
remove_vma(struct vm_area_struct * vma)184 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
185 {
186 struct vm_area_struct *next = vma->vm_next;
187
188 might_sleep();
189 if (vma->vm_ops && vma->vm_ops->close)
190 vma->vm_ops->close(vma);
191 if (vma->vm_file)
192 fput(vma->vm_file);
193 mpol_put(vma_policy(vma));
194 vm_area_free(vma);
195 return next;
196 }
197
198 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
199 struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)200 SYSCALL_DEFINE1(brk, unsigned long, brk)
201 {
202 unsigned long newbrk, oldbrk, origbrk;
203 struct mm_struct *mm = current->mm;
204 struct vm_area_struct *next;
205 unsigned long min_brk;
206 bool populate;
207 bool downgraded = false;
208 LIST_HEAD(uf);
209
210 if (mmap_write_lock_killable(mm))
211 return -EINTR;
212
213 origbrk = mm->brk;
214
215 #ifdef CONFIG_COMPAT_BRK
216 /*
217 * CONFIG_COMPAT_BRK can still be overridden by setting
218 * randomize_va_space to 2, which will still cause mm->start_brk
219 * to be arbitrarily shifted
220 */
221 if (current->brk_randomized)
222 min_brk = mm->start_brk;
223 else
224 min_brk = mm->end_data;
225 #else
226 min_brk = mm->start_brk;
227 #endif
228 if (brk < min_brk)
229 goto out;
230
231 /*
232 * Check against rlimit here. If this check is done later after the test
233 * of oldbrk with newbrk then it can escape the test and let the data
234 * segment grow beyond its set limit the in case where the limit is
235 * not page aligned -Ram Gupta
236 */
237 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
238 mm->end_data, mm->start_data))
239 goto out;
240
241 newbrk = PAGE_ALIGN(brk);
242 oldbrk = PAGE_ALIGN(mm->brk);
243 if (oldbrk == newbrk) {
244 mm->brk = brk;
245 goto success;
246 }
247
248 /*
249 * Always allow shrinking brk.
250 * __do_munmap() may downgrade mmap_lock to read.
251 */
252 if (brk <= mm->brk) {
253 int ret;
254
255 /*
256 * mm->brk must to be protected by write mmap_lock so update it
257 * before downgrading mmap_lock. When __do_munmap() fails,
258 * mm->brk will be restored from origbrk.
259 */
260 mm->brk = brk;
261 ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
262 if (ret < 0) {
263 mm->brk = origbrk;
264 goto out;
265 } else if (ret == 1) {
266 downgraded = true;
267 }
268 goto success;
269 }
270
271 /* Check against existing mmap mappings. */
272 next = find_vma(mm, oldbrk);
273 if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
274 goto out;
275
276 /* Ok, looks good - let it rip. */
277 if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
278 goto out;
279 mm->brk = brk;
280
281 success:
282 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
283 if (downgraded)
284 mmap_read_unlock(mm);
285 else
286 mmap_write_unlock(mm);
287 userfaultfd_unmap_complete(mm, &uf);
288 if (populate)
289 mm_populate(oldbrk, newbrk - oldbrk);
290 return brk;
291
292 out:
293 mmap_write_unlock(mm);
294 return origbrk;
295 }
296
vma_compute_gap(struct vm_area_struct * vma)297 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
298 {
299 unsigned long gap, prev_end;
300
301 /*
302 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
303 * allow two stack_guard_gaps between them here, and when choosing
304 * an unmapped area; whereas when expanding we only require one.
305 * That's a little inconsistent, but keeps the code here simpler.
306 */
307 gap = vm_start_gap(vma);
308 if (vma->vm_prev) {
309 prev_end = vm_end_gap(vma->vm_prev);
310 if (gap > prev_end)
311 gap -= prev_end;
312 else
313 gap = 0;
314 }
315 return gap;
316 }
317
318 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)319 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
320 {
321 unsigned long max = vma_compute_gap(vma), subtree_gap;
322 if (vma->vm_rb.rb_left) {
323 subtree_gap = rb_entry(vma->vm_rb.rb_left,
324 struct vm_area_struct, vm_rb)->rb_subtree_gap;
325 if (subtree_gap > max)
326 max = subtree_gap;
327 }
328 if (vma->vm_rb.rb_right) {
329 subtree_gap = rb_entry(vma->vm_rb.rb_right,
330 struct vm_area_struct, vm_rb)->rb_subtree_gap;
331 if (subtree_gap > max)
332 max = subtree_gap;
333 }
334 return max;
335 }
336
browse_rb(struct mm_struct * mm)337 static int browse_rb(struct mm_struct *mm)
338 {
339 struct rb_root *root = &mm->mm_rb;
340 int i = 0, j, bug = 0;
341 struct rb_node *nd, *pn = NULL;
342 unsigned long prev = 0, pend = 0;
343
344 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
345 struct vm_area_struct *vma;
346 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
347 if (vma->vm_start < prev) {
348 pr_emerg("vm_start %lx < prev %lx\n",
349 vma->vm_start, prev);
350 bug = 1;
351 }
352 if (vma->vm_start < pend) {
353 pr_emerg("vm_start %lx < pend %lx\n",
354 vma->vm_start, pend);
355 bug = 1;
356 }
357 if (vma->vm_start > vma->vm_end) {
358 pr_emerg("vm_start %lx > vm_end %lx\n",
359 vma->vm_start, vma->vm_end);
360 bug = 1;
361 }
362 spin_lock(&mm->page_table_lock);
363 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
364 pr_emerg("free gap %lx, correct %lx\n",
365 vma->rb_subtree_gap,
366 vma_compute_subtree_gap(vma));
367 bug = 1;
368 }
369 spin_unlock(&mm->page_table_lock);
370 i++;
371 pn = nd;
372 prev = vma->vm_start;
373 pend = vma->vm_end;
374 }
375 j = 0;
376 for (nd = pn; nd; nd = rb_prev(nd))
377 j++;
378 if (i != j) {
379 pr_emerg("backwards %d, forwards %d\n", j, i);
380 bug = 1;
381 }
382 return bug ? -1 : i;
383 }
384
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)385 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
386 {
387 struct rb_node *nd;
388
389 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
390 struct vm_area_struct *vma;
391 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
392 VM_BUG_ON_VMA(vma != ignore &&
393 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
394 vma);
395 }
396 }
397
validate_mm(struct mm_struct * mm)398 static void validate_mm(struct mm_struct *mm)
399 {
400 int bug = 0;
401 int i = 0;
402 unsigned long highest_address = 0;
403 struct vm_area_struct *vma = mm->mmap;
404
405 while (vma) {
406 struct anon_vma *anon_vma = vma->anon_vma;
407 struct anon_vma_chain *avc;
408
409 if (anon_vma) {
410 anon_vma_lock_read(anon_vma);
411 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
412 anon_vma_interval_tree_verify(avc);
413 anon_vma_unlock_read(anon_vma);
414 }
415
416 highest_address = vm_end_gap(vma);
417 vma = vma->vm_next;
418 i++;
419 }
420 if (i != mm->map_count) {
421 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
422 bug = 1;
423 }
424 if (highest_address != mm->highest_vm_end) {
425 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
426 mm->highest_vm_end, highest_address);
427 bug = 1;
428 }
429 i = browse_rb(mm);
430 if (i != mm->map_count) {
431 if (i != -1)
432 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
433 bug = 1;
434 }
435 VM_BUG_ON_MM(bug, mm);
436 }
437 #else
438 #define validate_mm_rb(root, ignore) do { } while (0)
439 #define validate_mm(mm) do { } while (0)
440 #endif
441
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)442 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
443 struct vm_area_struct, vm_rb,
444 unsigned long, rb_subtree_gap, vma_compute_gap)
445
446 /*
447 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
448 * vma->vm_prev->vm_end values changed, without modifying the vma's position
449 * in the rbtree.
450 */
451 static void vma_gap_update(struct vm_area_struct *vma)
452 {
453 /*
454 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
455 * a callback function that does exactly what we want.
456 */
457 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
458 }
459
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)460 static inline void vma_rb_insert(struct vm_area_struct *vma,
461 struct rb_root *root)
462 {
463 /* All rb_subtree_gap values must be consistent prior to insertion */
464 validate_mm_rb(root, NULL);
465
466 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
467 }
468
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)469 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
470 {
471 /*
472 * Note rb_erase_augmented is a fairly large inline function,
473 * so make sure we instantiate it only once with our desired
474 * augmented rbtree callbacks.
475 */
476 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
477 }
478
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)479 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
480 struct rb_root *root,
481 struct vm_area_struct *ignore)
482 {
483 /*
484 * All rb_subtree_gap values must be consistent prior to erase,
485 * with the possible exception of
486 *
487 * a. the "next" vma being erased if next->vm_start was reduced in
488 * __vma_adjust() -> __vma_unlink()
489 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
490 * vma_rb_erase()
491 */
492 validate_mm_rb(root, ignore);
493
494 __vma_rb_erase(vma, root);
495 }
496
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)497 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
498 struct rb_root *root)
499 {
500 vma_rb_erase_ignore(vma, root, vma);
501 }
502
503 /*
504 * vma has some anon_vma assigned, and is already inserted on that
505 * anon_vma's interval trees.
506 *
507 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
508 * vma must be removed from the anon_vma's interval trees using
509 * anon_vma_interval_tree_pre_update_vma().
510 *
511 * After the update, the vma will be reinserted using
512 * anon_vma_interval_tree_post_update_vma().
513 *
514 * The entire update must be protected by exclusive mmap_lock and by
515 * the root anon_vma's mutex.
516 */
517 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)518 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
519 {
520 struct anon_vma_chain *avc;
521
522 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
523 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
524 }
525
526 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)527 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
528 {
529 struct anon_vma_chain *avc;
530
531 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
532 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
533 }
534
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)535 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
536 unsigned long end, struct vm_area_struct **pprev,
537 struct rb_node ***rb_link, struct rb_node **rb_parent)
538 {
539 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
540
541 mmap_assert_locked(mm);
542 __rb_link = &mm->mm_rb.rb_node;
543 rb_prev = __rb_parent = NULL;
544
545 while (*__rb_link) {
546 struct vm_area_struct *vma_tmp;
547
548 __rb_parent = *__rb_link;
549 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
550
551 if (vma_tmp->vm_end > addr) {
552 /* Fail if an existing vma overlaps the area */
553 if (vma_tmp->vm_start < end)
554 return -ENOMEM;
555 __rb_link = &__rb_parent->rb_left;
556 } else {
557 rb_prev = __rb_parent;
558 __rb_link = &__rb_parent->rb_right;
559 }
560 }
561
562 *pprev = NULL;
563 if (rb_prev)
564 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
565 *rb_link = __rb_link;
566 *rb_parent = __rb_parent;
567 return 0;
568 }
569
570 /*
571 * vma_next() - Get the next VMA.
572 * @mm: The mm_struct.
573 * @vma: The current vma.
574 *
575 * If @vma is NULL, return the first vma in the mm.
576 *
577 * Returns: The next VMA after @vma.
578 */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)579 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
580 struct vm_area_struct *vma)
581 {
582 if (!vma)
583 return mm->mmap;
584
585 return vma->vm_next;
586 }
587
588 /*
589 * munmap_vma_range() - munmap VMAs that overlap a range.
590 * @mm: The mm struct
591 * @start: The start of the range.
592 * @len: The length of the range.
593 * @pprev: pointer to the pointer that will be set to previous vm_area_struct
594 * @rb_link: the rb_node
595 * @rb_parent: the parent rb_node
596 *
597 * Find all the vm_area_struct that overlap from @start to
598 * @end and munmap them. Set @pprev to the previous vm_area_struct.
599 *
600 * Returns: -ENOMEM on munmap failure or 0 on success.
601 */
602 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)603 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
604 struct vm_area_struct **pprev, struct rb_node ***link,
605 struct rb_node **parent, struct list_head *uf)
606 {
607
608 while (find_vma_links(mm, start, start + len, pprev, link, parent))
609 if (do_munmap(mm, start, len, uf))
610 return -ENOMEM;
611
612 return 0;
613 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)614 static unsigned long count_vma_pages_range(struct mm_struct *mm,
615 unsigned long addr, unsigned long end)
616 {
617 unsigned long nr_pages = 0;
618 struct vm_area_struct *vma;
619
620 /* Find first overlapping mapping */
621 vma = find_vma_intersection(mm, addr, end);
622 if (!vma)
623 return 0;
624
625 nr_pages = (min(end, vma->vm_end) -
626 max(addr, vma->vm_start)) >> PAGE_SHIFT;
627
628 /* Iterate over the rest of the overlaps */
629 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
630 unsigned long overlap_len;
631
632 if (vma->vm_start > end)
633 break;
634
635 overlap_len = min(end, vma->vm_end) - vma->vm_start;
636 nr_pages += overlap_len >> PAGE_SHIFT;
637 }
638
639 return nr_pages;
640 }
641
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)642 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
643 struct rb_node **rb_link, struct rb_node *rb_parent)
644 {
645 /* Update tracking information for the gap following the new vma. */
646 if (vma->vm_next)
647 vma_gap_update(vma->vm_next);
648 else
649 mm->highest_vm_end = vm_end_gap(vma);
650
651 /*
652 * vma->vm_prev wasn't known when we followed the rbtree to find the
653 * correct insertion point for that vma. As a result, we could not
654 * update the vma vm_rb parents rb_subtree_gap values on the way down.
655 * So, we first insert the vma with a zero rb_subtree_gap value
656 * (to be consistent with what we did on the way down), and then
657 * immediately update the gap to the correct value. Finally we
658 * rebalance the rbtree after all augmented values have been set.
659 */
660 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
661 vma->rb_subtree_gap = 0;
662 vma_gap_update(vma);
663 vma_rb_insert(vma, &mm->mm_rb);
664 }
665
__vma_link_file(struct vm_area_struct * vma)666 static void __vma_link_file(struct vm_area_struct *vma)
667 {
668 struct file *file;
669
670 file = vma->vm_file;
671 if (file) {
672 struct address_space *mapping = file->f_mapping;
673
674 if (vma->vm_flags & VM_SHARED)
675 mapping_allow_writable(mapping);
676
677 flush_dcache_mmap_lock(mapping);
678 vma_interval_tree_insert(vma, &mapping->i_mmap);
679 flush_dcache_mmap_unlock(mapping);
680 }
681 }
682
683 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
685 struct vm_area_struct *prev, struct rb_node **rb_link,
686 struct rb_node *rb_parent)
687 {
688 __vma_link_list(mm, vma, prev);
689 __vma_link_rb(mm, vma, rb_link, rb_parent);
690 }
691
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
693 struct vm_area_struct *prev, struct rb_node **rb_link,
694 struct rb_node *rb_parent)
695 {
696 struct address_space *mapping = NULL;
697
698 if (vma->vm_file) {
699 mapping = vma->vm_file->f_mapping;
700 i_mmap_lock_write(mapping);
701 }
702
703 __vma_link(mm, vma, prev, rb_link, rb_parent);
704 __vma_link_file(vma);
705
706 if (mapping)
707 i_mmap_unlock_write(mapping);
708
709 mm->map_count++;
710 validate_mm(mm);
711 }
712
713 /*
714 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
715 * mm's list and rbtree. It has already been inserted into the interval tree.
716 */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 struct vm_area_struct *prev;
720 struct rb_node **rb_link, *rb_parent;
721
722 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
723 &prev, &rb_link, &rb_parent))
724 BUG();
725 __vma_link(mm, vma, prev, rb_link, rb_parent);
726 mm->map_count++;
727 }
728
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)729 static __always_inline void __vma_unlink(struct mm_struct *mm,
730 struct vm_area_struct *vma,
731 struct vm_area_struct *ignore)
732 {
733 vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
734 __vma_unlink_list(mm, vma);
735 /* Kill the cache */
736 vmacache_invalidate(mm);
737 }
738
739 /*
740 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741 * is already present in an i_mmap tree without adjusting the tree.
742 * The following helper function should be used when such adjustments
743 * are necessary. The "insert" vma (if any) is to be inserted
744 * before we drop the necessary locks.
745 */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
747 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
748 struct vm_area_struct *expand)
749 {
750 struct mm_struct *mm = vma->vm_mm;
751 struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
752 struct address_space *mapping = NULL;
753 struct rb_root_cached *root = NULL;
754 struct anon_vma *anon_vma = NULL;
755 struct file *file = vma->vm_file;
756 bool start_changed = false, end_changed = false;
757 long adjust_next = 0;
758 int remove_next = 0;
759
760 if (next && !insert) {
761 struct vm_area_struct *exporter = NULL, *importer = NULL;
762
763 if (end >= next->vm_end) {
764 /*
765 * vma expands, overlapping all the next, and
766 * perhaps the one after too (mprotect case 6).
767 * The only other cases that gets here are
768 * case 1, case 7 and case 8.
769 */
770 if (next == expand) {
771 /*
772 * The only case where we don't expand "vma"
773 * and we expand "next" instead is case 8.
774 */
775 VM_WARN_ON(end != next->vm_end);
776 /*
777 * remove_next == 3 means we're
778 * removing "vma" and that to do so we
779 * swapped "vma" and "next".
780 */
781 remove_next = 3;
782 VM_WARN_ON(file != next->vm_file);
783 swap(vma, next);
784 } else {
785 VM_WARN_ON(expand != vma);
786 /*
787 * case 1, 6, 7, remove_next == 2 is case 6,
788 * remove_next == 1 is case 1 or 7.
789 */
790 remove_next = 1 + (end > next->vm_end);
791 VM_WARN_ON(remove_next == 2 &&
792 end != next->vm_next->vm_end);
793 /* trim end to next, for case 6 first pass */
794 end = next->vm_end;
795 }
796
797 exporter = next;
798 importer = vma;
799
800 /*
801 * If next doesn't have anon_vma, import from vma after
802 * next, if the vma overlaps with it.
803 */
804 if (remove_next == 2 && !next->anon_vma)
805 exporter = next->vm_next;
806
807 } else if (end > next->vm_start) {
808 /*
809 * vma expands, overlapping part of the next:
810 * mprotect case 5 shifting the boundary up.
811 */
812 adjust_next = (end - next->vm_start);
813 exporter = next;
814 importer = vma;
815 VM_WARN_ON(expand != importer);
816 } else if (end < vma->vm_end) {
817 /*
818 * vma shrinks, and !insert tells it's not
819 * split_vma inserting another: so it must be
820 * mprotect case 4 shifting the boundary down.
821 */
822 adjust_next = -(vma->vm_end - end);
823 exporter = vma;
824 importer = next;
825 VM_WARN_ON(expand != importer);
826 }
827
828 /*
829 * Easily overlooked: when mprotect shifts the boundary,
830 * make sure the expanding vma has anon_vma set if the
831 * shrinking vma had, to cover any anon pages imported.
832 */
833 if (exporter && exporter->anon_vma && !importer->anon_vma) {
834 int error;
835
836 importer->anon_vma = exporter->anon_vma;
837 error = anon_vma_clone(importer, exporter);
838 if (error)
839 return error;
840 }
841 }
842 again:
843 vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
844
845 if (file) {
846 mapping = file->f_mapping;
847 root = &mapping->i_mmap;
848 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
849
850 if (adjust_next)
851 uprobe_munmap(next, next->vm_start, next->vm_end);
852
853 i_mmap_lock_write(mapping);
854 if (insert) {
855 /*
856 * Put into interval tree now, so instantiated pages
857 * are visible to arm/parisc __flush_dcache_page
858 * throughout; but we cannot insert into address
859 * space until vma start or end is updated.
860 */
861 __vma_link_file(insert);
862 }
863 }
864
865 anon_vma = vma->anon_vma;
866 if (!anon_vma && adjust_next)
867 anon_vma = next->anon_vma;
868 if (anon_vma) {
869 VM_WARN_ON(adjust_next && next->anon_vma &&
870 anon_vma != next->anon_vma);
871 anon_vma_lock_write(anon_vma);
872 anon_vma_interval_tree_pre_update_vma(vma);
873 if (adjust_next)
874 anon_vma_interval_tree_pre_update_vma(next);
875 }
876
877 if (file) {
878 flush_dcache_mmap_lock(mapping);
879 vma_interval_tree_remove(vma, root);
880 if (adjust_next)
881 vma_interval_tree_remove(next, root);
882 }
883
884 if (start != vma->vm_start) {
885 vma->vm_start = start;
886 start_changed = true;
887 }
888 if (end != vma->vm_end) {
889 vma->vm_end = end;
890 end_changed = true;
891 }
892 vma->vm_pgoff = pgoff;
893 if (adjust_next) {
894 next->vm_start += adjust_next;
895 next->vm_pgoff += adjust_next >> PAGE_SHIFT;
896 }
897
898 if (file) {
899 if (adjust_next)
900 vma_interval_tree_insert(next, root);
901 vma_interval_tree_insert(vma, root);
902 flush_dcache_mmap_unlock(mapping);
903 }
904
905 if (remove_next) {
906 /*
907 * vma_merge has merged next into vma, and needs
908 * us to remove next before dropping the locks.
909 */
910 if (remove_next != 3)
911 __vma_unlink(mm, next, next);
912 else
913 /*
914 * vma is not before next if they've been
915 * swapped.
916 *
917 * pre-swap() next->vm_start was reduced so
918 * tell validate_mm_rb to ignore pre-swap()
919 * "next" (which is stored in post-swap()
920 * "vma").
921 */
922 __vma_unlink(mm, next, vma);
923 if (file)
924 __remove_shared_vm_struct(next, file, mapping);
925 } else if (insert) {
926 /*
927 * split_vma has split insert from vma, and needs
928 * us to insert it before dropping the locks
929 * (it may either follow vma or precede it).
930 */
931 __insert_vm_struct(mm, insert);
932 } else {
933 if (start_changed)
934 vma_gap_update(vma);
935 if (end_changed) {
936 if (!next)
937 mm->highest_vm_end = vm_end_gap(vma);
938 else if (!adjust_next)
939 vma_gap_update(next);
940 }
941 }
942
943 if (anon_vma) {
944 anon_vma_interval_tree_post_update_vma(vma);
945 if (adjust_next)
946 anon_vma_interval_tree_post_update_vma(next);
947 anon_vma_unlock_write(anon_vma);
948 }
949
950 if (file) {
951 i_mmap_unlock_write(mapping);
952 uprobe_mmap(vma);
953
954 if (adjust_next)
955 uprobe_mmap(next);
956 }
957
958 if (remove_next) {
959 if (file) {
960 uprobe_munmap(next, next->vm_start, next->vm_end);
961 fput(file);
962 }
963 if (next->anon_vma)
964 anon_vma_merge(vma, next);
965 mm->map_count--;
966 mpol_put(vma_policy(next));
967 vm_area_free(next);
968 /*
969 * In mprotect's case 6 (see comments on vma_merge),
970 * we must remove another next too. It would clutter
971 * up the code too much to do both in one go.
972 */
973 if (remove_next != 3) {
974 /*
975 * If "next" was removed and vma->vm_end was
976 * expanded (up) over it, in turn
977 * "next->vm_prev->vm_end" changed and the
978 * "vma->vm_next" gap must be updated.
979 */
980 next = vma->vm_next;
981 } else {
982 /*
983 * For the scope of the comment "next" and
984 * "vma" considered pre-swap(): if "vma" was
985 * removed, next->vm_start was expanded (down)
986 * over it and the "next" gap must be updated.
987 * Because of the swap() the post-swap() "vma"
988 * actually points to pre-swap() "next"
989 * (post-swap() "next" as opposed is now a
990 * dangling pointer).
991 */
992 next = vma;
993 }
994 if (remove_next == 2) {
995 remove_next = 1;
996 end = next->vm_end;
997 goto again;
998 }
999 else if (next)
1000 vma_gap_update(next);
1001 else {
1002 /*
1003 * If remove_next == 2 we obviously can't
1004 * reach this path.
1005 *
1006 * If remove_next == 3 we can't reach this
1007 * path because pre-swap() next is always not
1008 * NULL. pre-swap() "next" is not being
1009 * removed and its next->vm_end is not altered
1010 * (and furthermore "end" already matches
1011 * next->vm_end in remove_next == 3).
1012 *
1013 * We reach this only in the remove_next == 1
1014 * case if the "next" vma that was removed was
1015 * the highest vma of the mm. However in such
1016 * case next->vm_end == "end" and the extended
1017 * "vma" has vma->vm_end == next->vm_end so
1018 * mm->highest_vm_end doesn't need any update
1019 * in remove_next == 1 case.
1020 */
1021 VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1022 }
1023 }
1024 if (insert && file)
1025 uprobe_mmap(insert);
1026
1027 validate_mm(mm);
1028
1029 return 0;
1030 }
1031
1032 /*
1033 * If the vma has a ->close operation then the driver probably needs to release
1034 * per-vma resources, so we don't attempt to merge those.
1035 */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1036 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1037 struct file *file, unsigned long vm_flags,
1038 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1039 struct anon_vma_name *anon_name)
1040 {
1041 /*
1042 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1043 * match the flags but dirty bit -- the caller should mark
1044 * merged VMA as dirty. If dirty bit won't be excluded from
1045 * comparison, we increase pressure on the memory system forcing
1046 * the kernel to generate new VMAs when old one could be
1047 * extended instead.
1048 */
1049 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1050 return 0;
1051 if (vma->vm_file != file)
1052 return 0;
1053 if (vma->vm_ops && vma->vm_ops->close)
1054 return 0;
1055 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1056 return 0;
1057 if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1058 return 0;
1059 return 1;
1060 }
1061
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1063 struct anon_vma *anon_vma2,
1064 struct vm_area_struct *vma)
1065 {
1066 /*
1067 * The list_is_singular() test is to avoid merging VMA cloned from
1068 * parents. This can improve scalability caused by anon_vma lock.
1069 */
1070 if ((!anon_vma1 || !anon_vma2) && (!vma ||
1071 list_is_singular(&vma->anon_vma_chain)))
1072 return 1;
1073 return anon_vma1 == anon_vma2;
1074 }
1075
1076 /*
1077 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078 * in front of (at a lower virtual address and file offset than) the vma.
1079 *
1080 * We cannot merge two vmas if they have differently assigned (non-NULL)
1081 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1082 *
1083 * We don't check here for the merged mmap wrapping around the end of pagecache
1084 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1085 * wrap, nor mmaps which cover the final page at index -1UL.
1086 */
1087 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1089 struct anon_vma *anon_vma, struct file *file,
1090 pgoff_t vm_pgoff,
1091 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1092 struct anon_vma_name *anon_name)
1093 {
1094 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1095 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1096 if (vma->vm_pgoff == vm_pgoff)
1097 return 1;
1098 }
1099 return 0;
1100 }
1101
1102 /*
1103 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1104 * beyond (at a higher virtual address and file offset than) the vma.
1105 *
1106 * We cannot merge two vmas if they have differently assigned (non-NULL)
1107 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1108 */
1109 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1111 struct anon_vma *anon_vma, struct file *file,
1112 pgoff_t vm_pgoff,
1113 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1114 struct anon_vma_name *anon_name)
1115 {
1116 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1117 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1118 pgoff_t vm_pglen;
1119 vm_pglen = vma_pages(vma);
1120 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1121 return 1;
1122 }
1123 return 0;
1124 }
1125
1126 /*
1127 * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1128 * figure out whether that can be merged with its predecessor or its
1129 * successor. Or both (it neatly fills a hole).
1130 *
1131 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1132 * certain not to be mapped by the time vma_merge is called; but when
1133 * called for mprotect, it is certain to be already mapped (either at
1134 * an offset within prev, or at the start of next), and the flags of
1135 * this area are about to be changed to vm_flags - and the no-change
1136 * case has already been eliminated.
1137 *
1138 * The following mprotect cases have to be considered, where AAAA is
1139 * the area passed down from mprotect_fixup, never extending beyond one
1140 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1141 *
1142 * AAAA AAAA AAAA
1143 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN
1144 * cannot merge might become might become
1145 * PPNNNNNNNNNN PPPPPPPPPPNN
1146 * mmap, brk or case 4 below case 5 below
1147 * mremap move:
1148 * AAAA AAAA
1149 * PPPP NNNN PPPPNNNNXXXX
1150 * might become might become
1151 * PPPPPPPPPPPP 1 or PPPPPPPPPPPP 6 or
1152 * PPPPPPPPNNNN 2 or PPPPPPPPXXXX 7 or
1153 * PPPPNNNNNNNN 3 PPPPXXXXXXXX 8
1154 *
1155 * It is important for case 8 that the vma NNNN overlapping the
1156 * region AAAA is never going to extended over XXXX. Instead XXXX must
1157 * be extended in region AAAA and NNNN must be removed. This way in
1158 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1159 * rmap_locks, the properties of the merged vma will be already
1160 * correct for the whole merged range. Some of those properties like
1161 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1162 * be correct for the whole merged range immediately after the
1163 * rmap_locks are released. Otherwise if XXXX would be removed and
1164 * NNNN would be extended over the XXXX range, remove_migration_ptes
1165 * or other rmap walkers (if working on addresses beyond the "end"
1166 * parameter) may establish ptes with the wrong permissions of NNNN
1167 * instead of the right permissions of XXXX.
1168 */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1169 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1170 struct vm_area_struct *prev, unsigned long addr,
1171 unsigned long end, unsigned long vm_flags,
1172 struct anon_vma *anon_vma, struct file *file,
1173 pgoff_t pgoff, struct mempolicy *policy,
1174 struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1175 struct anon_vma_name *anon_name)
1176 {
1177 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1178 struct vm_area_struct *area, *next;
1179 int err;
1180
1181 /*
1182 * We later require that vma->vm_flags == vm_flags,
1183 * so this tests vma->vm_flags & VM_SPECIAL, too.
1184 */
1185 if (vm_flags & VM_SPECIAL)
1186 return NULL;
1187
1188 next = vma_next(mm, prev);
1189 area = next;
1190 if (area && area->vm_end == end) /* cases 6, 7, 8 */
1191 next = next->vm_next;
1192
1193 /* verify some invariant that must be enforced by the caller */
1194 VM_WARN_ON(prev && addr <= prev->vm_start);
1195 VM_WARN_ON(area && end > area->vm_end);
1196 VM_WARN_ON(addr >= end);
1197
1198 /*
1199 * Can it merge with the predecessor?
1200 */
1201 if (prev && prev->vm_end == addr &&
1202 mpol_equal(vma_policy(prev), policy) &&
1203 can_vma_merge_after(prev, vm_flags,
1204 anon_vma, file, pgoff,
1205 vm_userfaultfd_ctx, anon_name)) {
1206 /*
1207 * OK, it can. Can we now merge in the successor as well?
1208 */
1209 if (next && end == next->vm_start &&
1210 mpol_equal(policy, vma_policy(next)) &&
1211 can_vma_merge_before(next, vm_flags,
1212 anon_vma, file,
1213 pgoff+pglen,
1214 vm_userfaultfd_ctx, anon_name) &&
1215 is_mergeable_anon_vma(prev->anon_vma,
1216 next->anon_vma, NULL)) {
1217 /* cases 1, 6 */
1218 err = __vma_adjust(prev, prev->vm_start,
1219 next->vm_end, prev->vm_pgoff, NULL,
1220 prev);
1221 } else /* cases 2, 5, 7 */
1222 err = __vma_adjust(prev, prev->vm_start,
1223 end, prev->vm_pgoff, NULL, prev);
1224 if (err)
1225 return NULL;
1226 khugepaged_enter_vma(prev, vm_flags);
1227 return prev;
1228 }
1229
1230 /*
1231 * Can this new request be merged in front of next?
1232 */
1233 if (next && end == next->vm_start &&
1234 mpol_equal(policy, vma_policy(next)) &&
1235 can_vma_merge_before(next, vm_flags,
1236 anon_vma, file, pgoff+pglen,
1237 vm_userfaultfd_ctx, anon_name)) {
1238 if (prev && addr < prev->vm_end) /* case 4 */
1239 err = __vma_adjust(prev, prev->vm_start,
1240 addr, prev->vm_pgoff, NULL, next);
1241 else { /* cases 3, 8 */
1242 err = __vma_adjust(area, addr, next->vm_end,
1243 next->vm_pgoff - pglen, NULL, next);
1244 /*
1245 * In case 3 area is already equal to next and
1246 * this is a noop, but in case 8 "area" has
1247 * been removed and next was expanded over it.
1248 */
1249 area = next;
1250 }
1251 if (err)
1252 return NULL;
1253 khugepaged_enter_vma(area, vm_flags);
1254 return area;
1255 }
1256
1257 return NULL;
1258 }
1259
1260 /*
1261 * Rough compatibility check to quickly see if it's even worth looking
1262 * at sharing an anon_vma.
1263 *
1264 * They need to have the same vm_file, and the flags can only differ
1265 * in things that mprotect may change.
1266 *
1267 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1268 * we can merge the two vma's. For example, we refuse to merge a vma if
1269 * there is a vm_ops->close() function, because that indicates that the
1270 * driver is doing some kind of reference counting. But that doesn't
1271 * really matter for the anon_vma sharing case.
1272 */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1274 {
1275 return a->vm_end == b->vm_start &&
1276 mpol_equal(vma_policy(a), vma_policy(b)) &&
1277 a->vm_file == b->vm_file &&
1278 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1279 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1280 }
1281
1282 /*
1283 * Do some basic sanity checking to see if we can re-use the anon_vma
1284 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1285 * the same as 'old', the other will be the new one that is trying
1286 * to share the anon_vma.
1287 *
1288 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1289 * the anon_vma of 'old' is concurrently in the process of being set up
1290 * by another page fault trying to merge _that_. But that's ok: if it
1291 * is being set up, that automatically means that it will be a singleton
1292 * acceptable for merging, so we can do all of this optimistically. But
1293 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1294 *
1295 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1296 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1297 * is to return an anon_vma that is "complex" due to having gone through
1298 * a fork).
1299 *
1300 * We also make sure that the two vma's are compatible (adjacent,
1301 * and with the same memory policies). That's all stable, even with just
1302 * a read lock on the mmap_lock.
1303 */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1305 {
1306 if (anon_vma_compatible(a, b)) {
1307 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1308
1309 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1310 return anon_vma;
1311 }
1312 return NULL;
1313 }
1314
1315 /*
1316 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1317 * neighbouring vmas for a suitable anon_vma, before it goes off
1318 * to allocate a new anon_vma. It checks because a repetitive
1319 * sequence of mprotects and faults may otherwise lead to distinct
1320 * anon_vmas being allocated, preventing vma merge in subsequent
1321 * mprotect.
1322 */
find_mergeable_anon_vma(struct vm_area_struct * vma)1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1324 {
1325 struct anon_vma *anon_vma = NULL;
1326
1327 /* Try next first. */
1328 if (vma->vm_next) {
1329 anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1330 if (anon_vma)
1331 return anon_vma;
1332 }
1333
1334 /* Try prev next. */
1335 if (vma->vm_prev)
1336 anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1337
1338 /*
1339 * We might reach here with anon_vma == NULL if we can't find
1340 * any reusable anon_vma.
1341 * There's no absolute need to look only at touching neighbours:
1342 * we could search further afield for "compatible" anon_vmas.
1343 * But it would probably just be a waste of time searching,
1344 * or lead to too many vmas hanging off the same anon_vma.
1345 * We're trying to allow mprotect remerging later on,
1346 * not trying to minimize memory used for anon_vmas.
1347 */
1348 return anon_vma;
1349 }
1350
1351 /*
1352 * If a hint addr is less than mmap_min_addr change hint to be as
1353 * low as possible but still greater than mmap_min_addr
1354 */
round_hint_to_min(unsigned long hint)1355 static inline unsigned long round_hint_to_min(unsigned long hint)
1356 {
1357 hint &= PAGE_MASK;
1358 if (((void *)hint != NULL) &&
1359 (hint < mmap_min_addr))
1360 return PAGE_ALIGN(mmap_min_addr);
1361 return hint;
1362 }
1363
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1364 int mlock_future_check(struct mm_struct *mm, unsigned long flags,
1365 unsigned long len)
1366 {
1367 unsigned long locked, lock_limit;
1368
1369 /* mlock MCL_FUTURE? */
1370 if (flags & VM_LOCKED) {
1371 locked = len >> PAGE_SHIFT;
1372 locked += mm->locked_vm;
1373 lock_limit = rlimit(RLIMIT_MEMLOCK);
1374 lock_limit >>= PAGE_SHIFT;
1375 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1376 return -EAGAIN;
1377 }
1378 return 0;
1379 }
1380
file_mmap_size_max(struct file * file,struct inode * inode)1381 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1382 {
1383 if (S_ISREG(inode->i_mode))
1384 return MAX_LFS_FILESIZE;
1385
1386 if (S_ISBLK(inode->i_mode))
1387 return MAX_LFS_FILESIZE;
1388
1389 if (S_ISSOCK(inode->i_mode))
1390 return MAX_LFS_FILESIZE;
1391
1392 /* Special "we do even unsigned file positions" case */
1393 if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1394 return 0;
1395
1396 /* Yes, random drivers might want more. But I'm tired of buggy drivers */
1397 return ULONG_MAX;
1398 }
1399
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1400 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1401 unsigned long pgoff, unsigned long len)
1402 {
1403 u64 maxsize = file_mmap_size_max(file, inode);
1404
1405 if (maxsize && len > maxsize)
1406 return false;
1407 maxsize -= len;
1408 if (pgoff > maxsize >> PAGE_SHIFT)
1409 return false;
1410 return true;
1411 }
1412
1413 /*
1414 * The caller must write-lock current->mm->mmap_lock.
1415 */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1416 unsigned long do_mmap(struct file *file, unsigned long addr,
1417 unsigned long len, unsigned long prot,
1418 unsigned long flags, unsigned long pgoff,
1419 unsigned long *populate, struct list_head *uf)
1420 {
1421 struct mm_struct *mm = current->mm;
1422 vm_flags_t vm_flags;
1423 int pkey = 0;
1424
1425 *populate = 0;
1426
1427 if (!len)
1428 return -EINVAL;
1429
1430 /*
1431 * Does the application expect PROT_READ to imply PROT_EXEC?
1432 *
1433 * (the exception is when the underlying filesystem is noexec
1434 * mounted, in which case we dont add PROT_EXEC.)
1435 */
1436 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1437 if (!(file && path_noexec(&file->f_path)))
1438 prot |= PROT_EXEC;
1439
1440 /* force arch specific MAP_FIXED handling in get_unmapped_area */
1441 if (flags & MAP_FIXED_NOREPLACE)
1442 flags |= MAP_FIXED;
1443
1444 if (!(flags & MAP_FIXED))
1445 addr = round_hint_to_min(addr);
1446
1447 /* Careful about overflows.. */
1448 len = PAGE_ALIGN(len);
1449 if (!len)
1450 return -ENOMEM;
1451
1452 /* offset overflow? */
1453 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1454 return -EOVERFLOW;
1455
1456 /* Too many mappings? */
1457 if (mm->map_count > sysctl_max_map_count)
1458 return -ENOMEM;
1459
1460 /* Obtain the address to map to. we verify (or select) it and ensure
1461 * that it represents a valid section of the address space.
1462 */
1463 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1464 if (IS_ERR_VALUE(addr))
1465 return addr;
1466
1467 if (flags & MAP_FIXED_NOREPLACE) {
1468 if (find_vma_intersection(mm, addr, addr + len))
1469 return -EEXIST;
1470 }
1471
1472 if (prot == PROT_EXEC) {
1473 pkey = execute_only_pkey(mm);
1474 if (pkey < 0)
1475 pkey = 0;
1476 }
1477
1478 /* Do simple checking here so the lower-level routines won't have
1479 * to. we assume access permissions have been handled by the open
1480 * of the memory object, so we don't do any here.
1481 */
1482 vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1483 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1484
1485 if (flags & MAP_LOCKED)
1486 if (!can_do_mlock())
1487 return -EPERM;
1488
1489 if (mlock_future_check(mm, vm_flags, len))
1490 return -EAGAIN;
1491
1492 if (file) {
1493 struct inode *inode = file_inode(file);
1494 unsigned long flags_mask;
1495
1496 if (!file_mmap_ok(file, inode, pgoff, len))
1497 return -EOVERFLOW;
1498
1499 flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1500
1501 switch (flags & MAP_TYPE) {
1502 case MAP_SHARED:
1503 /*
1504 * Force use of MAP_SHARED_VALIDATE with non-legacy
1505 * flags. E.g. MAP_SYNC is dangerous to use with
1506 * MAP_SHARED as you don't know which consistency model
1507 * you will get. We silently ignore unsupported flags
1508 * with MAP_SHARED to preserve backward compatibility.
1509 */
1510 flags &= LEGACY_MAP_MASK;
1511 fallthrough;
1512 case MAP_SHARED_VALIDATE:
1513 if (flags & ~flags_mask)
1514 return -EOPNOTSUPP;
1515 if (prot & PROT_WRITE) {
1516 if (!(file->f_mode & FMODE_WRITE))
1517 return -EACCES;
1518 if (IS_SWAPFILE(file->f_mapping->host))
1519 return -ETXTBSY;
1520 }
1521
1522 /*
1523 * Make sure we don't allow writing to an append-only
1524 * file..
1525 */
1526 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1527 return -EACCES;
1528
1529 vm_flags |= VM_SHARED | VM_MAYSHARE;
1530 if (!(file->f_mode & FMODE_WRITE))
1531 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1532 fallthrough;
1533 case MAP_PRIVATE:
1534 if (!(file->f_mode & FMODE_READ))
1535 return -EACCES;
1536 if (path_noexec(&file->f_path)) {
1537 if (vm_flags & VM_EXEC)
1538 return -EPERM;
1539 vm_flags &= ~VM_MAYEXEC;
1540 }
1541
1542 if (!file->f_op->mmap)
1543 return -ENODEV;
1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545 return -EINVAL;
1546 break;
1547
1548 default:
1549 return -EINVAL;
1550 }
1551 } else {
1552 switch (flags & MAP_TYPE) {
1553 case MAP_SHARED:
1554 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1555 return -EINVAL;
1556 /*
1557 * Ignore pgoff.
1558 */
1559 pgoff = 0;
1560 vm_flags |= VM_SHARED | VM_MAYSHARE;
1561 break;
1562 case MAP_PRIVATE:
1563 /*
1564 * Set pgoff according to addr for anon_vma.
1565 */
1566 pgoff = addr >> PAGE_SHIFT;
1567 break;
1568 default:
1569 return -EINVAL;
1570 }
1571 }
1572
1573 /*
1574 * Set 'VM_NORESERVE' if we should not account for the
1575 * memory use of this mapping.
1576 */
1577 if (flags & MAP_NORESERVE) {
1578 /* We honor MAP_NORESERVE if allowed to overcommit */
1579 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1580 vm_flags |= VM_NORESERVE;
1581
1582 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1583 if (file && is_file_hugepages(file))
1584 vm_flags |= VM_NORESERVE;
1585 }
1586
1587 addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1588 if (!IS_ERR_VALUE(addr) &&
1589 ((vm_flags & VM_LOCKED) ||
1590 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1591 *populate = len;
1592 return addr;
1593 }
1594
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1595 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1596 unsigned long prot, unsigned long flags,
1597 unsigned long fd, unsigned long pgoff)
1598 {
1599 struct file *file = NULL;
1600 unsigned long retval;
1601
1602 if (!(flags & MAP_ANONYMOUS)) {
1603 audit_mmap_fd(fd, flags);
1604 file = fget(fd);
1605 if (!file)
1606 return -EBADF;
1607 if (is_file_hugepages(file)) {
1608 len = ALIGN(len, huge_page_size(hstate_file(file)));
1609 } else if (unlikely(flags & MAP_HUGETLB)) {
1610 retval = -EINVAL;
1611 goto out_fput;
1612 }
1613 } else if (flags & MAP_HUGETLB) {
1614 struct hstate *hs;
1615
1616 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1617 if (!hs)
1618 return -EINVAL;
1619
1620 len = ALIGN(len, huge_page_size(hs));
1621 /*
1622 * VM_NORESERVE is used because the reservations will be
1623 * taken when vm_ops->mmap() is called
1624 */
1625 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1626 VM_NORESERVE,
1627 HUGETLB_ANONHUGE_INODE,
1628 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1629 if (IS_ERR(file))
1630 return PTR_ERR(file);
1631 }
1632
1633 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1634 out_fput:
1635 if (file)
1636 fput(file);
1637 return retval;
1638 }
1639
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1640 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1641 unsigned long, prot, unsigned long, flags,
1642 unsigned long, fd, unsigned long, pgoff)
1643 {
1644 return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1645 }
1646
1647 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1648 struct mmap_arg_struct {
1649 unsigned long addr;
1650 unsigned long len;
1651 unsigned long prot;
1652 unsigned long flags;
1653 unsigned long fd;
1654 unsigned long offset;
1655 };
1656
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1657 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1658 {
1659 struct mmap_arg_struct a;
1660
1661 if (copy_from_user(&a, arg, sizeof(a)))
1662 return -EFAULT;
1663 if (offset_in_page(a.offset))
1664 return -EINVAL;
1665
1666 return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1667 a.offset >> PAGE_SHIFT);
1668 }
1669 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1670
1671 /*
1672 * Some shared mappings will want the pages marked read-only
1673 * to track write events. If so, we'll downgrade vm_page_prot
1674 * to the private version (using protection_map[] without the
1675 * VM_SHARED bit).
1676 */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1677 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1678 {
1679 vm_flags_t vm_flags = vma->vm_flags;
1680 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1681
1682 /* If it was private or non-writable, the write bit is already clear */
1683 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1684 return 0;
1685
1686 /* The backer wishes to know when pages are first written to? */
1687 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1688 return 1;
1689
1690 /* The open routine did something to the protections that pgprot_modify
1691 * won't preserve? */
1692 if (pgprot_val(vm_page_prot) !=
1693 pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1694 return 0;
1695
1696 /*
1697 * Do we need to track softdirty? hugetlb does not support softdirty
1698 * tracking yet.
1699 */
1700 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1701 !is_vm_hugetlb_page(vma))
1702 return 1;
1703
1704 /* Specialty mapping? */
1705 if (vm_flags & VM_PFNMAP)
1706 return 0;
1707
1708 /* Can the mapping track the dirty pages? */
1709 return vma->vm_file && vma->vm_file->f_mapping &&
1710 mapping_can_writeback(vma->vm_file->f_mapping);
1711 }
1712
1713 /*
1714 * We account for memory if it's a private writeable mapping,
1715 * not hugepages and VM_NORESERVE wasn't set.
1716 */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1717 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1718 {
1719 /*
1720 * hugetlb has its own accounting separate from the core VM
1721 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1722 */
1723 if (file && is_file_hugepages(file))
1724 return 0;
1725
1726 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1727 }
1728
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1729 unsigned long mmap_region(struct file *file, unsigned long addr,
1730 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1731 struct list_head *uf)
1732 {
1733 struct mm_struct *mm = current->mm;
1734 struct vm_area_struct *vma, *prev, *merge;
1735 int error;
1736 struct rb_node **rb_link, *rb_parent;
1737 unsigned long charged = 0;
1738
1739 /* Check against address space limit. */
1740 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1741 unsigned long nr_pages;
1742
1743 /*
1744 * MAP_FIXED may remove pages of mappings that intersects with
1745 * requested mapping. Account for the pages it would unmap.
1746 */
1747 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1748
1749 if (!may_expand_vm(mm, vm_flags,
1750 (len >> PAGE_SHIFT) - nr_pages))
1751 return -ENOMEM;
1752 }
1753
1754 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1755 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1756 return -ENOMEM;
1757 /*
1758 * Private writable mapping: check memory availability
1759 */
1760 if (accountable_mapping(file, vm_flags)) {
1761 charged = len >> PAGE_SHIFT;
1762 if (security_vm_enough_memory_mm(mm, charged))
1763 return -ENOMEM;
1764 vm_flags |= VM_ACCOUNT;
1765 }
1766
1767 /*
1768 * Can we just expand an old mapping?
1769 */
1770 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1771 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1772 if (vma)
1773 goto out;
1774
1775 /*
1776 * Determine the object being mapped and call the appropriate
1777 * specific mapper. the address has already been validated, but
1778 * not unmapped, but the maps are removed from the list.
1779 */
1780 vma = vm_area_alloc(mm);
1781 if (!vma) {
1782 error = -ENOMEM;
1783 goto unacct_error;
1784 }
1785
1786 vma->vm_start = addr;
1787 vma->vm_end = addr + len;
1788 vma->vm_flags = vm_flags;
1789 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1790 vma->vm_pgoff = pgoff;
1791
1792 if (file) {
1793 if (vm_flags & VM_SHARED) {
1794 error = mapping_map_writable(file->f_mapping);
1795 if (error)
1796 goto free_vma;
1797 }
1798
1799 vma->vm_file = get_file(file);
1800 error = call_mmap(file, vma);
1801 if (error)
1802 goto unmap_and_free_vma;
1803
1804 /* Can addr have changed??
1805 *
1806 * Answer: Yes, several device drivers can do it in their
1807 * f_op->mmap method. -DaveM
1808 * Bug: If addr is changed, prev, rb_link, rb_parent should
1809 * be updated for vma_link()
1810 */
1811 WARN_ON_ONCE(addr != vma->vm_start);
1812
1813 addr = vma->vm_start;
1814
1815 /* If vm_flags changed after call_mmap(), we should try merge vma again
1816 * as we may succeed this time.
1817 */
1818 if (unlikely(vm_flags != vma->vm_flags && prev)) {
1819 merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1820 NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1821 if (merge) {
1822 /* ->mmap() can change vma->vm_file and fput the original file. So
1823 * fput the vma->vm_file here or we would add an extra fput for file
1824 * and cause general protection fault ultimately.
1825 */
1826 fput(vma->vm_file);
1827 vm_area_free(vma);
1828 vma = merge;
1829 /* Update vm_flags to pick up the change. */
1830 vm_flags = vma->vm_flags;
1831 goto unmap_writable;
1832 }
1833 }
1834
1835 vm_flags = vma->vm_flags;
1836 } else if (vm_flags & VM_SHARED) {
1837 error = shmem_zero_setup(vma);
1838 if (error)
1839 goto free_vma;
1840 } else {
1841 vma_set_anonymous(vma);
1842 }
1843
1844 /* Allow architectures to sanity-check the vm_flags */
1845 if (!arch_validate_flags(vma->vm_flags)) {
1846 error = -EINVAL;
1847 if (file)
1848 goto unmap_and_free_vma;
1849 else
1850 goto free_vma;
1851 }
1852
1853 vma_link(mm, vma, prev, rb_link, rb_parent);
1854
1855 /*
1856 * vma_merge() calls khugepaged_enter_vma() either, the below
1857 * call covers the non-merge case.
1858 */
1859 khugepaged_enter_vma(vma, vma->vm_flags);
1860
1861 /* Once vma denies write, undo our temporary denial count */
1862 unmap_writable:
1863 if (file && vm_flags & VM_SHARED)
1864 mapping_unmap_writable(file->f_mapping);
1865 file = vma->vm_file;
1866 out:
1867 perf_event_mmap(vma);
1868
1869 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1870 if (vm_flags & VM_LOCKED) {
1871 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1872 is_vm_hugetlb_page(vma) ||
1873 vma == get_gate_vma(current->mm))
1874 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1875 else
1876 mm->locked_vm += (len >> PAGE_SHIFT);
1877 }
1878
1879 if (file)
1880 uprobe_mmap(vma);
1881
1882 /*
1883 * New (or expanded) vma always get soft dirty status.
1884 * Otherwise user-space soft-dirty page tracker won't
1885 * be able to distinguish situation when vma area unmapped,
1886 * then new mapped in-place (which must be aimed as
1887 * a completely new data area).
1888 */
1889 vma->vm_flags |= VM_SOFTDIRTY;
1890
1891 vma_set_page_prot(vma);
1892
1893 return addr;
1894
1895 unmap_and_free_vma:
1896 fput(vma->vm_file);
1897 vma->vm_file = NULL;
1898
1899 /* Undo any partial mapping done by a device driver. */
1900 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1901 if (vm_flags & VM_SHARED)
1902 mapping_unmap_writable(file->f_mapping);
1903 free_vma:
1904 vm_area_free(vma);
1905 unacct_error:
1906 if (charged)
1907 vm_unacct_memory(charged);
1908 return error;
1909 }
1910
unmapped_area(struct vm_unmapped_area_info * info)1911 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1912 {
1913 /*
1914 * We implement the search by looking for an rbtree node that
1915 * immediately follows a suitable gap. That is,
1916 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1917 * - gap_end = vma->vm_start >= info->low_limit + length;
1918 * - gap_end - gap_start >= length
1919 */
1920
1921 struct mm_struct *mm = current->mm;
1922 struct vm_area_struct *vma;
1923 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1924
1925 /* Adjust search length to account for worst case alignment overhead */
1926 length = info->length + info->align_mask;
1927 if (length < info->length)
1928 return -ENOMEM;
1929
1930 /* Adjust search limits by the desired length */
1931 if (info->high_limit < length)
1932 return -ENOMEM;
1933 high_limit = info->high_limit - length;
1934
1935 if (info->low_limit > high_limit)
1936 return -ENOMEM;
1937 low_limit = info->low_limit + length;
1938
1939 /* Check if rbtree root looks promising */
1940 if (RB_EMPTY_ROOT(&mm->mm_rb))
1941 goto check_highest;
1942 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1943 if (vma->rb_subtree_gap < length)
1944 goto check_highest;
1945
1946 while (true) {
1947 /* Visit left subtree if it looks promising */
1948 gap_end = vm_start_gap(vma);
1949 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1950 struct vm_area_struct *left =
1951 rb_entry(vma->vm_rb.rb_left,
1952 struct vm_area_struct, vm_rb);
1953 if (left->rb_subtree_gap >= length) {
1954 vma = left;
1955 continue;
1956 }
1957 }
1958
1959 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
1960 check_current:
1961 /* Check if current node has a suitable gap */
1962 if (gap_start > high_limit)
1963 return -ENOMEM;
1964 if (gap_end >= low_limit &&
1965 gap_end > gap_start && gap_end - gap_start >= length)
1966 goto found;
1967
1968 /* Visit right subtree if it looks promising */
1969 if (vma->vm_rb.rb_right) {
1970 struct vm_area_struct *right =
1971 rb_entry(vma->vm_rb.rb_right,
1972 struct vm_area_struct, vm_rb);
1973 if (right->rb_subtree_gap >= length) {
1974 vma = right;
1975 continue;
1976 }
1977 }
1978
1979 /* Go back up the rbtree to find next candidate node */
1980 while (true) {
1981 struct rb_node *prev = &vma->vm_rb;
1982 if (!rb_parent(prev))
1983 goto check_highest;
1984 vma = rb_entry(rb_parent(prev),
1985 struct vm_area_struct, vm_rb);
1986 if (prev == vma->vm_rb.rb_left) {
1987 gap_start = vm_end_gap(vma->vm_prev);
1988 gap_end = vm_start_gap(vma);
1989 goto check_current;
1990 }
1991 }
1992 }
1993
1994 check_highest:
1995 /* Check highest gap, which does not precede any rbtree node */
1996 gap_start = mm->highest_vm_end;
1997 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1998 if (gap_start > high_limit)
1999 return -ENOMEM;
2000
2001 found:
2002 /* We found a suitable gap. Clip it with the original low_limit. */
2003 if (gap_start < info->low_limit)
2004 gap_start = info->low_limit;
2005
2006 /* Adjust gap address to the desired alignment */
2007 gap_start += (info->align_offset - gap_start) & info->align_mask;
2008
2009 VM_BUG_ON(gap_start + info->length > info->high_limit);
2010 VM_BUG_ON(gap_start + info->length > gap_end);
2011 return gap_start;
2012 }
2013
unmapped_area_topdown(struct vm_unmapped_area_info * info)2014 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2015 {
2016 struct mm_struct *mm = current->mm;
2017 struct vm_area_struct *vma;
2018 unsigned long length, low_limit, high_limit, gap_start, gap_end;
2019
2020 /* Adjust search length to account for worst case alignment overhead */
2021 length = info->length + info->align_mask;
2022 if (length < info->length)
2023 return -ENOMEM;
2024
2025 /*
2026 * Adjust search limits by the desired length.
2027 * See implementation comment at top of unmapped_area().
2028 */
2029 gap_end = info->high_limit;
2030 if (gap_end < length)
2031 return -ENOMEM;
2032 high_limit = gap_end - length;
2033
2034 if (info->low_limit > high_limit)
2035 return -ENOMEM;
2036 low_limit = info->low_limit + length;
2037
2038 /* Check highest gap, which does not precede any rbtree node */
2039 gap_start = mm->highest_vm_end;
2040 if (gap_start <= high_limit)
2041 goto found_highest;
2042
2043 /* Check if rbtree root looks promising */
2044 if (RB_EMPTY_ROOT(&mm->mm_rb))
2045 return -ENOMEM;
2046 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2047 if (vma->rb_subtree_gap < length)
2048 return -ENOMEM;
2049
2050 while (true) {
2051 /* Visit right subtree if it looks promising */
2052 gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2053 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2054 struct vm_area_struct *right =
2055 rb_entry(vma->vm_rb.rb_right,
2056 struct vm_area_struct, vm_rb);
2057 if (right->rb_subtree_gap >= length) {
2058 vma = right;
2059 continue;
2060 }
2061 }
2062
2063 check_current:
2064 /* Check if current node has a suitable gap */
2065 gap_end = vm_start_gap(vma);
2066 if (gap_end < low_limit)
2067 return -ENOMEM;
2068 if (gap_start <= high_limit &&
2069 gap_end > gap_start && gap_end - gap_start >= length)
2070 goto found;
2071
2072 /* Visit left subtree if it looks promising */
2073 if (vma->vm_rb.rb_left) {
2074 struct vm_area_struct *left =
2075 rb_entry(vma->vm_rb.rb_left,
2076 struct vm_area_struct, vm_rb);
2077 if (left->rb_subtree_gap >= length) {
2078 vma = left;
2079 continue;
2080 }
2081 }
2082
2083 /* Go back up the rbtree to find next candidate node */
2084 while (true) {
2085 struct rb_node *prev = &vma->vm_rb;
2086 if (!rb_parent(prev))
2087 return -ENOMEM;
2088 vma = rb_entry(rb_parent(prev),
2089 struct vm_area_struct, vm_rb);
2090 if (prev == vma->vm_rb.rb_right) {
2091 gap_start = vma->vm_prev ?
2092 vm_end_gap(vma->vm_prev) : 0;
2093 goto check_current;
2094 }
2095 }
2096 }
2097
2098 found:
2099 /* We found a suitable gap. Clip it with the original high_limit. */
2100 if (gap_end > info->high_limit)
2101 gap_end = info->high_limit;
2102
2103 found_highest:
2104 /* Compute highest gap address at the desired alignment */
2105 gap_end -= info->length;
2106 gap_end -= (gap_end - info->align_offset) & info->align_mask;
2107
2108 VM_BUG_ON(gap_end < info->low_limit);
2109 VM_BUG_ON(gap_end < gap_start);
2110 return gap_end;
2111 }
2112
2113 /*
2114 * Search for an unmapped address range.
2115 *
2116 * We are looking for a range that:
2117 * - does not intersect with any VMA;
2118 * - is contained within the [low_limit, high_limit) interval;
2119 * - is at least the desired size.
2120 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2121 */
vm_unmapped_area(struct vm_unmapped_area_info * info)2122 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2123 {
2124 unsigned long addr;
2125
2126 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2127 addr = unmapped_area_topdown(info);
2128 else
2129 addr = unmapped_area(info);
2130
2131 trace_vm_unmapped_area(addr, info);
2132 return addr;
2133 }
2134
2135 /* Get an address range which is currently unmapped.
2136 * For shmat() with addr=0.
2137 *
2138 * Ugly calling convention alert:
2139 * Return value with the low bits set means error value,
2140 * ie
2141 * if (ret & ~PAGE_MASK)
2142 * error = ret;
2143 *
2144 * This function "knows" that -ENOMEM has the bits set.
2145 */
2146 unsigned long
generic_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2147 generic_get_unmapped_area(struct file *filp, unsigned long addr,
2148 unsigned long len, unsigned long pgoff,
2149 unsigned long flags)
2150 {
2151 struct mm_struct *mm = current->mm;
2152 struct vm_area_struct *vma, *prev;
2153 struct vm_unmapped_area_info info;
2154 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2155
2156 if (len > mmap_end - mmap_min_addr)
2157 return -ENOMEM;
2158
2159 if (flags & MAP_FIXED)
2160 return addr;
2161
2162 if (addr) {
2163 addr = PAGE_ALIGN(addr);
2164 vma = find_vma_prev(mm, addr, &prev);
2165 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2166 (!vma || addr + len <= vm_start_gap(vma)) &&
2167 (!prev || addr >= vm_end_gap(prev)))
2168 return addr;
2169 }
2170
2171 info.flags = 0;
2172 info.length = len;
2173 info.low_limit = mm->mmap_base;
2174 info.high_limit = mmap_end;
2175 info.align_mask = 0;
2176 info.align_offset = 0;
2177 return vm_unmapped_area(&info);
2178 }
2179
2180 #ifndef HAVE_ARCH_UNMAPPED_AREA
2181 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2182 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2183 unsigned long len, unsigned long pgoff,
2184 unsigned long flags)
2185 {
2186 return generic_get_unmapped_area(filp, addr, len, pgoff, flags);
2187 }
2188 #endif
2189
2190 /*
2191 * This mmap-allocator allocates new areas top-down from below the
2192 * stack's low limit (the base):
2193 */
2194 unsigned long
generic_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2195 generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2196 unsigned long len, unsigned long pgoff,
2197 unsigned long flags)
2198 {
2199 struct vm_area_struct *vma, *prev;
2200 struct mm_struct *mm = current->mm;
2201 struct vm_unmapped_area_info info;
2202 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
2203
2204 /* requested length too big for entire address space */
2205 if (len > mmap_end - mmap_min_addr)
2206 return -ENOMEM;
2207
2208 if (flags & MAP_FIXED)
2209 return addr;
2210
2211 /* requesting a specific address */
2212 if (addr) {
2213 addr = PAGE_ALIGN(addr);
2214 vma = find_vma_prev(mm, addr, &prev);
2215 if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2216 (!vma || addr + len <= vm_start_gap(vma)) &&
2217 (!prev || addr >= vm_end_gap(prev)))
2218 return addr;
2219 }
2220
2221 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2222 info.length = len;
2223 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2224 info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2225 info.align_mask = 0;
2226 info.align_offset = 0;
2227 addr = vm_unmapped_area(&info);
2228
2229 /*
2230 * A failed mmap() very likely causes application failure,
2231 * so fall back to the bottom-up function here. This scenario
2232 * can happen with large stack limits and large mmap()
2233 * allocations.
2234 */
2235 if (offset_in_page(addr)) {
2236 VM_BUG_ON(addr != -ENOMEM);
2237 info.flags = 0;
2238 info.low_limit = TASK_UNMAPPED_BASE;
2239 info.high_limit = mmap_end;
2240 addr = vm_unmapped_area(&info);
2241 }
2242
2243 return addr;
2244 }
2245
2246 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2247 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2248 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2249 unsigned long len, unsigned long pgoff,
2250 unsigned long flags)
2251 {
2252 return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags);
2253 }
2254 #endif
2255
2256 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2257 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2258 unsigned long pgoff, unsigned long flags)
2259 {
2260 unsigned long (*get_area)(struct file *, unsigned long,
2261 unsigned long, unsigned long, unsigned long);
2262
2263 unsigned long error = arch_mmap_check(addr, len, flags);
2264 if (error)
2265 return error;
2266
2267 /* Careful about overflows.. */
2268 if (len > TASK_SIZE)
2269 return -ENOMEM;
2270
2271 get_area = current->mm->get_unmapped_area;
2272 if (file) {
2273 if (file->f_op->get_unmapped_area)
2274 get_area = file->f_op->get_unmapped_area;
2275 } else if (flags & MAP_SHARED) {
2276 /*
2277 * mmap_region() will call shmem_zero_setup() to create a file,
2278 * so use shmem's get_unmapped_area in case it can be huge.
2279 * do_mmap() will clear pgoff, so match alignment.
2280 */
2281 pgoff = 0;
2282 get_area = shmem_get_unmapped_area;
2283 }
2284
2285 addr = get_area(file, addr, len, pgoff, flags);
2286 if (IS_ERR_VALUE(addr))
2287 return addr;
2288
2289 if (addr > TASK_SIZE - len)
2290 return -ENOMEM;
2291 if (offset_in_page(addr))
2292 return -EINVAL;
2293
2294 error = security_mmap_addr(addr);
2295 return error ? error : addr;
2296 }
2297
2298 EXPORT_SYMBOL(get_unmapped_area);
2299
2300 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2301 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2302 {
2303 struct rb_node *rb_node;
2304 struct vm_area_struct *vma;
2305
2306 mmap_assert_locked(mm);
2307 /* Check the cache first. */
2308 vma = vmacache_find(mm, addr);
2309 if (likely(vma))
2310 return vma;
2311
2312 rb_node = mm->mm_rb.rb_node;
2313
2314 while (rb_node) {
2315 struct vm_area_struct *tmp;
2316
2317 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2318
2319 if (tmp->vm_end > addr) {
2320 vma = tmp;
2321 if (tmp->vm_start <= addr)
2322 break;
2323 rb_node = rb_node->rb_left;
2324 } else
2325 rb_node = rb_node->rb_right;
2326 }
2327
2328 if (vma)
2329 vmacache_update(addr, vma);
2330 return vma;
2331 }
2332
2333 EXPORT_SYMBOL(find_vma);
2334
2335 /*
2336 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2337 */
2338 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2339 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2340 struct vm_area_struct **pprev)
2341 {
2342 struct vm_area_struct *vma;
2343
2344 vma = find_vma(mm, addr);
2345 if (vma) {
2346 *pprev = vma->vm_prev;
2347 } else {
2348 struct rb_node *rb_node = rb_last(&mm->mm_rb);
2349
2350 *pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2351 }
2352 return vma;
2353 }
2354
2355 /*
2356 * Verify that the stack growth is acceptable and
2357 * update accounting. This is shared with both the
2358 * grow-up and grow-down cases.
2359 */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2360 static int acct_stack_growth(struct vm_area_struct *vma,
2361 unsigned long size, unsigned long grow)
2362 {
2363 struct mm_struct *mm = vma->vm_mm;
2364 unsigned long new_start;
2365
2366 /* address space limit tests */
2367 if (!may_expand_vm(mm, vma->vm_flags, grow))
2368 return -ENOMEM;
2369
2370 /* Stack limit test */
2371 if (size > rlimit(RLIMIT_STACK))
2372 return -ENOMEM;
2373
2374 /* mlock limit tests */
2375 if (mlock_future_check(mm, vma->vm_flags, grow << PAGE_SHIFT))
2376 return -ENOMEM;
2377
2378 /* Check to ensure the stack will not grow into a hugetlb-only region */
2379 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2380 vma->vm_end - size;
2381 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2382 return -EFAULT;
2383
2384 /*
2385 * Overcommit.. This must be the final test, as it will
2386 * update security statistics.
2387 */
2388 if (security_vm_enough_memory_mm(mm, grow))
2389 return -ENOMEM;
2390
2391 return 0;
2392 }
2393
2394 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2395 /*
2396 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2397 * vma is the last one with address > vma->vm_end. Have to extend vma.
2398 */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2399 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2400 {
2401 struct mm_struct *mm = vma->vm_mm;
2402 struct vm_area_struct *next;
2403 unsigned long gap_addr;
2404 int error = 0;
2405
2406 if (!(vma->vm_flags & VM_GROWSUP))
2407 return -EFAULT;
2408
2409 /* Guard against exceeding limits of the address space. */
2410 address &= PAGE_MASK;
2411 if (address >= (TASK_SIZE & PAGE_MASK))
2412 return -ENOMEM;
2413 address += PAGE_SIZE;
2414
2415 /* Enforce stack_guard_gap */
2416 gap_addr = address + stack_guard_gap;
2417
2418 /* Guard against overflow */
2419 if (gap_addr < address || gap_addr > TASK_SIZE)
2420 gap_addr = TASK_SIZE;
2421
2422 next = vma->vm_next;
2423 if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2424 if (!(next->vm_flags & VM_GROWSUP))
2425 return -ENOMEM;
2426 /* Check that both stack segments have the same anon_vma? */
2427 }
2428
2429 /* We must make sure the anon_vma is allocated. */
2430 if (unlikely(anon_vma_prepare(vma)))
2431 return -ENOMEM;
2432
2433 /*
2434 * vma->vm_start/vm_end cannot change under us because the caller
2435 * is required to hold the mmap_lock in read mode. We need the
2436 * anon_vma lock to serialize against concurrent expand_stacks.
2437 */
2438 anon_vma_lock_write(vma->anon_vma);
2439
2440 /* Somebody else might have raced and expanded it already */
2441 if (address > vma->vm_end) {
2442 unsigned long size, grow;
2443
2444 size = address - vma->vm_start;
2445 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2446
2447 error = -ENOMEM;
2448 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2449 error = acct_stack_growth(vma, size, grow);
2450 if (!error) {
2451 /*
2452 * vma_gap_update() doesn't support concurrent
2453 * updates, but we only hold a shared mmap_lock
2454 * lock here, so we need to protect against
2455 * concurrent vma expansions.
2456 * anon_vma_lock_write() doesn't help here, as
2457 * we don't guarantee that all growable vmas
2458 * in a mm share the same root anon vma.
2459 * So, we reuse mm->page_table_lock to guard
2460 * against concurrent vma expansions.
2461 */
2462 spin_lock(&mm->page_table_lock);
2463 if (vma->vm_flags & VM_LOCKED)
2464 mm->locked_vm += grow;
2465 vm_stat_account(mm, vma->vm_flags, grow);
2466 anon_vma_interval_tree_pre_update_vma(vma);
2467 vma->vm_end = address;
2468 anon_vma_interval_tree_post_update_vma(vma);
2469 if (vma->vm_next)
2470 vma_gap_update(vma->vm_next);
2471 else
2472 mm->highest_vm_end = vm_end_gap(vma);
2473 spin_unlock(&mm->page_table_lock);
2474
2475 perf_event_mmap(vma);
2476 }
2477 }
2478 }
2479 anon_vma_unlock_write(vma->anon_vma);
2480 khugepaged_enter_vma(vma, vma->vm_flags);
2481 validate_mm(mm);
2482 return error;
2483 }
2484 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2485
2486 /*
2487 * vma is the first one with address < vma->vm_start. Have to extend vma.
2488 */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2489 int expand_downwards(struct vm_area_struct *vma,
2490 unsigned long address)
2491 {
2492 struct mm_struct *mm = vma->vm_mm;
2493 struct vm_area_struct *prev;
2494 int error = 0;
2495
2496 address &= PAGE_MASK;
2497 if (address < mmap_min_addr)
2498 return -EPERM;
2499
2500 /* Enforce stack_guard_gap */
2501 prev = vma->vm_prev;
2502 /* Check that both stack segments have the same anon_vma? */
2503 if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2504 vma_is_accessible(prev)) {
2505 if (address - prev->vm_end < stack_guard_gap)
2506 return -ENOMEM;
2507 }
2508
2509 /* We must make sure the anon_vma is allocated. */
2510 if (unlikely(anon_vma_prepare(vma)))
2511 return -ENOMEM;
2512
2513 /*
2514 * vma->vm_start/vm_end cannot change under us because the caller
2515 * is required to hold the mmap_lock in read mode. We need the
2516 * anon_vma lock to serialize against concurrent expand_stacks.
2517 */
2518 anon_vma_lock_write(vma->anon_vma);
2519
2520 /* Somebody else might have raced and expanded it already */
2521 if (address < vma->vm_start) {
2522 unsigned long size, grow;
2523
2524 size = vma->vm_end - address;
2525 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2526
2527 error = -ENOMEM;
2528 if (grow <= vma->vm_pgoff) {
2529 error = acct_stack_growth(vma, size, grow);
2530 if (!error) {
2531 /*
2532 * vma_gap_update() doesn't support concurrent
2533 * updates, but we only hold a shared mmap_lock
2534 * lock here, so we need to protect against
2535 * concurrent vma expansions.
2536 * anon_vma_lock_write() doesn't help here, as
2537 * we don't guarantee that all growable vmas
2538 * in a mm share the same root anon vma.
2539 * So, we reuse mm->page_table_lock to guard
2540 * against concurrent vma expansions.
2541 */
2542 spin_lock(&mm->page_table_lock);
2543 if (vma->vm_flags & VM_LOCKED)
2544 mm->locked_vm += grow;
2545 vm_stat_account(mm, vma->vm_flags, grow);
2546 anon_vma_interval_tree_pre_update_vma(vma);
2547 vma->vm_start = address;
2548 vma->vm_pgoff -= grow;
2549 anon_vma_interval_tree_post_update_vma(vma);
2550 vma_gap_update(vma);
2551 spin_unlock(&mm->page_table_lock);
2552
2553 perf_event_mmap(vma);
2554 }
2555 }
2556 }
2557 anon_vma_unlock_write(vma->anon_vma);
2558 khugepaged_enter_vma(vma, vma->vm_flags);
2559 validate_mm(mm);
2560 return error;
2561 }
2562
2563 /* enforced gap between the expanding stack and other mappings. */
2564 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2565
cmdline_parse_stack_guard_gap(char * p)2566 static int __init cmdline_parse_stack_guard_gap(char *p)
2567 {
2568 unsigned long val;
2569 char *endptr;
2570
2571 val = simple_strtoul(p, &endptr, 10);
2572 if (!*endptr)
2573 stack_guard_gap = val << PAGE_SHIFT;
2574
2575 return 1;
2576 }
2577 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2578
2579 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2580 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2581 {
2582 return expand_upwards(vma, address);
2583 }
2584
2585 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2586 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2587 {
2588 struct vm_area_struct *vma, *prev;
2589
2590 addr &= PAGE_MASK;
2591 vma = find_vma_prev(mm, addr, &prev);
2592 if (vma && (vma->vm_start <= addr))
2593 return vma;
2594 /* don't alter vm_end if the coredump is running */
2595 if (!prev || expand_stack(prev, addr))
2596 return NULL;
2597 if (prev->vm_flags & VM_LOCKED)
2598 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2599 return prev;
2600 }
2601 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2602 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2603 {
2604 return expand_downwards(vma, address);
2605 }
2606
2607 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2608 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2609 {
2610 struct vm_area_struct *vma;
2611 unsigned long start;
2612
2613 addr &= PAGE_MASK;
2614 vma = find_vma(mm, addr);
2615 if (!vma)
2616 return NULL;
2617 if (vma->vm_start <= addr)
2618 return vma;
2619 if (!(vma->vm_flags & VM_GROWSDOWN))
2620 return NULL;
2621 start = vma->vm_start;
2622 if (expand_stack(vma, addr))
2623 return NULL;
2624 if (vma->vm_flags & VM_LOCKED)
2625 populate_vma_page_range(vma, addr, start, NULL);
2626 return vma;
2627 }
2628 #endif
2629
2630 EXPORT_SYMBOL_GPL(find_extend_vma);
2631
2632 /*
2633 * Ok - we have the memory areas we should free on the vma list,
2634 * so release them, and do the vma updates.
2635 *
2636 * Called with the mm semaphore held.
2637 */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2638 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2639 {
2640 unsigned long nr_accounted = 0;
2641
2642 /* Update high watermark before we lower total_vm */
2643 update_hiwater_vm(mm);
2644 do {
2645 long nrpages = vma_pages(vma);
2646
2647 if (vma->vm_flags & VM_ACCOUNT)
2648 nr_accounted += nrpages;
2649 vm_stat_account(mm, vma->vm_flags, -nrpages);
2650 vma = remove_vma(vma);
2651 } while (vma);
2652 vm_unacct_memory(nr_accounted);
2653 validate_mm(mm);
2654 }
2655
2656 /*
2657 * Get rid of page table information in the indicated region.
2658 *
2659 * Called with the mm semaphore held.
2660 */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2661 static void unmap_region(struct mm_struct *mm,
2662 struct vm_area_struct *vma, struct vm_area_struct *prev,
2663 unsigned long start, unsigned long end)
2664 {
2665 struct vm_area_struct *next = vma_next(mm, prev);
2666 struct mmu_gather tlb;
2667
2668 lru_add_drain();
2669 tlb_gather_mmu(&tlb, mm);
2670 update_hiwater_rss(mm);
2671 unmap_vmas(&tlb, vma, start, end);
2672 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2673 next ? next->vm_start : USER_PGTABLES_CEILING);
2674 tlb_finish_mmu(&tlb);
2675 }
2676
2677 /*
2678 * Create a list of vma's touched by the unmap, removing them from the mm's
2679 * vma list as we go..
2680 */
2681 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2682 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2683 struct vm_area_struct *prev, unsigned long end)
2684 {
2685 struct vm_area_struct **insertion_point;
2686 struct vm_area_struct *tail_vma = NULL;
2687
2688 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2689 vma->vm_prev = NULL;
2690 do {
2691 vma_rb_erase(vma, &mm->mm_rb);
2692 if (vma->vm_flags & VM_LOCKED)
2693 mm->locked_vm -= vma_pages(vma);
2694 mm->map_count--;
2695 tail_vma = vma;
2696 vma = vma->vm_next;
2697 } while (vma && vma->vm_start < end);
2698 *insertion_point = vma;
2699 if (vma) {
2700 vma->vm_prev = prev;
2701 vma_gap_update(vma);
2702 } else
2703 mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2704 tail_vma->vm_next = NULL;
2705
2706 /* Kill the cache */
2707 vmacache_invalidate(mm);
2708
2709 /*
2710 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2711 * VM_GROWSUP VMA. Such VMAs can change their size under
2712 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2713 */
2714 if (vma && (vma->vm_flags & VM_GROWSDOWN))
2715 return false;
2716 if (prev && (prev->vm_flags & VM_GROWSUP))
2717 return false;
2718 return true;
2719 }
2720
2721 /*
2722 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
2723 * has already been checked or doesn't make sense to fail.
2724 */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2725 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2726 unsigned long addr, int new_below)
2727 {
2728 struct vm_area_struct *new;
2729 int err;
2730
2731 if (vma->vm_ops && vma->vm_ops->may_split) {
2732 err = vma->vm_ops->may_split(vma, addr);
2733 if (err)
2734 return err;
2735 }
2736
2737 new = vm_area_dup(vma);
2738 if (!new)
2739 return -ENOMEM;
2740
2741 if (new_below)
2742 new->vm_end = addr;
2743 else {
2744 new->vm_start = addr;
2745 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2746 }
2747
2748 err = vma_dup_policy(vma, new);
2749 if (err)
2750 goto out_free_vma;
2751
2752 err = anon_vma_clone(new, vma);
2753 if (err)
2754 goto out_free_mpol;
2755
2756 if (new->vm_file)
2757 get_file(new->vm_file);
2758
2759 if (new->vm_ops && new->vm_ops->open)
2760 new->vm_ops->open(new);
2761
2762 if (new_below)
2763 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2764 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2765 else
2766 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2767
2768 /* Success. */
2769 if (!err)
2770 return 0;
2771
2772 /* Clean everything up if vma_adjust failed. */
2773 if (new->vm_ops && new->vm_ops->close)
2774 new->vm_ops->close(new);
2775 if (new->vm_file)
2776 fput(new->vm_file);
2777 unlink_anon_vmas(new);
2778 out_free_mpol:
2779 mpol_put(vma_policy(new));
2780 out_free_vma:
2781 vm_area_free(new);
2782 return err;
2783 }
2784
2785 /*
2786 * Split a vma into two pieces at address 'addr', a new vma is allocated
2787 * either for the first part or the tail.
2788 */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2789 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2790 unsigned long addr, int new_below)
2791 {
2792 if (mm->map_count >= sysctl_max_map_count)
2793 return -ENOMEM;
2794
2795 return __split_vma(mm, vma, addr, new_below);
2796 }
2797
2798 /* Munmap is split into 2 main parts -- this part which finds
2799 * what needs doing, and the areas themselves, which do the
2800 * work. This now handles partial unmappings.
2801 * Jeremy Fitzhardinge <jeremy@goop.org>
2802 */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2803 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2804 struct list_head *uf, bool downgrade)
2805 {
2806 unsigned long end;
2807 struct vm_area_struct *vma, *prev, *last;
2808
2809 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2810 return -EINVAL;
2811
2812 len = PAGE_ALIGN(len);
2813 end = start + len;
2814 if (len == 0)
2815 return -EINVAL;
2816
2817 /*
2818 * arch_unmap() might do unmaps itself. It must be called
2819 * and finish any rbtree manipulation before this code
2820 * runs and also starts to manipulate the rbtree.
2821 */
2822 arch_unmap(mm, start, end);
2823
2824 /* Find the first overlapping VMA where start < vma->vm_end */
2825 vma = find_vma_intersection(mm, start, end);
2826 if (!vma)
2827 return 0;
2828 prev = vma->vm_prev;
2829
2830 /*
2831 * If we need to split any vma, do it now to save pain later.
2832 *
2833 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2834 * unmapped vm_area_struct will remain in use: so lower split_vma
2835 * places tmp vma above, and higher split_vma places tmp vma below.
2836 */
2837 if (start > vma->vm_start) {
2838 int error;
2839
2840 /*
2841 * Make sure that map_count on return from munmap() will
2842 * not exceed its limit; but let map_count go just above
2843 * its limit temporarily, to help free resources as expected.
2844 */
2845 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2846 return -ENOMEM;
2847
2848 error = __split_vma(mm, vma, start, 0);
2849 if (error)
2850 return error;
2851 prev = vma;
2852 }
2853
2854 /* Does it split the last one? */
2855 last = find_vma(mm, end);
2856 if (last && end > last->vm_start) {
2857 int error = __split_vma(mm, last, end, 1);
2858 if (error)
2859 return error;
2860 }
2861 vma = vma_next(mm, prev);
2862
2863 if (unlikely(uf)) {
2864 /*
2865 * If userfaultfd_unmap_prep returns an error the vmas
2866 * will remain split, but userland will get a
2867 * highly unexpected error anyway. This is no
2868 * different than the case where the first of the two
2869 * __split_vma fails, but we don't undo the first
2870 * split, despite we could. This is unlikely enough
2871 * failure that it's not worth optimizing it for.
2872 */
2873 int error = userfaultfd_unmap_prep(vma, start, end, uf);
2874 if (error)
2875 return error;
2876 }
2877
2878 /* Detach vmas from rbtree */
2879 if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2880 downgrade = false;
2881
2882 if (downgrade)
2883 mmap_write_downgrade(mm);
2884
2885 unmap_region(mm, vma, prev, start, end);
2886
2887 /* Fix up all other VM information */
2888 remove_vma_list(mm, vma);
2889
2890 return downgrade ? 1 : 0;
2891 }
2892
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2893 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2894 struct list_head *uf)
2895 {
2896 return __do_munmap(mm, start, len, uf, false);
2897 }
2898
__vm_munmap(unsigned long start,size_t len,bool downgrade)2899 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2900 {
2901 int ret;
2902 struct mm_struct *mm = current->mm;
2903 LIST_HEAD(uf);
2904
2905 if (mmap_write_lock_killable(mm))
2906 return -EINTR;
2907
2908 ret = __do_munmap(mm, start, len, &uf, downgrade);
2909 /*
2910 * Returning 1 indicates mmap_lock is downgraded.
2911 * But 1 is not legal return value of vm_munmap() and munmap(), reset
2912 * it to 0 before return.
2913 */
2914 if (ret == 1) {
2915 mmap_read_unlock(mm);
2916 ret = 0;
2917 } else
2918 mmap_write_unlock(mm);
2919
2920 userfaultfd_unmap_complete(mm, &uf);
2921 return ret;
2922 }
2923
vm_munmap(unsigned long start,size_t len)2924 int vm_munmap(unsigned long start, size_t len)
2925 {
2926 return __vm_munmap(start, len, false);
2927 }
2928 EXPORT_SYMBOL(vm_munmap);
2929
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2930 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2931 {
2932 addr = untagged_addr(addr);
2933 return __vm_munmap(addr, len, true);
2934 }
2935
2936
2937 /*
2938 * Emulation of deprecated remap_file_pages() syscall.
2939 */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)2940 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2941 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2942 {
2943
2944 struct mm_struct *mm = current->mm;
2945 struct vm_area_struct *vma;
2946 unsigned long populate = 0;
2947 unsigned long ret = -EINVAL;
2948 struct file *file;
2949
2950 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
2951 current->comm, current->pid);
2952
2953 if (prot)
2954 return ret;
2955 start = start & PAGE_MASK;
2956 size = size & PAGE_MASK;
2957
2958 if (start + size <= start)
2959 return ret;
2960
2961 /* Does pgoff wrap? */
2962 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2963 return ret;
2964
2965 if (mmap_write_lock_killable(mm))
2966 return -EINTR;
2967
2968 vma = vma_lookup(mm, start);
2969
2970 if (!vma || !(vma->vm_flags & VM_SHARED))
2971 goto out;
2972
2973 if (start + size > vma->vm_end) {
2974 struct vm_area_struct *next;
2975
2976 for (next = vma->vm_next; next; next = next->vm_next) {
2977 /* hole between vmas ? */
2978 if (next->vm_start != next->vm_prev->vm_end)
2979 goto out;
2980
2981 if (next->vm_file != vma->vm_file)
2982 goto out;
2983
2984 if (next->vm_flags != vma->vm_flags)
2985 goto out;
2986
2987 if (start + size <= next->vm_end)
2988 break;
2989 }
2990
2991 if (!next)
2992 goto out;
2993 }
2994
2995 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2996 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2997 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2998
2999 flags &= MAP_NONBLOCK;
3000 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3001 if (vma->vm_flags & VM_LOCKED)
3002 flags |= MAP_LOCKED;
3003
3004 file = get_file(vma->vm_file);
3005 ret = do_mmap(vma->vm_file, start, size,
3006 prot, flags, pgoff, &populate, NULL);
3007 fput(file);
3008 out:
3009 mmap_write_unlock(mm);
3010 if (populate)
3011 mm_populate(ret, populate);
3012 if (!IS_ERR_VALUE(ret))
3013 ret = 0;
3014 return ret;
3015 }
3016
3017 /*
3018 * this is really a simplified "do_mmap". it only handles
3019 * anonymous maps. eventually we may be able to do some
3020 * brk-specific accounting here.
3021 */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3022 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3023 {
3024 struct mm_struct *mm = current->mm;
3025 struct vm_area_struct *vma, *prev;
3026 struct rb_node **rb_link, *rb_parent;
3027 pgoff_t pgoff = addr >> PAGE_SHIFT;
3028 int error;
3029 unsigned long mapped_addr;
3030
3031 /* Until we need other flags, refuse anything except VM_EXEC. */
3032 if ((flags & (~VM_EXEC)) != 0)
3033 return -EINVAL;
3034 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3035
3036 mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3037 if (IS_ERR_VALUE(mapped_addr))
3038 return mapped_addr;
3039
3040 error = mlock_future_check(mm, mm->def_flags, len);
3041 if (error)
3042 return error;
3043
3044 /* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3045 if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3046 return -ENOMEM;
3047
3048 /* Check against address space limits *after* clearing old maps... */
3049 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3050 return -ENOMEM;
3051
3052 if (mm->map_count > sysctl_max_map_count)
3053 return -ENOMEM;
3054
3055 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3056 return -ENOMEM;
3057
3058 /* Can we just expand an old private anonymous mapping? */
3059 vma = vma_merge(mm, prev, addr, addr + len, flags,
3060 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3061 if (vma)
3062 goto out;
3063
3064 /*
3065 * create a vma struct for an anonymous mapping
3066 */
3067 vma = vm_area_alloc(mm);
3068 if (!vma) {
3069 vm_unacct_memory(len >> PAGE_SHIFT);
3070 return -ENOMEM;
3071 }
3072
3073 vma_set_anonymous(vma);
3074 vma->vm_start = addr;
3075 vma->vm_end = addr + len;
3076 vma->vm_pgoff = pgoff;
3077 vma->vm_flags = flags;
3078 vma->vm_page_prot = vm_get_page_prot(flags);
3079 vma_link(mm, vma, prev, rb_link, rb_parent);
3080 out:
3081 perf_event_mmap(vma);
3082 mm->total_vm += len >> PAGE_SHIFT;
3083 mm->data_vm += len >> PAGE_SHIFT;
3084 if (flags & VM_LOCKED)
3085 mm->locked_vm += (len >> PAGE_SHIFT);
3086 vma->vm_flags |= VM_SOFTDIRTY;
3087 return 0;
3088 }
3089
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3090 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3091 {
3092 struct mm_struct *mm = current->mm;
3093 unsigned long len;
3094 int ret;
3095 bool populate;
3096 LIST_HEAD(uf);
3097
3098 len = PAGE_ALIGN(request);
3099 if (len < request)
3100 return -ENOMEM;
3101 if (!len)
3102 return 0;
3103
3104 if (mmap_write_lock_killable(mm))
3105 return -EINTR;
3106
3107 ret = do_brk_flags(addr, len, flags, &uf);
3108 populate = ((mm->def_flags & VM_LOCKED) != 0);
3109 mmap_write_unlock(mm);
3110 userfaultfd_unmap_complete(mm, &uf);
3111 if (populate && !ret)
3112 mm_populate(addr, len);
3113 return ret;
3114 }
3115 EXPORT_SYMBOL(vm_brk_flags);
3116
vm_brk(unsigned long addr,unsigned long len)3117 int vm_brk(unsigned long addr, unsigned long len)
3118 {
3119 return vm_brk_flags(addr, len, 0);
3120 }
3121 EXPORT_SYMBOL(vm_brk);
3122
3123 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3124 void exit_mmap(struct mm_struct *mm)
3125 {
3126 struct mmu_gather tlb;
3127 struct vm_area_struct *vma;
3128 unsigned long nr_accounted = 0;
3129
3130 /* mm's last user has gone, and its about to be pulled down */
3131 mmu_notifier_release(mm);
3132
3133 if (unlikely(mm_is_oom_victim(mm))) {
3134 /*
3135 * Manually reap the mm to free as much memory as possible.
3136 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3137 * this mm from further consideration. Taking mm->mmap_lock for
3138 * write after setting MMF_OOM_SKIP will guarantee that the oom
3139 * reaper will not run on this mm again after mmap_lock is
3140 * dropped.
3141 *
3142 * Nothing can be holding mm->mmap_lock here and the above call
3143 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3144 * __oom_reap_task_mm() will not block.
3145 */
3146 (void)__oom_reap_task_mm(mm);
3147 set_bit(MMF_OOM_SKIP, &mm->flags);
3148 }
3149
3150 mmap_write_lock(mm);
3151 arch_exit_mmap(mm);
3152
3153 vma = mm->mmap;
3154 if (!vma) {
3155 /* Can happen if dup_mmap() received an OOM */
3156 mmap_write_unlock(mm);
3157 return;
3158 }
3159
3160 lru_add_drain();
3161 flush_cache_mm(mm);
3162 tlb_gather_mmu_fullmm(&tlb, mm);
3163 /* update_hiwater_rss(mm) here? but nobody should be looking */
3164 /* Use -1 here to ensure all VMAs in the mm are unmapped */
3165 unmap_vmas(&tlb, vma, 0, -1);
3166 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3167 tlb_finish_mmu(&tlb);
3168
3169 /* Walk the list again, actually closing and freeing it. */
3170 while (vma) {
3171 if (vma->vm_flags & VM_ACCOUNT)
3172 nr_accounted += vma_pages(vma);
3173 vma = remove_vma(vma);
3174 cond_resched();
3175 }
3176 mm->mmap = NULL;
3177 mmap_write_unlock(mm);
3178 vm_unacct_memory(nr_accounted);
3179 }
3180
3181 /* Insert vm structure into process list sorted by address
3182 * and into the inode's i_mmap tree. If vm_file is non-NULL
3183 * then i_mmap_rwsem is taken here.
3184 */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3185 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3186 {
3187 struct vm_area_struct *prev;
3188 struct rb_node **rb_link, *rb_parent;
3189
3190 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3191 &prev, &rb_link, &rb_parent))
3192 return -ENOMEM;
3193 if ((vma->vm_flags & VM_ACCOUNT) &&
3194 security_vm_enough_memory_mm(mm, vma_pages(vma)))
3195 return -ENOMEM;
3196
3197 /*
3198 * The vm_pgoff of a purely anonymous vma should be irrelevant
3199 * until its first write fault, when page's anon_vma and index
3200 * are set. But now set the vm_pgoff it will almost certainly
3201 * end up with (unless mremap moves it elsewhere before that
3202 * first wfault), so /proc/pid/maps tells a consistent story.
3203 *
3204 * By setting it to reflect the virtual start address of the
3205 * vma, merges and splits can happen in a seamless way, just
3206 * using the existing file pgoff checks and manipulations.
3207 * Similarly in do_mmap and in do_brk_flags.
3208 */
3209 if (vma_is_anonymous(vma)) {
3210 BUG_ON(vma->anon_vma);
3211 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3212 }
3213
3214 vma_link(mm, vma, prev, rb_link, rb_parent);
3215 return 0;
3216 }
3217
3218 /*
3219 * Copy the vma structure to a new location in the same mm,
3220 * prior to moving page table entries, to effect an mremap move.
3221 */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3222 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3223 unsigned long addr, unsigned long len, pgoff_t pgoff,
3224 bool *need_rmap_locks)
3225 {
3226 struct vm_area_struct *vma = *vmap;
3227 unsigned long vma_start = vma->vm_start;
3228 struct mm_struct *mm = vma->vm_mm;
3229 struct vm_area_struct *new_vma, *prev;
3230 struct rb_node **rb_link, *rb_parent;
3231 bool faulted_in_anon_vma = true;
3232
3233 /*
3234 * If anonymous vma has not yet been faulted, update new pgoff
3235 * to match new location, to increase its chance of merging.
3236 */
3237 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3238 pgoff = addr >> PAGE_SHIFT;
3239 faulted_in_anon_vma = false;
3240 }
3241
3242 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3243 return NULL; /* should never get here */
3244 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3245 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3246 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3247 if (new_vma) {
3248 /*
3249 * Source vma may have been merged into new_vma
3250 */
3251 if (unlikely(vma_start >= new_vma->vm_start &&
3252 vma_start < new_vma->vm_end)) {
3253 /*
3254 * The only way we can get a vma_merge with
3255 * self during an mremap is if the vma hasn't
3256 * been faulted in yet and we were allowed to
3257 * reset the dst vma->vm_pgoff to the
3258 * destination address of the mremap to allow
3259 * the merge to happen. mremap must change the
3260 * vm_pgoff linearity between src and dst vmas
3261 * (in turn preventing a vma_merge) to be
3262 * safe. It is only safe to keep the vm_pgoff
3263 * linear if there are no pages mapped yet.
3264 */
3265 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3266 *vmap = vma = new_vma;
3267 }
3268 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3269 } else {
3270 new_vma = vm_area_dup(vma);
3271 if (!new_vma)
3272 goto out;
3273 new_vma->vm_start = addr;
3274 new_vma->vm_end = addr + len;
3275 new_vma->vm_pgoff = pgoff;
3276 if (vma_dup_policy(vma, new_vma))
3277 goto out_free_vma;
3278 if (anon_vma_clone(new_vma, vma))
3279 goto out_free_mempol;
3280 if (new_vma->vm_file)
3281 get_file(new_vma->vm_file);
3282 if (new_vma->vm_ops && new_vma->vm_ops->open)
3283 new_vma->vm_ops->open(new_vma);
3284 vma_link(mm, new_vma, prev, rb_link, rb_parent);
3285 *need_rmap_locks = false;
3286 }
3287 return new_vma;
3288
3289 out_free_mempol:
3290 mpol_put(vma_policy(new_vma));
3291 out_free_vma:
3292 vm_area_free(new_vma);
3293 out:
3294 return NULL;
3295 }
3296
3297 /*
3298 * Return true if the calling process may expand its vm space by the passed
3299 * number of pages
3300 */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3301 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3302 {
3303 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3304 return false;
3305
3306 if (is_data_mapping(flags) &&
3307 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3308 /* Workaround for Valgrind */
3309 if (rlimit(RLIMIT_DATA) == 0 &&
3310 mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3311 return true;
3312
3313 pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3314 current->comm, current->pid,
3315 (mm->data_vm + npages) << PAGE_SHIFT,
3316 rlimit(RLIMIT_DATA),
3317 ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3318
3319 if (!ignore_rlimit_data)
3320 return false;
3321 }
3322
3323 return true;
3324 }
3325
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3326 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3327 {
3328 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
3329
3330 if (is_exec_mapping(flags))
3331 mm->exec_vm += npages;
3332 else if (is_stack_mapping(flags))
3333 mm->stack_vm += npages;
3334 else if (is_data_mapping(flags))
3335 mm->data_vm += npages;
3336 }
3337
3338 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3339
3340 /*
3341 * Having a close hook prevents vma merging regardless of flags.
3342 */
special_mapping_close(struct vm_area_struct * vma)3343 static void special_mapping_close(struct vm_area_struct *vma)
3344 {
3345 }
3346
special_mapping_name(struct vm_area_struct * vma)3347 static const char *special_mapping_name(struct vm_area_struct *vma)
3348 {
3349 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3350 }
3351
special_mapping_mremap(struct vm_area_struct * new_vma)3352 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3353 {
3354 struct vm_special_mapping *sm = new_vma->vm_private_data;
3355
3356 if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3357 return -EFAULT;
3358
3359 if (sm->mremap)
3360 return sm->mremap(sm, new_vma);
3361
3362 return 0;
3363 }
3364
special_mapping_split(struct vm_area_struct * vma,unsigned long addr)3365 static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
3366 {
3367 /*
3368 * Forbid splitting special mappings - kernel has expectations over
3369 * the number of pages in mapping. Together with VM_DONTEXPAND
3370 * the size of vma should stay the same over the special mapping's
3371 * lifetime.
3372 */
3373 return -EINVAL;
3374 }
3375
3376 static const struct vm_operations_struct special_mapping_vmops = {
3377 .close = special_mapping_close,
3378 .fault = special_mapping_fault,
3379 .mremap = special_mapping_mremap,
3380 .name = special_mapping_name,
3381 /* vDSO code relies that VVAR can't be accessed remotely */
3382 .access = NULL,
3383 .may_split = special_mapping_split,
3384 };
3385
3386 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3387 .close = special_mapping_close,
3388 .fault = special_mapping_fault,
3389 };
3390
special_mapping_fault(struct vm_fault * vmf)3391 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3392 {
3393 struct vm_area_struct *vma = vmf->vma;
3394 pgoff_t pgoff;
3395 struct page **pages;
3396
3397 if (vma->vm_ops == &legacy_special_mapping_vmops) {
3398 pages = vma->vm_private_data;
3399 } else {
3400 struct vm_special_mapping *sm = vma->vm_private_data;
3401
3402 if (sm->fault)
3403 return sm->fault(sm, vmf->vma, vmf);
3404
3405 pages = sm->pages;
3406 }
3407
3408 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3409 pgoff--;
3410
3411 if (*pages) {
3412 struct page *page = *pages;
3413 get_page(page);
3414 vmf->page = page;
3415 return 0;
3416 }
3417
3418 return VM_FAULT_SIGBUS;
3419 }
3420
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3421 static struct vm_area_struct *__install_special_mapping(
3422 struct mm_struct *mm,
3423 unsigned long addr, unsigned long len,
3424 unsigned long vm_flags, void *priv,
3425 const struct vm_operations_struct *ops)
3426 {
3427 int ret;
3428 struct vm_area_struct *vma;
3429
3430 vma = vm_area_alloc(mm);
3431 if (unlikely(vma == NULL))
3432 return ERR_PTR(-ENOMEM);
3433
3434 vma->vm_start = addr;
3435 vma->vm_end = addr + len;
3436
3437 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3438 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
3439 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3440
3441 vma->vm_ops = ops;
3442 vma->vm_private_data = priv;
3443
3444 ret = insert_vm_struct(mm, vma);
3445 if (ret)
3446 goto out;
3447
3448 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3449
3450 perf_event_mmap(vma);
3451
3452 return vma;
3453
3454 out:
3455 vm_area_free(vma);
3456 return ERR_PTR(ret);
3457 }
3458
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3459 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3460 const struct vm_special_mapping *sm)
3461 {
3462 return vma->vm_private_data == sm &&
3463 (vma->vm_ops == &special_mapping_vmops ||
3464 vma->vm_ops == &legacy_special_mapping_vmops);
3465 }
3466
3467 /*
3468 * Called with mm->mmap_lock held for writing.
3469 * Insert a new vma covering the given region, with the given flags.
3470 * Its pages are supplied by the given array of struct page *.
3471 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3472 * The region past the last page supplied will always produce SIGBUS.
3473 * The array pointer and the pages it points to are assumed to stay alive
3474 * for as long as this mapping might exist.
3475 */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3476 struct vm_area_struct *_install_special_mapping(
3477 struct mm_struct *mm,
3478 unsigned long addr, unsigned long len,
3479 unsigned long vm_flags, const struct vm_special_mapping *spec)
3480 {
3481 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3482 &special_mapping_vmops);
3483 }
3484
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3485 int install_special_mapping(struct mm_struct *mm,
3486 unsigned long addr, unsigned long len,
3487 unsigned long vm_flags, struct page **pages)
3488 {
3489 struct vm_area_struct *vma = __install_special_mapping(
3490 mm, addr, len, vm_flags, (void *)pages,
3491 &legacy_special_mapping_vmops);
3492
3493 return PTR_ERR_OR_ZERO(vma);
3494 }
3495
3496 static DEFINE_MUTEX(mm_all_locks_mutex);
3497
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3498 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3499 {
3500 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3501 /*
3502 * The LSB of head.next can't change from under us
3503 * because we hold the mm_all_locks_mutex.
3504 */
3505 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3506 /*
3507 * We can safely modify head.next after taking the
3508 * anon_vma->root->rwsem. If some other vma in this mm shares
3509 * the same anon_vma we won't take it again.
3510 *
3511 * No need of atomic instructions here, head.next
3512 * can't change from under us thanks to the
3513 * anon_vma->root->rwsem.
3514 */
3515 if (__test_and_set_bit(0, (unsigned long *)
3516 &anon_vma->root->rb_root.rb_root.rb_node))
3517 BUG();
3518 }
3519 }
3520
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3521 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3522 {
3523 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3524 /*
3525 * AS_MM_ALL_LOCKS can't change from under us because
3526 * we hold the mm_all_locks_mutex.
3527 *
3528 * Operations on ->flags have to be atomic because
3529 * even if AS_MM_ALL_LOCKS is stable thanks to the
3530 * mm_all_locks_mutex, there may be other cpus
3531 * changing other bitflags in parallel to us.
3532 */
3533 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3534 BUG();
3535 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3536 }
3537 }
3538
3539 /*
3540 * This operation locks against the VM for all pte/vma/mm related
3541 * operations that could ever happen on a certain mm. This includes
3542 * vmtruncate, try_to_unmap, and all page faults.
3543 *
3544 * The caller must take the mmap_lock in write mode before calling
3545 * mm_take_all_locks(). The caller isn't allowed to release the
3546 * mmap_lock until mm_drop_all_locks() returns.
3547 *
3548 * mmap_lock in write mode is required in order to block all operations
3549 * that could modify pagetables and free pages without need of
3550 * altering the vma layout. It's also needed in write mode to avoid new
3551 * anon_vmas to be associated with existing vmas.
3552 *
3553 * A single task can't take more than one mm_take_all_locks() in a row
3554 * or it would deadlock.
3555 *
3556 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3557 * mapping->flags avoid to take the same lock twice, if more than one
3558 * vma in this mm is backed by the same anon_vma or address_space.
3559 *
3560 * We take locks in following order, accordingly to comment at beginning
3561 * of mm/rmap.c:
3562 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3563 * hugetlb mapping);
3564 * - all i_mmap_rwsem locks;
3565 * - all anon_vma->rwseml
3566 *
3567 * We can take all locks within these types randomly because the VM code
3568 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3569 * mm_all_locks_mutex.
3570 *
3571 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3572 * that may have to take thousand of locks.
3573 *
3574 * mm_take_all_locks() can fail if it's interrupted by signals.
3575 */
mm_take_all_locks(struct mm_struct * mm)3576 int mm_take_all_locks(struct mm_struct *mm)
3577 {
3578 struct vm_area_struct *vma;
3579 struct anon_vma_chain *avc;
3580
3581 mmap_assert_write_locked(mm);
3582
3583 mutex_lock(&mm_all_locks_mutex);
3584
3585 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3586 if (signal_pending(current))
3587 goto out_unlock;
3588 if (vma->vm_file && vma->vm_file->f_mapping &&
3589 is_vm_hugetlb_page(vma))
3590 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3591 }
3592
3593 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3594 if (signal_pending(current))
3595 goto out_unlock;
3596 if (vma->vm_file && vma->vm_file->f_mapping &&
3597 !is_vm_hugetlb_page(vma))
3598 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3599 }
3600
3601 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3602 if (signal_pending(current))
3603 goto out_unlock;
3604 if (vma->anon_vma)
3605 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3606 vm_lock_anon_vma(mm, avc->anon_vma);
3607 }
3608
3609 return 0;
3610
3611 out_unlock:
3612 mm_drop_all_locks(mm);
3613 return -EINTR;
3614 }
3615
vm_unlock_anon_vma(struct anon_vma * anon_vma)3616 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3617 {
3618 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3619 /*
3620 * The LSB of head.next can't change to 0 from under
3621 * us because we hold the mm_all_locks_mutex.
3622 *
3623 * We must however clear the bitflag before unlocking
3624 * the vma so the users using the anon_vma->rb_root will
3625 * never see our bitflag.
3626 *
3627 * No need of atomic instructions here, head.next
3628 * can't change from under us until we release the
3629 * anon_vma->root->rwsem.
3630 */
3631 if (!__test_and_clear_bit(0, (unsigned long *)
3632 &anon_vma->root->rb_root.rb_root.rb_node))
3633 BUG();
3634 anon_vma_unlock_write(anon_vma);
3635 }
3636 }
3637
vm_unlock_mapping(struct address_space * mapping)3638 static void vm_unlock_mapping(struct address_space *mapping)
3639 {
3640 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3641 /*
3642 * AS_MM_ALL_LOCKS can't change to 0 from under us
3643 * because we hold the mm_all_locks_mutex.
3644 */
3645 i_mmap_unlock_write(mapping);
3646 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3647 &mapping->flags))
3648 BUG();
3649 }
3650 }
3651
3652 /*
3653 * The mmap_lock cannot be released by the caller until
3654 * mm_drop_all_locks() returns.
3655 */
mm_drop_all_locks(struct mm_struct * mm)3656 void mm_drop_all_locks(struct mm_struct *mm)
3657 {
3658 struct vm_area_struct *vma;
3659 struct anon_vma_chain *avc;
3660
3661 mmap_assert_write_locked(mm);
3662 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3663
3664 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3665 if (vma->anon_vma)
3666 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3667 vm_unlock_anon_vma(avc->anon_vma);
3668 if (vma->vm_file && vma->vm_file->f_mapping)
3669 vm_unlock_mapping(vma->vm_file->f_mapping);
3670 }
3671
3672 mutex_unlock(&mm_all_locks_mutex);
3673 }
3674
3675 /*
3676 * initialise the percpu counter for VM
3677 */
mmap_init(void)3678 void __init mmap_init(void)
3679 {
3680 int ret;
3681
3682 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3683 VM_BUG_ON(ret);
3684 }
3685
3686 /*
3687 * Initialise sysctl_user_reserve_kbytes.
3688 *
3689 * This is intended to prevent a user from starting a single memory hogging
3690 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3691 * mode.
3692 *
3693 * The default value is min(3% of free memory, 128MB)
3694 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3695 */
init_user_reserve(void)3696 static int init_user_reserve(void)
3697 {
3698 unsigned long free_kbytes;
3699
3700 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3701
3702 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3703 return 0;
3704 }
3705 subsys_initcall(init_user_reserve);
3706
3707 /*
3708 * Initialise sysctl_admin_reserve_kbytes.
3709 *
3710 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3711 * to log in and kill a memory hogging process.
3712 *
3713 * Systems with more than 256MB will reserve 8MB, enough to recover
3714 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3715 * only reserve 3% of free pages by default.
3716 */
init_admin_reserve(void)3717 static int init_admin_reserve(void)
3718 {
3719 unsigned long free_kbytes;
3720
3721 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3722
3723 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3724 return 0;
3725 }
3726 subsys_initcall(init_admin_reserve);
3727
3728 /*
3729 * Reinititalise user and admin reserves if memory is added or removed.
3730 *
3731 * The default user reserve max is 128MB, and the default max for the
3732 * admin reserve is 8MB. These are usually, but not always, enough to
3733 * enable recovery from a memory hogging process using login/sshd, a shell,
3734 * and tools like top. It may make sense to increase or even disable the
3735 * reserve depending on the existence of swap or variations in the recovery
3736 * tools. So, the admin may have changed them.
3737 *
3738 * If memory is added and the reserves have been eliminated or increased above
3739 * the default max, then we'll trust the admin.
3740 *
3741 * If memory is removed and there isn't enough free memory, then we
3742 * need to reset the reserves.
3743 *
3744 * Otherwise keep the reserve set by the admin.
3745 */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3746 static int reserve_mem_notifier(struct notifier_block *nb,
3747 unsigned long action, void *data)
3748 {
3749 unsigned long tmp, free_kbytes;
3750
3751 switch (action) {
3752 case MEM_ONLINE:
3753 /* Default max is 128MB. Leave alone if modified by operator. */
3754 tmp = sysctl_user_reserve_kbytes;
3755 if (0 < tmp && tmp < (1UL << 17))
3756 init_user_reserve();
3757
3758 /* Default max is 8MB. Leave alone if modified by operator. */
3759 tmp = sysctl_admin_reserve_kbytes;
3760 if (0 < tmp && tmp < (1UL << 13))
3761 init_admin_reserve();
3762
3763 break;
3764 case MEM_OFFLINE:
3765 free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3766
3767 if (sysctl_user_reserve_kbytes > free_kbytes) {
3768 init_user_reserve();
3769 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3770 sysctl_user_reserve_kbytes);
3771 }
3772
3773 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3774 init_admin_reserve();
3775 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3776 sysctl_admin_reserve_kbytes);
3777 }
3778 break;
3779 default:
3780 break;
3781 }
3782 return NOTIFY_OK;
3783 }
3784
3785 static struct notifier_block reserve_mem_nb = {
3786 .notifier_call = reserve_mem_notifier,
3787 };
3788
init_reserve_notifier(void)3789 static int __meminit init_reserve_notifier(void)
3790 {
3791 if (register_hotmemory_notifier(&reserve_mem_nb))
3792 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3793
3794 return 0;
3795 }
3796 subsys_initcall(init_reserve_notifier);
3797