1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>	/* for try_to_release_page(),
27 					buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/backing-dev.h>
30 #include <linux/rmap.h>
31 #include <linux/topology.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/compaction.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
43 #include <linux/oom.h>
44 #include <linux/prefetch.h>
45 
46 #include <asm/tlbflush.h>
47 #include <asm/div64.h>
48 
49 #include <linux/swapops.h>
50 
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/vmscan.h>
55 
56 /*
57  * reclaim_mode determines how the inactive list is shrunk
58  * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
59  * RECLAIM_MODE_ASYNC:  Do not block
60  * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
61  * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
62  *			page from the LRU and reclaim all pages within a
63  *			naturally aligned range
64  * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
65  *			order-0 pages and then compact the zone
66  */
67 typedef unsigned __bitwise__ reclaim_mode_t;
68 #define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
69 #define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
70 #define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
71 #define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
72 #define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
73 
74 struct scan_control {
75 	/* Incremented by the number of inactive pages that were scanned */
76 	unsigned long nr_scanned;
77 
78 	/* Number of pages freed so far during a call to shrink_zones() */
79 	unsigned long nr_reclaimed;
80 
81 	/* How many pages shrink_list() should reclaim */
82 	unsigned long nr_to_reclaim;
83 
84 	unsigned long hibernation_mode;
85 
86 	/* This context's GFP mask */
87 	gfp_t gfp_mask;
88 
89 	int may_writepage;
90 
91 	/* Can mapped pages be reclaimed? */
92 	int may_unmap;
93 
94 	/* Can pages be swapped as part of reclaim? */
95 	int may_swap;
96 
97 	int order;
98 
99 	/*
100 	 * Intend to reclaim enough continuous memory rather than reclaim
101 	 * enough amount of memory. i.e, mode for high order allocation.
102 	 */
103 	reclaim_mode_t reclaim_mode;
104 
105 	/*
106 	 * The memory cgroup that hit its limit and as a result is the
107 	 * primary target of this reclaim invocation.
108 	 */
109 	struct mem_cgroup *target_mem_cgroup;
110 
111 	/*
112 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
113 	 * are scanned.
114 	 */
115 	nodemask_t	*nodemask;
116 };
117 
118 struct mem_cgroup_zone {
119 	struct mem_cgroup *mem_cgroup;
120 	struct zone *zone;
121 };
122 
123 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
124 
125 #ifdef ARCH_HAS_PREFETCH
126 #define prefetch_prev_lru_page(_page, _base, _field)			\
127 	do {								\
128 		if ((_page)->lru.prev != _base) {			\
129 			struct page *prev;				\
130 									\
131 			prev = lru_to_page(&(_page->lru));		\
132 			prefetch(&prev->_field);			\
133 		}							\
134 	} while (0)
135 #else
136 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
137 #endif
138 
139 #ifdef ARCH_HAS_PREFETCHW
140 #define prefetchw_prev_lru_page(_page, _base, _field)			\
141 	do {								\
142 		if ((_page)->lru.prev != _base) {			\
143 			struct page *prev;				\
144 									\
145 			prev = lru_to_page(&(_page->lru));		\
146 			prefetchw(&prev->_field);			\
147 		}							\
148 	} while (0)
149 #else
150 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
151 #endif
152 
153 /*
154  * From 0 .. 100.  Higher means more swappy.
155  */
156 int vm_swappiness = 60;
157 long vm_total_pages;	/* The total number of pages which the VM controls */
158 
159 static LIST_HEAD(shrinker_list);
160 static DECLARE_RWSEM(shrinker_rwsem);
161 
162 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
global_reclaim(struct scan_control * sc)163 static bool global_reclaim(struct scan_control *sc)
164 {
165 	return !sc->target_mem_cgroup;
166 }
167 
scanning_global_lru(struct mem_cgroup_zone * mz)168 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
169 {
170 	return !mz->mem_cgroup;
171 }
172 #else
global_reclaim(struct scan_control * sc)173 static bool global_reclaim(struct scan_control *sc)
174 {
175 	return true;
176 }
177 
scanning_global_lru(struct mem_cgroup_zone * mz)178 static bool scanning_global_lru(struct mem_cgroup_zone *mz)
179 {
180 	return true;
181 }
182 #endif
183 
get_reclaim_stat(struct mem_cgroup_zone * mz)184 static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
185 {
186 	if (!scanning_global_lru(mz))
187 		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
188 
189 	return &mz->zone->reclaim_stat;
190 }
191 
zone_nr_lru_pages(struct mem_cgroup_zone * mz,enum lru_list lru)192 static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
193 				       enum lru_list lru)
194 {
195 	if (!scanning_global_lru(mz))
196 		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
197 						    zone_to_nid(mz->zone),
198 						    zone_idx(mz->zone),
199 						    BIT(lru));
200 
201 	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
202 }
203 
204 
205 /*
206  * Add a shrinker callback to be called from the vm
207  */
register_shrinker(struct shrinker * shrinker)208 void register_shrinker(struct shrinker *shrinker)
209 {
210 	atomic_long_set(&shrinker->nr_in_batch, 0);
211 	down_write(&shrinker_rwsem);
212 	list_add_tail(&shrinker->list, &shrinker_list);
213 	up_write(&shrinker_rwsem);
214 }
215 EXPORT_SYMBOL(register_shrinker);
216 
217 /*
218  * Remove one
219  */
unregister_shrinker(struct shrinker * shrinker)220 void unregister_shrinker(struct shrinker *shrinker)
221 {
222 	down_write(&shrinker_rwsem);
223 	list_del(&shrinker->list);
224 	up_write(&shrinker_rwsem);
225 }
226 EXPORT_SYMBOL(unregister_shrinker);
227 
do_shrinker_shrink(struct shrinker * shrinker,struct shrink_control * sc,unsigned long nr_to_scan)228 static inline int do_shrinker_shrink(struct shrinker *shrinker,
229 				     struct shrink_control *sc,
230 				     unsigned long nr_to_scan)
231 {
232 	sc->nr_to_scan = nr_to_scan;
233 	return (*shrinker->shrink)(shrinker, sc);
234 }
235 
236 #define SHRINK_BATCH 128
237 /*
238  * Call the shrink functions to age shrinkable caches
239  *
240  * Here we assume it costs one seek to replace a lru page and that it also
241  * takes a seek to recreate a cache object.  With this in mind we age equal
242  * percentages of the lru and ageable caches.  This should balance the seeks
243  * generated by these structures.
244  *
245  * If the vm encountered mapped pages on the LRU it increase the pressure on
246  * slab to avoid swapping.
247  *
248  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
249  *
250  * `lru_pages' represents the number of on-LRU pages in all the zones which
251  * are eligible for the caller's allocation attempt.  It is used for balancing
252  * slab reclaim versus page reclaim.
253  *
254  * Returns the number of slab objects which we shrunk.
255  */
shrink_slab(struct shrink_control * shrink,unsigned long nr_pages_scanned,unsigned long lru_pages)256 unsigned long shrink_slab(struct shrink_control *shrink,
257 			  unsigned long nr_pages_scanned,
258 			  unsigned long lru_pages)
259 {
260 	struct shrinker *shrinker;
261 	unsigned long ret = 0;
262 
263 	if (nr_pages_scanned == 0)
264 		nr_pages_scanned = SWAP_CLUSTER_MAX;
265 
266 	if (!down_read_trylock(&shrinker_rwsem)) {
267 		/* Assume we'll be able to shrink next time */
268 		ret = 1;
269 		goto out;
270 	}
271 
272 	list_for_each_entry(shrinker, &shrinker_list, list) {
273 		unsigned long long delta;
274 		long total_scan;
275 		long max_pass;
276 		int shrink_ret = 0;
277 		long nr;
278 		long new_nr;
279 		long batch_size = shrinker->batch ? shrinker->batch
280 						  : SHRINK_BATCH;
281 
282 		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
283 		if (max_pass <= 0)
284 			continue;
285 
286 		/*
287 		 * copy the current shrinker scan count into a local variable
288 		 * and zero it so that other concurrent shrinker invocations
289 		 * don't also do this scanning work.
290 		 */
291 		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
292 
293 		total_scan = nr;
294 		delta = (4 * nr_pages_scanned) / shrinker->seeks;
295 		delta *= max_pass;
296 		do_div(delta, lru_pages + 1);
297 		total_scan += delta;
298 		if (total_scan < 0) {
299 			printk(KERN_ERR "shrink_slab: %pF negative objects to "
300 			       "delete nr=%ld\n",
301 			       shrinker->shrink, total_scan);
302 			total_scan = max_pass;
303 		}
304 
305 		/*
306 		 * We need to avoid excessive windup on filesystem shrinkers
307 		 * due to large numbers of GFP_NOFS allocations causing the
308 		 * shrinkers to return -1 all the time. This results in a large
309 		 * nr being built up so when a shrink that can do some work
310 		 * comes along it empties the entire cache due to nr >>>
311 		 * max_pass.  This is bad for sustaining a working set in
312 		 * memory.
313 		 *
314 		 * Hence only allow the shrinker to scan the entire cache when
315 		 * a large delta change is calculated directly.
316 		 */
317 		if (delta < max_pass / 4)
318 			total_scan = min(total_scan, max_pass / 2);
319 
320 		/*
321 		 * Avoid risking looping forever due to too large nr value:
322 		 * never try to free more than twice the estimate number of
323 		 * freeable entries.
324 		 */
325 		if (total_scan > max_pass * 2)
326 			total_scan = max_pass * 2;
327 
328 		trace_mm_shrink_slab_start(shrinker, shrink, nr,
329 					nr_pages_scanned, lru_pages,
330 					max_pass, delta, total_scan);
331 
332 		while (total_scan >= batch_size) {
333 			int nr_before;
334 
335 			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
336 			shrink_ret = do_shrinker_shrink(shrinker, shrink,
337 							batch_size);
338 			if (shrink_ret == -1)
339 				break;
340 			if (shrink_ret < nr_before)
341 				ret += nr_before - shrink_ret;
342 			count_vm_events(SLABS_SCANNED, batch_size);
343 			total_scan -= batch_size;
344 
345 			cond_resched();
346 		}
347 
348 		/*
349 		 * move the unused scan count back into the shrinker in a
350 		 * manner that handles concurrent updates. If we exhausted the
351 		 * scan, there is no need to do an update.
352 		 */
353 		if (total_scan > 0)
354 			new_nr = atomic_long_add_return(total_scan,
355 					&shrinker->nr_in_batch);
356 		else
357 			new_nr = atomic_long_read(&shrinker->nr_in_batch);
358 
359 		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
360 	}
361 	up_read(&shrinker_rwsem);
362 out:
363 	cond_resched();
364 	return ret;
365 }
366 
set_reclaim_mode(int priority,struct scan_control * sc,bool sync)367 static void set_reclaim_mode(int priority, struct scan_control *sc,
368 				   bool sync)
369 {
370 	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
371 
372 	/*
373 	 * Initially assume we are entering either lumpy reclaim or
374 	 * reclaim/compaction.Depending on the order, we will either set the
375 	 * sync mode or just reclaim order-0 pages later.
376 	 */
377 	if (COMPACTION_BUILD)
378 		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
379 	else
380 		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
381 
382 	/*
383 	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
384 	 * restricting when its set to either costly allocations or when
385 	 * under memory pressure
386 	 */
387 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
388 		sc->reclaim_mode |= syncmode;
389 	else if (sc->order && priority < DEF_PRIORITY - 2)
390 		sc->reclaim_mode |= syncmode;
391 	else
392 		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
393 }
394 
reset_reclaim_mode(struct scan_control * sc)395 static void reset_reclaim_mode(struct scan_control *sc)
396 {
397 	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
398 }
399 
is_page_cache_freeable(struct page * page)400 static inline int is_page_cache_freeable(struct page *page)
401 {
402 	/*
403 	 * A freeable page cache page is referenced only by the caller
404 	 * that isolated the page, the page cache radix tree and
405 	 * optional buffer heads at page->private.
406 	 */
407 	return page_count(page) - page_has_private(page) == 2;
408 }
409 
may_write_to_queue(struct backing_dev_info * bdi,struct scan_control * sc)410 static int may_write_to_queue(struct backing_dev_info *bdi,
411 			      struct scan_control *sc)
412 {
413 	if (current->flags & PF_SWAPWRITE)
414 		return 1;
415 	if (!bdi_write_congested(bdi))
416 		return 1;
417 	if (bdi == current->backing_dev_info)
418 		return 1;
419 
420 	/* lumpy reclaim for hugepage often need a lot of write */
421 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
422 		return 1;
423 	return 0;
424 }
425 
426 /*
427  * We detected a synchronous write error writing a page out.  Probably
428  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
429  * fsync(), msync() or close().
430  *
431  * The tricky part is that after writepage we cannot touch the mapping: nothing
432  * prevents it from being freed up.  But we have a ref on the page and once
433  * that page is locked, the mapping is pinned.
434  *
435  * We're allowed to run sleeping lock_page() here because we know the caller has
436  * __GFP_FS.
437  */
handle_write_error(struct address_space * mapping,struct page * page,int error)438 static void handle_write_error(struct address_space *mapping,
439 				struct page *page, int error)
440 {
441 	lock_page(page);
442 	if (page_mapping(page) == mapping)
443 		mapping_set_error(mapping, error);
444 	unlock_page(page);
445 }
446 
447 /* possible outcome of pageout() */
448 typedef enum {
449 	/* failed to write page out, page is locked */
450 	PAGE_KEEP,
451 	/* move page to the active list, page is locked */
452 	PAGE_ACTIVATE,
453 	/* page has been sent to the disk successfully, page is unlocked */
454 	PAGE_SUCCESS,
455 	/* page is clean and locked */
456 	PAGE_CLEAN,
457 } pageout_t;
458 
459 /*
460  * pageout is called by shrink_page_list() for each dirty page.
461  * Calls ->writepage().
462  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)463 static pageout_t pageout(struct page *page, struct address_space *mapping,
464 			 struct scan_control *sc)
465 {
466 	/*
467 	 * If the page is dirty, only perform writeback if that write
468 	 * will be non-blocking.  To prevent this allocation from being
469 	 * stalled by pagecache activity.  But note that there may be
470 	 * stalls if we need to run get_block().  We could test
471 	 * PagePrivate for that.
472 	 *
473 	 * If this process is currently in __generic_file_aio_write() against
474 	 * this page's queue, we can perform writeback even if that
475 	 * will block.
476 	 *
477 	 * If the page is swapcache, write it back even if that would
478 	 * block, for some throttling. This happens by accident, because
479 	 * swap_backing_dev_info is bust: it doesn't reflect the
480 	 * congestion state of the swapdevs.  Easy to fix, if needed.
481 	 */
482 	if (!is_page_cache_freeable(page))
483 		return PAGE_KEEP;
484 	if (!mapping) {
485 		/*
486 		 * Some data journaling orphaned pages can have
487 		 * page->mapping == NULL while being dirty with clean buffers.
488 		 */
489 		if (page_has_private(page)) {
490 			if (try_to_free_buffers(page)) {
491 				ClearPageDirty(page);
492 				printk("%s: orphaned page\n", __func__);
493 				return PAGE_CLEAN;
494 			}
495 		}
496 		return PAGE_KEEP;
497 	}
498 	if (mapping->a_ops->writepage == NULL)
499 		return PAGE_ACTIVATE;
500 	if (!may_write_to_queue(mapping->backing_dev_info, sc))
501 		return PAGE_KEEP;
502 
503 	if (clear_page_dirty_for_io(page)) {
504 		int res;
505 		struct writeback_control wbc = {
506 			.sync_mode = WB_SYNC_NONE,
507 			.nr_to_write = SWAP_CLUSTER_MAX,
508 			.range_start = 0,
509 			.range_end = LLONG_MAX,
510 			.for_reclaim = 1,
511 		};
512 
513 		SetPageReclaim(page);
514 		res = mapping->a_ops->writepage(page, &wbc);
515 		if (res < 0)
516 			handle_write_error(mapping, page, res);
517 		if (res == AOP_WRITEPAGE_ACTIVATE) {
518 			ClearPageReclaim(page);
519 			return PAGE_ACTIVATE;
520 		}
521 
522 		if (!PageWriteback(page)) {
523 			/* synchronous write or broken a_ops? */
524 			ClearPageReclaim(page);
525 		}
526 		trace_mm_vmscan_writepage(page,
527 			trace_reclaim_flags(page, sc->reclaim_mode));
528 		inc_zone_page_state(page, NR_VMSCAN_WRITE);
529 		return PAGE_SUCCESS;
530 	}
531 
532 	return PAGE_CLEAN;
533 }
534 
535 /*
536  * Same as remove_mapping, but if the page is removed from the mapping, it
537  * gets returned with a refcount of 0.
538  */
__remove_mapping(struct address_space * mapping,struct page * page)539 static int __remove_mapping(struct address_space *mapping, struct page *page)
540 {
541 	BUG_ON(!PageLocked(page));
542 	BUG_ON(mapping != page_mapping(page));
543 
544 	spin_lock_irq(&mapping->tree_lock);
545 	/*
546 	 * The non racy check for a busy page.
547 	 *
548 	 * Must be careful with the order of the tests. When someone has
549 	 * a ref to the page, it may be possible that they dirty it then
550 	 * drop the reference. So if PageDirty is tested before page_count
551 	 * here, then the following race may occur:
552 	 *
553 	 * get_user_pages(&page);
554 	 * [user mapping goes away]
555 	 * write_to(page);
556 	 *				!PageDirty(page)    [good]
557 	 * SetPageDirty(page);
558 	 * put_page(page);
559 	 *				!page_count(page)   [good, discard it]
560 	 *
561 	 * [oops, our write_to data is lost]
562 	 *
563 	 * Reversing the order of the tests ensures such a situation cannot
564 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
565 	 * load is not satisfied before that of page->_count.
566 	 *
567 	 * Note that if SetPageDirty is always performed via set_page_dirty,
568 	 * and thus under tree_lock, then this ordering is not required.
569 	 */
570 	if (!page_freeze_refs(page, 2))
571 		goto cannot_free;
572 	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
573 	if (unlikely(PageDirty(page))) {
574 		page_unfreeze_refs(page, 2);
575 		goto cannot_free;
576 	}
577 
578 	if (PageSwapCache(page)) {
579 		swp_entry_t swap = { .val = page_private(page) };
580 		__delete_from_swap_cache(page);
581 		spin_unlock_irq(&mapping->tree_lock);
582 		swapcache_free(swap, page);
583 	} else {
584 		void (*freepage)(struct page *);
585 
586 		freepage = mapping->a_ops->freepage;
587 
588 		__delete_from_page_cache(page);
589 		spin_unlock_irq(&mapping->tree_lock);
590 		mem_cgroup_uncharge_cache_page(page);
591 
592 		if (freepage != NULL)
593 			freepage(page);
594 	}
595 
596 	return 1;
597 
598 cannot_free:
599 	spin_unlock_irq(&mapping->tree_lock);
600 	return 0;
601 }
602 
603 /*
604  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
605  * someone else has a ref on the page, abort and return 0.  If it was
606  * successfully detached, return 1.  Assumes the caller has a single ref on
607  * this page.
608  */
remove_mapping(struct address_space * mapping,struct page * page)609 int remove_mapping(struct address_space *mapping, struct page *page)
610 {
611 	if (__remove_mapping(mapping, page)) {
612 		/*
613 		 * Unfreezing the refcount with 1 rather than 2 effectively
614 		 * drops the pagecache ref for us without requiring another
615 		 * atomic operation.
616 		 */
617 		page_unfreeze_refs(page, 1);
618 		return 1;
619 	}
620 	return 0;
621 }
622 
623 /**
624  * putback_lru_page - put previously isolated page onto appropriate LRU list
625  * @page: page to be put back to appropriate lru list
626  *
627  * Add previously isolated @page to appropriate LRU list.
628  * Page may still be unevictable for other reasons.
629  *
630  * lru_lock must not be held, interrupts must be enabled.
631  */
putback_lru_page(struct page * page)632 void putback_lru_page(struct page *page)
633 {
634 	int lru;
635 	int active = !!TestClearPageActive(page);
636 	int was_unevictable = PageUnevictable(page);
637 
638 	VM_BUG_ON(PageLRU(page));
639 
640 redo:
641 	ClearPageUnevictable(page);
642 
643 	if (page_evictable(page, NULL)) {
644 		/*
645 		 * For evictable pages, we can use the cache.
646 		 * In event of a race, worst case is we end up with an
647 		 * unevictable page on [in]active list.
648 		 * We know how to handle that.
649 		 */
650 		lru = active + page_lru_base_type(page);
651 		lru_cache_add_lru(page, lru);
652 	} else {
653 		/*
654 		 * Put unevictable pages directly on zone's unevictable
655 		 * list.
656 		 */
657 		lru = LRU_UNEVICTABLE;
658 		add_page_to_unevictable_list(page);
659 		/*
660 		 * When racing with an mlock or AS_UNEVICTABLE clearing
661 		 * (page is unlocked) make sure that if the other thread
662 		 * does not observe our setting of PG_lru and fails
663 		 * isolation/check_move_unevictable_pages,
664 		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
665 		 * the page back to the evictable list.
666 		 *
667 		 * The other side is TestClearPageMlocked() or shmem_lock().
668 		 */
669 		smp_mb();
670 	}
671 
672 	/*
673 	 * page's status can change while we move it among lru. If an evictable
674 	 * page is on unevictable list, it never be freed. To avoid that,
675 	 * check after we added it to the list, again.
676 	 */
677 	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
678 		if (!isolate_lru_page(page)) {
679 			put_page(page);
680 			goto redo;
681 		}
682 		/* This means someone else dropped this page from LRU
683 		 * So, it will be freed or putback to LRU again. There is
684 		 * nothing to do here.
685 		 */
686 	}
687 
688 	if (was_unevictable && lru != LRU_UNEVICTABLE)
689 		count_vm_event(UNEVICTABLE_PGRESCUED);
690 	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
691 		count_vm_event(UNEVICTABLE_PGCULLED);
692 
693 	put_page(page);		/* drop ref from isolate */
694 }
695 
696 enum page_references {
697 	PAGEREF_RECLAIM,
698 	PAGEREF_RECLAIM_CLEAN,
699 	PAGEREF_KEEP,
700 	PAGEREF_ACTIVATE,
701 };
702 
page_check_references(struct page * page,struct mem_cgroup_zone * mz,struct scan_control * sc)703 static enum page_references page_check_references(struct page *page,
704 						  struct mem_cgroup_zone *mz,
705 						  struct scan_control *sc)
706 {
707 	int referenced_ptes, referenced_page;
708 	unsigned long vm_flags;
709 
710 	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
711 	referenced_page = TestClearPageReferenced(page);
712 
713 	/* Lumpy reclaim - ignore references */
714 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
715 		return PAGEREF_RECLAIM;
716 
717 	/*
718 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
719 	 * move the page to the unevictable list.
720 	 */
721 	if (vm_flags & VM_LOCKED)
722 		return PAGEREF_RECLAIM;
723 
724 	if (referenced_ptes) {
725 		if (PageSwapBacked(page))
726 			return PAGEREF_ACTIVATE;
727 		/*
728 		 * All mapped pages start out with page table
729 		 * references from the instantiating fault, so we need
730 		 * to look twice if a mapped file page is used more
731 		 * than once.
732 		 *
733 		 * Mark it and spare it for another trip around the
734 		 * inactive list.  Another page table reference will
735 		 * lead to its activation.
736 		 *
737 		 * Note: the mark is set for activated pages as well
738 		 * so that recently deactivated but used pages are
739 		 * quickly recovered.
740 		 */
741 		SetPageReferenced(page);
742 
743 		if (referenced_page || referenced_ptes > 1)
744 			return PAGEREF_ACTIVATE;
745 
746 		/*
747 		 * Activate file-backed executable pages after first usage.
748 		 */
749 		if (vm_flags & VM_EXEC)
750 			return PAGEREF_ACTIVATE;
751 
752 		return PAGEREF_KEEP;
753 	}
754 
755 	/* Reclaim if clean, defer dirty pages to writeback */
756 	if (referenced_page && !PageSwapBacked(page))
757 		return PAGEREF_RECLAIM_CLEAN;
758 
759 	return PAGEREF_RECLAIM;
760 }
761 
762 /*
763  * shrink_page_list() returns the number of reclaimed pages
764  */
shrink_page_list(struct list_head * page_list,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority,unsigned long * ret_nr_dirty,unsigned long * ret_nr_writeback)765 static unsigned long shrink_page_list(struct list_head *page_list,
766 				      struct mem_cgroup_zone *mz,
767 				      struct scan_control *sc,
768 				      int priority,
769 				      unsigned long *ret_nr_dirty,
770 				      unsigned long *ret_nr_writeback)
771 {
772 	LIST_HEAD(ret_pages);
773 	LIST_HEAD(free_pages);
774 	int pgactivate = 0;
775 	unsigned long nr_dirty = 0;
776 	unsigned long nr_congested = 0;
777 	unsigned long nr_reclaimed = 0;
778 	unsigned long nr_writeback = 0;
779 
780 	cond_resched();
781 
782 	while (!list_empty(page_list)) {
783 		enum page_references references;
784 		struct address_space *mapping;
785 		struct page *page;
786 		int may_enter_fs;
787 
788 		cond_resched();
789 
790 		page = lru_to_page(page_list);
791 		list_del(&page->lru);
792 
793 		if (!trylock_page(page))
794 			goto keep;
795 
796 		VM_BUG_ON(PageActive(page));
797 		VM_BUG_ON(page_zone(page) != mz->zone);
798 
799 		sc->nr_scanned++;
800 
801 		if (unlikely(!page_evictable(page, NULL)))
802 			goto cull_mlocked;
803 
804 		if (!sc->may_unmap && page_mapped(page))
805 			goto keep_locked;
806 
807 		/* Double the slab pressure for mapped and swapcache pages */
808 		if (page_mapped(page) || PageSwapCache(page))
809 			sc->nr_scanned++;
810 
811 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
812 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
813 
814 		if (PageWriteback(page)) {
815 			nr_writeback++;
816 			/*
817 			 * Synchronous reclaim cannot queue pages for
818 			 * writeback due to the possibility of stack overflow
819 			 * but if it encounters a page under writeback, wait
820 			 * for the IO to complete.
821 			 */
822 			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
823 			    may_enter_fs)
824 				wait_on_page_writeback(page);
825 			else {
826 				unlock_page(page);
827 				goto keep_lumpy;
828 			}
829 		}
830 
831 		references = page_check_references(page, mz, sc);
832 		switch (references) {
833 		case PAGEREF_ACTIVATE:
834 			goto activate_locked;
835 		case PAGEREF_KEEP:
836 			goto keep_locked;
837 		case PAGEREF_RECLAIM:
838 		case PAGEREF_RECLAIM_CLEAN:
839 			; /* try to reclaim the page below */
840 		}
841 
842 		/*
843 		 * Anonymous process memory has backing store?
844 		 * Try to allocate it some swap space here.
845 		 */
846 		if (PageAnon(page) && !PageSwapCache(page)) {
847 			if (!(sc->gfp_mask & __GFP_IO))
848 				goto keep_locked;
849 			if (!add_to_swap(page))
850 				goto activate_locked;
851 			may_enter_fs = 1;
852 		}
853 
854 		mapping = page_mapping(page);
855 
856 		/*
857 		 * The page is mapped into the page tables of one or more
858 		 * processes. Try to unmap it here.
859 		 */
860 		if (page_mapped(page) && mapping) {
861 			switch (try_to_unmap(page, TTU_UNMAP)) {
862 			case SWAP_FAIL:
863 				goto activate_locked;
864 			case SWAP_AGAIN:
865 				goto keep_locked;
866 			case SWAP_MLOCK:
867 				goto cull_mlocked;
868 			case SWAP_SUCCESS:
869 				; /* try to free the page below */
870 			}
871 		}
872 
873 		if (PageDirty(page)) {
874 			nr_dirty++;
875 
876 			/*
877 			 * Only kswapd can writeback filesystem pages to
878 			 * avoid risk of stack overflow but do not writeback
879 			 * unless under significant pressure.
880 			 */
881 			if (page_is_file_cache(page) &&
882 					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
883 				/*
884 				 * Immediately reclaim when written back.
885 				 * Similar in principal to deactivate_page()
886 				 * except we already have the page isolated
887 				 * and know it's dirty
888 				 */
889 				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
890 				SetPageReclaim(page);
891 
892 				goto keep_locked;
893 			}
894 
895 			if (references == PAGEREF_RECLAIM_CLEAN)
896 				goto keep_locked;
897 			if (!may_enter_fs)
898 				goto keep_locked;
899 			if (!sc->may_writepage)
900 				goto keep_locked;
901 
902 			/* Page is dirty, try to write it out here */
903 			switch (pageout(page, mapping, sc)) {
904 			case PAGE_KEEP:
905 				nr_congested++;
906 				goto keep_locked;
907 			case PAGE_ACTIVATE:
908 				goto activate_locked;
909 			case PAGE_SUCCESS:
910 				if (PageWriteback(page))
911 					goto keep_lumpy;
912 				if (PageDirty(page))
913 					goto keep;
914 
915 				/*
916 				 * A synchronous write - probably a ramdisk.  Go
917 				 * ahead and try to reclaim the page.
918 				 */
919 				if (!trylock_page(page))
920 					goto keep;
921 				if (PageDirty(page) || PageWriteback(page))
922 					goto keep_locked;
923 				mapping = page_mapping(page);
924 			case PAGE_CLEAN:
925 				; /* try to free the page below */
926 			}
927 		}
928 
929 		/*
930 		 * If the page has buffers, try to free the buffer mappings
931 		 * associated with this page. If we succeed we try to free
932 		 * the page as well.
933 		 *
934 		 * We do this even if the page is PageDirty().
935 		 * try_to_release_page() does not perform I/O, but it is
936 		 * possible for a page to have PageDirty set, but it is actually
937 		 * clean (all its buffers are clean).  This happens if the
938 		 * buffers were written out directly, with submit_bh(). ext3
939 		 * will do this, as well as the blockdev mapping.
940 		 * try_to_release_page() will discover that cleanness and will
941 		 * drop the buffers and mark the page clean - it can be freed.
942 		 *
943 		 * Rarely, pages can have buffers and no ->mapping.  These are
944 		 * the pages which were not successfully invalidated in
945 		 * truncate_complete_page().  We try to drop those buffers here
946 		 * and if that worked, and the page is no longer mapped into
947 		 * process address space (page_count == 1) it can be freed.
948 		 * Otherwise, leave the page on the LRU so it is swappable.
949 		 */
950 		if (page_has_private(page)) {
951 			if (!try_to_release_page(page, sc->gfp_mask))
952 				goto activate_locked;
953 			if (!mapping && page_count(page) == 1) {
954 				unlock_page(page);
955 				if (put_page_testzero(page))
956 					goto free_it;
957 				else {
958 					/*
959 					 * rare race with speculative reference.
960 					 * the speculative reference will free
961 					 * this page shortly, so we may
962 					 * increment nr_reclaimed here (and
963 					 * leave it off the LRU).
964 					 */
965 					nr_reclaimed++;
966 					continue;
967 				}
968 			}
969 		}
970 
971 		if (!mapping || !__remove_mapping(mapping, page))
972 			goto keep_locked;
973 
974 		/*
975 		 * At this point, we have no other references and there is
976 		 * no way to pick any more up (removed from LRU, removed
977 		 * from pagecache). Can use non-atomic bitops now (and
978 		 * we obviously don't have to worry about waking up a process
979 		 * waiting on the page lock, because there are no references.
980 		 */
981 		__clear_page_locked(page);
982 free_it:
983 		nr_reclaimed++;
984 
985 		/*
986 		 * Is there need to periodically free_page_list? It would
987 		 * appear not as the counts should be low
988 		 */
989 		list_add(&page->lru, &free_pages);
990 		continue;
991 
992 cull_mlocked:
993 		if (PageSwapCache(page))
994 			try_to_free_swap(page);
995 		unlock_page(page);
996 		putback_lru_page(page);
997 		reset_reclaim_mode(sc);
998 		continue;
999 
1000 activate_locked:
1001 		/* Not a candidate for swapping, so reclaim swap space. */
1002 		if (PageSwapCache(page) && vm_swap_full())
1003 			try_to_free_swap(page);
1004 		VM_BUG_ON(PageActive(page));
1005 		SetPageActive(page);
1006 		pgactivate++;
1007 keep_locked:
1008 		unlock_page(page);
1009 keep:
1010 		reset_reclaim_mode(sc);
1011 keep_lumpy:
1012 		list_add(&page->lru, &ret_pages);
1013 		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1014 	}
1015 
1016 	/*
1017 	 * Tag a zone as congested if all the dirty pages encountered were
1018 	 * backed by a congested BDI. In this case, reclaimers should just
1019 	 * back off and wait for congestion to clear because further reclaim
1020 	 * will encounter the same problem
1021 	 */
1022 	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
1023 		zone_set_flag(mz->zone, ZONE_CONGESTED);
1024 
1025 	free_hot_cold_page_list(&free_pages, 1);
1026 
1027 	list_splice(&ret_pages, page_list);
1028 	count_vm_events(PGACTIVATE, pgactivate);
1029 	*ret_nr_dirty += nr_dirty;
1030 	*ret_nr_writeback += nr_writeback;
1031 	return nr_reclaimed;
1032 }
1033 
1034 /*
1035  * Attempt to remove the specified page from its LRU.  Only take this page
1036  * if it is of the appropriate PageActive status.  Pages which are being
1037  * freed elsewhere are also ignored.
1038  *
1039  * page:	page to consider
1040  * mode:	one of the LRU isolation modes defined above
1041  *
1042  * returns 0 on success, -ve errno on failure.
1043  */
__isolate_lru_page(struct page * page,isolate_mode_t mode,int file)1044 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1045 {
1046 	bool all_lru_mode;
1047 	int ret = -EINVAL;
1048 
1049 	/* Only take pages on the LRU. */
1050 	if (!PageLRU(page))
1051 		return ret;
1052 
1053 	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1054 		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1055 
1056 	/*
1057 	 * When checking the active state, we need to be sure we are
1058 	 * dealing with comparible boolean values.  Take the logical not
1059 	 * of each.
1060 	 */
1061 	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1062 		return ret;
1063 
1064 	if (!all_lru_mode && !!page_is_file_cache(page) != file)
1065 		return ret;
1066 
1067 	/*
1068 	 * When this function is being called for lumpy reclaim, we
1069 	 * initially look into all LRU pages, active, inactive and
1070 	 * unevictable; only give shrink_page_list evictable pages.
1071 	 */
1072 	if (PageUnevictable(page))
1073 		return ret;
1074 
1075 	ret = -EBUSY;
1076 
1077 	/*
1078 	 * To minimise LRU disruption, the caller can indicate that it only
1079 	 * wants to isolate pages it will be able to operate on without
1080 	 * blocking - clean pages for the most part.
1081 	 *
1082 	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1083 	 * is used by reclaim when it is cannot write to backing storage
1084 	 *
1085 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1086 	 * that it is possible to migrate without blocking
1087 	 */
1088 	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1089 		/* All the caller can do on PageWriteback is block */
1090 		if (PageWriteback(page))
1091 			return ret;
1092 
1093 		if (PageDirty(page)) {
1094 			struct address_space *mapping;
1095 
1096 			/* ISOLATE_CLEAN means only clean pages */
1097 			if (mode & ISOLATE_CLEAN)
1098 				return ret;
1099 
1100 			/*
1101 			 * Only pages without mappings or that have a
1102 			 * ->migratepage callback are possible to migrate
1103 			 * without blocking
1104 			 */
1105 			mapping = page_mapping(page);
1106 			if (mapping && !mapping->a_ops->migratepage)
1107 				return ret;
1108 		}
1109 	}
1110 
1111 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1112 		return ret;
1113 
1114 	if (likely(get_page_unless_zero(page))) {
1115 		/*
1116 		 * Be careful not to clear PageLRU until after we're
1117 		 * sure the page is not being freed elsewhere -- the
1118 		 * page release code relies on it.
1119 		 */
1120 		ClearPageLRU(page);
1121 		ret = 0;
1122 	}
1123 
1124 	return ret;
1125 }
1126 
1127 /*
1128  * zone->lru_lock is heavily contended.  Some of the functions that
1129  * shrink the lists perform better by taking out a batch of pages
1130  * and working on them outside the LRU lock.
1131  *
1132  * For pagecache intensive workloads, this function is the hottest
1133  * spot in the kernel (apart from copy_*_user functions).
1134  *
1135  * Appropriate locks must be held before calling this function.
1136  *
1137  * @nr_to_scan:	The number of pages to look through on the list.
1138  * @mz:		The mem_cgroup_zone to pull pages from.
1139  * @dst:	The temp list to put pages on to.
1140  * @nr_scanned:	The number of pages that were scanned.
1141  * @sc:		The scan_control struct for this reclaim session
1142  * @mode:	One of the LRU isolation modes
1143  * @active:	True [1] if isolating active pages
1144  * @file:	True [1] if isolating file [!anon] pages
1145  *
1146  * returns how many pages were moved onto *@dst.
1147  */
isolate_lru_pages(unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,int active,int file)1148 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1149 		struct mem_cgroup_zone *mz, struct list_head *dst,
1150 		unsigned long *nr_scanned, struct scan_control *sc,
1151 		isolate_mode_t mode, int active, int file)
1152 {
1153 	struct lruvec *lruvec;
1154 	struct list_head *src;
1155 	unsigned long nr_taken = 0;
1156 	unsigned long nr_lumpy_taken = 0;
1157 	unsigned long nr_lumpy_dirty = 0;
1158 	unsigned long nr_lumpy_failed = 0;
1159 	unsigned long scan;
1160 	int lru = LRU_BASE;
1161 
1162 	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
1163 	if (active)
1164 		lru += LRU_ACTIVE;
1165 	if (file)
1166 		lru += LRU_FILE;
1167 	src = &lruvec->lists[lru];
1168 
1169 	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1170 		struct page *page;
1171 		unsigned long pfn;
1172 		unsigned long end_pfn;
1173 		unsigned long page_pfn;
1174 		int zone_id;
1175 
1176 		page = lru_to_page(src);
1177 		prefetchw_prev_lru_page(page, src, flags);
1178 
1179 		VM_BUG_ON(!PageLRU(page));
1180 
1181 		switch (__isolate_lru_page(page, mode, file)) {
1182 		case 0:
1183 			mem_cgroup_lru_del(page);
1184 			list_move(&page->lru, dst);
1185 			nr_taken += hpage_nr_pages(page);
1186 			break;
1187 
1188 		case -EBUSY:
1189 			/* else it is being freed elsewhere */
1190 			list_move(&page->lru, src);
1191 			continue;
1192 
1193 		default:
1194 			BUG();
1195 		}
1196 
1197 		if (!sc->order || !(sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM))
1198 			continue;
1199 
1200 		/*
1201 		 * Attempt to take all pages in the order aligned region
1202 		 * surrounding the tag page.  Only take those pages of
1203 		 * the same active state as that tag page.  We may safely
1204 		 * round the target page pfn down to the requested order
1205 		 * as the mem_map is guaranteed valid out to MAX_ORDER,
1206 		 * where that page is in a different zone we will detect
1207 		 * it from its zone id and abort this block scan.
1208 		 */
1209 		zone_id = page_zone_id(page);
1210 		page_pfn = page_to_pfn(page);
1211 		pfn = page_pfn & ~((1 << sc->order) - 1);
1212 		end_pfn = pfn + (1 << sc->order);
1213 		for (; pfn < end_pfn; pfn++) {
1214 			struct page *cursor_page;
1215 
1216 			/* The target page is in the block, ignore it. */
1217 			if (unlikely(pfn == page_pfn))
1218 				continue;
1219 
1220 			/* Avoid holes within the zone. */
1221 			if (unlikely(!pfn_valid_within(pfn)))
1222 				break;
1223 
1224 			cursor_page = pfn_to_page(pfn);
1225 
1226 			/* Check that we have not crossed a zone boundary. */
1227 			if (unlikely(page_zone_id(cursor_page) != zone_id))
1228 				break;
1229 
1230 			/*
1231 			 * If we don't have enough swap space, reclaiming of
1232 			 * anon page which don't already have a swap slot is
1233 			 * pointless.
1234 			 */
1235 			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1236 			    !PageSwapCache(cursor_page))
1237 				break;
1238 
1239 			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1240 				unsigned int isolated_pages;
1241 
1242 				mem_cgroup_lru_del(cursor_page);
1243 				list_move(&cursor_page->lru, dst);
1244 				isolated_pages = hpage_nr_pages(cursor_page);
1245 				nr_taken += isolated_pages;
1246 				nr_lumpy_taken += isolated_pages;
1247 				if (PageDirty(cursor_page))
1248 					nr_lumpy_dirty += isolated_pages;
1249 				scan++;
1250 				pfn += isolated_pages - 1;
1251 			} else {
1252 				/*
1253 				 * Check if the page is freed already.
1254 				 *
1255 				 * We can't use page_count() as that
1256 				 * requires compound_head and we don't
1257 				 * have a pin on the page here. If a
1258 				 * page is tail, we may or may not
1259 				 * have isolated the head, so assume
1260 				 * it's not free, it'd be tricky to
1261 				 * track the head status without a
1262 				 * page pin.
1263 				 */
1264 				if (!PageTail(cursor_page) &&
1265 				    !atomic_read(&cursor_page->_count))
1266 					continue;
1267 				break;
1268 			}
1269 		}
1270 
1271 		/* If we break out of the loop above, lumpy reclaim failed */
1272 		if (pfn < end_pfn)
1273 			nr_lumpy_failed++;
1274 	}
1275 
1276 	*nr_scanned = scan;
1277 
1278 	trace_mm_vmscan_lru_isolate(sc->order,
1279 			nr_to_scan, scan,
1280 			nr_taken,
1281 			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1282 			mode, file);
1283 	return nr_taken;
1284 }
1285 
1286 /**
1287  * isolate_lru_page - tries to isolate a page from its LRU list
1288  * @page: page to isolate from its LRU list
1289  *
1290  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1291  * vmstat statistic corresponding to whatever LRU list the page was on.
1292  *
1293  * Returns 0 if the page was removed from an LRU list.
1294  * Returns -EBUSY if the page was not on an LRU list.
1295  *
1296  * The returned page will have PageLRU() cleared.  If it was found on
1297  * the active list, it will have PageActive set.  If it was found on
1298  * the unevictable list, it will have the PageUnevictable bit set. That flag
1299  * may need to be cleared by the caller before letting the page go.
1300  *
1301  * The vmstat statistic corresponding to the list on which the page was
1302  * found will be decremented.
1303  *
1304  * Restrictions:
1305  * (1) Must be called with an elevated refcount on the page. This is a
1306  *     fundamentnal difference from isolate_lru_pages (which is called
1307  *     without a stable reference).
1308  * (2) the lru_lock must not be held.
1309  * (3) interrupts must be enabled.
1310  */
isolate_lru_page(struct page * page)1311 int isolate_lru_page(struct page *page)
1312 {
1313 	int ret = -EBUSY;
1314 
1315 	VM_BUG_ON(!page_count(page));
1316 
1317 	if (PageLRU(page)) {
1318 		struct zone *zone = page_zone(page);
1319 
1320 		spin_lock_irq(&zone->lru_lock);
1321 		if (PageLRU(page)) {
1322 			int lru = page_lru(page);
1323 			ret = 0;
1324 			get_page(page);
1325 			ClearPageLRU(page);
1326 
1327 			del_page_from_lru_list(zone, page, lru);
1328 		}
1329 		spin_unlock_irq(&zone->lru_lock);
1330 	}
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Are there way too many processes in the direct reclaim path already?
1336  */
too_many_isolated(struct zone * zone,int file,struct scan_control * sc)1337 static int too_many_isolated(struct zone *zone, int file,
1338 		struct scan_control *sc)
1339 {
1340 	unsigned long inactive, isolated;
1341 
1342 	if (current_is_kswapd())
1343 		return 0;
1344 
1345 	if (!global_reclaim(sc))
1346 		return 0;
1347 
1348 	if (file) {
1349 		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1350 		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1351 	} else {
1352 		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1353 		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1354 	}
1355 
1356 	return isolated > inactive;
1357 }
1358 
1359 static noinline_for_stack void
putback_inactive_pages(struct mem_cgroup_zone * mz,struct list_head * page_list)1360 putback_inactive_pages(struct mem_cgroup_zone *mz,
1361 		       struct list_head *page_list)
1362 {
1363 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1364 	struct zone *zone = mz->zone;
1365 	LIST_HEAD(pages_to_free);
1366 
1367 	/*
1368 	 * Put back any unfreeable pages.
1369 	 */
1370 	while (!list_empty(page_list)) {
1371 		struct page *page = lru_to_page(page_list);
1372 		int lru;
1373 
1374 		VM_BUG_ON(PageLRU(page));
1375 		list_del(&page->lru);
1376 		if (unlikely(!page_evictable(page, NULL))) {
1377 			spin_unlock_irq(&zone->lru_lock);
1378 			putback_lru_page(page);
1379 			spin_lock_irq(&zone->lru_lock);
1380 			continue;
1381 		}
1382 		SetPageLRU(page);
1383 		lru = page_lru(page);
1384 		add_page_to_lru_list(zone, page, lru);
1385 		if (is_active_lru(lru)) {
1386 			int file = is_file_lru(lru);
1387 			int numpages = hpage_nr_pages(page);
1388 			reclaim_stat->recent_rotated[file] += numpages;
1389 		}
1390 		if (put_page_testzero(page)) {
1391 			__ClearPageLRU(page);
1392 			__ClearPageActive(page);
1393 			del_page_from_lru_list(zone, page, lru);
1394 
1395 			if (unlikely(PageCompound(page))) {
1396 				spin_unlock_irq(&zone->lru_lock);
1397 				(*get_compound_page_dtor(page))(page);
1398 				spin_lock_irq(&zone->lru_lock);
1399 			} else
1400 				list_add(&page->lru, &pages_to_free);
1401 		}
1402 	}
1403 
1404 	/*
1405 	 * To save our caller's stack, now use input list for pages to free.
1406 	 */
1407 	list_splice(&pages_to_free, page_list);
1408 }
1409 
1410 static noinline_for_stack void
update_isolated_counts(struct mem_cgroup_zone * mz,struct list_head * page_list,unsigned long * nr_anon,unsigned long * nr_file)1411 update_isolated_counts(struct mem_cgroup_zone *mz,
1412 		       struct list_head *page_list,
1413 		       unsigned long *nr_anon,
1414 		       unsigned long *nr_file)
1415 {
1416 	struct zone *zone = mz->zone;
1417 	unsigned int count[NR_LRU_LISTS] = { 0, };
1418 	unsigned long nr_active = 0;
1419 	struct page *page;
1420 	int lru;
1421 
1422 	/*
1423 	 * Count pages and clear active flags
1424 	 */
1425 	list_for_each_entry(page, page_list, lru) {
1426 		int numpages = hpage_nr_pages(page);
1427 		lru = page_lru_base_type(page);
1428 		if (PageActive(page)) {
1429 			lru += LRU_ACTIVE;
1430 			ClearPageActive(page);
1431 			nr_active += numpages;
1432 		}
1433 		count[lru] += numpages;
1434 	}
1435 
1436 	preempt_disable();
1437 	__count_vm_events(PGDEACTIVATE, nr_active);
1438 
1439 	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
1440 			      -count[LRU_ACTIVE_FILE]);
1441 	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
1442 			      -count[LRU_INACTIVE_FILE]);
1443 	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
1444 			      -count[LRU_ACTIVE_ANON]);
1445 	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
1446 			      -count[LRU_INACTIVE_ANON]);
1447 
1448 	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1449 	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1450 
1451 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1452 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1453 	preempt_enable();
1454 }
1455 
1456 /*
1457  * Returns true if a direct reclaim should wait on pages under writeback.
1458  *
1459  * If we are direct reclaiming for contiguous pages and we do not reclaim
1460  * everything in the list, try again and wait for writeback IO to complete.
1461  * This will stall high-order allocations noticeably. Only do that when really
1462  * need to free the pages under high memory pressure.
1463  */
should_reclaim_stall(unsigned long nr_taken,unsigned long nr_freed,int priority,struct scan_control * sc)1464 static inline bool should_reclaim_stall(unsigned long nr_taken,
1465 					unsigned long nr_freed,
1466 					int priority,
1467 					struct scan_control *sc)
1468 {
1469 	int lumpy_stall_priority;
1470 
1471 	/* kswapd should not stall on sync IO */
1472 	if (current_is_kswapd())
1473 		return false;
1474 
1475 	/* Only stall on lumpy reclaim */
1476 	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1477 		return false;
1478 
1479 	/* If we have reclaimed everything on the isolated list, no stall */
1480 	if (nr_freed == nr_taken)
1481 		return false;
1482 
1483 	/*
1484 	 * For high-order allocations, there are two stall thresholds.
1485 	 * High-cost allocations stall immediately where as lower
1486 	 * order allocations such as stacks require the scanning
1487 	 * priority to be much higher before stalling.
1488 	 */
1489 	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1490 		lumpy_stall_priority = DEF_PRIORITY;
1491 	else
1492 		lumpy_stall_priority = DEF_PRIORITY / 3;
1493 
1494 	return priority <= lumpy_stall_priority;
1495 }
1496 
1497 /*
1498  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
1499  * of reclaimed pages
1500  */
1501 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority,int file)1502 shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
1503 		     struct scan_control *sc, int priority, int file)
1504 {
1505 	LIST_HEAD(page_list);
1506 	unsigned long nr_scanned;
1507 	unsigned long nr_reclaimed = 0;
1508 	unsigned long nr_taken;
1509 	unsigned long nr_anon;
1510 	unsigned long nr_file;
1511 	unsigned long nr_dirty = 0;
1512 	unsigned long nr_writeback = 0;
1513 	isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
1514 	struct zone *zone = mz->zone;
1515 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1516 
1517 	while (unlikely(too_many_isolated(zone, file, sc))) {
1518 		congestion_wait(BLK_RW_ASYNC, HZ/10);
1519 
1520 		/* We are about to die and free our memory. Return now. */
1521 		if (fatal_signal_pending(current))
1522 			return SWAP_CLUSTER_MAX;
1523 	}
1524 
1525 	set_reclaim_mode(priority, sc, false);
1526 	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1527 		isolate_mode |= ISOLATE_ACTIVE;
1528 
1529 	lru_add_drain();
1530 
1531 	if (!sc->may_unmap)
1532 		isolate_mode |= ISOLATE_UNMAPPED;
1533 	if (!sc->may_writepage)
1534 		isolate_mode |= ISOLATE_CLEAN;
1535 
1536 	spin_lock_irq(&zone->lru_lock);
1537 
1538 	nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
1539 				     sc, isolate_mode, 0, file);
1540 	if (global_reclaim(sc)) {
1541 		zone->pages_scanned += nr_scanned;
1542 		if (current_is_kswapd())
1543 			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
1544 					       nr_scanned);
1545 		else
1546 			__count_zone_vm_events(PGSCAN_DIRECT, zone,
1547 					       nr_scanned);
1548 	}
1549 	spin_unlock_irq(&zone->lru_lock);
1550 
1551 	if (nr_taken == 0)
1552 		return 0;
1553 
1554 	update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
1555 
1556 	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
1557 						&nr_dirty, &nr_writeback);
1558 
1559 	/* Check if we should syncronously wait for writeback */
1560 	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1561 		set_reclaim_mode(priority, sc, true);
1562 		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
1563 					priority, &nr_dirty, &nr_writeback);
1564 	}
1565 
1566 	spin_lock_irq(&zone->lru_lock);
1567 
1568 	reclaim_stat->recent_scanned[0] += nr_anon;
1569 	reclaim_stat->recent_scanned[1] += nr_file;
1570 
1571 	if (global_reclaim(sc)) {
1572 		if (current_is_kswapd())
1573 			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
1574 					       nr_reclaimed);
1575 		else
1576 			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
1577 					       nr_reclaimed);
1578 	}
1579 
1580 	putback_inactive_pages(mz, &page_list);
1581 
1582 	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1583 	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1584 
1585 	spin_unlock_irq(&zone->lru_lock);
1586 
1587 	free_hot_cold_page_list(&page_list, 1);
1588 
1589 	/*
1590 	 * If reclaim is isolating dirty pages under writeback, it implies
1591 	 * that the long-lived page allocation rate is exceeding the page
1592 	 * laundering rate. Either the global limits are not being effective
1593 	 * at throttling processes due to the page distribution throughout
1594 	 * zones or there is heavy usage of a slow backing device. The
1595 	 * only option is to throttle from reclaim context which is not ideal
1596 	 * as there is no guarantee the dirtying process is throttled in the
1597 	 * same way balance_dirty_pages() manages.
1598 	 *
1599 	 * This scales the number of dirty pages that must be under writeback
1600 	 * before throttling depending on priority. It is a simple backoff
1601 	 * function that has the most effect in the range DEF_PRIORITY to
1602 	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1603 	 * in trouble and reclaim is considered to be in trouble.
1604 	 *
1605 	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
1606 	 * DEF_PRIORITY-1  50% must be PageWriteback
1607 	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
1608 	 * ...
1609 	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1610 	 *                     isolated page is PageWriteback
1611 	 */
1612 	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1613 		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1614 
1615 	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1616 		zone_idx(zone),
1617 		nr_scanned, nr_reclaimed,
1618 		priority,
1619 		trace_shrink_flags(file, sc->reclaim_mode));
1620 	return nr_reclaimed;
1621 }
1622 
1623 /*
1624  * This moves pages from the active list to the inactive list.
1625  *
1626  * We move them the other way if the page is referenced by one or more
1627  * processes, from rmap.
1628  *
1629  * If the pages are mostly unmapped, the processing is fast and it is
1630  * appropriate to hold zone->lru_lock across the whole operation.  But if
1631  * the pages are mapped, the processing is slow (page_referenced()) so we
1632  * should drop zone->lru_lock around each page.  It's impossible to balance
1633  * this, so instead we remove the pages from the LRU while processing them.
1634  * It is safe to rely on PG_active against the non-LRU pages in here because
1635  * nobody will play with that bit on a non-LRU page.
1636  *
1637  * The downside is that we have to touch page->_count against each page.
1638  * But we had to alter page->flags anyway.
1639  */
1640 
move_active_pages_to_lru(struct zone * zone,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)1641 static void move_active_pages_to_lru(struct zone *zone,
1642 				     struct list_head *list,
1643 				     struct list_head *pages_to_free,
1644 				     enum lru_list lru)
1645 {
1646 	unsigned long pgmoved = 0;
1647 	struct page *page;
1648 
1649 	while (!list_empty(list)) {
1650 		struct lruvec *lruvec;
1651 
1652 		page = lru_to_page(list);
1653 
1654 		VM_BUG_ON(PageLRU(page));
1655 		SetPageLRU(page);
1656 
1657 		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
1658 		list_move(&page->lru, &lruvec->lists[lru]);
1659 		pgmoved += hpage_nr_pages(page);
1660 
1661 		if (put_page_testzero(page)) {
1662 			__ClearPageLRU(page);
1663 			__ClearPageActive(page);
1664 			del_page_from_lru_list(zone, page, lru);
1665 
1666 			if (unlikely(PageCompound(page))) {
1667 				spin_unlock_irq(&zone->lru_lock);
1668 				(*get_compound_page_dtor(page))(page);
1669 				spin_lock_irq(&zone->lru_lock);
1670 			} else
1671 				list_add(&page->lru, pages_to_free);
1672 		}
1673 	}
1674 	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1675 	if (!is_active_lru(lru))
1676 		__count_vm_events(PGDEACTIVATE, pgmoved);
1677 }
1678 
shrink_active_list(unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority,int file)1679 static void shrink_active_list(unsigned long nr_to_scan,
1680 			       struct mem_cgroup_zone *mz,
1681 			       struct scan_control *sc,
1682 			       int priority, int file)
1683 {
1684 	unsigned long nr_taken;
1685 	unsigned long nr_scanned;
1686 	unsigned long vm_flags;
1687 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
1688 	LIST_HEAD(l_active);
1689 	LIST_HEAD(l_inactive);
1690 	struct page *page;
1691 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1692 	unsigned long nr_rotated = 0;
1693 	isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
1694 	struct zone *zone = mz->zone;
1695 
1696 	lru_add_drain();
1697 
1698 	reset_reclaim_mode(sc);
1699 
1700 	if (!sc->may_unmap)
1701 		isolate_mode |= ISOLATE_UNMAPPED;
1702 	if (!sc->may_writepage)
1703 		isolate_mode |= ISOLATE_CLEAN;
1704 
1705 	spin_lock_irq(&zone->lru_lock);
1706 
1707 	nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
1708 				     isolate_mode, 1, file);
1709 	if (global_reclaim(sc))
1710 		zone->pages_scanned += nr_scanned;
1711 
1712 	reclaim_stat->recent_scanned[file] += nr_taken;
1713 
1714 	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
1715 	if (file)
1716 		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1717 	else
1718 		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1719 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1720 	spin_unlock_irq(&zone->lru_lock);
1721 
1722 	while (!list_empty(&l_hold)) {
1723 		cond_resched();
1724 		page = lru_to_page(&l_hold);
1725 		list_del(&page->lru);
1726 
1727 		if (unlikely(!page_evictable(page, NULL))) {
1728 			putback_lru_page(page);
1729 			continue;
1730 		}
1731 
1732 		if (unlikely(buffer_heads_over_limit)) {
1733 			if (page_has_private(page) && trylock_page(page)) {
1734 				if (page_has_private(page))
1735 					try_to_release_page(page, 0);
1736 				unlock_page(page);
1737 			}
1738 		}
1739 
1740 		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
1741 			nr_rotated += hpage_nr_pages(page);
1742 			/*
1743 			 * Identify referenced, file-backed active pages and
1744 			 * give them one more trip around the active list. So
1745 			 * that executable code get better chances to stay in
1746 			 * memory under moderate memory pressure.  Anon pages
1747 			 * are not likely to be evicted by use-once streaming
1748 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
1749 			 * so we ignore them here.
1750 			 */
1751 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1752 				list_add(&page->lru, &l_active);
1753 				continue;
1754 			}
1755 		}
1756 
1757 		ClearPageActive(page);	/* we are de-activating */
1758 		list_add(&page->lru, &l_inactive);
1759 	}
1760 
1761 	/*
1762 	 * Move pages back to the lru list.
1763 	 */
1764 	spin_lock_irq(&zone->lru_lock);
1765 	/*
1766 	 * Count referenced pages from currently used mappings as rotated,
1767 	 * even though only some of them are actually re-activated.  This
1768 	 * helps balance scan pressure between file and anonymous pages in
1769 	 * get_scan_ratio.
1770 	 */
1771 	reclaim_stat->recent_rotated[file] += nr_rotated;
1772 
1773 	move_active_pages_to_lru(zone, &l_active, &l_hold,
1774 						LRU_ACTIVE + file * LRU_FILE);
1775 	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
1776 						LRU_BASE   + file * LRU_FILE);
1777 	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1778 	spin_unlock_irq(&zone->lru_lock);
1779 
1780 	free_hot_cold_page_list(&l_hold, 1);
1781 }
1782 
1783 #ifdef CONFIG_SWAP
inactive_anon_is_low_global(struct zone * zone)1784 static int inactive_anon_is_low_global(struct zone *zone)
1785 {
1786 	unsigned long active, inactive;
1787 
1788 	active = zone_page_state(zone, NR_ACTIVE_ANON);
1789 	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1790 
1791 	if (inactive * zone->inactive_ratio < active)
1792 		return 1;
1793 
1794 	return 0;
1795 }
1796 
1797 /**
1798  * inactive_anon_is_low - check if anonymous pages need to be deactivated
1799  * @zone: zone to check
1800  * @sc:   scan control of this context
1801  *
1802  * Returns true if the zone does not have enough inactive anon pages,
1803  * meaning some active anon pages need to be deactivated.
1804  */
inactive_anon_is_low(struct mem_cgroup_zone * mz)1805 static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1806 {
1807 	/*
1808 	 * If we don't have swap space, anonymous page deactivation
1809 	 * is pointless.
1810 	 */
1811 	if (!total_swap_pages)
1812 		return 0;
1813 
1814 	if (!scanning_global_lru(mz))
1815 		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
1816 						       mz->zone);
1817 
1818 	return inactive_anon_is_low_global(mz->zone);
1819 }
1820 #else
inactive_anon_is_low(struct mem_cgroup_zone * mz)1821 static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
1822 {
1823 	return 0;
1824 }
1825 #endif
1826 
inactive_file_is_low_global(struct zone * zone)1827 static int inactive_file_is_low_global(struct zone *zone)
1828 {
1829 	unsigned long active, inactive;
1830 
1831 	active = zone_page_state(zone, NR_ACTIVE_FILE);
1832 	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1833 
1834 	return (active > inactive);
1835 }
1836 
1837 /**
1838  * inactive_file_is_low - check if file pages need to be deactivated
1839  * @mz: memory cgroup and zone to check
1840  *
1841  * When the system is doing streaming IO, memory pressure here
1842  * ensures that active file pages get deactivated, until more
1843  * than half of the file pages are on the inactive list.
1844  *
1845  * Once we get to that situation, protect the system's working
1846  * set from being evicted by disabling active file page aging.
1847  *
1848  * This uses a different ratio than the anonymous pages, because
1849  * the page cache uses a use-once replacement algorithm.
1850  */
inactive_file_is_low(struct mem_cgroup_zone * mz)1851 static int inactive_file_is_low(struct mem_cgroup_zone *mz)
1852 {
1853 	if (!scanning_global_lru(mz))
1854 		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
1855 						       mz->zone);
1856 
1857 	return inactive_file_is_low_global(mz->zone);
1858 }
1859 
inactive_list_is_low(struct mem_cgroup_zone * mz,int file)1860 static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
1861 {
1862 	if (file)
1863 		return inactive_file_is_low(mz);
1864 	else
1865 		return inactive_anon_is_low(mz);
1866 }
1867 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct mem_cgroup_zone * mz,struct scan_control * sc,int priority)1868 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1869 				 struct mem_cgroup_zone *mz,
1870 				 struct scan_control *sc, int priority)
1871 {
1872 	int file = is_file_lru(lru);
1873 
1874 	if (is_active_lru(lru)) {
1875 		if (inactive_list_is_low(mz, file))
1876 			shrink_active_list(nr_to_scan, mz, sc, priority, file);
1877 		return 0;
1878 	}
1879 
1880 	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
1881 }
1882 
vmscan_swappiness(struct mem_cgroup_zone * mz,struct scan_control * sc)1883 static int vmscan_swappiness(struct mem_cgroup_zone *mz,
1884 			     struct scan_control *sc)
1885 {
1886 	if (global_reclaim(sc))
1887 		return vm_swappiness;
1888 	return mem_cgroup_swappiness(mz->mem_cgroup);
1889 }
1890 
1891 /*
1892  * Determine how aggressively the anon and file LRU lists should be
1893  * scanned.  The relative value of each set of LRU lists is determined
1894  * by looking at the fraction of the pages scanned we did rotate back
1895  * onto the active list instead of evict.
1896  *
1897  * nr[0] = anon pages to scan; nr[1] = file pages to scan
1898  */
get_scan_count(struct mem_cgroup_zone * mz,struct scan_control * sc,unsigned long * nr,int priority)1899 static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
1900 			   unsigned long *nr, int priority)
1901 {
1902 	unsigned long anon, file, free;
1903 	unsigned long anon_prio, file_prio;
1904 	unsigned long ap, fp;
1905 	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
1906 	u64 fraction[2], denominator;
1907 	enum lru_list lru;
1908 	int noswap = 0;
1909 	bool force_scan = false;
1910 
1911 	/*
1912 	 * If the zone or memcg is small, nr[l] can be 0.  This
1913 	 * results in no scanning on this priority and a potential
1914 	 * priority drop.  Global direct reclaim can go to the next
1915 	 * zone and tends to have no problems. Global kswapd is for
1916 	 * zone balancing and it needs to scan a minimum amount. When
1917 	 * reclaiming for a memcg, a priority drop can cause high
1918 	 * latencies, so it's better to scan a minimum amount there as
1919 	 * well.
1920 	 */
1921 	if (current_is_kswapd() && mz->zone->all_unreclaimable)
1922 		force_scan = true;
1923 	if (!global_reclaim(sc))
1924 		force_scan = true;
1925 
1926 	/* If we have no swap space, do not bother scanning anon pages. */
1927 	if (!sc->may_swap || (nr_swap_pages <= 0)) {
1928 		noswap = 1;
1929 		fraction[0] = 0;
1930 		fraction[1] = 1;
1931 		denominator = 1;
1932 		goto out;
1933 	}
1934 
1935 	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
1936 		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
1937 	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
1938 		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
1939 
1940 	if (global_reclaim(sc)) {
1941 		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
1942 		/* If we have very few page cache pages,
1943 		   force-scan anon pages. */
1944 		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
1945 			fraction[0] = 1;
1946 			fraction[1] = 0;
1947 			denominator = 1;
1948 			goto out;
1949 		}
1950 	}
1951 
1952 	/*
1953 	 * With swappiness at 100, anonymous and file have the same priority.
1954 	 * This scanning priority is essentially the inverse of IO cost.
1955 	 */
1956 	anon_prio = vmscan_swappiness(mz, sc);
1957 	file_prio = 200 - vmscan_swappiness(mz, sc);
1958 
1959 	/*
1960 	 * OK, so we have swap space and a fair amount of page cache
1961 	 * pages.  We use the recently rotated / recently scanned
1962 	 * ratios to determine how valuable each cache is.
1963 	 *
1964 	 * Because workloads change over time (and to avoid overflow)
1965 	 * we keep these statistics as a floating average, which ends
1966 	 * up weighing recent references more than old ones.
1967 	 *
1968 	 * anon in [0], file in [1]
1969 	 */
1970 	spin_lock_irq(&mz->zone->lru_lock);
1971 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1972 		reclaim_stat->recent_scanned[0] /= 2;
1973 		reclaim_stat->recent_rotated[0] /= 2;
1974 	}
1975 
1976 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1977 		reclaim_stat->recent_scanned[1] /= 2;
1978 		reclaim_stat->recent_rotated[1] /= 2;
1979 	}
1980 
1981 	/*
1982 	 * The amount of pressure on anon vs file pages is inversely
1983 	 * proportional to the fraction of recently scanned pages on
1984 	 * each list that were recently referenced and in active use.
1985 	 */
1986 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1987 	ap /= reclaim_stat->recent_rotated[0] + 1;
1988 
1989 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1990 	fp /= reclaim_stat->recent_rotated[1] + 1;
1991 	spin_unlock_irq(&mz->zone->lru_lock);
1992 
1993 	fraction[0] = ap;
1994 	fraction[1] = fp;
1995 	denominator = ap + fp + 1;
1996 out:
1997 	for_each_evictable_lru(lru) {
1998 		int file = is_file_lru(lru);
1999 		unsigned long scan;
2000 
2001 		scan = zone_nr_lru_pages(mz, lru);
2002 		if (priority || noswap || !vmscan_swappiness(mz, sc)) {
2003 			scan >>= priority;
2004 			if (!scan && force_scan)
2005 				scan = SWAP_CLUSTER_MAX;
2006 			scan = div64_u64(scan * fraction[file], denominator);
2007 		}
2008 		nr[lru] = scan;
2009 	}
2010 }
2011 
2012 /*
2013  * Reclaim/compaction depends on a number of pages being freed. To avoid
2014  * disruption to the system, a small number of order-0 pages continue to be
2015  * rotated and reclaimed in the normal fashion. However, by the time we get
2016  * back to the allocator and call try_to_compact_zone(), we ensure that
2017  * there are enough free pages for it to be likely successful
2018  */
should_continue_reclaim(struct mem_cgroup_zone * mz,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2019 static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
2020 					unsigned long nr_reclaimed,
2021 					unsigned long nr_scanned,
2022 					struct scan_control *sc)
2023 {
2024 	unsigned long pages_for_compaction;
2025 	unsigned long inactive_lru_pages;
2026 
2027 	/* If not in reclaim/compaction mode, stop */
2028 	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2029 		return false;
2030 
2031 	/* Consider stopping depending on scan and reclaim activity */
2032 	if (sc->gfp_mask & __GFP_REPEAT) {
2033 		/*
2034 		 * For __GFP_REPEAT allocations, stop reclaiming if the
2035 		 * full LRU list has been scanned and we are still failing
2036 		 * to reclaim pages. This full LRU scan is potentially
2037 		 * expensive but a __GFP_REPEAT caller really wants to succeed
2038 		 */
2039 		if (!nr_reclaimed && !nr_scanned)
2040 			return false;
2041 	} else {
2042 		/*
2043 		 * For non-__GFP_REPEAT allocations which can presumably
2044 		 * fail without consequence, stop if we failed to reclaim
2045 		 * any pages from the last SWAP_CLUSTER_MAX number of
2046 		 * pages that were scanned. This will return to the
2047 		 * caller faster at the risk reclaim/compaction and
2048 		 * the resulting allocation attempt fails
2049 		 */
2050 		if (!nr_reclaimed)
2051 			return false;
2052 	}
2053 
2054 	/*
2055 	 * If we have not reclaimed enough pages for compaction and the
2056 	 * inactive lists are large enough, continue reclaiming
2057 	 */
2058 	pages_for_compaction = (2UL << sc->order);
2059 	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
2060 	if (nr_swap_pages > 0)
2061 		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
2062 	if (sc->nr_reclaimed < pages_for_compaction &&
2063 			inactive_lru_pages > pages_for_compaction)
2064 		return true;
2065 
2066 	/* If compaction would go ahead or the allocation would succeed, stop */
2067 	switch (compaction_suitable(mz->zone, sc->order)) {
2068 	case COMPACT_PARTIAL:
2069 	case COMPACT_CONTINUE:
2070 		return false;
2071 	default:
2072 		return true;
2073 	}
2074 }
2075 
2076 /*
2077  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
2078  */
shrink_mem_cgroup_zone(int priority,struct mem_cgroup_zone * mz,struct scan_control * sc)2079 static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
2080 				   struct scan_control *sc)
2081 {
2082 	unsigned long nr[NR_LRU_LISTS];
2083 	unsigned long nr_to_scan;
2084 	enum lru_list lru;
2085 	unsigned long nr_reclaimed, nr_scanned;
2086 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2087 	struct blk_plug plug;
2088 
2089 restart:
2090 	nr_reclaimed = 0;
2091 	nr_scanned = sc->nr_scanned;
2092 	get_scan_count(mz, sc, nr, priority);
2093 
2094 	blk_start_plug(&plug);
2095 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2096 					nr[LRU_INACTIVE_FILE]) {
2097 		for_each_evictable_lru(lru) {
2098 			if (nr[lru]) {
2099 				nr_to_scan = min_t(unsigned long,
2100 						   nr[lru], SWAP_CLUSTER_MAX);
2101 				nr[lru] -= nr_to_scan;
2102 
2103 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2104 							    mz, sc, priority);
2105 			}
2106 		}
2107 		/*
2108 		 * On large memory systems, scan >> priority can become
2109 		 * really large. This is fine for the starting priority;
2110 		 * we want to put equal scanning pressure on each zone.
2111 		 * However, if the VM has a harder time of freeing pages,
2112 		 * with multiple processes reclaiming pages, the total
2113 		 * freeing target can get unreasonably large.
2114 		 */
2115 		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2116 			break;
2117 	}
2118 	blk_finish_plug(&plug);
2119 	sc->nr_reclaimed += nr_reclaimed;
2120 
2121 	/*
2122 	 * Even if we did not try to evict anon pages at all, we want to
2123 	 * rebalance the anon lru active/inactive ratio.
2124 	 */
2125 	if (inactive_anon_is_low(mz))
2126 		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
2127 
2128 	/* reclaim/compaction might need reclaim to continue */
2129 	if (should_continue_reclaim(mz, nr_reclaimed,
2130 					sc->nr_scanned - nr_scanned, sc))
2131 		goto restart;
2132 
2133 	throttle_vm_writeout(sc->gfp_mask);
2134 }
2135 
shrink_zone(int priority,struct zone * zone,struct scan_control * sc)2136 static void shrink_zone(int priority, struct zone *zone,
2137 			struct scan_control *sc)
2138 {
2139 	struct mem_cgroup *root = sc->target_mem_cgroup;
2140 	struct mem_cgroup_reclaim_cookie reclaim = {
2141 		.zone = zone,
2142 		.priority = priority,
2143 	};
2144 	struct mem_cgroup *memcg;
2145 
2146 	memcg = mem_cgroup_iter(root, NULL, &reclaim);
2147 	do {
2148 		struct mem_cgroup_zone mz = {
2149 			.mem_cgroup = memcg,
2150 			.zone = zone,
2151 		};
2152 
2153 		shrink_mem_cgroup_zone(priority, &mz, sc);
2154 		/*
2155 		 * Limit reclaim has historically picked one memcg and
2156 		 * scanned it with decreasing priority levels until
2157 		 * nr_to_reclaim had been reclaimed.  This priority
2158 		 * cycle is thus over after a single memcg.
2159 		 *
2160 		 * Direct reclaim and kswapd, on the other hand, have
2161 		 * to scan all memory cgroups to fulfill the overall
2162 		 * scan target for the zone.
2163 		 */
2164 		if (!global_reclaim(sc)) {
2165 			mem_cgroup_iter_break(root, memcg);
2166 			break;
2167 		}
2168 		memcg = mem_cgroup_iter(root, memcg, &reclaim);
2169 	} while (memcg);
2170 }
2171 
2172 /* Returns true if compaction should go ahead for a high-order request */
compaction_ready(struct zone * zone,struct scan_control * sc)2173 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2174 {
2175 	unsigned long balance_gap, watermark;
2176 	bool watermark_ok;
2177 
2178 	/* Do not consider compaction for orders reclaim is meant to satisfy */
2179 	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2180 		return false;
2181 
2182 	/*
2183 	 * Compaction takes time to run and there are potentially other
2184 	 * callers using the pages just freed. Continue reclaiming until
2185 	 * there is a buffer of free pages available to give compaction
2186 	 * a reasonable chance of completing and allocating the page
2187 	 */
2188 	balance_gap = min(low_wmark_pages(zone),
2189 		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2190 			KSWAPD_ZONE_BALANCE_GAP_RATIO);
2191 	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2192 	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2193 
2194 	/*
2195 	 * If compaction is deferred, reclaim up to a point where
2196 	 * compaction will have a chance of success when re-enabled
2197 	 */
2198 	if (compaction_deferred(zone, sc->order))
2199 		return watermark_ok;
2200 
2201 	/* If compaction is not ready to start, keep reclaiming */
2202 	if (!compaction_suitable(zone, sc->order))
2203 		return false;
2204 
2205 	return watermark_ok;
2206 }
2207 
2208 /*
2209  * This is the direct reclaim path, for page-allocating processes.  We only
2210  * try to reclaim pages from zones which will satisfy the caller's allocation
2211  * request.
2212  *
2213  * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2214  * Because:
2215  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2216  *    allocation or
2217  * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2218  *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2219  *    zone defense algorithm.
2220  *
2221  * If a zone is deemed to be full of pinned pages then just give it a light
2222  * scan then give up on it.
2223  *
2224  * This function returns true if a zone is being reclaimed for a costly
2225  * high-order allocation and compaction is ready to begin. This indicates to
2226  * the caller that it should consider retrying the allocation instead of
2227  * further reclaim.
2228  */
shrink_zones(int priority,struct zonelist * zonelist,struct scan_control * sc)2229 static bool shrink_zones(int priority, struct zonelist *zonelist,
2230 					struct scan_control *sc)
2231 {
2232 	struct zoneref *z;
2233 	struct zone *zone;
2234 	unsigned long nr_soft_reclaimed;
2235 	unsigned long nr_soft_scanned;
2236 	bool aborted_reclaim = false;
2237 
2238 	/*
2239 	 * If the number of buffer_heads in the machine exceeds the maximum
2240 	 * allowed level, force direct reclaim to scan the highmem zone as
2241 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2242 	 */
2243 	if (buffer_heads_over_limit)
2244 		sc->gfp_mask |= __GFP_HIGHMEM;
2245 
2246 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2247 					gfp_zone(sc->gfp_mask), sc->nodemask) {
2248 		if (!populated_zone(zone))
2249 			continue;
2250 		/*
2251 		 * Take care memory controller reclaiming has small influence
2252 		 * to global LRU.
2253 		 */
2254 		if (global_reclaim(sc)) {
2255 			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2256 				continue;
2257 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2258 				continue;	/* Let kswapd poll it */
2259 			if (COMPACTION_BUILD) {
2260 				/*
2261 				 * If we already have plenty of memory free for
2262 				 * compaction in this zone, don't free any more.
2263 				 * Even though compaction is invoked for any
2264 				 * non-zero order, only frequent costly order
2265 				 * reclamation is disruptive enough to become a
2266 				 * noticeable problem, like transparent huge
2267 				 * page allocations.
2268 				 */
2269 				if (compaction_ready(zone, sc)) {
2270 					aborted_reclaim = true;
2271 					continue;
2272 				}
2273 			}
2274 			/*
2275 			 * This steals pages from memory cgroups over softlimit
2276 			 * and returns the number of reclaimed pages and
2277 			 * scanned pages. This works for global memory pressure
2278 			 * and balancing, not for a memcg's limit.
2279 			 */
2280 			nr_soft_scanned = 0;
2281 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2282 						sc->order, sc->gfp_mask,
2283 						&nr_soft_scanned);
2284 			sc->nr_reclaimed += nr_soft_reclaimed;
2285 			sc->nr_scanned += nr_soft_scanned;
2286 			/* need some check for avoid more shrink_zone() */
2287 		}
2288 
2289 		shrink_zone(priority, zone, sc);
2290 	}
2291 
2292 	return aborted_reclaim;
2293 }
2294 
zone_reclaimable(struct zone * zone)2295 static bool zone_reclaimable(struct zone *zone)
2296 {
2297 	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2298 }
2299 
2300 /* All zones in zonelist are unreclaimable? */
all_unreclaimable(struct zonelist * zonelist,struct scan_control * sc)2301 static bool all_unreclaimable(struct zonelist *zonelist,
2302 		struct scan_control *sc)
2303 {
2304 	struct zoneref *z;
2305 	struct zone *zone;
2306 
2307 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2308 			gfp_zone(sc->gfp_mask), sc->nodemask) {
2309 		if (!populated_zone(zone))
2310 			continue;
2311 		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2312 			continue;
2313 		if (!zone->all_unreclaimable)
2314 			return false;
2315 	}
2316 
2317 	return true;
2318 }
2319 
2320 /*
2321  * This is the main entry point to direct page reclaim.
2322  *
2323  * If a full scan of the inactive list fails to free enough memory then we
2324  * are "out of memory" and something needs to be killed.
2325  *
2326  * If the caller is !__GFP_FS then the probability of a failure is reasonably
2327  * high - the zone may be full of dirty or under-writeback pages, which this
2328  * caller can't do much about.  We kick the writeback threads and take explicit
2329  * naps in the hope that some of these pages can be written.  But if the
2330  * allocating task holds filesystem locks which prevent writeout this might not
2331  * work, and the allocation attempt will fail.
2332  *
2333  * returns:	0, if no pages reclaimed
2334  * 		else, the number of pages reclaimed
2335  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc,struct shrink_control * shrink)2336 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2337 					struct scan_control *sc,
2338 					struct shrink_control *shrink)
2339 {
2340 	int priority;
2341 	unsigned long total_scanned = 0;
2342 	struct reclaim_state *reclaim_state = current->reclaim_state;
2343 	struct zoneref *z;
2344 	struct zone *zone;
2345 	unsigned long writeback_threshold;
2346 	bool aborted_reclaim;
2347 
2348 	delayacct_freepages_start();
2349 
2350 	if (global_reclaim(sc))
2351 		count_vm_event(ALLOCSTALL);
2352 
2353 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2354 		sc->nr_scanned = 0;
2355 		if (!priority)
2356 			disable_swap_token(sc->target_mem_cgroup);
2357 		aborted_reclaim = shrink_zones(priority, zonelist, sc);
2358 
2359 		/*
2360 		 * Don't shrink slabs when reclaiming memory from
2361 		 * over limit cgroups
2362 		 */
2363 		if (global_reclaim(sc)) {
2364 			unsigned long lru_pages = 0;
2365 			for_each_zone_zonelist(zone, z, zonelist,
2366 					gfp_zone(sc->gfp_mask)) {
2367 				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2368 					continue;
2369 
2370 				lru_pages += zone_reclaimable_pages(zone);
2371 			}
2372 
2373 			shrink_slab(shrink, sc->nr_scanned, lru_pages);
2374 			if (reclaim_state) {
2375 				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2376 				reclaim_state->reclaimed_slab = 0;
2377 			}
2378 		}
2379 		total_scanned += sc->nr_scanned;
2380 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2381 			goto out;
2382 
2383 		/*
2384 		 * Try to write back as many pages as we just scanned.  This
2385 		 * tends to cause slow streaming writers to write data to the
2386 		 * disk smoothly, at the dirtying rate, which is nice.   But
2387 		 * that's undesirable in laptop mode, where we *want* lumpy
2388 		 * writeout.  So in laptop mode, write out the whole world.
2389 		 */
2390 		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2391 		if (total_scanned > writeback_threshold) {
2392 			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2393 						WB_REASON_TRY_TO_FREE_PAGES);
2394 			sc->may_writepage = 1;
2395 		}
2396 
2397 		/* Take a nap, wait for some writeback to complete */
2398 		if (!sc->hibernation_mode && sc->nr_scanned &&
2399 		    priority < DEF_PRIORITY - 2) {
2400 			struct zone *preferred_zone;
2401 
2402 			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2403 						&cpuset_current_mems_allowed,
2404 						&preferred_zone);
2405 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2406 		}
2407 	}
2408 
2409 out:
2410 	delayacct_freepages_end();
2411 
2412 	if (sc->nr_reclaimed)
2413 		return sc->nr_reclaimed;
2414 
2415 	/*
2416 	 * As hibernation is going on, kswapd is freezed so that it can't mark
2417 	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2418 	 * check.
2419 	 */
2420 	if (oom_killer_disabled)
2421 		return 0;
2422 
2423 	/* Aborted reclaim to try compaction? don't OOM, then */
2424 	if (aborted_reclaim)
2425 		return 1;
2426 
2427 	/* top priority shrink_zones still had more to do? don't OOM, then */
2428 	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
2429 		return 1;
2430 
2431 	return 0;
2432 }
2433 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)2434 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2435 				gfp_t gfp_mask, nodemask_t *nodemask)
2436 {
2437 	unsigned long nr_reclaimed;
2438 	struct scan_control sc = {
2439 		.gfp_mask = gfp_mask,
2440 		.may_writepage = !laptop_mode,
2441 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2442 		.may_unmap = 1,
2443 		.may_swap = 1,
2444 		.order = order,
2445 		.target_mem_cgroup = NULL,
2446 		.nodemask = nodemask,
2447 	};
2448 	struct shrink_control shrink = {
2449 		.gfp_mask = sc.gfp_mask,
2450 	};
2451 
2452 	trace_mm_vmscan_direct_reclaim_begin(order,
2453 				sc.may_writepage,
2454 				gfp_mask);
2455 
2456 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2457 
2458 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2459 
2460 	return nr_reclaimed;
2461 }
2462 
2463 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2464 
mem_cgroup_shrink_node_zone(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,struct zone * zone,unsigned long * nr_scanned)2465 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
2466 						gfp_t gfp_mask, bool noswap,
2467 						struct zone *zone,
2468 						unsigned long *nr_scanned)
2469 {
2470 	struct scan_control sc = {
2471 		.nr_scanned = 0,
2472 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2473 		.may_writepage = !laptop_mode,
2474 		.may_unmap = 1,
2475 		.may_swap = !noswap,
2476 		.order = 0,
2477 		.target_mem_cgroup = memcg,
2478 	};
2479 	struct mem_cgroup_zone mz = {
2480 		.mem_cgroup = memcg,
2481 		.zone = zone,
2482 	};
2483 
2484 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2485 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2486 
2487 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2488 						      sc.may_writepage,
2489 						      sc.gfp_mask);
2490 
2491 	/*
2492 	 * NOTE: Although we can get the priority field, using it
2493 	 * here is not a good idea, since it limits the pages we can scan.
2494 	 * if we don't reclaim here, the shrink_zone from balance_pgdat
2495 	 * will pick up pages from other mem cgroup's as well. We hack
2496 	 * the priority and make it zero.
2497 	 */
2498 	shrink_mem_cgroup_zone(0, &mz, &sc);
2499 
2500 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2501 
2502 	*nr_scanned = sc.nr_scanned;
2503 	return sc.nr_reclaimed;
2504 }
2505 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap)2506 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
2507 					   gfp_t gfp_mask,
2508 					   bool noswap)
2509 {
2510 	struct zonelist *zonelist;
2511 	unsigned long nr_reclaimed;
2512 	int nid;
2513 	struct scan_control sc = {
2514 		.may_writepage = !laptop_mode,
2515 		.may_unmap = 1,
2516 		.may_swap = !noswap,
2517 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
2518 		.order = 0,
2519 		.target_mem_cgroup = memcg,
2520 		.nodemask = NULL, /* we don't care the placement */
2521 		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2522 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2523 	};
2524 	struct shrink_control shrink = {
2525 		.gfp_mask = sc.gfp_mask,
2526 	};
2527 
2528 	/*
2529 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2530 	 * take care of from where we get pages. So the node where we start the
2531 	 * scan does not need to be the current node.
2532 	 */
2533 	nid = mem_cgroup_select_victim_node(memcg);
2534 
2535 	zonelist = NODE_DATA(nid)->node_zonelists;
2536 
2537 	trace_mm_vmscan_memcg_reclaim_begin(0,
2538 					    sc.may_writepage,
2539 					    sc.gfp_mask);
2540 
2541 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2542 
2543 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2544 
2545 	return nr_reclaimed;
2546 }
2547 #endif
2548 
age_active_anon(struct zone * zone,struct scan_control * sc,int priority)2549 static void age_active_anon(struct zone *zone, struct scan_control *sc,
2550 			    int priority)
2551 {
2552 	struct mem_cgroup *memcg;
2553 
2554 	if (!total_swap_pages)
2555 		return;
2556 
2557 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
2558 	do {
2559 		struct mem_cgroup_zone mz = {
2560 			.mem_cgroup = memcg,
2561 			.zone = zone,
2562 		};
2563 
2564 		if (inactive_anon_is_low(&mz))
2565 			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
2566 					   sc, priority, 0);
2567 
2568 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
2569 	} while (memcg);
2570 }
2571 
zone_balanced(struct zone * zone,int order,unsigned long balance_gap,int classzone_idx)2572 static bool zone_balanced(struct zone *zone, int order,
2573 			  unsigned long balance_gap, int classzone_idx)
2574 {
2575 	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
2576 				    balance_gap, classzone_idx, 0))
2577 		return false;
2578 
2579 	if (COMPACTION_BUILD && order && !compaction_suitable(zone, order))
2580 		return false;
2581 
2582 	return true;
2583 }
2584 
2585 /*
2586  * pgdat_balanced is used when checking if a node is balanced for high-order
2587  * allocations. Only zones that meet watermarks and are in a zone allowed
2588  * by the callers classzone_idx are added to balanced_pages. The total of
2589  * balanced pages must be at least 25% of the zones allowed by classzone_idx
2590  * for the node to be considered balanced. Forcing all zones to be balanced
2591  * for high orders can cause excessive reclaim when there are imbalanced zones.
2592  * The choice of 25% is due to
2593  *   o a 16M DMA zone that is balanced will not balance a zone on any
2594  *     reasonable sized machine
2595  *   o On all other machines, the top zone must be at least a reasonable
2596  *     percentage of the middle zones. For example, on 32-bit x86, highmem
2597  *     would need to be at least 256M for it to be balance a whole node.
2598  *     Similarly, on x86-64 the Normal zone would need to be at least 1G
2599  *     to balance a node on its own. These seemed like reasonable ratios.
2600  */
pgdat_balanced(pg_data_t * pgdat,unsigned long balanced_pages,int classzone_idx)2601 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2602 						int classzone_idx)
2603 {
2604 	unsigned long present_pages = 0;
2605 	int i;
2606 
2607 	for (i = 0; i <= classzone_idx; i++)
2608 		present_pages += pgdat->node_zones[i].present_pages;
2609 
2610 	/* A special case here: if zone has no page, we think it's balanced */
2611 	return balanced_pages >= (present_pages >> 2);
2612 }
2613 
2614 /* is kswapd sleeping prematurely? */
sleeping_prematurely(pg_data_t * pgdat,int order,long remaining,int classzone_idx)2615 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2616 					int classzone_idx)
2617 {
2618 	int i;
2619 	unsigned long balanced = 0;
2620 	bool all_zones_ok = true;
2621 
2622 	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2623 	if (remaining)
2624 		return true;
2625 
2626 	/* Check the watermark levels */
2627 	for (i = 0; i <= classzone_idx; i++) {
2628 		struct zone *zone = pgdat->node_zones + i;
2629 
2630 		if (!populated_zone(zone))
2631 			continue;
2632 
2633 		/*
2634 		 * balance_pgdat() skips over all_unreclaimable after
2635 		 * DEF_PRIORITY. Effectively, it considers them balanced so
2636 		 * they must be considered balanced here as well if kswapd
2637 		 * is to sleep
2638 		 */
2639 		if (zone->all_unreclaimable) {
2640 			balanced += zone->present_pages;
2641 			continue;
2642 		}
2643 
2644 		if (!zone_balanced(zone, order, 0, i))
2645 			all_zones_ok = false;
2646 		else
2647 			balanced += zone->present_pages;
2648 	}
2649 
2650 	/*
2651 	 * For high-order requests, the balanced zones must contain at least
2652 	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2653 	 * must be balanced
2654 	 */
2655 	if (order)
2656 		return !pgdat_balanced(pgdat, balanced, classzone_idx);
2657 	else
2658 		return !all_zones_ok;
2659 }
2660 
2661 /*
2662  * For kswapd, balance_pgdat() will work across all this node's zones until
2663  * they are all at high_wmark_pages(zone).
2664  *
2665  * Returns the final order kswapd was reclaiming at
2666  *
2667  * There is special handling here for zones which are full of pinned pages.
2668  * This can happen if the pages are all mlocked, or if they are all used by
2669  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
2670  * What we do is to detect the case where all pages in the zone have been
2671  * scanned twice and there has been zero successful reclaim.  Mark the zone as
2672  * dead and from now on, only perform a short scan.  Basically we're polling
2673  * the zone for when the problem goes away.
2674  *
2675  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
2676  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2677  * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2678  * lower zones regardless of the number of free pages in the lower zones. This
2679  * interoperates with the page allocator fallback scheme to ensure that aging
2680  * of pages is balanced across the zones.
2681  */
balance_pgdat(pg_data_t * pgdat,int order,int * classzone_idx)2682 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2683 							int *classzone_idx)
2684 {
2685 	int all_zones_ok;
2686 	unsigned long balanced;
2687 	int priority;
2688 	int i;
2689 	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
2690 	unsigned long total_scanned;
2691 	struct reclaim_state *reclaim_state = current->reclaim_state;
2692 	unsigned long nr_soft_reclaimed;
2693 	unsigned long nr_soft_scanned;
2694 	struct scan_control sc = {
2695 		.gfp_mask = GFP_KERNEL,
2696 		.may_unmap = 1,
2697 		.may_swap = 1,
2698 		/*
2699 		 * kswapd doesn't want to be bailed out while reclaim. because
2700 		 * we want to put equal scanning pressure on each zone.
2701 		 */
2702 		.nr_to_reclaim = ULONG_MAX,
2703 		.order = order,
2704 		.target_mem_cgroup = NULL,
2705 	};
2706 	struct shrink_control shrink = {
2707 		.gfp_mask = sc.gfp_mask,
2708 	};
2709 loop_again:
2710 	total_scanned = 0;
2711 	sc.nr_reclaimed = 0;
2712 	sc.may_writepage = !laptop_mode;
2713 	count_vm_event(PAGEOUTRUN);
2714 
2715 	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2716 		unsigned long lru_pages = 0;
2717 		int has_under_min_watermark_zone = 0;
2718 
2719 		/* The swap token gets in the way of swapout... */
2720 		if (!priority)
2721 			disable_swap_token(NULL);
2722 
2723 		all_zones_ok = 1;
2724 		balanced = 0;
2725 
2726 		/*
2727 		 * Scan in the highmem->dma direction for the highest
2728 		 * zone which needs scanning
2729 		 */
2730 		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2731 			struct zone *zone = pgdat->node_zones + i;
2732 
2733 			if (!populated_zone(zone))
2734 				continue;
2735 
2736 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2737 				continue;
2738 
2739 			/*
2740 			 * Do some background aging of the anon list, to give
2741 			 * pages a chance to be referenced before reclaiming.
2742 			 */
2743 			age_active_anon(zone, &sc, priority);
2744 
2745 			/*
2746 			 * If the number of buffer_heads in the machine
2747 			 * exceeds the maximum allowed level and this node
2748 			 * has a highmem zone, force kswapd to reclaim from
2749 			 * it to relieve lowmem pressure.
2750 			 */
2751 			if (buffer_heads_over_limit && is_highmem_idx(i)) {
2752 				end_zone = i;
2753 				break;
2754 			}
2755 
2756 			if (!zone_balanced(zone, order, 0, 0)) {
2757 				end_zone = i;
2758 				break;
2759 			} else {
2760 				/* If balanced, clear the congested flag */
2761 				zone_clear_flag(zone, ZONE_CONGESTED);
2762 			}
2763 		}
2764 		if (i < 0)
2765 			goto out;
2766 
2767 		for (i = 0; i <= end_zone; i++) {
2768 			struct zone *zone = pgdat->node_zones + i;
2769 
2770 			lru_pages += zone_reclaimable_pages(zone);
2771 		}
2772 
2773 		/*
2774 		 * Now scan the zone in the dma->highmem direction, stopping
2775 		 * at the last zone which needs scanning.
2776 		 *
2777 		 * We do this because the page allocator works in the opposite
2778 		 * direction.  This prevents the page allocator from allocating
2779 		 * pages behind kswapd's direction of progress, which would
2780 		 * cause too much scanning of the lower zones.
2781 		 */
2782 		for (i = 0; i <= end_zone; i++) {
2783 			struct zone *zone = pgdat->node_zones + i;
2784 			int nr_slab, testorder;
2785 			unsigned long balance_gap;
2786 
2787 			if (!populated_zone(zone))
2788 				continue;
2789 
2790 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2791 				continue;
2792 
2793 			sc.nr_scanned = 0;
2794 
2795 			nr_soft_scanned = 0;
2796 			/*
2797 			 * Call soft limit reclaim before calling shrink_zone.
2798 			 */
2799 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2800 							order, sc.gfp_mask,
2801 							&nr_soft_scanned);
2802 			sc.nr_reclaimed += nr_soft_reclaimed;
2803 			total_scanned += nr_soft_scanned;
2804 
2805 			/*
2806 			 * We put equal pressure on every zone, unless
2807 			 * one zone has way too many pages free
2808 			 * already. The "too many pages" is defined
2809 			 * as the high wmark plus a "gap" where the
2810 			 * gap is either the low watermark or 1%
2811 			 * of the zone, whichever is smaller.
2812 			 */
2813 			balance_gap = min(low_wmark_pages(zone),
2814 				(zone->present_pages +
2815 					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2816 				KSWAPD_ZONE_BALANCE_GAP_RATIO);
2817 			/*
2818 			 * Kswapd reclaims only single pages with compaction
2819 			 * enabled. Trying too hard to reclaim until contiguous
2820 			 * free pages have become available can hurt performance
2821 			 * by evicting too much useful data from memory.
2822 			 * Do not reclaim more than needed for compaction.
2823 			 */
2824 			testorder = order;
2825 			if (COMPACTION_BUILD && order &&
2826 					compaction_suitable(zone, order) !=
2827 						COMPACT_SKIPPED)
2828 				testorder = 0;
2829 
2830 			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
2831 			    !zone_balanced(zone, testorder,
2832 					   balance_gap, end_zone)) {
2833 				shrink_zone(priority, zone, &sc);
2834 
2835 				reclaim_state->reclaimed_slab = 0;
2836 				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2837 				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2838 				total_scanned += sc.nr_scanned;
2839 
2840 				if (nr_slab == 0 && !zone_reclaimable(zone))
2841 					zone->all_unreclaimable = 1;
2842 			}
2843 
2844 			/*
2845 			 * If we've done a decent amount of scanning and
2846 			 * the reclaim ratio is low, start doing writepage
2847 			 * even in laptop mode
2848 			 */
2849 			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2850 			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2851 				sc.may_writepage = 1;
2852 
2853 			if (zone->all_unreclaimable) {
2854 				if (end_zone && end_zone == i)
2855 					end_zone--;
2856 				continue;
2857 			}
2858 
2859 			if (!zone_balanced(zone, testorder, 0, end_zone)) {
2860 				all_zones_ok = 0;
2861 				/*
2862 				 * We are still under min water mark.  This
2863 				 * means that we have a GFP_ATOMIC allocation
2864 				 * failure risk. Hurry up!
2865 				 */
2866 				if (!zone_watermark_ok_safe(zone, order,
2867 					    min_wmark_pages(zone), end_zone, 0))
2868 					has_under_min_watermark_zone = 1;
2869 			} else {
2870 				/*
2871 				 * If a zone reaches its high watermark,
2872 				 * consider it to be no longer congested. It's
2873 				 * possible there are dirty pages backed by
2874 				 * congested BDIs but as pressure is relieved,
2875 				 * spectulatively avoid congestion waits
2876 				 */
2877 				zone_clear_flag(zone, ZONE_CONGESTED);
2878 				if (i <= *classzone_idx)
2879 					balanced += zone->present_pages;
2880 			}
2881 
2882 		}
2883 		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2884 			break;		/* kswapd: all done */
2885 		/*
2886 		 * OK, kswapd is getting into trouble.  Take a nap, then take
2887 		 * another pass across the zones.
2888 		 */
2889 		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2890 			if (has_under_min_watermark_zone)
2891 				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2892 			else
2893 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2894 		}
2895 
2896 		/*
2897 		 * We do this so kswapd doesn't build up large priorities for
2898 		 * example when it is freeing in parallel with allocators. It
2899 		 * matches the direct reclaim path behaviour in terms of impact
2900 		 * on zone->*_priority.
2901 		 */
2902 		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2903 			break;
2904 	}
2905 out:
2906 
2907 	/*
2908 	 * order-0: All zones must meet high watermark for a balanced node
2909 	 * high-order: Balanced zones must make up at least 25% of the node
2910 	 *             for the node to be balanced
2911 	 */
2912 	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2913 		cond_resched();
2914 
2915 		try_to_freeze();
2916 
2917 		/*
2918 		 * Fragmentation may mean that the system cannot be
2919 		 * rebalanced for high-order allocations in all zones.
2920 		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2921 		 * it means the zones have been fully scanned and are still
2922 		 * not balanced. For high-order allocations, there is
2923 		 * little point trying all over again as kswapd may
2924 		 * infinite loop.
2925 		 *
2926 		 * Instead, recheck all watermarks at order-0 as they
2927 		 * are the most important. If watermarks are ok, kswapd will go
2928 		 * back to sleep. High-order users can still perform direct
2929 		 * reclaim if they wish.
2930 		 */
2931 		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2932 			order = sc.order = 0;
2933 
2934 		goto loop_again;
2935 	}
2936 
2937 	/*
2938 	 * If kswapd was reclaiming at a higher order, it has the option of
2939 	 * sleeping without all zones being balanced. Before it does, it must
2940 	 * ensure that the watermarks for order-0 on *all* zones are met and
2941 	 * that the congestion flags are cleared. The congestion flag must
2942 	 * be cleared as kswapd is the only mechanism that clears the flag
2943 	 * and it is potentially going to sleep here.
2944 	 */
2945 	if (order) {
2946 		int zones_need_compaction = 1;
2947 
2948 		for (i = 0; i <= end_zone; i++) {
2949 			struct zone *zone = pgdat->node_zones + i;
2950 
2951 			if (!populated_zone(zone))
2952 				continue;
2953 
2954 			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2955 				continue;
2956 
2957 			/* Would compaction fail due to lack of free memory? */
2958 			if (COMPACTION_BUILD &&
2959 			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
2960 				goto loop_again;
2961 
2962 			/* Confirm the zone is balanced for order-0 */
2963 			if (!zone_watermark_ok(zone, 0,
2964 					high_wmark_pages(zone), 0, 0)) {
2965 				order = sc.order = 0;
2966 				goto loop_again;
2967 			}
2968 
2969 			/* Check if the memory needs to be defragmented. */
2970 			if (zone_watermark_ok(zone, order,
2971 				    low_wmark_pages(zone), *classzone_idx, 0))
2972 				zones_need_compaction = 0;
2973 
2974 			/* If balanced, clear the congested flag */
2975 			zone_clear_flag(zone, ZONE_CONGESTED);
2976 		}
2977 
2978 		if (zones_need_compaction)
2979 			compact_pgdat(pgdat, order);
2980 	}
2981 
2982 	/*
2983 	 * Return the order we were reclaiming at so sleeping_prematurely()
2984 	 * makes a decision on the order we were last reclaiming at. However,
2985 	 * if another caller entered the allocator slow path while kswapd
2986 	 * was awake, order will remain at the higher level
2987 	 */
2988 	*classzone_idx = end_zone;
2989 	return order;
2990 }
2991 
kswapd_try_to_sleep(pg_data_t * pgdat,int order,int classzone_idx)2992 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2993 {
2994 	long remaining = 0;
2995 	DEFINE_WAIT(wait);
2996 
2997 	if (freezing(current) || kthread_should_stop())
2998 		return;
2999 
3000 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3001 
3002 	/* Try to sleep for a short interval */
3003 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
3004 		remaining = schedule_timeout(HZ/10);
3005 		finish_wait(&pgdat->kswapd_wait, &wait);
3006 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3007 	}
3008 
3009 	/*
3010 	 * After a short sleep, check if it was a premature sleep. If not, then
3011 	 * go fully to sleep until explicitly woken up.
3012 	 */
3013 	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
3014 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3015 
3016 		/*
3017 		 * vmstat counters are not perfectly accurate and the estimated
3018 		 * value for counters such as NR_FREE_PAGES can deviate from the
3019 		 * true value by nr_online_cpus * threshold. To avoid the zone
3020 		 * watermarks being breached while under pressure, we reduce the
3021 		 * per-cpu vmstat threshold while kswapd is awake and restore
3022 		 * them before going back to sleep.
3023 		 */
3024 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3025 
3026 		if (!kthread_should_stop())
3027 			schedule();
3028 
3029 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3030 	} else {
3031 		if (remaining)
3032 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3033 		else
3034 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3035 	}
3036 	finish_wait(&pgdat->kswapd_wait, &wait);
3037 }
3038 
3039 /*
3040  * The background pageout daemon, started as a kernel thread
3041  * from the init process.
3042  *
3043  * This basically trickles out pages so that we have _some_
3044  * free memory available even if there is no other activity
3045  * that frees anything up. This is needed for things like routing
3046  * etc, where we otherwise might have all activity going on in
3047  * asynchronous contexts that cannot page things out.
3048  *
3049  * If there are applications that are active memory-allocators
3050  * (most normal use), this basically shouldn't matter.
3051  */
kswapd(void * p)3052 static int kswapd(void *p)
3053 {
3054 	unsigned long order, new_order;
3055 	unsigned balanced_order;
3056 	int classzone_idx, new_classzone_idx;
3057 	int balanced_classzone_idx;
3058 	pg_data_t *pgdat = (pg_data_t*)p;
3059 	struct task_struct *tsk = current;
3060 
3061 	struct reclaim_state reclaim_state = {
3062 		.reclaimed_slab = 0,
3063 	};
3064 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3065 
3066 	lockdep_set_current_reclaim_state(GFP_KERNEL);
3067 
3068 	if (!cpumask_empty(cpumask))
3069 		set_cpus_allowed_ptr(tsk, cpumask);
3070 	current->reclaim_state = &reclaim_state;
3071 
3072 	/*
3073 	 * Tell the memory management that we're a "memory allocator",
3074 	 * and that if we need more memory we should get access to it
3075 	 * regardless (see "__alloc_pages()"). "kswapd" should
3076 	 * never get caught in the normal page freeing logic.
3077 	 *
3078 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3079 	 * you need a small amount of memory in order to be able to
3080 	 * page out something else, and this flag essentially protects
3081 	 * us from recursively trying to free more memory as we're
3082 	 * trying to free the first piece of memory in the first place).
3083 	 */
3084 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3085 	set_freezable();
3086 
3087 	order = new_order = 0;
3088 	balanced_order = 0;
3089 	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
3090 	balanced_classzone_idx = classzone_idx;
3091 	for ( ; ; ) {
3092 		int ret;
3093 
3094 		/*
3095 		 * If the last balance_pgdat was unsuccessful it's unlikely a
3096 		 * new request of a similar or harder type will succeed soon
3097 		 * so consider going to sleep on the basis we reclaimed at
3098 		 */
3099 		if (balanced_classzone_idx >= new_classzone_idx &&
3100 					balanced_order == new_order) {
3101 			new_order = pgdat->kswapd_max_order;
3102 			new_classzone_idx = pgdat->classzone_idx;
3103 			pgdat->kswapd_max_order =  0;
3104 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3105 		}
3106 
3107 		if (order < new_order || classzone_idx > new_classzone_idx) {
3108 			/*
3109 			 * Don't sleep if someone wants a larger 'order'
3110 			 * allocation or has tigher zone constraints
3111 			 */
3112 			order = new_order;
3113 			classzone_idx = new_classzone_idx;
3114 		} else {
3115 			kswapd_try_to_sleep(pgdat, balanced_order,
3116 						balanced_classzone_idx);
3117 			order = pgdat->kswapd_max_order;
3118 			classzone_idx = pgdat->classzone_idx;
3119 			new_order = order;
3120 			new_classzone_idx = classzone_idx;
3121 			pgdat->kswapd_max_order = 0;
3122 			pgdat->classzone_idx = pgdat->nr_zones - 1;
3123 		}
3124 
3125 		ret = try_to_freeze();
3126 		if (kthread_should_stop())
3127 			break;
3128 
3129 		/*
3130 		 * We can speed up thawing tasks if we don't call balance_pgdat
3131 		 * after returning from the refrigerator
3132 		 */
3133 		if (!ret) {
3134 			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3135 			balanced_classzone_idx = classzone_idx;
3136 			balanced_order = balance_pgdat(pgdat, order,
3137 						&balanced_classzone_idx);
3138 		}
3139 	}
3140 
3141 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3142 	current->reclaim_state = NULL;
3143 	lockdep_clear_current_reclaim_state();
3144 
3145 	return 0;
3146 }
3147 
3148 /*
3149  * A zone is low on free memory, so wake its kswapd task to service it.
3150  */
wakeup_kswapd(struct zone * zone,int order,enum zone_type classzone_idx)3151 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3152 {
3153 	pg_data_t *pgdat;
3154 
3155 	if (!populated_zone(zone))
3156 		return;
3157 
3158 	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3159 		return;
3160 	pgdat = zone->zone_pgdat;
3161 	if (pgdat->kswapd_max_order < order) {
3162 		pgdat->kswapd_max_order = order;
3163 		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3164 	}
3165 	if (!waitqueue_active(&pgdat->kswapd_wait))
3166 		return;
3167 	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3168 		return;
3169 
3170 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3171 	wake_up_interruptible(&pgdat->kswapd_wait);
3172 }
3173 
3174 /*
3175  * The reclaimable count would be mostly accurate.
3176  * The less reclaimable pages may be
3177  * - mlocked pages, which will be moved to unevictable list when encountered
3178  * - mapped pages, which may require several travels to be reclaimed
3179  * - dirty pages, which is not "instantly" reclaimable
3180  */
global_reclaimable_pages(void)3181 unsigned long global_reclaimable_pages(void)
3182 {
3183 	int nr;
3184 
3185 	nr = global_page_state(NR_ACTIVE_FILE) +
3186 	     global_page_state(NR_INACTIVE_FILE);
3187 
3188 	if (nr_swap_pages > 0)
3189 		nr += global_page_state(NR_ACTIVE_ANON) +
3190 		      global_page_state(NR_INACTIVE_ANON);
3191 
3192 	return nr;
3193 }
3194 
zone_reclaimable_pages(struct zone * zone)3195 unsigned long zone_reclaimable_pages(struct zone *zone)
3196 {
3197 	int nr;
3198 
3199 	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3200 	     zone_page_state(zone, NR_INACTIVE_FILE);
3201 
3202 	if (nr_swap_pages > 0)
3203 		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3204 		      zone_page_state(zone, NR_INACTIVE_ANON);
3205 
3206 	return nr;
3207 }
3208 
3209 #ifdef CONFIG_HIBERNATION
3210 /*
3211  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3212  * freed pages.
3213  *
3214  * Rather than trying to age LRUs the aim is to preserve the overall
3215  * LRU order by reclaiming preferentially
3216  * inactive > active > active referenced > active mapped
3217  */
shrink_all_memory(unsigned long nr_to_reclaim)3218 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3219 {
3220 	struct reclaim_state reclaim_state;
3221 	struct scan_control sc = {
3222 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3223 		.may_swap = 1,
3224 		.may_unmap = 1,
3225 		.may_writepage = 1,
3226 		.nr_to_reclaim = nr_to_reclaim,
3227 		.hibernation_mode = 1,
3228 		.order = 0,
3229 	};
3230 	struct shrink_control shrink = {
3231 		.gfp_mask = sc.gfp_mask,
3232 	};
3233 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3234 	struct task_struct *p = current;
3235 	unsigned long nr_reclaimed;
3236 
3237 	p->flags |= PF_MEMALLOC;
3238 	lockdep_set_current_reclaim_state(sc.gfp_mask);
3239 	reclaim_state.reclaimed_slab = 0;
3240 	p->reclaim_state = &reclaim_state;
3241 
3242 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3243 
3244 	p->reclaim_state = NULL;
3245 	lockdep_clear_current_reclaim_state();
3246 	p->flags &= ~PF_MEMALLOC;
3247 
3248 	return nr_reclaimed;
3249 }
3250 #endif /* CONFIG_HIBERNATION */
3251 
3252 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3253    not required for correctness.  So if the last cpu in a node goes
3254    away, we get changed to run anywhere: as the first one comes back,
3255    restore their cpu bindings. */
cpu_callback(struct notifier_block * nfb,unsigned long action,void * hcpu)3256 static int __devinit cpu_callback(struct notifier_block *nfb,
3257 				  unsigned long action, void *hcpu)
3258 {
3259 	int nid;
3260 
3261 	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3262 		for_each_node_state(nid, N_HIGH_MEMORY) {
3263 			pg_data_t *pgdat = NODE_DATA(nid);
3264 			const struct cpumask *mask;
3265 
3266 			mask = cpumask_of_node(pgdat->node_id);
3267 
3268 			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3269 				/* One of our CPUs online: restore mask */
3270 				set_cpus_allowed_ptr(pgdat->kswapd, mask);
3271 		}
3272 	}
3273 	return NOTIFY_OK;
3274 }
3275 
3276 /*
3277  * This kswapd start function will be called by init and node-hot-add.
3278  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3279  */
kswapd_run(int nid)3280 int kswapd_run(int nid)
3281 {
3282 	pg_data_t *pgdat = NODE_DATA(nid);
3283 	int ret = 0;
3284 
3285 	if (pgdat->kswapd)
3286 		return 0;
3287 
3288 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3289 	if (IS_ERR(pgdat->kswapd)) {
3290 		/* failure at boot is fatal */
3291 		BUG_ON(system_state == SYSTEM_BOOTING);
3292 		printk("Failed to start kswapd on node %d\n",nid);
3293 		ret = -1;
3294 	}
3295 	return ret;
3296 }
3297 
3298 /*
3299  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3300  * hold lock_memory_hotplug().
3301  */
kswapd_stop(int nid)3302 void kswapd_stop(int nid)
3303 {
3304 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3305 
3306 	if (kswapd) {
3307 		kthread_stop(kswapd);
3308 		NODE_DATA(nid)->kswapd = NULL;
3309 	}
3310 }
3311 
kswapd_init(void)3312 static int __init kswapd_init(void)
3313 {
3314 	int nid;
3315 
3316 	swap_setup();
3317 	for_each_node_state(nid, N_HIGH_MEMORY)
3318  		kswapd_run(nid);
3319 	hotcpu_notifier(cpu_callback, 0);
3320 	return 0;
3321 }
3322 
3323 module_init(kswapd_init)
3324 
3325 #ifdef CONFIG_NUMA
3326 /*
3327  * Zone reclaim mode
3328  *
3329  * If non-zero call zone_reclaim when the number of free pages falls below
3330  * the watermarks.
3331  */
3332 int zone_reclaim_mode __read_mostly;
3333 
3334 #define RECLAIM_OFF 0
3335 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3336 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3337 #define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
3338 
3339 /*
3340  * Priority for ZONE_RECLAIM. This determines the fraction of pages
3341  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3342  * a zone.
3343  */
3344 #define ZONE_RECLAIM_PRIORITY 4
3345 
3346 /*
3347  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3348  * occur.
3349  */
3350 int sysctl_min_unmapped_ratio = 1;
3351 
3352 /*
3353  * If the number of slab pages in a zone grows beyond this percentage then
3354  * slab reclaim needs to occur.
3355  */
3356 int sysctl_min_slab_ratio = 5;
3357 
zone_unmapped_file_pages(struct zone * zone)3358 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3359 {
3360 	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3361 	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3362 		zone_page_state(zone, NR_ACTIVE_FILE);
3363 
3364 	/*
3365 	 * It's possible for there to be more file mapped pages than
3366 	 * accounted for by the pages on the file LRU lists because
3367 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3368 	 */
3369 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3370 }
3371 
3372 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
zone_pagecache_reclaimable(struct zone * zone)3373 static long zone_pagecache_reclaimable(struct zone *zone)
3374 {
3375 	long nr_pagecache_reclaimable;
3376 	long delta = 0;
3377 
3378 	/*
3379 	 * If RECLAIM_SWAP is set, then all file pages are considered
3380 	 * potentially reclaimable. Otherwise, we have to worry about
3381 	 * pages like swapcache and zone_unmapped_file_pages() provides
3382 	 * a better estimate
3383 	 */
3384 	if (zone_reclaim_mode & RECLAIM_SWAP)
3385 		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3386 	else
3387 		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3388 
3389 	/* If we can't clean pages, remove dirty pages from consideration */
3390 	if (!(zone_reclaim_mode & RECLAIM_WRITE))
3391 		delta += zone_page_state(zone, NR_FILE_DIRTY);
3392 
3393 	/* Watch for any possible underflows due to delta */
3394 	if (unlikely(delta > nr_pagecache_reclaimable))
3395 		delta = nr_pagecache_reclaimable;
3396 
3397 	return nr_pagecache_reclaimable - delta;
3398 }
3399 
3400 /*
3401  * Try to free up some pages from this zone through reclaim.
3402  */
__zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3403 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3404 {
3405 	/* Minimum pages needed in order to stay on node */
3406 	const unsigned long nr_pages = 1 << order;
3407 	struct task_struct *p = current;
3408 	struct reclaim_state reclaim_state;
3409 	int priority;
3410 	struct scan_control sc = {
3411 		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3412 		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3413 		.may_swap = 1,
3414 		.nr_to_reclaim = max_t(unsigned long, nr_pages,
3415 				       SWAP_CLUSTER_MAX),
3416 		.gfp_mask = gfp_mask,
3417 		.order = order,
3418 	};
3419 	struct shrink_control shrink = {
3420 		.gfp_mask = sc.gfp_mask,
3421 	};
3422 	unsigned long nr_slab_pages0, nr_slab_pages1;
3423 
3424 	cond_resched();
3425 	/*
3426 	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3427 	 * and we also need to be able to write out pages for RECLAIM_WRITE
3428 	 * and RECLAIM_SWAP.
3429 	 */
3430 	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3431 	lockdep_set_current_reclaim_state(gfp_mask);
3432 	reclaim_state.reclaimed_slab = 0;
3433 	p->reclaim_state = &reclaim_state;
3434 
3435 	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3436 		/*
3437 		 * Free memory by calling shrink zone with increasing
3438 		 * priorities until we have enough memory freed.
3439 		 */
3440 		priority = ZONE_RECLAIM_PRIORITY;
3441 		do {
3442 			shrink_zone(priority, zone, &sc);
3443 			priority--;
3444 		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3445 	}
3446 
3447 	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3448 	if (nr_slab_pages0 > zone->min_slab_pages) {
3449 		/*
3450 		 * shrink_slab() does not currently allow us to determine how
3451 		 * many pages were freed in this zone. So we take the current
3452 		 * number of slab pages and shake the slab until it is reduced
3453 		 * by the same nr_pages that we used for reclaiming unmapped
3454 		 * pages.
3455 		 *
3456 		 * Note that shrink_slab will free memory on all zones and may
3457 		 * take a long time.
3458 		 */
3459 		for (;;) {
3460 			unsigned long lru_pages = zone_reclaimable_pages(zone);
3461 
3462 			/* No reclaimable slab or very low memory pressure */
3463 			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3464 				break;
3465 
3466 			/* Freed enough memory */
3467 			nr_slab_pages1 = zone_page_state(zone,
3468 							NR_SLAB_RECLAIMABLE);
3469 			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3470 				break;
3471 		}
3472 
3473 		/*
3474 		 * Update nr_reclaimed by the number of slab pages we
3475 		 * reclaimed from this zone.
3476 		 */
3477 		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3478 		if (nr_slab_pages1 < nr_slab_pages0)
3479 			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3480 	}
3481 
3482 	p->reclaim_state = NULL;
3483 	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3484 	lockdep_clear_current_reclaim_state();
3485 	return sc.nr_reclaimed >= nr_pages;
3486 }
3487 
zone_reclaim(struct zone * zone,gfp_t gfp_mask,unsigned int order)3488 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3489 {
3490 	int node_id;
3491 	int ret;
3492 
3493 	/*
3494 	 * Zone reclaim reclaims unmapped file backed pages and
3495 	 * slab pages if we are over the defined limits.
3496 	 *
3497 	 * A small portion of unmapped file backed pages is needed for
3498 	 * file I/O otherwise pages read by file I/O will be immediately
3499 	 * thrown out if the zone is overallocated. So we do not reclaim
3500 	 * if less than a specified percentage of the zone is used by
3501 	 * unmapped file backed pages.
3502 	 */
3503 	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3504 	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3505 		return ZONE_RECLAIM_FULL;
3506 
3507 	if (zone->all_unreclaimable)
3508 		return ZONE_RECLAIM_FULL;
3509 
3510 	/*
3511 	 * Do not scan if the allocation should not be delayed.
3512 	 */
3513 	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3514 		return ZONE_RECLAIM_NOSCAN;
3515 
3516 	/*
3517 	 * Only run zone reclaim on the local zone or on zones that do not
3518 	 * have associated processors. This will favor the local processor
3519 	 * over remote processors and spread off node memory allocations
3520 	 * as wide as possible.
3521 	 */
3522 	node_id = zone_to_nid(zone);
3523 	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3524 		return ZONE_RECLAIM_NOSCAN;
3525 
3526 	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3527 		return ZONE_RECLAIM_NOSCAN;
3528 
3529 	ret = __zone_reclaim(zone, gfp_mask, order);
3530 	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3531 
3532 	if (!ret)
3533 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3534 
3535 	return ret;
3536 }
3537 #endif
3538 
3539 /*
3540  * page_evictable - test whether a page is evictable
3541  * @page: the page to test
3542  * @vma: the VMA in which the page is or will be mapped, may be NULL
3543  *
3544  * Test whether page is evictable--i.e., should be placed on active/inactive
3545  * lists vs unevictable list.  The vma argument is !NULL when called from the
3546  * fault path to determine how to instantate a new page.
3547  *
3548  * Reasons page might not be evictable:
3549  * (1) page's mapping marked unevictable
3550  * (2) page is part of an mlocked VMA
3551  *
3552  */
page_evictable(struct page * page,struct vm_area_struct * vma)3553 int page_evictable(struct page *page, struct vm_area_struct *vma)
3554 {
3555 
3556 	if (mapping_unevictable(page_mapping(page)))
3557 		return 0;
3558 
3559 	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3560 		return 0;
3561 
3562 	return 1;
3563 }
3564 
3565 #ifdef CONFIG_SHMEM
3566 /**
3567  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3568  * @pages:	array of pages to check
3569  * @nr_pages:	number of pages to check
3570  *
3571  * Checks pages for evictability and moves them to the appropriate lru list.
3572  *
3573  * This function is only used for SysV IPC SHM_UNLOCK.
3574  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)3575 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3576 {
3577 	struct lruvec *lruvec;
3578 	struct zone *zone = NULL;
3579 	int pgscanned = 0;
3580 	int pgrescued = 0;
3581 	int i;
3582 
3583 	for (i = 0; i < nr_pages; i++) {
3584 		struct page *page = pages[i];
3585 		struct zone *pagezone;
3586 
3587 		pgscanned++;
3588 		pagezone = page_zone(page);
3589 		if (pagezone != zone) {
3590 			if (zone)
3591 				spin_unlock_irq(&zone->lru_lock);
3592 			zone = pagezone;
3593 			spin_lock_irq(&zone->lru_lock);
3594 		}
3595 
3596 		if (!PageLRU(page) || !PageUnevictable(page))
3597 			continue;
3598 
3599 		if (page_evictable(page, NULL)) {
3600 			enum lru_list lru = page_lru_base_type(page);
3601 
3602 			VM_BUG_ON(PageActive(page));
3603 			ClearPageUnevictable(page);
3604 			__dec_zone_state(zone, NR_UNEVICTABLE);
3605 			lruvec = mem_cgroup_lru_move_lists(zone, page,
3606 						LRU_UNEVICTABLE, lru);
3607 			list_move(&page->lru, &lruvec->lists[lru]);
3608 			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3609 			pgrescued++;
3610 		}
3611 	}
3612 
3613 	if (zone) {
3614 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3615 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3616 		spin_unlock_irq(&zone->lru_lock);
3617 	}
3618 }
3619 #endif /* CONFIG_SHMEM */
3620 
warn_scan_unevictable_pages(void)3621 static void warn_scan_unevictable_pages(void)
3622 {
3623 	printk_once(KERN_WARNING
3624 		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
3625 		    "disabled for lack of a legitimate use case.  If you have "
3626 		    "one, please send an email to linux-mm@kvack.org.\n",
3627 		    current->comm);
3628 }
3629 
3630 /*
3631  * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
3632  * all nodes' unevictable lists for evictable pages
3633  */
3634 unsigned long scan_unevictable_pages;
3635 
scan_unevictable_handler(struct ctl_table * table,int write,void __user * buffer,size_t * length,loff_t * ppos)3636 int scan_unevictable_handler(struct ctl_table *table, int write,
3637 			   void __user *buffer,
3638 			   size_t *length, loff_t *ppos)
3639 {
3640 	warn_scan_unevictable_pages();
3641 	proc_doulongvec_minmax(table, write, buffer, length, ppos);
3642 	scan_unevictable_pages = 0;
3643 	return 0;
3644 }
3645 
3646 #ifdef CONFIG_NUMA
3647 /*
3648  * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
3649  * a specified node's per zone unevictable lists for evictable pages.
3650  */
3651 
read_scan_unevictable_node(struct device * dev,struct device_attribute * attr,char * buf)3652 static ssize_t read_scan_unevictable_node(struct device *dev,
3653 					  struct device_attribute *attr,
3654 					  char *buf)
3655 {
3656 	warn_scan_unevictable_pages();
3657 	return sprintf(buf, "0\n");	/* always zero; should fit... */
3658 }
3659 
write_scan_unevictable_node(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3660 static ssize_t write_scan_unevictable_node(struct device *dev,
3661 					   struct device_attribute *attr,
3662 					const char *buf, size_t count)
3663 {
3664 	warn_scan_unevictable_pages();
3665 	return 1;
3666 }
3667 
3668 
3669 static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3670 			read_scan_unevictable_node,
3671 			write_scan_unevictable_node);
3672 
scan_unevictable_register_node(struct node * node)3673 int scan_unevictable_register_node(struct node *node)
3674 {
3675 	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
3676 }
3677 
scan_unevictable_unregister_node(struct node * node)3678 void scan_unevictable_unregister_node(struct node *node)
3679 {
3680 	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
3681 }
3682 #endif
3683