1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 */
14
15 #include <linux/config.h>
16 #include <linux/mm.h>
17 #include <linux/swap.h>
18 #include <linux/swapctl.h>
19 #include <linux/interrupt.h>
20 #include <linux/pagemap.h>
21 #include <linux/bootmem.h>
22 #include <linux/slab.h>
23 #include <linux/module.h>
24
25 int nr_swap_pages;
26 int nr_active_pages;
27 int nr_inactive_pages;
28 LIST_HEAD(inactive_list);
29 LIST_HEAD(active_list);
30 pg_data_t *pgdat_list;
31
32 /*
33 *
34 * The zone_table array is used to look up the address of the
35 * struct zone corresponding to a given zone number (ZONE_DMA,
36 * ZONE_NORMAL, or ZONE_HIGHMEM).
37 */
38 zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];
39 EXPORT_SYMBOL(zone_table);
40
41 static char *zone_names[MAX_NR_ZONES] = { "DMA", "Normal", "HighMem" };
42 static int zone_balance_ratio[MAX_NR_ZONES] __initdata = { 128, 128, 128, };
43 static int zone_balance_min[MAX_NR_ZONES] __initdata = { 20 , 20, 20, };
44 static int zone_balance_max[MAX_NR_ZONES] __initdata = { 255 , 255, 255, };
45 static int lower_zone_reserve_ratio[MAX_NR_ZONES-1] = { 256, 32 };
46
47 int vm_gfp_debug = 0;
48
49 static void FASTCALL(__free_pages_ok (struct page *page, unsigned int order));
50
51 static spinlock_t free_pages_ok_no_irq_lock = SPIN_LOCK_UNLOCKED;
52 struct page * free_pages_ok_no_irq_head;
53
do_free_pages_ok_no_irq(void * arg)54 static void do_free_pages_ok_no_irq(void * arg)
55 {
56 struct page * page, * __page;
57
58 spin_lock_irq(&free_pages_ok_no_irq_lock);
59
60 page = free_pages_ok_no_irq_head;
61 free_pages_ok_no_irq_head = NULL;
62
63 spin_unlock_irq(&free_pages_ok_no_irq_lock);
64
65 while (page) {
66 __page = page;
67 page = page->next_hash;
68 __free_pages_ok(__page, __page->index);
69 }
70 }
71
72 static struct tq_struct free_pages_ok_no_irq_task = {
73 .routine = do_free_pages_ok_no_irq,
74 };
75
76
77 /*
78 * Temporary debugging check.
79 */
80 #define BAD_RANGE(zone, page) \
81 ( \
82 (((page) - mem_map) >= ((zone)->zone_start_mapnr+(zone)->size)) \
83 || (((page) - mem_map) < (zone)->zone_start_mapnr) \
84 || ((zone) != page_zone(page)) \
85 )
86
87 /*
88 * Freeing function for a buddy system allocator.
89 * Contrary to prior comments, this is *NOT* hairy, and there
90 * is no reason for anyone not to understand it.
91 *
92 * The concept of a buddy system is to maintain direct-mapped tables
93 * (containing bit values) for memory blocks of various "orders".
94 * The bottom level table contains the map for the smallest allocatable
95 * units of memory (here, pages), and each level above it describes
96 * pairs of units from the levels below, hence, "buddies".
97 * At a high level, all that happens here is marking the table entry
98 * at the bottom level available, and propagating the changes upward
99 * as necessary, plus some accounting needed to play nicely with other
100 * parts of the VM system.
101 * At each level, we keep one bit for each pair of blocks, which
102 * is set to 1 iff only one of the pair is allocated. So when we
103 * are allocating or freeing one, we can derive the state of the
104 * other. That is, if we allocate a small block, and both were
105 * free, the remainder of the region must be split into blocks.
106 * If a block is freed, and its buddy is also free, then this
107 * triggers coalescing into a block of larger size.
108 *
109 * -- wli
110 */
111
__free_pages_ok(struct page * page,unsigned int order)112 static void fastcall __free_pages_ok (struct page *page, unsigned int order)
113 {
114 unsigned long index, page_idx, mask, flags;
115 free_area_t *area;
116 struct page *base;
117 zone_t *zone;
118
119 /*
120 * Yes, think what happens when other parts of the kernel take
121 * a reference to a page in order to pin it for io. -ben
122 */
123 if (PageLRU(page)) {
124 if (unlikely(in_interrupt())) {
125 unsigned long flags;
126
127 spin_lock_irqsave(&free_pages_ok_no_irq_lock, flags);
128 page->next_hash = free_pages_ok_no_irq_head;
129 free_pages_ok_no_irq_head = page;
130 page->index = order;
131
132 spin_unlock_irqrestore(&free_pages_ok_no_irq_lock, flags);
133
134 schedule_task(&free_pages_ok_no_irq_task);
135 return;
136 }
137
138 lru_cache_del(page);
139 }
140
141 if (page->buffers)
142 BUG();
143 if (page->mapping)
144 BUG();
145 if (!VALID_PAGE(page))
146 BUG();
147 if (PageLocked(page))
148 BUG();
149 if (PageActive(page))
150 BUG();
151 ClearPageReferenced(page);
152 ClearPageDirty(page);
153
154 if (current->flags & PF_FREE_PAGES)
155 goto local_freelist;
156 back_local_freelist:
157
158 zone = page_zone(page);
159
160 mask = (~0UL) << order;
161 base = zone->zone_mem_map;
162 page_idx = page - base;
163 if (page_idx & ~mask)
164 BUG();
165 index = page_idx >> (1 + order);
166
167 area = zone->free_area + order;
168
169 spin_lock_irqsave(&zone->lock, flags);
170
171 zone->free_pages -= mask;
172
173 while (mask + (1 << (MAX_ORDER-1))) {
174 struct page *buddy1, *buddy2;
175
176 if (area >= zone->free_area + MAX_ORDER)
177 BUG();
178 if (!__test_and_change_bit(index, area->map))
179 /*
180 * the buddy page is still allocated.
181 */
182 break;
183 /*
184 * Move the buddy up one level.
185 * This code is taking advantage of the identity:
186 * -mask = 1+~mask
187 */
188 buddy1 = base + (page_idx ^ -mask);
189 buddy2 = base + page_idx;
190 if (BAD_RANGE(zone,buddy1))
191 BUG();
192 if (BAD_RANGE(zone,buddy2))
193 BUG();
194
195 list_del(&buddy1->list);
196 mask <<= 1;
197 area++;
198 index >>= 1;
199 page_idx &= mask;
200 }
201 list_add(&(base + page_idx)->list, &area->free_list);
202
203 spin_unlock_irqrestore(&zone->lock, flags);
204 return;
205
206 local_freelist:
207 if (current->nr_local_pages)
208 goto back_local_freelist;
209 if (in_interrupt())
210 goto back_local_freelist;
211
212 list_add(&page->list, ¤t->local_pages);
213 page->index = order;
214 current->nr_local_pages++;
215 }
216
217 #define MARK_USED(index, order, area) \
218 __change_bit((index) >> (1+(order)), (area)->map)
219
expand(zone_t * zone,struct page * page,unsigned long index,int low,int high,free_area_t * area)220 static inline struct page * expand (zone_t *zone, struct page *page,
221 unsigned long index, int low, int high, free_area_t * area)
222 {
223 unsigned long size = 1 << high;
224
225 while (high > low) {
226 if (BAD_RANGE(zone,page))
227 BUG();
228 area--;
229 high--;
230 size >>= 1;
231 list_add(&(page)->list, &(area)->free_list);
232 MARK_USED(index, high, area);
233 index += size;
234 page += size;
235 }
236 if (BAD_RANGE(zone,page))
237 BUG();
238 return page;
239 }
240
241 static FASTCALL(struct page * rmqueue(zone_t *zone, unsigned int order));
rmqueue(zone_t * zone,unsigned int order)242 static struct page * fastcall rmqueue(zone_t *zone, unsigned int order)
243 {
244 free_area_t * area = zone->free_area + order;
245 unsigned int curr_order = order;
246 struct list_head *head, *curr;
247 unsigned long flags;
248 struct page *page;
249
250 spin_lock_irqsave(&zone->lock, flags);
251 do {
252 head = &area->free_list;
253 curr = head->next;
254
255 if (curr != head) {
256 unsigned int index;
257
258 page = list_entry(curr, struct page, list);
259 if (BAD_RANGE(zone,page))
260 BUG();
261 list_del(curr);
262 index = page - zone->zone_mem_map;
263 if (curr_order != MAX_ORDER-1)
264 MARK_USED(index, curr_order, area);
265 zone->free_pages -= 1UL << order;
266
267 page = expand(zone, page, index, order, curr_order, area);
268 spin_unlock_irqrestore(&zone->lock, flags);
269
270 set_page_count(page, 1);
271 if (BAD_RANGE(zone,page))
272 BUG();
273 if (PageLRU(page))
274 BUG();
275 if (PageActive(page))
276 BUG();
277 return page;
278 }
279 curr_order++;
280 area++;
281 } while (curr_order < MAX_ORDER);
282 spin_unlock_irqrestore(&zone->lock, flags);
283
284 return NULL;
285 }
286
287 #ifndef CONFIG_DISCONTIGMEM
_alloc_pages(unsigned int gfp_mask,unsigned int order)288 struct page * fastcall _alloc_pages(unsigned int gfp_mask, unsigned int order)
289 {
290 return __alloc_pages(gfp_mask, order,
291 contig_page_data.node_zonelists+(gfp_mask & GFP_ZONEMASK));
292 }
293 #endif
294
295 static struct page * FASTCALL(balance_classzone(zone_t *, unsigned int, unsigned int, int *));
balance_classzone(zone_t * classzone,unsigned int gfp_mask,unsigned int order,int * freed)296 static struct page * fastcall balance_classzone(zone_t * classzone, unsigned int gfp_mask, unsigned int order, int * freed)
297 {
298 struct page * page = NULL;
299 int __freed;
300
301 if (in_interrupt())
302 BUG();
303
304 current->allocation_order = order;
305 current->flags |= PF_MEMALLOC | PF_FREE_PAGES;
306
307 __freed = try_to_free_pages_zone(classzone, gfp_mask);
308
309 current->flags &= ~(PF_MEMALLOC | PF_FREE_PAGES);
310
311 if (current->nr_local_pages) {
312 struct list_head * entry, * local_pages;
313 struct page * tmp;
314 int nr_pages;
315
316 local_pages = ¤t->local_pages;
317
318 if (likely(__freed)) {
319 /* pick from the last inserted so we're lifo */
320 entry = local_pages->next;
321 do {
322 tmp = list_entry(entry, struct page, list);
323 if (tmp->index == order && memclass(page_zone(tmp), classzone)) {
324 list_del(entry);
325 current->nr_local_pages--;
326 set_page_count(tmp, 1);
327 page = tmp;
328
329 if (page->buffers)
330 BUG();
331 if (page->mapping)
332 BUG();
333 if (!VALID_PAGE(page))
334 BUG();
335 if (PageLocked(page))
336 BUG();
337 if (PageLRU(page))
338 BUG();
339 if (PageActive(page))
340 BUG();
341 if (PageDirty(page))
342 BUG();
343
344 break;
345 }
346 } while ((entry = entry->next) != local_pages);
347 }
348
349 nr_pages = current->nr_local_pages;
350 /* free in reverse order so that the global order will be lifo */
351 while ((entry = local_pages->prev) != local_pages) {
352 list_del(entry);
353 tmp = list_entry(entry, struct page, list);
354 __free_pages_ok(tmp, tmp->index);
355 if (!nr_pages--)
356 BUG();
357 }
358 current->nr_local_pages = 0;
359 }
360
361 *freed = __freed;
362 return page;
363 }
364
zone_free_pages(zone_t * zone,unsigned int order)365 static inline unsigned long zone_free_pages(zone_t * zone, unsigned int order)
366 {
367 long free = zone->free_pages - (1UL << order);
368 return free >= 0 ? free : 0;
369 }
370
371 /*
372 * This is the 'heart' of the zoned buddy allocator:
373 */
__alloc_pages(unsigned int gfp_mask,unsigned int order,zonelist_t * zonelist)374 struct page * fastcall __alloc_pages(unsigned int gfp_mask, unsigned int order, zonelist_t *zonelist)
375 {
376 zone_t **zone, * classzone;
377 struct page * page;
378 int freed, class_idx;
379
380 zone = zonelist->zones;
381 classzone = *zone;
382 class_idx = zone_idx(classzone);
383
384 for (;;) {
385 zone_t *z = *(zone++);
386 if (!z)
387 break;
388
389 if (zone_free_pages(z, order) > z->watermarks[class_idx].low) {
390 page = rmqueue(z, order);
391 if (page)
392 return page;
393 }
394 }
395
396 classzone->need_balance = 1;
397 mb();
398 if (waitqueue_active(&kswapd_wait))
399 wake_up_interruptible(&kswapd_wait);
400
401 zone = zonelist->zones;
402 for (;;) {
403 unsigned long min;
404 zone_t *z = *(zone++);
405 if (!z)
406 break;
407
408 min = z->watermarks[class_idx].min;
409 if (!(gfp_mask & __GFP_WAIT))
410 min >>= 2;
411 if (zone_free_pages(z, order) > min) {
412 page = rmqueue(z, order);
413 if (page)
414 return page;
415 }
416 }
417
418 /* here we're in the low on memory slow path */
419
420 if ((current->flags & PF_MEMALLOC) &&
421 (!in_interrupt() || (current->flags & PF_MEMDIE))) {
422 zone = zonelist->zones;
423 for (;;) {
424 zone_t *z = *(zone++);
425 if (!z)
426 break;
427
428 page = rmqueue(z, order);
429 if (page)
430 return page;
431 }
432 return NULL;
433 }
434
435 /* Atomic allocations - we can't balance anything */
436 if (!(gfp_mask & __GFP_WAIT))
437 goto out;
438
439 rebalance:
440 page = balance_classzone(classzone, gfp_mask, order, &freed);
441 if (page)
442 return page;
443
444 zone = zonelist->zones;
445 if (likely(freed)) {
446 for (;;) {
447 zone_t *z = *(zone++);
448 if (!z)
449 break;
450
451 if (zone_free_pages(z, order) > z->watermarks[class_idx].min) {
452 page = rmqueue(z, order);
453 if (page)
454 return page;
455 }
456 }
457 goto rebalance;
458 } else {
459 /*
460 * Check that no other task is been killed meanwhile,
461 * in such a case we can succeed the allocation.
462 */
463 for (;;) {
464 zone_t *z = *(zone++);
465 if (!z)
466 break;
467
468 if (zone_free_pages(z, order) > z->watermarks[class_idx].high) {
469 page = rmqueue(z, order);
470 if (page)
471 return page;
472 }
473 }
474 }
475
476 out:
477 printk(KERN_NOTICE "__alloc_pages: %u-order allocation failed (gfp=0x%x/%i)\n",
478 order, gfp_mask, !!(current->flags & PF_MEMALLOC));
479 if (unlikely(vm_gfp_debug))
480 dump_stack();
481 return NULL;
482 }
483
484 /*
485 * Common helper functions.
486 */
__get_free_pages(unsigned int gfp_mask,unsigned int order)487 fastcall unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int order)
488 {
489 struct page * page;
490
491 page = alloc_pages(gfp_mask, order);
492 if (!page)
493 return 0;
494 return (unsigned long) page_address(page);
495 }
496
get_zeroed_page(unsigned int gfp_mask)497 fastcall unsigned long get_zeroed_page(unsigned int gfp_mask)
498 {
499 struct page * page;
500
501 page = alloc_pages(gfp_mask, 0);
502 if (page) {
503 void *address = page_address(page);
504 clear_page(address);
505 return (unsigned long) address;
506 }
507 return 0;
508 }
509
__free_pages(struct page * page,unsigned int order)510 fastcall void __free_pages(struct page *page, unsigned int order)
511 {
512 if (!PageReserved(page) && put_page_testzero(page))
513 __free_pages_ok(page, order);
514 }
515
free_pages(unsigned long addr,unsigned int order)516 fastcall void free_pages(unsigned long addr, unsigned int order)
517 {
518 if (addr != 0)
519 __free_pages(virt_to_page(addr), order);
520 }
521
522 /*
523 * Total amount of free (allocatable) RAM:
524 */
nr_free_pages(void)525 unsigned int nr_free_pages (void)
526 {
527 unsigned int sum = 0;
528 zone_t *zone;
529
530 for_each_zone(zone)
531 sum += zone->free_pages;
532
533 return sum;
534 }
535
536 /*
537 * Amount of free RAM allocatable as buffer memory:
538 */
nr_free_buffer_pages(void)539 unsigned int nr_free_buffer_pages (void)
540 {
541 pg_data_t *pgdat;
542 unsigned int sum = 0;
543 zonelist_t *zonelist;
544 zone_t **zonep, *zone;
545
546 for_each_pgdat(pgdat) {
547 int class_idx;
548 zonelist = pgdat->node_zonelists + (GFP_USER & GFP_ZONEMASK);
549 zonep = zonelist->zones;
550 zone = *zonep;
551 class_idx = zone_idx(zone);
552
553 sum += zone->nr_cache_pages;
554 for (; zone; zone = *zonep++) {
555 int free = zone->free_pages - zone->watermarks[class_idx].high;
556 if (free <= 0)
557 continue;
558 sum += free;
559 }
560 }
561
562 return sum;
563 }
564
565 #if CONFIG_HIGHMEM
nr_free_highpages(void)566 unsigned int nr_free_highpages (void)
567 {
568 pg_data_t *pgdat;
569 unsigned int pages = 0;
570
571 for_each_pgdat(pgdat)
572 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
573
574 return pages;
575 }
576
freeable_lowmem(void)577 unsigned int freeable_lowmem(void)
578 {
579 unsigned int pages = 0;
580 pg_data_t *pgdat;
581
582 for_each_pgdat(pgdat) {
583 pages += pgdat->node_zones[ZONE_DMA].free_pages;
584 pages += pgdat->node_zones[ZONE_DMA].nr_active_pages;
585 pages += pgdat->node_zones[ZONE_DMA].nr_inactive_pages;
586 pages += pgdat->node_zones[ZONE_NORMAL].free_pages;
587 pages += pgdat->node_zones[ZONE_NORMAL].nr_active_pages;
588 pages += pgdat->node_zones[ZONE_NORMAL].nr_inactive_pages;
589 }
590
591 return pages;
592 }
593 #endif
594
595 #define K(x) ((x) << (PAGE_SHIFT-10))
596
597 /*
598 * Show free area list (used inside shift_scroll-lock stuff)
599 * We also calculate the percentage fragmentation. We do this by counting the
600 * memory on each free list with the exception of the first item on the list.
601 */
show_free_areas_core(pg_data_t * pgdat)602 void show_free_areas_core(pg_data_t *pgdat)
603 {
604 unsigned int order;
605 unsigned type;
606 pg_data_t *tmpdat = pgdat;
607
608 printk("Free pages: %6dkB (%6dkB HighMem)\n",
609 K(nr_free_pages()),
610 K(nr_free_highpages()));
611
612 while (tmpdat) {
613 zone_t *zone;
614 for (zone = tmpdat->node_zones;
615 zone < tmpdat->node_zones + MAX_NR_ZONES; zone++)
616 printk("Zone:%s freepages:%6lukB\n",
617 zone->name,
618 K(zone->free_pages));
619
620 tmpdat = tmpdat->node_next;
621 }
622
623 printk("( Active: %d, inactive: %d, free: %d )\n",
624 nr_active_pages,
625 nr_inactive_pages,
626 nr_free_pages());
627
628 for (type = 0; type < MAX_NR_ZONES; type++) {
629 struct list_head *head, *curr;
630 zone_t *zone = pgdat->node_zones + type;
631 unsigned long nr, total, flags;
632
633 total = 0;
634 if (zone->size) {
635 spin_lock_irqsave(&zone->lock, flags);
636 for (order = 0; order < MAX_ORDER; order++) {
637 head = &(zone->free_area + order)->free_list;
638 curr = head;
639 nr = 0;
640 for (;;) {
641 if ((curr = curr->next) == head)
642 break;
643 nr++;
644 }
645 total += nr * (1 << order);
646 printk("%lu*%lukB ", nr, K(1UL) << order);
647 }
648 spin_unlock_irqrestore(&zone->lock, flags);
649 }
650 printk("= %lukB)\n", K(total));
651 }
652
653 #ifdef SWAP_CACHE_INFO
654 show_swap_cache_info();
655 #endif
656 }
657
show_free_areas(void)658 void show_free_areas(void)
659 {
660 show_free_areas_core(pgdat_list);
661 }
662
663 /*
664 * Builds allocation fallback zone lists.
665 */
build_zonelists(pg_data_t * pgdat)666 static inline void build_zonelists(pg_data_t *pgdat)
667 {
668 int i, j, k;
669
670 for (i = 0; i <= GFP_ZONEMASK; i++) {
671 zonelist_t *zonelist;
672 zone_t *zone;
673
674 zonelist = pgdat->node_zonelists + i;
675 memset(zonelist, 0, sizeof(*zonelist));
676
677 j = 0;
678 k = ZONE_NORMAL;
679 if (i & __GFP_HIGHMEM)
680 k = ZONE_HIGHMEM;
681 if (i & __GFP_DMA)
682 k = ZONE_DMA;
683
684 switch (k) {
685 default:
686 BUG();
687 /*
688 * fallthrough:
689 */
690 case ZONE_HIGHMEM:
691 zone = pgdat->node_zones + ZONE_HIGHMEM;
692 if (zone->size) {
693 #ifndef CONFIG_HIGHMEM
694 BUG();
695 #endif
696 zonelist->zones[j++] = zone;
697 }
698 case ZONE_NORMAL:
699 zone = pgdat->node_zones + ZONE_NORMAL;
700 if (zone->size)
701 zonelist->zones[j++] = zone;
702 case ZONE_DMA:
703 zone = pgdat->node_zones + ZONE_DMA;
704 if (zone->size)
705 zonelist->zones[j++] = zone;
706 }
707 zonelist->zones[j++] = NULL;
708 }
709 }
710
711 /*
712 * Helper functions to size the waitqueue hash table.
713 * Essentially these want to choose hash table sizes sufficiently
714 * large so that collisions trying to wait on pages are rare.
715 * But in fact, the number of active page waitqueues on typical
716 * systems is ridiculously low, less than 200. So this is even
717 * conservative, even though it seems large.
718 *
719 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
720 * waitqueues, i.e. the size of the waitq table given the number of pages.
721 */
722 #define PAGES_PER_WAITQUEUE 256
723
wait_table_size(unsigned long pages)724 static inline unsigned long wait_table_size(unsigned long pages)
725 {
726 unsigned long size = 1;
727
728 pages /= PAGES_PER_WAITQUEUE;
729
730 while (size < pages)
731 size <<= 1;
732
733 /*
734 * Once we have dozens or even hundreds of threads sleeping
735 * on IO we've got bigger problems than wait queue collision.
736 * Limit the size of the wait table to a reasonable size.
737 */
738 size = min(size, 4096UL);
739
740 return size;
741 }
742
743 /*
744 * This is an integer logarithm so that shifts can be used later
745 * to extract the more random high bits from the multiplicative
746 * hash function before the remainder is taken.
747 */
wait_table_bits(unsigned long size)748 static inline unsigned long wait_table_bits(unsigned long size)
749 {
750 return ffz(~size);
751 }
752
753 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
754
755 /*
756 * Set up the zone data structures:
757 * - mark all pages reserved
758 * - mark all memory queues empty
759 * - clear the memory bitmaps
760 */
free_area_init_core(int nid,pg_data_t * pgdat,struct page ** gmap,unsigned long * zones_size,unsigned long zone_start_paddr,unsigned long * zholes_size,struct page * lmem_map)761 void __init free_area_init_core(int nid, pg_data_t *pgdat, struct page **gmap,
762 unsigned long *zones_size, unsigned long zone_start_paddr,
763 unsigned long *zholes_size, struct page *lmem_map)
764 {
765 unsigned long i, j;
766 unsigned long map_size;
767 unsigned long totalpages, offset, realtotalpages;
768 const unsigned long zone_required_alignment = 1UL << (MAX_ORDER-1);
769
770 if (zone_start_paddr & ~PAGE_MASK)
771 BUG();
772
773 totalpages = 0;
774 for (i = 0; i < MAX_NR_ZONES; i++) {
775 unsigned long size = zones_size[i];
776 totalpages += size;
777 }
778 realtotalpages = totalpages;
779 if (zholes_size)
780 for (i = 0; i < MAX_NR_ZONES; i++)
781 realtotalpages -= zholes_size[i];
782
783 printk("On node %d totalpages: %lu\n", nid, realtotalpages);
784
785 /*
786 * Some architectures (with lots of mem and discontinous memory
787 * maps) have to search for a good mem_map area:
788 * For discontigmem, the conceptual mem map array starts from
789 * PAGE_OFFSET, we need to align the actual array onto a mem map
790 * boundary, so that MAP_NR works.
791 */
792 map_size = (totalpages + 1)*sizeof(struct page);
793 if (lmem_map == (struct page *)0) {
794 lmem_map = (struct page *) alloc_bootmem_node(pgdat, map_size);
795 lmem_map = (struct page *)(PAGE_OFFSET +
796 MAP_ALIGN((unsigned long)lmem_map - PAGE_OFFSET));
797 }
798 *gmap = pgdat->node_mem_map = lmem_map;
799 pgdat->node_size = totalpages;
800 pgdat->node_start_paddr = zone_start_paddr;
801 pgdat->node_start_mapnr = (lmem_map - mem_map);
802 pgdat->nr_zones = 0;
803
804 offset = lmem_map - mem_map;
805 for (j = 0; j < MAX_NR_ZONES; j++) {
806 zone_t *zone = pgdat->node_zones + j;
807 unsigned long mask;
808 unsigned long size, realsize;
809 int idx;
810
811 zone_table[nid * MAX_NR_ZONES + j] = zone;
812 realsize = size = zones_size[j];
813 if (zholes_size)
814 realsize -= zholes_size[j];
815
816 printk("zone(%lu): %lu pages.\n", j, size);
817 zone->size = size;
818 zone->realsize = realsize;
819 zone->name = zone_names[j];
820 zone->lock = SPIN_LOCK_UNLOCKED;
821 zone->zone_pgdat = pgdat;
822 zone->free_pages = 0;
823 zone->need_balance = 0;
824 zone->nr_active_pages = zone->nr_inactive_pages = 0;
825
826
827 if (!size)
828 continue;
829
830 /*
831 * The per-page waitqueue mechanism uses hashed waitqueues
832 * per zone.
833 */
834 zone->wait_table_size = wait_table_size(size);
835 zone->wait_table_shift =
836 BITS_PER_LONG - wait_table_bits(zone->wait_table_size);
837 zone->wait_table = (wait_queue_head_t *)
838 alloc_bootmem_node(pgdat, zone->wait_table_size
839 * sizeof(wait_queue_head_t));
840
841 for(i = 0; i < zone->wait_table_size; ++i)
842 init_waitqueue_head(zone->wait_table + i);
843
844 pgdat->nr_zones = j+1;
845
846 mask = (realsize / zone_balance_ratio[j]);
847 if (mask < zone_balance_min[j])
848 mask = zone_balance_min[j];
849 else if (mask > zone_balance_max[j])
850 mask = zone_balance_max[j];
851 zone->watermarks[j].min = mask;
852 zone->watermarks[j].low = mask*2;
853 zone->watermarks[j].high = mask*3;
854 /* now set the watermarks of the lower zones in the "j" classzone */
855 for (idx = j-1; idx >= 0; idx--) {
856 zone_t * lower_zone = pgdat->node_zones + idx;
857 unsigned long lower_zone_reserve;
858 if (!lower_zone->size)
859 continue;
860
861 mask = lower_zone->watermarks[idx].min;
862 lower_zone->watermarks[j].min = mask;
863 lower_zone->watermarks[j].low = mask*2;
864 lower_zone->watermarks[j].high = mask*3;
865
866 /* now the brainer part */
867 lower_zone_reserve = realsize / lower_zone_reserve_ratio[idx];
868 lower_zone->watermarks[j].min += lower_zone_reserve;
869 lower_zone->watermarks[j].low += lower_zone_reserve;
870 lower_zone->watermarks[j].high += lower_zone_reserve;
871
872 realsize += lower_zone->realsize;
873 }
874
875 zone->zone_mem_map = mem_map + offset;
876 zone->zone_start_mapnr = offset;
877 zone->zone_start_paddr = zone_start_paddr;
878
879 if ((zone_start_paddr >> PAGE_SHIFT) & (zone_required_alignment-1))
880 printk("BUG: wrong zone alignment, it will crash\n");
881
882 /*
883 * Initially all pages are reserved - free ones are freed
884 * up by free_all_bootmem() once the early boot process is
885 * done. Non-atomic initialization, single-pass.
886 */
887 for (i = 0; i < size; i++) {
888 struct page *page = mem_map + offset + i;
889 set_page_zone(page, nid * MAX_NR_ZONES + j);
890 set_page_count(page, 0);
891 SetPageReserved(page);
892 INIT_LIST_HEAD(&page->list);
893 if (j != ZONE_HIGHMEM)
894 set_page_address(page, __va(zone_start_paddr));
895 zone_start_paddr += PAGE_SIZE;
896 }
897
898 offset += size;
899 for (i = 0; ; i++) {
900 unsigned long bitmap_size;
901
902 INIT_LIST_HEAD(&zone->free_area[i].free_list);
903 if (i == MAX_ORDER-1) {
904 zone->free_area[i].map = NULL;
905 break;
906 }
907
908 /*
909 * Page buddy system uses "index >> (i+1)",
910 * where "index" is at most "size-1".
911 *
912 * The extra "+3" is to round down to byte
913 * size (8 bits per byte assumption). Thus
914 * we get "(size-1) >> (i+4)" as the last byte
915 * we can access.
916 *
917 * The "+1" is because we want to round the
918 * byte allocation up rather than down. So
919 * we should have had a "+7" before we shifted
920 * down by three. Also, we have to add one as
921 * we actually _use_ the last bit (it's [0,n]
922 * inclusive, not [0,n[).
923 *
924 * So we actually had +7+1 before we shift
925 * down by 3. But (n+8) >> 3 == (n >> 3) + 1
926 * (modulo overflows, which we do not have).
927 *
928 * Finally, we LONG_ALIGN because all bitmap
929 * operations are on longs.
930 */
931 bitmap_size = (size-1) >> (i+4);
932 bitmap_size = LONG_ALIGN(bitmap_size+1);
933 zone->free_area[i].map =
934 (unsigned long *) alloc_bootmem_node(pgdat, bitmap_size);
935 }
936 }
937 build_zonelists(pgdat);
938 }
939
free_area_init(unsigned long * zones_size)940 void __init free_area_init(unsigned long *zones_size)
941 {
942 free_area_init_core(0, &contig_page_data, &mem_map, zones_size, 0, 0, 0);
943 }
944
setup_mem_frac(char * str)945 static int __init setup_mem_frac(char *str)
946 {
947 int j = 0;
948
949 while (get_option(&str, &zone_balance_ratio[j++]) == 2);
950 printk("setup_mem_frac: ");
951 for (j = 0; j < MAX_NR_ZONES; j++) printk("%d ", zone_balance_ratio[j]);
952 printk("\n");
953 return 1;
954 }
955
956 __setup("memfrac=", setup_mem_frac);
957
setup_lower_zone_reserve(char * str)958 static int __init setup_lower_zone_reserve(char *str)
959 {
960 int j = 0;
961
962 while (get_option(&str, &lower_zone_reserve_ratio[j++]) == 2);
963 printk("setup_lower_zone_reserve: ");
964 for (j = 0; j < MAX_NR_ZONES-1; j++) printk("%d ", lower_zone_reserve_ratio[j]);
965 printk("\n");
966 return 1;
967 }
968
969 __setup("lower_zone_reserve=", setup_lower_zone_reserve);
970