1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 static int vcpu_mmap_sz(void);
24
open_path_or_exit(const char * path,int flags)25 int open_path_or_exit(const char *path, int flags)
26 {
27 int fd;
28
29 fd = open(path, flags);
30 if (fd < 0) {
31 print_skip("%s not available (errno: %d)", path, errno);
32 exit(KSFT_SKIP);
33 }
34
35 return fd;
36 }
37
38 /*
39 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
40 *
41 * Input Args:
42 * flags - The flags to pass when opening KVM_DEV_PATH.
43 *
44 * Return:
45 * The opened file descriptor of /dev/kvm.
46 */
_open_kvm_dev_path_or_exit(int flags)47 static int _open_kvm_dev_path_or_exit(int flags)
48 {
49 return open_path_or_exit(KVM_DEV_PATH, flags);
50 }
51
open_kvm_dev_path_or_exit(void)52 int open_kvm_dev_path_or_exit(void)
53 {
54 return _open_kvm_dev_path_or_exit(O_RDONLY);
55 }
56
57 /*
58 * Capability
59 *
60 * Input Args:
61 * cap - Capability
62 *
63 * Output Args: None
64 *
65 * Return:
66 * On success, the Value corresponding to the capability (KVM_CAP_*)
67 * specified by the value of cap. On failure a TEST_ASSERT failure
68 * is produced.
69 *
70 * Looks up and returns the value corresponding to the capability
71 * (KVM_CAP_*) given by cap.
72 */
kvm_check_cap(long cap)73 int kvm_check_cap(long cap)
74 {
75 int ret;
76 int kvm_fd;
77
78 kvm_fd = open_kvm_dev_path_or_exit();
79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
81 " rc: %i errno: %i", ret, errno);
82
83 close(kvm_fd);
84
85 return ret;
86 }
87
88 /* VM Check Capability
89 *
90 * Input Args:
91 * vm - Virtual Machine
92 * cap - Capability
93 *
94 * Output Args: None
95 *
96 * Return:
97 * On success, the Value corresponding to the capability (KVM_CAP_*)
98 * specified by the value of cap. On failure a TEST_ASSERT failure
99 * is produced.
100 *
101 * Looks up and returns the value corresponding to the capability
102 * (KVM_CAP_*) given by cap.
103 */
vm_check_cap(struct kvm_vm * vm,long cap)104 int vm_check_cap(struct kvm_vm *vm, long cap)
105 {
106 int ret;
107
108 ret = ioctl(vm->fd, KVM_CHECK_EXTENSION, cap);
109 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION VM IOCTL failed,\n"
110 " rc: %i errno: %i", ret, errno);
111
112 return ret;
113 }
114
115 /* VM Enable Capability
116 *
117 * Input Args:
118 * vm - Virtual Machine
119 * cap - Capability
120 *
121 * Output Args: None
122 *
123 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
124 *
125 * Enables a capability (KVM_CAP_*) on the VM.
126 */
vm_enable_cap(struct kvm_vm * vm,struct kvm_enable_cap * cap)127 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
128 {
129 int ret;
130
131 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
132 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
133 " rc: %i errno: %i", ret, errno);
134
135 return ret;
136 }
137
138 /* VCPU Enable Capability
139 *
140 * Input Args:
141 * vm - Virtual Machine
142 * vcpu_id - VCPU
143 * cap - Capability
144 *
145 * Output Args: None
146 *
147 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
148 *
149 * Enables a capability (KVM_CAP_*) on the VCPU.
150 */
vcpu_enable_cap(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_enable_cap * cap)151 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
152 struct kvm_enable_cap *cap)
153 {
154 struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
155 int r;
156
157 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
158
159 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
160 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
161 " rc: %i, errno: %i", r, errno);
162
163 return r;
164 }
165
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)166 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
167 {
168 struct kvm_enable_cap cap = { 0 };
169
170 cap.cap = KVM_CAP_DIRTY_LOG_RING;
171 cap.args[0] = ring_size;
172 vm_enable_cap(vm, &cap);
173 vm->dirty_ring_size = ring_size;
174 }
175
vm_open(struct kvm_vm * vm,int perm)176 static void vm_open(struct kvm_vm *vm, int perm)
177 {
178 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
179
180 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
181 print_skip("immediate_exit not available");
182 exit(KSFT_SKIP);
183 }
184
185 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
186 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
187 "rc: %i errno: %i", vm->fd, errno);
188 }
189
vm_guest_mode_string(uint32_t i)190 const char *vm_guest_mode_string(uint32_t i)
191 {
192 static const char * const strings[] = {
193 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
194 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
195 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
196 [VM_MODE_P48V48_16K] = "PA-bits:48, VA-bits:48, 16K pages",
197 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
198 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
199 [VM_MODE_P40V48_16K] = "PA-bits:40, VA-bits:48, 16K pages",
200 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
201 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
202 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
203 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
204 [VM_MODE_P36V48_4K] = "PA-bits:36, VA-bits:48, 4K pages",
205 [VM_MODE_P36V48_16K] = "PA-bits:36, VA-bits:48, 16K pages",
206 [VM_MODE_P36V48_64K] = "PA-bits:36, VA-bits:48, 64K pages",
207 [VM_MODE_P36V47_16K] = "PA-bits:36, VA-bits:47, 16K pages",
208 };
209 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
210 "Missing new mode strings?");
211
212 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
213
214 return strings[i];
215 }
216
217 const struct vm_guest_mode_params vm_guest_mode_params[] = {
218 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
219 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
220 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
221 [VM_MODE_P48V48_16K] = { 48, 48, 0x4000, 14 },
222 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
223 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
224 [VM_MODE_P40V48_16K] = { 40, 48, 0x4000, 14 },
225 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
226 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
227 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
228 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
229 [VM_MODE_P36V48_4K] = { 36, 48, 0x1000, 12 },
230 [VM_MODE_P36V48_16K] = { 36, 48, 0x4000, 14 },
231 [VM_MODE_P36V48_64K] = { 36, 48, 0x10000, 16 },
232 [VM_MODE_P36V47_16K] = { 36, 47, 0x4000, 14 },
233 };
234 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
235 "Missing new mode params?");
236
237 /*
238 * VM Create
239 *
240 * Input Args:
241 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
242 * phy_pages - Physical memory pages
243 * perm - permission
244 *
245 * Output Args: None
246 *
247 * Return:
248 * Pointer to opaque structure that describes the created VM.
249 *
250 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
251 * When phy_pages is non-zero, a memory region of phy_pages physical pages
252 * is created and mapped starting at guest physical address 0. The file
253 * descriptor to control the created VM is created with the permissions
254 * given by perm (e.g. O_RDWR).
255 */
vm_create(enum vm_guest_mode mode,uint64_t phy_pages,int perm)256 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
257 {
258 struct kvm_vm *vm;
259
260 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
261 vm_guest_mode_string(mode), phy_pages, perm);
262
263 vm = calloc(1, sizeof(*vm));
264 TEST_ASSERT(vm != NULL, "Insufficient Memory");
265
266 INIT_LIST_HEAD(&vm->vcpus);
267 vm->regions.gpa_tree = RB_ROOT;
268 vm->regions.hva_tree = RB_ROOT;
269 hash_init(vm->regions.slot_hash);
270
271 vm->mode = mode;
272 vm->type = 0;
273
274 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
275 vm->va_bits = vm_guest_mode_params[mode].va_bits;
276 vm->page_size = vm_guest_mode_params[mode].page_size;
277 vm->page_shift = vm_guest_mode_params[mode].page_shift;
278
279 /* Setup mode specific traits. */
280 switch (vm->mode) {
281 case VM_MODE_P52V48_4K:
282 vm->pgtable_levels = 4;
283 break;
284 case VM_MODE_P52V48_64K:
285 vm->pgtable_levels = 3;
286 break;
287 case VM_MODE_P48V48_4K:
288 vm->pgtable_levels = 4;
289 break;
290 case VM_MODE_P48V48_64K:
291 vm->pgtable_levels = 3;
292 break;
293 case VM_MODE_P40V48_4K:
294 case VM_MODE_P36V48_4K:
295 vm->pgtable_levels = 4;
296 break;
297 case VM_MODE_P40V48_64K:
298 case VM_MODE_P36V48_64K:
299 vm->pgtable_levels = 3;
300 break;
301 case VM_MODE_P48V48_16K:
302 case VM_MODE_P40V48_16K:
303 case VM_MODE_P36V48_16K:
304 vm->pgtable_levels = 4;
305 break;
306 case VM_MODE_P36V47_16K:
307 vm->pgtable_levels = 3;
308 break;
309 case VM_MODE_PXXV48_4K:
310 #ifdef __x86_64__
311 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
312 /*
313 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
314 * it doesn't take effect unless a CR4.LA57 is set, which it
315 * isn't for this VM_MODE.
316 */
317 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
318 "Linear address width (%d bits) not supported",
319 vm->va_bits);
320 pr_debug("Guest physical address width detected: %d\n",
321 vm->pa_bits);
322 vm->pgtable_levels = 4;
323 vm->va_bits = 48;
324 #else
325 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
326 #endif
327 break;
328 case VM_MODE_P47V64_4K:
329 vm->pgtable_levels = 5;
330 break;
331 case VM_MODE_P44V64_4K:
332 vm->pgtable_levels = 5;
333 break;
334 default:
335 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
336 }
337
338 #ifdef __aarch64__
339 if (vm->pa_bits != 40)
340 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
341 #endif
342
343 vm_open(vm, perm);
344
345 /* Limit to VA-bit canonical virtual addresses. */
346 vm->vpages_valid = sparsebit_alloc();
347 sparsebit_set_num(vm->vpages_valid,
348 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
349 sparsebit_set_num(vm->vpages_valid,
350 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
351 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
352
353 /* Limit physical addresses to PA-bits. */
354 vm->max_gfn = vm_compute_max_gfn(vm);
355
356 /* Allocate and setup memory for guest. */
357 vm->vpages_mapped = sparsebit_alloc();
358 if (phy_pages != 0)
359 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
360 0, 0, phy_pages, 0);
361
362 return vm;
363 }
364
vm_create_without_vcpus(enum vm_guest_mode mode,uint64_t pages)365 struct kvm_vm *vm_create_without_vcpus(enum vm_guest_mode mode, uint64_t pages)
366 {
367 struct kvm_vm *vm;
368
369 vm = vm_create(mode, pages, O_RDWR);
370
371 kvm_vm_elf_load(vm, program_invocation_name);
372
373 #ifdef __x86_64__
374 vm_create_irqchip(vm);
375 #endif
376 return vm;
377 }
378
379 /*
380 * VM Create with customized parameters
381 *
382 * Input Args:
383 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
384 * nr_vcpus - VCPU count
385 * slot0_mem_pages - Slot0 physical memory size
386 * extra_mem_pages - Non-slot0 physical memory total size
387 * num_percpu_pages - Per-cpu physical memory pages
388 * guest_code - Guest entry point
389 * vcpuids - VCPU IDs
390 *
391 * Output Args: None
392 *
393 * Return:
394 * Pointer to opaque structure that describes the created VM.
395 *
396 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
397 * with customized slot0 memory size, at least 512 pages currently.
398 * extra_mem_pages is only used to calculate the maximum page table size,
399 * no real memory allocation for non-slot0 memory in this function.
400 */
vm_create_with_vcpus(enum vm_guest_mode mode,uint32_t nr_vcpus,uint64_t slot0_mem_pages,uint64_t extra_mem_pages,uint32_t num_percpu_pages,void * guest_code,uint32_t vcpuids[])401 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
402 uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
403 uint32_t num_percpu_pages, void *guest_code,
404 uint32_t vcpuids[])
405 {
406 uint64_t vcpu_pages, extra_pg_pages, pages;
407 struct kvm_vm *vm;
408 int i;
409
410 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
411 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
412 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
413
414 /* The maximum page table size for a memory region will be when the
415 * smallest pages are used. Considering each page contains x page
416 * table descriptors, the total extra size for page tables (for extra
417 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
418 * than N/x*2.
419 */
420 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
421 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
422 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
423
424 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
425 "nr_vcpus = %d too large for host, max-vcpus = %d",
426 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
427
428 pages = vm_adjust_num_guest_pages(mode, pages);
429
430 vm = vm_create_without_vcpus(mode, pages);
431
432 for (i = 0; i < nr_vcpus; ++i) {
433 uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
434
435 vm_vcpu_add_default(vm, vcpuid, guest_code);
436 }
437
438 return vm;
439 }
440
vm_create_default_with_vcpus(uint32_t nr_vcpus,uint64_t extra_mem_pages,uint32_t num_percpu_pages,void * guest_code,uint32_t vcpuids[])441 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
442 uint32_t num_percpu_pages, void *guest_code,
443 uint32_t vcpuids[])
444 {
445 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
446 extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
447 }
448
vm_create_default(uint32_t vcpuid,uint64_t extra_mem_pages,void * guest_code)449 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
450 void *guest_code)
451 {
452 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
453 (uint32_t []){ vcpuid });
454 }
455
456 /*
457 * VM Restart
458 *
459 * Input Args:
460 * vm - VM that has been released before
461 * perm - permission
462 *
463 * Output Args: None
464 *
465 * Reopens the file descriptors associated to the VM and reinstates the
466 * global state, such as the irqchip and the memory regions that are mapped
467 * into the guest.
468 */
kvm_vm_restart(struct kvm_vm * vmp,int perm)469 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
470 {
471 int ctr;
472 struct userspace_mem_region *region;
473
474 vm_open(vmp, perm);
475 if (vmp->has_irqchip)
476 vm_create_irqchip(vmp);
477
478 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
479 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
480 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
481 " rc: %i errno: %i\n"
482 " slot: %u flags: 0x%x\n"
483 " guest_phys_addr: 0x%llx size: 0x%llx",
484 ret, errno, region->region.slot,
485 region->region.flags,
486 region->region.guest_phys_addr,
487 region->region.memory_size);
488 }
489 }
490
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)491 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
492 {
493 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
494 int ret;
495
496 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
497 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
498 __func__, strerror(-ret));
499 }
500
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)501 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
502 uint64_t first_page, uint32_t num_pages)
503 {
504 struct kvm_clear_dirty_log args = {
505 .dirty_bitmap = log, .slot = slot,
506 .first_page = first_page,
507 .num_pages = num_pages
508 };
509 int ret;
510
511 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
512 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
513 __func__, strerror(-ret));
514 }
515
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)516 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
517 {
518 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
519 }
520
521 /*
522 * Userspace Memory Region Find
523 *
524 * Input Args:
525 * vm - Virtual Machine
526 * start - Starting VM physical address
527 * end - Ending VM physical address, inclusive.
528 *
529 * Output Args: None
530 *
531 * Return:
532 * Pointer to overlapping region, NULL if no such region.
533 *
534 * Searches for a region with any physical memory that overlaps with
535 * any portion of the guest physical addresses from start to end
536 * inclusive. If multiple overlapping regions exist, a pointer to any
537 * of the regions is returned. Null is returned only when no overlapping
538 * region exists.
539 */
540 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)541 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
542 {
543 struct rb_node *node;
544
545 for (node = vm->regions.gpa_tree.rb_node; node; ) {
546 struct userspace_mem_region *region =
547 container_of(node, struct userspace_mem_region, gpa_node);
548 uint64_t existing_start = region->region.guest_phys_addr;
549 uint64_t existing_end = region->region.guest_phys_addr
550 + region->region.memory_size - 1;
551 if (start <= existing_end && end >= existing_start)
552 return region;
553
554 if (start < existing_start)
555 node = node->rb_left;
556 else
557 node = node->rb_right;
558 }
559
560 return NULL;
561 }
562
563 /*
564 * KVM Userspace Memory Region Find
565 *
566 * Input Args:
567 * vm - Virtual Machine
568 * start - Starting VM physical address
569 * end - Ending VM physical address, inclusive.
570 *
571 * Output Args: None
572 *
573 * Return:
574 * Pointer to overlapping region, NULL if no such region.
575 *
576 * Public interface to userspace_mem_region_find. Allows tests to look up
577 * the memslot datastructure for a given range of guest physical memory.
578 */
579 struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)580 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
581 uint64_t end)
582 {
583 struct userspace_mem_region *region;
584
585 region = userspace_mem_region_find(vm, start, end);
586 if (!region)
587 return NULL;
588
589 return ®ion->region;
590 }
591
592 /*
593 * VCPU Find
594 *
595 * Input Args:
596 * vm - Virtual Machine
597 * vcpuid - VCPU ID
598 *
599 * Output Args: None
600 *
601 * Return:
602 * Pointer to VCPU structure
603 *
604 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
605 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
606 * for the specified vcpuid.
607 */
vcpu_find(struct kvm_vm * vm,uint32_t vcpuid)608 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
609 {
610 struct vcpu *vcpu;
611
612 list_for_each_entry(vcpu, &vm->vcpus, list) {
613 if (vcpu->id == vcpuid)
614 return vcpu;
615 }
616
617 return NULL;
618 }
619
620 /*
621 * VM VCPU Remove
622 *
623 * Input Args:
624 * vcpu - VCPU to remove
625 *
626 * Output Args: None
627 *
628 * Return: None, TEST_ASSERT failures for all error conditions
629 *
630 * Removes a vCPU from a VM and frees its resources.
631 */
vm_vcpu_rm(struct kvm_vm * vm,struct vcpu * vcpu)632 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
633 {
634 int ret;
635
636 if (vcpu->dirty_gfns) {
637 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
638 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
639 "rc: %i errno: %i", ret, errno);
640 vcpu->dirty_gfns = NULL;
641 }
642
643 ret = munmap(vcpu->state, vcpu_mmap_sz());
644 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
645 "errno: %i", ret, errno);
646 ret = close(vcpu->fd);
647 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
648 "errno: %i", ret, errno);
649
650 list_del(&vcpu->list);
651 free(vcpu);
652 }
653
kvm_vm_release(struct kvm_vm * vmp)654 void kvm_vm_release(struct kvm_vm *vmp)
655 {
656 struct vcpu *vcpu, *tmp;
657 int ret;
658
659 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
660 vm_vcpu_rm(vmp, vcpu);
661
662 ret = close(vmp->fd);
663 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
664 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
665
666 ret = close(vmp->kvm_fd);
667 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
668 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
669 }
670
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region,bool unlink)671 static void __vm_mem_region_delete(struct kvm_vm *vm,
672 struct userspace_mem_region *region,
673 bool unlink)
674 {
675 int ret;
676
677 if (unlink) {
678 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
679 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
680 hash_del(®ion->slot_node);
681 }
682
683 region->region.memory_size = 0;
684 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
685 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
686 "rc: %i errno: %i", ret, errno);
687
688 sparsebit_free(®ion->unused_phy_pages);
689 ret = munmap(region->mmap_start, region->mmap_size);
690 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
691
692 free(region);
693 }
694
695 /*
696 * Destroys and frees the VM pointed to by vmp.
697 */
kvm_vm_free(struct kvm_vm * vmp)698 void kvm_vm_free(struct kvm_vm *vmp)
699 {
700 int ctr;
701 struct hlist_node *node;
702 struct userspace_mem_region *region;
703
704 if (vmp == NULL)
705 return;
706
707 /* Free userspace_mem_regions. */
708 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
709 __vm_mem_region_delete(vmp, region, false);
710
711 /* Free sparsebit arrays. */
712 sparsebit_free(&vmp->vpages_valid);
713 sparsebit_free(&vmp->vpages_mapped);
714
715 kvm_vm_release(vmp);
716
717 /* Free the structure describing the VM. */
718 free(vmp);
719 }
720
kvm_memfd_alloc(size_t size,bool hugepages)721 int kvm_memfd_alloc(size_t size, bool hugepages)
722 {
723 int memfd_flags = MFD_CLOEXEC;
724 int fd, r;
725
726 if (hugepages)
727 memfd_flags |= MFD_HUGETLB;
728
729 fd = memfd_create("kvm_selftest", memfd_flags);
730 TEST_ASSERT(fd != -1, "memfd_create() failed, errno: %i (%s)",
731 errno, strerror(errno));
732
733 r = ftruncate(fd, size);
734 TEST_ASSERT(!r, "ftruncate() failed, errno: %i (%s)", errno, strerror(errno));
735
736 r = fallocate(fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0, size);
737 TEST_ASSERT(!r, "fallocate() failed, errno: %i (%s)", errno, strerror(errno));
738
739 return fd;
740 }
741
742 /*
743 * Memory Compare, host virtual to guest virtual
744 *
745 * Input Args:
746 * hva - Starting host virtual address
747 * vm - Virtual Machine
748 * gva - Starting guest virtual address
749 * len - number of bytes to compare
750 *
751 * Output Args: None
752 *
753 * Input/Output Args: None
754 *
755 * Return:
756 * Returns 0 if the bytes starting at hva for a length of len
757 * are equal the guest virtual bytes starting at gva. Returns
758 * a value < 0, if bytes at hva are less than those at gva.
759 * Otherwise a value > 0 is returned.
760 *
761 * Compares the bytes starting at the host virtual address hva, for
762 * a length of len, to the guest bytes starting at the guest virtual
763 * address given by gva.
764 */
kvm_memcmp_hva_gva(void * hva,struct kvm_vm * vm,vm_vaddr_t gva,size_t len)765 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
766 {
767 size_t amt;
768
769 /*
770 * Compare a batch of bytes until either a match is found
771 * or all the bytes have been compared.
772 */
773 for (uintptr_t offset = 0; offset < len; offset += amt) {
774 uintptr_t ptr1 = (uintptr_t)hva + offset;
775
776 /*
777 * Determine host address for guest virtual address
778 * at offset.
779 */
780 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
781
782 /*
783 * Determine amount to compare on this pass.
784 * Don't allow the comparsion to cross a page boundary.
785 */
786 amt = len - offset;
787 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
788 amt = vm->page_size - (ptr1 % vm->page_size);
789 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
790 amt = vm->page_size - (ptr2 % vm->page_size);
791
792 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
793 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
794
795 /*
796 * Perform the comparison. If there is a difference
797 * return that result to the caller, otherwise need
798 * to continue on looking for a mismatch.
799 */
800 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
801 if (ret != 0)
802 return ret;
803 }
804
805 /*
806 * No mismatch found. Let the caller know the two memory
807 * areas are equal.
808 */
809 return 0;
810 }
811
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)812 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
813 struct userspace_mem_region *region)
814 {
815 struct rb_node **cur, *parent;
816
817 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
818 struct userspace_mem_region *cregion;
819
820 cregion = container_of(*cur, typeof(*cregion), gpa_node);
821 parent = *cur;
822 if (region->region.guest_phys_addr <
823 cregion->region.guest_phys_addr)
824 cur = &(*cur)->rb_left;
825 else {
826 TEST_ASSERT(region->region.guest_phys_addr !=
827 cregion->region.guest_phys_addr,
828 "Duplicate GPA in region tree");
829
830 cur = &(*cur)->rb_right;
831 }
832 }
833
834 rb_link_node(®ion->gpa_node, parent, cur);
835 rb_insert_color(®ion->gpa_node, gpa_tree);
836 }
837
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)838 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
839 struct userspace_mem_region *region)
840 {
841 struct rb_node **cur, *parent;
842
843 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
844 struct userspace_mem_region *cregion;
845
846 cregion = container_of(*cur, typeof(*cregion), hva_node);
847 parent = *cur;
848 if (region->host_mem < cregion->host_mem)
849 cur = &(*cur)->rb_left;
850 else {
851 TEST_ASSERT(region->host_mem !=
852 cregion->host_mem,
853 "Duplicate HVA in region tree");
854
855 cur = &(*cur)->rb_right;
856 }
857 }
858
859 rb_link_node(®ion->hva_node, parent, cur);
860 rb_insert_color(®ion->hva_node, hva_tree);
861 }
862
863
__vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)864 int __vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
865 uint64_t gpa, uint64_t size, void *hva)
866 {
867 struct kvm_userspace_memory_region region = {
868 .slot = slot,
869 .flags = flags,
870 .guest_phys_addr = gpa,
871 .memory_size = size,
872 .userspace_addr = (uintptr_t)hva,
873 };
874
875 return ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion);
876 }
877
vm_set_user_memory_region(struct kvm_vm * vm,uint32_t slot,uint32_t flags,uint64_t gpa,uint64_t size,void * hva)878 void vm_set_user_memory_region(struct kvm_vm *vm, uint32_t slot, uint32_t flags,
879 uint64_t gpa, uint64_t size, void *hva)
880 {
881 int ret = __vm_set_user_memory_region(vm, slot, flags, gpa, size, hva);
882
883 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed, errno = %d (%s)",
884 errno, strerror(errno));
885 }
886
887 /*
888 * VM Userspace Memory Region Add
889 *
890 * Input Args:
891 * vm - Virtual Machine
892 * src_type - Storage source for this region.
893 * NULL to use anonymous memory.
894 * guest_paddr - Starting guest physical address
895 * slot - KVM region slot
896 * npages - Number of physical pages
897 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
898 *
899 * Output Args: None
900 *
901 * Return: None
902 *
903 * Allocates a memory area of the number of pages specified by npages
904 * and maps it to the VM specified by vm, at a starting physical address
905 * given by guest_paddr. The region is created with a KVM region slot
906 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
907 * region is created with the flags given by flags.
908 */
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)909 void vm_userspace_mem_region_add(struct kvm_vm *vm,
910 enum vm_mem_backing_src_type src_type,
911 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
912 uint32_t flags)
913 {
914 int ret;
915 struct userspace_mem_region *region;
916 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
917 size_t alignment;
918
919 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
920 "Number of guest pages is not compatible with the host. "
921 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
922
923 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
924 "address not on a page boundary.\n"
925 " guest_paddr: 0x%lx vm->page_size: 0x%x",
926 guest_paddr, vm->page_size);
927 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
928 <= vm->max_gfn, "Physical range beyond maximum "
929 "supported physical address,\n"
930 " guest_paddr: 0x%lx npages: 0x%lx\n"
931 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
932 guest_paddr, npages, vm->max_gfn, vm->page_size);
933
934 /*
935 * Confirm a mem region with an overlapping address doesn't
936 * already exist.
937 */
938 region = (struct userspace_mem_region *) userspace_mem_region_find(
939 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
940 if (region != NULL)
941 TEST_FAIL("overlapping userspace_mem_region already "
942 "exists\n"
943 " requested guest_paddr: 0x%lx npages: 0x%lx "
944 "page_size: 0x%x\n"
945 " existing guest_paddr: 0x%lx size: 0x%lx",
946 guest_paddr, npages, vm->page_size,
947 (uint64_t) region->region.guest_phys_addr,
948 (uint64_t) region->region.memory_size);
949
950 /* Confirm no region with the requested slot already exists. */
951 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
952 slot) {
953 if (region->region.slot != slot)
954 continue;
955
956 TEST_FAIL("A mem region with the requested slot "
957 "already exists.\n"
958 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
959 " existing slot: %u paddr: 0x%lx size: 0x%lx",
960 slot, guest_paddr, npages,
961 region->region.slot,
962 (uint64_t) region->region.guest_phys_addr,
963 (uint64_t) region->region.memory_size);
964 }
965
966 /* Allocate and initialize new mem region structure. */
967 region = calloc(1, sizeof(*region));
968 TEST_ASSERT(region != NULL, "Insufficient Memory");
969 region->mmap_size = npages * vm->page_size;
970
971 #ifdef __s390x__
972 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
973 alignment = 0x100000;
974 #else
975 alignment = 1;
976 #endif
977
978 /*
979 * When using THP mmap is not guaranteed to returned a hugepage aligned
980 * address so we have to pad the mmap. Padding is not needed for HugeTLB
981 * because mmap will always return an address aligned to the HugeTLB
982 * page size.
983 */
984 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
985 alignment = max(backing_src_pagesz, alignment);
986
987 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
988
989 /* Add enough memory to align up if necessary */
990 if (alignment > 1)
991 region->mmap_size += alignment;
992
993 region->fd = -1;
994 if (backing_src_is_shared(src_type))
995 region->fd = kvm_memfd_alloc(region->mmap_size,
996 src_type == VM_MEM_SRC_SHARED_HUGETLB);
997
998 region->mmap_start = mmap(NULL, region->mmap_size,
999 PROT_READ | PROT_WRITE,
1000 vm_mem_backing_src_alias(src_type)->flag,
1001 region->fd, 0);
1002 TEST_ASSERT(region->mmap_start != MAP_FAILED,
1003 "test_malloc failed, mmap_start: %p errno: %i",
1004 region->mmap_start, errno);
1005
1006 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
1007 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
1008 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
1009 region->mmap_start, backing_src_pagesz);
1010
1011 /* Align host address */
1012 region->host_mem = align_ptr_up(region->mmap_start, alignment);
1013
1014 /* As needed perform madvise */
1015 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
1016 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
1017 ret = madvise(region->host_mem, npages * vm->page_size,
1018 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
1019 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
1020 region->host_mem, npages * vm->page_size,
1021 vm_mem_backing_src_alias(src_type)->name);
1022 }
1023
1024 region->unused_phy_pages = sparsebit_alloc();
1025 sparsebit_set_num(region->unused_phy_pages,
1026 guest_paddr >> vm->page_shift, npages);
1027 region->region.slot = slot;
1028 region->region.flags = flags;
1029 region->region.guest_phys_addr = guest_paddr;
1030 region->region.memory_size = npages * vm->page_size;
1031 region->region.userspace_addr = (uintptr_t) region->host_mem;
1032 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1033 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1034 " rc: %i errno: %i\n"
1035 " slot: %u flags: 0x%x\n"
1036 " guest_phys_addr: 0x%lx size: 0x%lx",
1037 ret, errno, slot, flags,
1038 guest_paddr, (uint64_t) region->region.memory_size);
1039
1040 /* Add to quick lookup data structures */
1041 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
1042 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
1043 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
1044
1045 /* If shared memory, create an alias. */
1046 if (region->fd >= 0) {
1047 region->mmap_alias = mmap(NULL, region->mmap_size,
1048 PROT_READ | PROT_WRITE,
1049 vm_mem_backing_src_alias(src_type)->flag,
1050 region->fd, 0);
1051 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
1052 "mmap of alias failed, errno: %i", errno);
1053
1054 /* Align host alias address */
1055 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
1056 }
1057 }
1058
1059 /*
1060 * Memslot to region
1061 *
1062 * Input Args:
1063 * vm - Virtual Machine
1064 * memslot - KVM memory slot ID
1065 *
1066 * Output Args: None
1067 *
1068 * Return:
1069 * Pointer to memory region structure that describe memory region
1070 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
1071 * on error (e.g. currently no memory region using memslot as a KVM
1072 * memory slot ID).
1073 */
1074 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)1075 memslot2region(struct kvm_vm *vm, uint32_t memslot)
1076 {
1077 struct userspace_mem_region *region;
1078
1079 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
1080 memslot)
1081 if (region->region.slot == memslot)
1082 return region;
1083
1084 fprintf(stderr, "No mem region with the requested slot found,\n"
1085 " requested slot: %u\n", memslot);
1086 fputs("---- vm dump ----\n", stderr);
1087 vm_dump(stderr, vm, 2);
1088 TEST_FAIL("Mem region not found");
1089 return NULL;
1090 }
1091
1092 /*
1093 * VM Memory Region Flags Set
1094 *
1095 * Input Args:
1096 * vm - Virtual Machine
1097 * flags - Starting guest physical address
1098 *
1099 * Output Args: None
1100 *
1101 * Return: None
1102 *
1103 * Sets the flags of the memory region specified by the value of slot,
1104 * to the values given by flags.
1105 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1106 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1107 {
1108 int ret;
1109 struct userspace_mem_region *region;
1110
1111 region = memslot2region(vm, slot);
1112
1113 region->region.flags = flags;
1114
1115 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1116
1117 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1118 " rc: %i errno: %i slot: %u flags: 0x%x",
1119 ret, errno, slot, flags);
1120 }
1121
1122 /*
1123 * VM Memory Region Move
1124 *
1125 * Input Args:
1126 * vm - Virtual Machine
1127 * slot - Slot of the memory region to move
1128 * new_gpa - Starting guest physical address
1129 *
1130 * Output Args: None
1131 *
1132 * Return: None
1133 *
1134 * Change the gpa of a memory region.
1135 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1136 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1137 {
1138 struct userspace_mem_region *region;
1139 int ret;
1140
1141 region = memslot2region(vm, slot);
1142
1143 region->region.guest_phys_addr = new_gpa;
1144
1145 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1146
1147 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1148 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1149 ret, errno, slot, new_gpa);
1150 }
1151
1152 /*
1153 * VM Memory Region Delete
1154 *
1155 * Input Args:
1156 * vm - Virtual Machine
1157 * slot - Slot of the memory region to delete
1158 *
1159 * Output Args: None
1160 *
1161 * Return: None
1162 *
1163 * Delete a memory region.
1164 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1165 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1166 {
1167 __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1168 }
1169
1170 /*
1171 * VCPU mmap Size
1172 *
1173 * Input Args: None
1174 *
1175 * Output Args: None
1176 *
1177 * Return:
1178 * Size of VCPU state
1179 *
1180 * Returns the size of the structure pointed to by the return value
1181 * of vcpu_state().
1182 */
vcpu_mmap_sz(void)1183 static int vcpu_mmap_sz(void)
1184 {
1185 int dev_fd, ret;
1186
1187 dev_fd = open_kvm_dev_path_or_exit();
1188
1189 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1190 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1191 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1192 __func__, ret, errno);
1193
1194 close(dev_fd);
1195
1196 return ret;
1197 }
1198
1199 /*
1200 * VM VCPU Add
1201 *
1202 * Input Args:
1203 * vm - Virtual Machine
1204 * vcpuid - VCPU ID
1205 *
1206 * Output Args: None
1207 *
1208 * Return: None
1209 *
1210 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1211 * No additional VCPU setup is done.
1212 */
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpuid)1213 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1214 {
1215 struct vcpu *vcpu;
1216
1217 /* Confirm a vcpu with the specified id doesn't already exist. */
1218 vcpu = vcpu_find(vm, vcpuid);
1219 if (vcpu != NULL)
1220 TEST_FAIL("vcpu with the specified id "
1221 "already exists,\n"
1222 " requested vcpuid: %u\n"
1223 " existing vcpuid: %u state: %p",
1224 vcpuid, vcpu->id, vcpu->state);
1225
1226 /* Allocate and initialize new vcpu structure. */
1227 vcpu = calloc(1, sizeof(*vcpu));
1228 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1229 vcpu->id = vcpuid;
1230 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1231 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1232 vcpu->fd, errno);
1233
1234 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1235 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1236 vcpu_mmap_sz(), sizeof(*vcpu->state));
1237 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1238 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1239 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1240 "vcpu id: %u errno: %i", vcpuid, errno);
1241
1242 /* Add to linked-list of VCPUs. */
1243 list_add(&vcpu->list, &vm->vcpus);
1244 }
1245
1246 /*
1247 * VM Virtual Address Unused Gap
1248 *
1249 * Input Args:
1250 * vm - Virtual Machine
1251 * sz - Size (bytes)
1252 * vaddr_min - Minimum Virtual Address
1253 *
1254 * Output Args: None
1255 *
1256 * Return:
1257 * Lowest virtual address at or below vaddr_min, with at least
1258 * sz unused bytes. TEST_ASSERT failure if no area of at least
1259 * size sz is available.
1260 *
1261 * Within the VM specified by vm, locates the lowest starting virtual
1262 * address >= vaddr_min, that has at least sz unallocated bytes. A
1263 * TEST_ASSERT failure occurs for invalid input or no area of at least
1264 * sz unallocated bytes >= vaddr_min is available.
1265 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1266 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1267 vm_vaddr_t vaddr_min)
1268 {
1269 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1270
1271 /* Determine lowest permitted virtual page index. */
1272 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1273 if ((pgidx_start * vm->page_size) < vaddr_min)
1274 goto no_va_found;
1275
1276 /* Loop over section with enough valid virtual page indexes. */
1277 if (!sparsebit_is_set_num(vm->vpages_valid,
1278 pgidx_start, pages))
1279 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1280 pgidx_start, pages);
1281 do {
1282 /*
1283 * Are there enough unused virtual pages available at
1284 * the currently proposed starting virtual page index.
1285 * If not, adjust proposed starting index to next
1286 * possible.
1287 */
1288 if (sparsebit_is_clear_num(vm->vpages_mapped,
1289 pgidx_start, pages))
1290 goto va_found;
1291 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1292 pgidx_start, pages);
1293 if (pgidx_start == 0)
1294 goto no_va_found;
1295
1296 /*
1297 * If needed, adjust proposed starting virtual address,
1298 * to next range of valid virtual addresses.
1299 */
1300 if (!sparsebit_is_set_num(vm->vpages_valid,
1301 pgidx_start, pages)) {
1302 pgidx_start = sparsebit_next_set_num(
1303 vm->vpages_valid, pgidx_start, pages);
1304 if (pgidx_start == 0)
1305 goto no_va_found;
1306 }
1307 } while (pgidx_start != 0);
1308
1309 no_va_found:
1310 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1311
1312 /* NOT REACHED */
1313 return -1;
1314
1315 va_found:
1316 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1317 pgidx_start, pages),
1318 "Unexpected, invalid virtual page index range,\n"
1319 " pgidx_start: 0x%lx\n"
1320 " pages: 0x%lx",
1321 pgidx_start, pages);
1322 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1323 pgidx_start, pages),
1324 "Unexpected, pages already mapped,\n"
1325 " pgidx_start: 0x%lx\n"
1326 " pages: 0x%lx",
1327 pgidx_start, pages);
1328
1329 return pgidx_start * vm->page_size;
1330 }
1331
1332 /*
1333 * VM Virtual Address Allocate
1334 *
1335 * Input Args:
1336 * vm - Virtual Machine
1337 * sz - Size in bytes
1338 * vaddr_min - Minimum starting virtual address
1339 * data_memslot - Memory region slot for data pages
1340 * pgd_memslot - Memory region slot for new virtual translation tables
1341 *
1342 * Output Args: None
1343 *
1344 * Return:
1345 * Starting guest virtual address
1346 *
1347 * Allocates at least sz bytes within the virtual address space of the vm
1348 * given by vm. The allocated bytes are mapped to a virtual address >=
1349 * the address given by vaddr_min. Note that each allocation uses a
1350 * a unique set of pages, with the minimum real allocation being at least
1351 * a page.
1352 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1353 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1354 {
1355 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1356
1357 virt_pgd_alloc(vm);
1358 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1359 KVM_UTIL_MIN_PFN * vm->page_size, 0);
1360
1361 /*
1362 * Find an unused range of virtual page addresses of at least
1363 * pages in length.
1364 */
1365 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1366
1367 /* Map the virtual pages. */
1368 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1369 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1370
1371 virt_pg_map(vm, vaddr, paddr);
1372
1373 sparsebit_set(vm->vpages_mapped,
1374 vaddr >> vm->page_shift);
1375 }
1376
1377 return vaddr_start;
1378 }
1379
1380 /*
1381 * VM Virtual Address Allocate Pages
1382 *
1383 * Input Args:
1384 * vm - Virtual Machine
1385 *
1386 * Output Args: None
1387 *
1388 * Return:
1389 * Starting guest virtual address
1390 *
1391 * Allocates at least N system pages worth of bytes within the virtual address
1392 * space of the vm.
1393 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1394 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1395 {
1396 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1397 }
1398
1399 /*
1400 * VM Virtual Address Allocate Page
1401 *
1402 * Input Args:
1403 * vm - Virtual Machine
1404 *
1405 * Output Args: None
1406 *
1407 * Return:
1408 * Starting guest virtual address
1409 *
1410 * Allocates at least one system page worth of bytes within the virtual address
1411 * space of the vm.
1412 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1413 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1414 {
1415 return vm_vaddr_alloc_pages(vm, 1);
1416 }
1417
1418 /*
1419 * Map a range of VM virtual address to the VM's physical address
1420 *
1421 * Input Args:
1422 * vm - Virtual Machine
1423 * vaddr - Virtuall address to map
1424 * paddr - VM Physical Address
1425 * npages - The number of pages to map
1426 * pgd_memslot - Memory region slot for new virtual translation tables
1427 *
1428 * Output Args: None
1429 *
1430 * Return: None
1431 *
1432 * Within the VM given by @vm, creates a virtual translation for
1433 * @npages starting at @vaddr to the page range starting at @paddr.
1434 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1435 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1436 unsigned int npages)
1437 {
1438 size_t page_size = vm->page_size;
1439 size_t size = npages * page_size;
1440
1441 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1442 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1443
1444 while (npages--) {
1445 virt_pg_map(vm, vaddr, paddr);
1446 vaddr += page_size;
1447 paddr += page_size;
1448 }
1449 }
1450
1451 /*
1452 * Address VM Physical to Host Virtual
1453 *
1454 * Input Args:
1455 * vm - Virtual Machine
1456 * gpa - VM physical address
1457 *
1458 * Output Args: None
1459 *
1460 * Return:
1461 * Equivalent host virtual address
1462 *
1463 * Locates the memory region containing the VM physical address given
1464 * by gpa, within the VM given by vm. When found, the host virtual
1465 * address providing the memory to the vm physical address is returned.
1466 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1467 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1468 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1469 {
1470 struct userspace_mem_region *region;
1471
1472 region = userspace_mem_region_find(vm, gpa, gpa);
1473 if (!region) {
1474 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1475 return NULL;
1476 }
1477
1478 return (void *)((uintptr_t)region->host_mem
1479 + (gpa - region->region.guest_phys_addr));
1480 }
1481
1482 /*
1483 * Address Host Virtual to VM Physical
1484 *
1485 * Input Args:
1486 * vm - Virtual Machine
1487 * hva - Host virtual address
1488 *
1489 * Output Args: None
1490 *
1491 * Return:
1492 * Equivalent VM physical address
1493 *
1494 * Locates the memory region containing the host virtual address given
1495 * by hva, within the VM given by vm. When found, the equivalent
1496 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1497 * region containing hva exists.
1498 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1499 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1500 {
1501 struct rb_node *node;
1502
1503 for (node = vm->regions.hva_tree.rb_node; node; ) {
1504 struct userspace_mem_region *region =
1505 container_of(node, struct userspace_mem_region, hva_node);
1506
1507 if (hva >= region->host_mem) {
1508 if (hva <= (region->host_mem
1509 + region->region.memory_size - 1))
1510 return (vm_paddr_t)((uintptr_t)
1511 region->region.guest_phys_addr
1512 + (hva - (uintptr_t)region->host_mem));
1513
1514 node = node->rb_right;
1515 } else
1516 node = node->rb_left;
1517 }
1518
1519 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1520 return -1;
1521 }
1522
1523 /*
1524 * Address VM physical to Host Virtual *alias*.
1525 *
1526 * Input Args:
1527 * vm - Virtual Machine
1528 * gpa - VM physical address
1529 *
1530 * Output Args: None
1531 *
1532 * Return:
1533 * Equivalent address within the host virtual *alias* area, or NULL
1534 * (without failing the test) if the guest memory is not shared (so
1535 * no alias exists).
1536 *
1537 * When vm_create() and related functions are called with a shared memory
1538 * src_type, we also create a writable, shared alias mapping of the
1539 * underlying guest memory. This allows the host to manipulate guest memory
1540 * without mapping that memory in the guest's address space. And, for
1541 * userfaultfd-based demand paging, we can do so without triggering userfaults.
1542 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1543 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1544 {
1545 struct userspace_mem_region *region;
1546 uintptr_t offset;
1547
1548 region = userspace_mem_region_find(vm, gpa, gpa);
1549 if (!region)
1550 return NULL;
1551
1552 if (!region->host_alias)
1553 return NULL;
1554
1555 offset = gpa - region->region.guest_phys_addr;
1556 return (void *) ((uintptr_t) region->host_alias + offset);
1557 }
1558
1559 /*
1560 * VM Create IRQ Chip
1561 *
1562 * Input Args:
1563 * vm - Virtual Machine
1564 *
1565 * Output Args: None
1566 *
1567 * Return: None
1568 *
1569 * Creates an interrupt controller chip for the VM specified by vm.
1570 */
vm_create_irqchip(struct kvm_vm * vm)1571 void vm_create_irqchip(struct kvm_vm *vm)
1572 {
1573 int ret;
1574
1575 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1576 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1577 "rc: %i errno: %i", ret, errno);
1578
1579 vm->has_irqchip = true;
1580 }
1581
1582 /*
1583 * VM VCPU State
1584 *
1585 * Input Args:
1586 * vm - Virtual Machine
1587 * vcpuid - VCPU ID
1588 *
1589 * Output Args: None
1590 *
1591 * Return:
1592 * Pointer to structure that describes the state of the VCPU.
1593 *
1594 * Locates and returns a pointer to a structure that describes the
1595 * state of the VCPU with the given vcpuid.
1596 */
vcpu_state(struct kvm_vm * vm,uint32_t vcpuid)1597 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1598 {
1599 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1600 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1601
1602 return vcpu->state;
1603 }
1604
1605 /*
1606 * VM VCPU Run
1607 *
1608 * Input Args:
1609 * vm - Virtual Machine
1610 * vcpuid - VCPU ID
1611 *
1612 * Output Args: None
1613 *
1614 * Return: None
1615 *
1616 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1617 * given by vm.
1618 */
vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1619 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1620 {
1621 int ret = _vcpu_run(vm, vcpuid);
1622 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1623 "rc: %i errno: %i", ret, errno);
1624 }
1625
_vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1626 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1627 {
1628 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1629 int rc;
1630
1631 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1632 do {
1633 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1634 } while (rc == -1 && errno == EINTR);
1635
1636 assert_on_unhandled_exception(vm, vcpuid);
1637
1638 return rc;
1639 }
1640
vcpu_get_fd(struct kvm_vm * vm,uint32_t vcpuid)1641 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1642 {
1643 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1644
1645 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1646
1647 return vcpu->fd;
1648 }
1649
vcpu_run_complete_io(struct kvm_vm * vm,uint32_t vcpuid)1650 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1651 {
1652 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1653 int ret;
1654
1655 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1656
1657 vcpu->state->immediate_exit = 1;
1658 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1659 vcpu->state->immediate_exit = 0;
1660
1661 TEST_ASSERT(ret == -1 && errno == EINTR,
1662 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1663 ret, errno);
1664 }
1665
vcpu_set_guest_debug(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_guest_debug * debug)1666 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1667 struct kvm_guest_debug *debug)
1668 {
1669 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1670 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1671
1672 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1673 }
1674
1675 /*
1676 * VM VCPU Set MP State
1677 *
1678 * Input Args:
1679 * vm - Virtual Machine
1680 * vcpuid - VCPU ID
1681 * mp_state - mp_state to be set
1682 *
1683 * Output Args: None
1684 *
1685 * Return: None
1686 *
1687 * Sets the MP state of the VCPU given by vcpuid, to the state given
1688 * by mp_state.
1689 */
vcpu_set_mp_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_mp_state * mp_state)1690 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1691 struct kvm_mp_state *mp_state)
1692 {
1693 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1694 int ret;
1695
1696 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1697
1698 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1699 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1700 "rc: %i errno: %i", ret, errno);
1701 }
1702
1703 /*
1704 * VM VCPU Get Reg List
1705 *
1706 * Input Args:
1707 * vm - Virtual Machine
1708 * vcpuid - VCPU ID
1709 *
1710 * Output Args:
1711 * None
1712 *
1713 * Return:
1714 * A pointer to an allocated struct kvm_reg_list
1715 *
1716 * Get the list of guest registers which are supported for
1717 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1718 */
vcpu_get_reg_list(struct kvm_vm * vm,uint32_t vcpuid)1719 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1720 {
1721 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1722 int ret;
1723
1724 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n);
1725 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1726 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1727 reg_list->n = reg_list_n.n;
1728 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1729 return reg_list;
1730 }
1731
1732 /*
1733 * VM VCPU Regs Get
1734 *
1735 * Input Args:
1736 * vm - Virtual Machine
1737 * vcpuid - VCPU ID
1738 *
1739 * Output Args:
1740 * regs - current state of VCPU regs
1741 *
1742 * Return: None
1743 *
1744 * Obtains the current register state for the VCPU specified by vcpuid
1745 * and stores it at the location given by regs.
1746 */
vcpu_regs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1747 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1748 {
1749 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1750 int ret;
1751
1752 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1753
1754 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1755 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1756 ret, errno);
1757 }
1758
1759 /*
1760 * VM VCPU Regs Set
1761 *
1762 * Input Args:
1763 * vm - Virtual Machine
1764 * vcpuid - VCPU ID
1765 * regs - Values to set VCPU regs to
1766 *
1767 * Output Args: None
1768 *
1769 * Return: None
1770 *
1771 * Sets the regs of the VCPU specified by vcpuid to the values
1772 * given by regs.
1773 */
vcpu_regs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1774 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1775 {
1776 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1777 int ret;
1778
1779 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1780
1781 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1782 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1783 ret, errno);
1784 }
1785
1786 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1787 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1788 struct kvm_vcpu_events *events)
1789 {
1790 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1791 int ret;
1792
1793 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1794
1795 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1796 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1797 ret, errno);
1798 }
1799
vcpu_events_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1800 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1801 struct kvm_vcpu_events *events)
1802 {
1803 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1804 int ret;
1805
1806 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1807
1808 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1809 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1810 ret, errno);
1811 }
1812 #endif
1813
1814 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state)1815 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1816 struct kvm_nested_state *state)
1817 {
1818 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1819 int ret;
1820
1821 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1822
1823 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1824 TEST_ASSERT(ret == 0,
1825 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1826 ret, errno);
1827 }
1828
vcpu_nested_state_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state,bool ignore_error)1829 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1830 struct kvm_nested_state *state, bool ignore_error)
1831 {
1832 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1833 int ret;
1834
1835 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1836
1837 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1838 if (!ignore_error) {
1839 TEST_ASSERT(ret == 0,
1840 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1841 ret, errno);
1842 }
1843
1844 return ret;
1845 }
1846 #endif
1847
1848 /*
1849 * VM VCPU System Regs Get
1850 *
1851 * Input Args:
1852 * vm - Virtual Machine
1853 * vcpuid - VCPU ID
1854 *
1855 * Output Args:
1856 * sregs - current state of VCPU system regs
1857 *
1858 * Return: None
1859 *
1860 * Obtains the current system register state for the VCPU specified by
1861 * vcpuid and stores it at the location given by sregs.
1862 */
vcpu_sregs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1863 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1864 {
1865 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1866 int ret;
1867
1868 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1869
1870 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1871 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1872 ret, errno);
1873 }
1874
1875 /*
1876 * VM VCPU System Regs Set
1877 *
1878 * Input Args:
1879 * vm - Virtual Machine
1880 * vcpuid - VCPU ID
1881 * sregs - Values to set VCPU system regs to
1882 *
1883 * Output Args: None
1884 *
1885 * Return: None
1886 *
1887 * Sets the system regs of the VCPU specified by vcpuid to the values
1888 * given by sregs.
1889 */
vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1890 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1891 {
1892 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1893 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1894 "rc: %i errno: %i", ret, errno);
1895 }
1896
_vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1897 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1898 {
1899 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1900
1901 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1902
1903 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1904 }
1905
vcpu_fpu_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_fpu * fpu)1906 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1907 {
1908 int ret;
1909
1910 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1911 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1912 ret, errno, strerror(errno));
1913 }
1914
vcpu_fpu_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_fpu * fpu)1915 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1916 {
1917 int ret;
1918
1919 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1920 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1921 ret, errno, strerror(errno));
1922 }
1923
vcpu_get_reg(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_one_reg * reg)1924 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1925 {
1926 int ret;
1927
1928 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1929 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1930 ret, errno, strerror(errno));
1931 }
1932
vcpu_set_reg(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_one_reg * reg)1933 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1934 {
1935 int ret;
1936
1937 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1938 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1939 ret, errno, strerror(errno));
1940 }
1941
1942 /*
1943 * VCPU Ioctl
1944 *
1945 * Input Args:
1946 * vm - Virtual Machine
1947 * vcpuid - VCPU ID
1948 * cmd - Ioctl number
1949 * arg - Argument to pass to the ioctl
1950 *
1951 * Return: None
1952 *
1953 * Issues an arbitrary ioctl on a VCPU fd.
1954 */
vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1955 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1956 unsigned long cmd, void *arg)
1957 {
1958 int ret;
1959
1960 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1961 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1962 cmd, ret, errno, strerror(errno));
1963 }
1964
_vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1965 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1966 unsigned long cmd, void *arg)
1967 {
1968 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1969 int ret;
1970
1971 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1972
1973 ret = ioctl(vcpu->fd, cmd, arg);
1974
1975 return ret;
1976 }
1977
vcpu_map_dirty_ring(struct kvm_vm * vm,uint32_t vcpuid)1978 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1979 {
1980 struct vcpu *vcpu;
1981 uint32_t size = vm->dirty_ring_size;
1982
1983 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1984
1985 vcpu = vcpu_find(vm, vcpuid);
1986
1987 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1988
1989 if (!vcpu->dirty_gfns) {
1990 void *addr;
1991
1992 addr = mmap(NULL, size, PROT_READ,
1993 MAP_PRIVATE, vcpu->fd,
1994 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1995 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1996
1997 addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1998 MAP_PRIVATE, vcpu->fd,
1999 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2000 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
2001
2002 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
2003 MAP_SHARED, vcpu->fd,
2004 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
2005 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
2006
2007 vcpu->dirty_gfns = addr;
2008 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
2009 }
2010
2011 return vcpu->dirty_gfns;
2012 }
2013
2014 /*
2015 * VM Ioctl
2016 *
2017 * Input Args:
2018 * vm - Virtual Machine
2019 * cmd - Ioctl number
2020 * arg - Argument to pass to the ioctl
2021 *
2022 * Return: None
2023 *
2024 * Issues an arbitrary ioctl on a VM fd.
2025 */
vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)2026 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2027 {
2028 int ret;
2029
2030 ret = _vm_ioctl(vm, cmd, arg);
2031 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
2032 cmd, ret, errno, strerror(errno));
2033 }
2034
_vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)2035 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2036 {
2037 return ioctl(vm->fd, cmd, arg);
2038 }
2039
2040 /*
2041 * KVM system ioctl
2042 *
2043 * Input Args:
2044 * vm - Virtual Machine
2045 * cmd - Ioctl number
2046 * arg - Argument to pass to the ioctl
2047 *
2048 * Return: None
2049 *
2050 * Issues an arbitrary ioctl on a KVM fd.
2051 */
kvm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)2052 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2053 {
2054 int ret;
2055
2056 ret = ioctl(vm->kvm_fd, cmd, arg);
2057 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
2058 cmd, ret, errno, strerror(errno));
2059 }
2060
_kvm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)2061 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
2062 {
2063 return ioctl(vm->kvm_fd, cmd, arg);
2064 }
2065
2066 /*
2067 * Device Ioctl
2068 */
2069
_kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)2070 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2071 {
2072 struct kvm_device_attr attribute = {
2073 .group = group,
2074 .attr = attr,
2075 .flags = 0,
2076 };
2077
2078 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
2079 }
2080
kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)2081 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2082 {
2083 int ret = _kvm_device_check_attr(dev_fd, group, attr);
2084
2085 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
2086 return ret;
2087 }
2088
_kvm_create_device(struct kvm_vm * vm,uint64_t type,bool test,int * fd)2089 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2090 {
2091 struct kvm_create_device create_dev;
2092 int ret;
2093
2094 create_dev.type = type;
2095 create_dev.fd = -1;
2096 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2097 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2098 *fd = create_dev.fd;
2099 return ret;
2100 }
2101
kvm_create_device(struct kvm_vm * vm,uint64_t type,bool test)2102 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2103 {
2104 int fd, ret;
2105
2106 ret = _kvm_create_device(vm, type, test, &fd);
2107
2108 if (!test) {
2109 TEST_ASSERT(!ret,
2110 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2111 return fd;
2112 }
2113 return ret;
2114 }
2115
_kvm_device_access(int dev_fd,uint32_t group,uint64_t attr,void * val,bool write)2116 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2117 void *val, bool write)
2118 {
2119 struct kvm_device_attr kvmattr = {
2120 .group = group,
2121 .attr = attr,
2122 .flags = 0,
2123 .addr = (uintptr_t)val,
2124 };
2125 int ret;
2126
2127 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2128 &kvmattr);
2129 return ret;
2130 }
2131
kvm_device_access(int dev_fd,uint32_t group,uint64_t attr,void * val,bool write)2132 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2133 void *val, bool write)
2134 {
2135 int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2136
2137 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2138 return ret;
2139 }
2140
_vcpu_has_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr)2141 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2142 uint64_t attr)
2143 {
2144 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2145
2146 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2147
2148 return _kvm_device_check_attr(vcpu->fd, group, attr);
2149 }
2150
vcpu_has_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr)2151 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2152 uint64_t attr)
2153 {
2154 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2155
2156 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2157 return ret;
2158 }
2159
_vcpu_access_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr,void * val,bool write)2160 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2161 uint64_t attr, void *val, bool write)
2162 {
2163 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2164
2165 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2166
2167 return _kvm_device_access(vcpu->fd, group, attr, val, write);
2168 }
2169
vcpu_access_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr,void * val,bool write)2170 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2171 uint64_t attr, void *val, bool write)
2172 {
2173 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2174
2175 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2176 return ret;
2177 }
2178
2179 /*
2180 * IRQ related functions.
2181 */
2182
_kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)2183 int _kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2184 {
2185 struct kvm_irq_level irq_level = {
2186 .irq = irq,
2187 .level = level,
2188 };
2189
2190 return _vm_ioctl(vm, KVM_IRQ_LINE, &irq_level);
2191 }
2192
kvm_irq_line(struct kvm_vm * vm,uint32_t irq,int level)2193 void kvm_irq_line(struct kvm_vm *vm, uint32_t irq, int level)
2194 {
2195 int ret = _kvm_irq_line(vm, irq, level);
2196
2197 TEST_ASSERT(ret >= 0, "KVM_IRQ_LINE failed, rc: %i errno: %i", ret, errno);
2198 }
2199
kvm_gsi_routing_create(void)2200 struct kvm_irq_routing *kvm_gsi_routing_create(void)
2201 {
2202 struct kvm_irq_routing *routing;
2203 size_t size;
2204
2205 size = sizeof(struct kvm_irq_routing);
2206 /* Allocate space for the max number of entries: this wastes 196 KBs. */
2207 size += KVM_MAX_IRQ_ROUTES * sizeof(struct kvm_irq_routing_entry);
2208 routing = calloc(1, size);
2209 assert(routing);
2210
2211 return routing;
2212 }
2213
kvm_gsi_routing_irqchip_add(struct kvm_irq_routing * routing,uint32_t gsi,uint32_t pin)2214 void kvm_gsi_routing_irqchip_add(struct kvm_irq_routing *routing,
2215 uint32_t gsi, uint32_t pin)
2216 {
2217 int i;
2218
2219 assert(routing);
2220 assert(routing->nr < KVM_MAX_IRQ_ROUTES);
2221
2222 i = routing->nr;
2223 routing->entries[i].gsi = gsi;
2224 routing->entries[i].type = KVM_IRQ_ROUTING_IRQCHIP;
2225 routing->entries[i].flags = 0;
2226 routing->entries[i].u.irqchip.irqchip = 0;
2227 routing->entries[i].u.irqchip.pin = pin;
2228 routing->nr++;
2229 }
2230
_kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)2231 int _kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2232 {
2233 int ret;
2234
2235 assert(routing);
2236 ret = ioctl(vm_get_fd(vm), KVM_SET_GSI_ROUTING, routing);
2237 free(routing);
2238
2239 return ret;
2240 }
2241
kvm_gsi_routing_write(struct kvm_vm * vm,struct kvm_irq_routing * routing)2242 void kvm_gsi_routing_write(struct kvm_vm *vm, struct kvm_irq_routing *routing)
2243 {
2244 int ret;
2245
2246 ret = _kvm_gsi_routing_write(vm, routing);
2247 TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING failed, rc: %i errno: %i",
2248 ret, errno);
2249 }
2250
2251 /*
2252 * VM Dump
2253 *
2254 * Input Args:
2255 * vm - Virtual Machine
2256 * indent - Left margin indent amount
2257 *
2258 * Output Args:
2259 * stream - Output FILE stream
2260 *
2261 * Return: None
2262 *
2263 * Dumps the current state of the VM given by vm, to the FILE stream
2264 * given by stream.
2265 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)2266 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2267 {
2268 int ctr;
2269 struct userspace_mem_region *region;
2270 struct vcpu *vcpu;
2271
2272 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2273 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2274 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2275 fprintf(stream, "%*sMem Regions:\n", indent, "");
2276 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2277 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2278 "host_virt: %p\n", indent + 2, "",
2279 (uint64_t) region->region.guest_phys_addr,
2280 (uint64_t) region->region.memory_size,
2281 region->host_mem);
2282 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2283 sparsebit_dump(stream, region->unused_phy_pages, 0);
2284 }
2285 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2286 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2287 fprintf(stream, "%*spgd_created: %u\n", indent, "",
2288 vm->pgd_created);
2289 if (vm->pgd_created) {
2290 fprintf(stream, "%*sVirtual Translation Tables:\n",
2291 indent + 2, "");
2292 virt_dump(stream, vm, indent + 4);
2293 }
2294 fprintf(stream, "%*sVCPUs:\n", indent, "");
2295 list_for_each_entry(vcpu, &vm->vcpus, list)
2296 vcpu_dump(stream, vm, vcpu->id, indent + 2);
2297 }
2298
2299 /* Known KVM exit reasons */
2300 static struct exit_reason {
2301 unsigned int reason;
2302 const char *name;
2303 } exit_reasons_known[] = {
2304 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
2305 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
2306 {KVM_EXIT_IO, "IO"},
2307 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
2308 {KVM_EXIT_DEBUG, "DEBUG"},
2309 {KVM_EXIT_HLT, "HLT"},
2310 {KVM_EXIT_MMIO, "MMIO"},
2311 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2312 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2313 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2314 {KVM_EXIT_INTR, "INTR"},
2315 {KVM_EXIT_SET_TPR, "SET_TPR"},
2316 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2317 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2318 {KVM_EXIT_S390_RESET, "S390_RESET"},
2319 {KVM_EXIT_DCR, "DCR"},
2320 {KVM_EXIT_NMI, "NMI"},
2321 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2322 {KVM_EXIT_OSI, "OSI"},
2323 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2324 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2325 {KVM_EXIT_X86_RDMSR, "RDMSR"},
2326 {KVM_EXIT_X86_WRMSR, "WRMSR"},
2327 {KVM_EXIT_XEN, "XEN"},
2328 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2329 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2330 #endif
2331 };
2332
2333 /*
2334 * Exit Reason String
2335 *
2336 * Input Args:
2337 * exit_reason - Exit reason
2338 *
2339 * Output Args: None
2340 *
2341 * Return:
2342 * Constant string pointer describing the exit reason.
2343 *
2344 * Locates and returns a constant string that describes the KVM exit
2345 * reason given by exit_reason. If no such string is found, a constant
2346 * string of "Unknown" is returned.
2347 */
exit_reason_str(unsigned int exit_reason)2348 const char *exit_reason_str(unsigned int exit_reason)
2349 {
2350 unsigned int n1;
2351
2352 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2353 if (exit_reason == exit_reasons_known[n1].reason)
2354 return exit_reasons_known[n1].name;
2355 }
2356
2357 return "Unknown";
2358 }
2359
2360 /*
2361 * Physical Contiguous Page Allocator
2362 *
2363 * Input Args:
2364 * vm - Virtual Machine
2365 * num - number of pages
2366 * paddr_min - Physical address minimum
2367 * memslot - Memory region to allocate page from
2368 *
2369 * Output Args: None
2370 *
2371 * Return:
2372 * Starting physical address
2373 *
2374 * Within the VM specified by vm, locates a range of available physical
2375 * pages at or above paddr_min. If found, the pages are marked as in use
2376 * and their base address is returned. A TEST_ASSERT failure occurs if
2377 * not enough pages are available at or above paddr_min.
2378 */
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)2379 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2380 vm_paddr_t paddr_min, uint32_t memslot)
2381 {
2382 struct userspace_mem_region *region;
2383 sparsebit_idx_t pg, base;
2384
2385 TEST_ASSERT(num > 0, "Must allocate at least one page");
2386
2387 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2388 "not divisible by page size.\n"
2389 " paddr_min: 0x%lx page_size: 0x%x",
2390 paddr_min, vm->page_size);
2391
2392 region = memslot2region(vm, memslot);
2393 base = pg = paddr_min >> vm->page_shift;
2394
2395 do {
2396 for (; pg < base + num; ++pg) {
2397 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2398 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2399 break;
2400 }
2401 }
2402 } while (pg && pg != base + num);
2403
2404 if (pg == 0) {
2405 fprintf(stderr, "No guest physical page available, "
2406 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2407 paddr_min, vm->page_size, memslot);
2408 fputs("---- vm dump ----\n", stderr);
2409 vm_dump(stderr, vm, 2);
2410 abort();
2411 }
2412
2413 for (pg = base; pg < base + num; ++pg)
2414 sparsebit_clear(region->unused_phy_pages, pg);
2415
2416 return base * vm->page_size;
2417 }
2418
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2419 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2420 uint32_t memslot)
2421 {
2422 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2423 }
2424
2425 /* Arbitrary minimum physical address used for virtual translation tables. */
2426 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2427
vm_alloc_page_table(struct kvm_vm * vm)2428 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2429 {
2430 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2431 }
2432
2433 /*
2434 * Address Guest Virtual to Host Virtual
2435 *
2436 * Input Args:
2437 * vm - Virtual Machine
2438 * gva - VM virtual address
2439 *
2440 * Output Args: None
2441 *
2442 * Return:
2443 * Equivalent host virtual address
2444 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2445 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2446 {
2447 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2448 }
2449
2450 /*
2451 * Is Unrestricted Guest
2452 *
2453 * Input Args:
2454 * vm - Virtual Machine
2455 *
2456 * Output Args: None
2457 *
2458 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2459 *
2460 * Check if the unrestricted guest flag is enabled.
2461 */
vm_is_unrestricted_guest(struct kvm_vm * vm)2462 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2463 {
2464 char val = 'N';
2465 size_t count;
2466 FILE *f;
2467
2468 if (vm == NULL) {
2469 /* Ensure that the KVM vendor-specific module is loaded. */
2470 close(open_kvm_dev_path_or_exit());
2471 }
2472
2473 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2474 if (f) {
2475 count = fread(&val, sizeof(char), 1, f);
2476 TEST_ASSERT(count == 1, "Unable to read from param file.");
2477 fclose(f);
2478 }
2479
2480 return val == 'Y';
2481 }
2482
vm_get_page_size(struct kvm_vm * vm)2483 unsigned int vm_get_page_size(struct kvm_vm *vm)
2484 {
2485 return vm->page_size;
2486 }
2487
vm_get_page_shift(struct kvm_vm * vm)2488 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2489 {
2490 return vm->page_shift;
2491 }
2492
vm_compute_max_gfn(struct kvm_vm * vm)2493 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2494 {
2495 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2496 }
2497
vm_get_max_gfn(struct kvm_vm * vm)2498 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2499 {
2500 return vm->max_gfn;
2501 }
2502
vm_get_fd(struct kvm_vm * vm)2503 int vm_get_fd(struct kvm_vm *vm)
2504 {
2505 return vm->fd;
2506 }
2507
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2508 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2509 unsigned int page_shift,
2510 unsigned int new_page_shift,
2511 bool ceil)
2512 {
2513 unsigned int n = 1 << (new_page_shift - page_shift);
2514
2515 if (page_shift >= new_page_shift)
2516 return num_pages * (1 << (page_shift - new_page_shift));
2517
2518 return num_pages / n + !!(ceil && num_pages % n);
2519 }
2520
getpageshift(void)2521 static inline int getpageshift(void)
2522 {
2523 return __builtin_ffs(getpagesize()) - 1;
2524 }
2525
2526 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2527 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2528 {
2529 return vm_calc_num_pages(num_guest_pages,
2530 vm_guest_mode_params[mode].page_shift,
2531 getpageshift(), true);
2532 }
2533
2534 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2535 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2536 {
2537 return vm_calc_num_pages(num_host_pages, getpageshift(),
2538 vm_guest_mode_params[mode].page_shift, false);
2539 }
2540
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2541 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2542 {
2543 unsigned int n;
2544 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2545 return vm_adjust_num_guest_pages(mode, n);
2546 }
2547
vm_get_stats_fd(struct kvm_vm * vm)2548 int vm_get_stats_fd(struct kvm_vm *vm)
2549 {
2550 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2551 }
2552
vcpu_get_stats_fd(struct kvm_vm * vm,uint32_t vcpuid)2553 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2554 {
2555 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2556
2557 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2558 }
2559