1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 #include <linux/page_table_check.h>
16
17 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20 #endif
21
22 /*
23 * On almost all architectures and configurations, 0 can be used as the
24 * upper ceiling to free_pgtables(): on many architectures it has the same
25 * effect as using TASK_SIZE. However, there is one configuration which
26 * must impose a more careful limit, to avoid freeing kernel pgtables.
27 */
28 #ifndef USER_PGTABLES_CEILING
29 #define USER_PGTABLES_CEILING 0UL
30 #endif
31
32 /*
33 * This defines the first usable user address. Platforms
34 * can override its value with custom FIRST_USER_ADDRESS
35 * defined in their respective <asm/pgtable.h>.
36 */
37 #ifndef FIRST_USER_ADDRESS
38 #define FIRST_USER_ADDRESS 0UL
39 #endif
40
41 /*
42 * This defines the generic helper for accessing PMD page
43 * table page. Although platforms can still override this
44 * via their respective <asm/pgtable.h>.
45 */
46 #ifndef pmd_pgtable
47 #define pmd_pgtable(pmd) pmd_page(pmd)
48 #endif
49
50 /*
51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52 *
53 * The pXx_index() functions return the index of the entry in the page
54 * table page which would control the given virtual address
55 *
56 * As these functions may be used by the same code for different levels of
57 * the page table folding, they are always available, regardless of
58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59 * because in such cases PTRS_PER_PxD equals 1.
60 */
61
pte_index(unsigned long address)62 static inline unsigned long pte_index(unsigned long address)
63 {
64 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65 }
66 #define pte_index pte_index
67
68 #ifndef pmd_index
pmd_index(unsigned long address)69 static inline unsigned long pmd_index(unsigned long address)
70 {
71 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72 }
73 #define pmd_index pmd_index
74 #endif
75
76 #ifndef pud_index
pud_index(unsigned long address)77 static inline unsigned long pud_index(unsigned long address)
78 {
79 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80 }
81 #define pud_index pud_index
82 #endif
83
84 #ifndef pgd_index
85 /* Must be a compile-time constant, so implement it as a macro */
86 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87 #endif
88
89 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)90 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91 {
92 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93 }
94 #define pte_offset_kernel pte_offset_kernel
95 #endif
96
97 #if defined(CONFIG_HIGHPTE)
98 #define pte_offset_map(dir, address) \
99 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
100 pte_index((address)))
101 #define pte_unmap(pte) kunmap_atomic((pte))
102 #else
103 #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
104 #define pte_unmap(pte) ((void)(pte)) /* NOP */
105 #endif
106
107 /* Find an entry in the second-level page table.. */
108 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)109 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
110 {
111 return pud_pgtable(*pud) + pmd_index(address);
112 }
113 #define pmd_offset pmd_offset
114 #endif
115
116 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)117 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
118 {
119 return p4d_pgtable(*p4d) + pud_index(address);
120 }
121 #define pud_offset pud_offset
122 #endif
123
pgd_offset_pgd(pgd_t * pgd,unsigned long address)124 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
125 {
126 return (pgd + pgd_index(address));
127 };
128
129 /*
130 * a shortcut to get a pgd_t in a given mm
131 */
132 #ifndef pgd_offset
133 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
134 #endif
135
136 /*
137 * a shortcut which implies the use of the kernel's pgd, instead
138 * of a process's
139 */
140 #ifndef pgd_offset_k
141 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
142 #endif
143
144 /*
145 * In many cases it is known that a virtual address is mapped at PMD or PTE
146 * level, so instead of traversing all the page table levels, we can get a
147 * pointer to the PMD entry in user or kernel page table or translate a virtual
148 * address to the pointer in the PTE in the kernel page tables with simple
149 * helpers.
150 */
pmd_off(struct mm_struct * mm,unsigned long va)151 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
152 {
153 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
154 }
155
pmd_off_k(unsigned long va)156 static inline pmd_t *pmd_off_k(unsigned long va)
157 {
158 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
159 }
160
virt_to_kpte(unsigned long vaddr)161 static inline pte_t *virt_to_kpte(unsigned long vaddr)
162 {
163 pmd_t *pmd = pmd_off_k(vaddr);
164
165 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
166 }
167
168 #ifndef pmd_young
pmd_young(pmd_t pmd)169 static inline int pmd_young(pmd_t pmd)
170 {
171 return 0;
172 }
173 #endif
174
175 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
176 extern int ptep_set_access_flags(struct vm_area_struct *vma,
177 unsigned long address, pte_t *ptep,
178 pte_t entry, int dirty);
179 #endif
180
181 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
182 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
183 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
184 unsigned long address, pmd_t *pmdp,
185 pmd_t entry, int dirty);
186 extern int pudp_set_access_flags(struct vm_area_struct *vma,
187 unsigned long address, pud_t *pudp,
188 pud_t entry, int dirty);
189 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)190 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
191 unsigned long address, pmd_t *pmdp,
192 pmd_t entry, int dirty)
193 {
194 BUILD_BUG();
195 return 0;
196 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)197 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
198 unsigned long address, pud_t *pudp,
199 pud_t entry, int dirty)
200 {
201 BUILD_BUG();
202 return 0;
203 }
204 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
205 #endif
206
207 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)208 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
209 unsigned long address,
210 pte_t *ptep)
211 {
212 pte_t pte = *ptep;
213 int r = 1;
214 if (!pte_young(pte))
215 r = 0;
216 else
217 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
218 return r;
219 }
220 #endif
221
222 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
223 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)224 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
225 unsigned long address,
226 pmd_t *pmdp)
227 {
228 pmd_t pmd = *pmdp;
229 int r = 1;
230 if (!pmd_young(pmd))
231 r = 0;
232 else
233 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
234 return r;
235 }
236 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)237 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
238 unsigned long address,
239 pmd_t *pmdp)
240 {
241 BUILD_BUG();
242 return 0;
243 }
244 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
245 #endif
246
247 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
248 int ptep_clear_flush_young(struct vm_area_struct *vma,
249 unsigned long address, pte_t *ptep);
250 #endif
251
252 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
253 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
254 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
255 unsigned long address, pmd_t *pmdp);
256 #else
257 /*
258 * Despite relevant to THP only, this API is called from generic rmap code
259 * under PageTransHuge(), hence needs a dummy implementation for !THP
260 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)261 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
262 unsigned long address, pmd_t *pmdp)
263 {
264 BUILD_BUG();
265 return 0;
266 }
267 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
268 #endif
269
270 #ifndef arch_has_hw_nonleaf_pmd_young
271 /*
272 * Return whether the accessed bit in non-leaf PMD entries is supported on the
273 * local CPU.
274 */
arch_has_hw_nonleaf_pmd_young(void)275 static inline bool arch_has_hw_nonleaf_pmd_young(void)
276 {
277 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
278 }
279 #endif
280
281 #ifndef arch_has_hw_pte_young
282 /*
283 * Return whether the accessed bit is supported on the local CPU.
284 *
285 * This stub assumes accessing through an old PTE triggers a page fault.
286 * Architectures that automatically set the access bit should overwrite it.
287 */
arch_has_hw_pte_young(void)288 static inline bool arch_has_hw_pte_young(void)
289 {
290 return false;
291 }
292 #endif
293
294 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)295 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
296 unsigned long address,
297 pte_t *ptep)
298 {
299 pte_t pte = *ptep;
300 pte_clear(mm, address, ptep);
301 page_table_check_pte_clear(mm, address, pte);
302 return pte;
303 }
304 #endif
305
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)306 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
307 pte_t *ptep)
308 {
309 ptep_get_and_clear(mm, addr, ptep);
310 }
311
312 #ifndef __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)313 static inline pte_t ptep_get(pte_t *ptep)
314 {
315 return READ_ONCE(*ptep);
316 }
317 #endif
318
319 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
320 /*
321 * WARNING: only to be used in the get_user_pages_fast() implementation.
322 *
323 * With get_user_pages_fast(), we walk down the pagetables without taking any
324 * locks. For this we would like to load the pointers atomically, but sometimes
325 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
326 * we do have is the guarantee that a PTE will only either go from not present
327 * to present, or present to not present or both -- it will not switch to a
328 * completely different present page without a TLB flush in between; something
329 * that we are blocking by holding interrupts off.
330 *
331 * Setting ptes from not present to present goes:
332 *
333 * ptep->pte_high = h;
334 * smp_wmb();
335 * ptep->pte_low = l;
336 *
337 * And present to not present goes:
338 *
339 * ptep->pte_low = 0;
340 * smp_wmb();
341 * ptep->pte_high = 0;
342 *
343 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
344 * We load pte_high *after* loading pte_low, which ensures we don't see an older
345 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
346 * picked up a changed pte high. We might have gotten rubbish values from
347 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
348 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
349 * operates on present ptes we're safe.
350 */
ptep_get_lockless(pte_t * ptep)351 static inline pte_t ptep_get_lockless(pte_t *ptep)
352 {
353 pte_t pte;
354
355 do {
356 pte.pte_low = ptep->pte_low;
357 smp_rmb();
358 pte.pte_high = ptep->pte_high;
359 smp_rmb();
360 } while (unlikely(pte.pte_low != ptep->pte_low));
361
362 return pte;
363 }
364 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
365 /*
366 * We require that the PTE can be read atomically.
367 */
ptep_get_lockless(pte_t * ptep)368 static inline pte_t ptep_get_lockless(pte_t *ptep)
369 {
370 return ptep_get(ptep);
371 }
372 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
373
374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
375 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)376 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
377 unsigned long address,
378 pmd_t *pmdp)
379 {
380 pmd_t pmd = *pmdp;
381
382 pmd_clear(pmdp);
383 page_table_check_pmd_clear(mm, address, pmd);
384
385 return pmd;
386 }
387 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
388 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)389 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
390 unsigned long address,
391 pud_t *pudp)
392 {
393 pud_t pud = *pudp;
394
395 pud_clear(pudp);
396 page_table_check_pud_clear(mm, address, pud);
397
398 return pud;
399 }
400 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
401 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
402
403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
404 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)405 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
406 unsigned long address, pmd_t *pmdp,
407 int full)
408 {
409 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
410 }
411 #endif
412
413 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)414 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
415 unsigned long address, pud_t *pudp,
416 int full)
417 {
418 return pudp_huge_get_and_clear(mm, address, pudp);
419 }
420 #endif
421 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
422
423 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)424 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
425 unsigned long address, pte_t *ptep,
426 int full)
427 {
428 pte_t pte;
429 pte = ptep_get_and_clear(mm, address, ptep);
430 return pte;
431 }
432 #endif
433
434
435 /*
436 * If two threads concurrently fault at the same page, the thread that
437 * won the race updates the PTE and its local TLB/Cache. The other thread
438 * gives up, simply does nothing, and continues; on architectures where
439 * software can update TLB, local TLB can be updated here to avoid next page
440 * fault. This function updates TLB only, do nothing with cache or others.
441 * It is the difference with function update_mmu_cache.
442 */
443 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)444 static inline void update_mmu_tlb(struct vm_area_struct *vma,
445 unsigned long address, pte_t *ptep)
446 {
447 }
448 #define __HAVE_ARCH_UPDATE_MMU_TLB
449 #endif
450
451 /*
452 * Some architectures may be able to avoid expensive synchronization
453 * primitives when modifications are made to PTE's which are already
454 * not present, or in the process of an address space destruction.
455 */
456 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)457 static inline void pte_clear_not_present_full(struct mm_struct *mm,
458 unsigned long address,
459 pte_t *ptep,
460 int full)
461 {
462 pte_clear(mm, address, ptep);
463 }
464 #endif
465
466 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
467 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
468 unsigned long address,
469 pte_t *ptep);
470 #endif
471
472 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
473 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
474 unsigned long address,
475 pmd_t *pmdp);
476 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
477 unsigned long address,
478 pud_t *pudp);
479 #endif
480
481 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
482 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)483 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
484 {
485 pte_t old_pte = *ptep;
486 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
487 }
488 #endif
489
490 /*
491 * On some architectures hardware does not set page access bit when accessing
492 * memory page, it is responsibility of software setting this bit. It brings
493 * out extra page fault penalty to track page access bit. For optimization page
494 * access bit can be set during all page fault flow on these arches.
495 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
496 * where software maintains page access bit.
497 */
498 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)499 static inline pte_t pte_sw_mkyoung(pte_t pte)
500 {
501 return pte;
502 }
503 #define pte_sw_mkyoung pte_sw_mkyoung
504 #endif
505
506 #ifndef pte_savedwrite
507 #define pte_savedwrite pte_write
508 #endif
509
510 #ifndef pte_mk_savedwrite
511 #define pte_mk_savedwrite pte_mkwrite
512 #endif
513
514 #ifndef pte_clear_savedwrite
515 #define pte_clear_savedwrite pte_wrprotect
516 #endif
517
518 #ifndef pmd_savedwrite
519 #define pmd_savedwrite pmd_write
520 #endif
521
522 #ifndef pmd_mk_savedwrite
523 #define pmd_mk_savedwrite pmd_mkwrite
524 #endif
525
526 #ifndef pmd_clear_savedwrite
527 #define pmd_clear_savedwrite pmd_wrprotect
528 #endif
529
530 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
531 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)532 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
533 unsigned long address, pmd_t *pmdp)
534 {
535 pmd_t old_pmd = *pmdp;
536 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
537 }
538 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)539 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
540 unsigned long address, pmd_t *pmdp)
541 {
542 BUILD_BUG();
543 }
544 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
545 #endif
546 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
547 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)548 static inline void pudp_set_wrprotect(struct mm_struct *mm,
549 unsigned long address, pud_t *pudp)
550 {
551 pud_t old_pud = *pudp;
552
553 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
554 }
555 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)556 static inline void pudp_set_wrprotect(struct mm_struct *mm,
557 unsigned long address, pud_t *pudp)
558 {
559 BUILD_BUG();
560 }
561 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
562 #endif
563
564 #ifndef pmdp_collapse_flush
565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
566 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
567 unsigned long address, pmd_t *pmdp);
568 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)569 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
570 unsigned long address,
571 pmd_t *pmdp)
572 {
573 BUILD_BUG();
574 return *pmdp;
575 }
576 #define pmdp_collapse_flush pmdp_collapse_flush
577 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
578 #endif
579
580 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
581 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
582 pgtable_t pgtable);
583 #endif
584
585 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
586 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
587 #endif
588
589 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
590 /*
591 * This is an implementation of pmdp_establish() that is only suitable for an
592 * architecture that doesn't have hardware dirty/accessed bits. In this case we
593 * can't race with CPU which sets these bits and non-atomic approach is fine.
594 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)595 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
596 unsigned long address, pmd_t *pmdp, pmd_t pmd)
597 {
598 pmd_t old_pmd = *pmdp;
599 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
600 return old_pmd;
601 }
602 #endif
603
604 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
605 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
606 pmd_t *pmdp);
607 #endif
608
609 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
610
611 /*
612 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
613 * hugepage mapping in the page tables. This function is similar to
614 * pmdp_invalidate(), but should only be used if the access and dirty bits would
615 * not be cleared by the software in the new PMD value. The function ensures
616 * that hardware changes of the access and dirty bits updates would not be lost.
617 *
618 * Doing so can allow in certain architectures to avoid a TLB flush in most
619 * cases. Yet, another TLB flush might be necessary later if the PMD update
620 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
621 * even when a TLB flush is needed because of the update, the caller may be able
622 * to batch these TLB flushing operations, so fewer TLB flush operations are
623 * needed.
624 */
625 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
626 unsigned long address, pmd_t *pmdp);
627 #endif
628
629 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)630 static inline int pte_same(pte_t pte_a, pte_t pte_b)
631 {
632 return pte_val(pte_a) == pte_val(pte_b);
633 }
634 #endif
635
636 #ifndef __HAVE_ARCH_PTE_UNUSED
637 /*
638 * Some architectures provide facilities to virtualization guests
639 * so that they can flag allocated pages as unused. This allows the
640 * host to transparently reclaim unused pages. This function returns
641 * whether the pte's page is unused.
642 */
pte_unused(pte_t pte)643 static inline int pte_unused(pte_t pte)
644 {
645 return 0;
646 }
647 #endif
648
649 #ifndef pte_access_permitted
650 #define pte_access_permitted(pte, write) \
651 (pte_present(pte) && (!(write) || pte_write(pte)))
652 #endif
653
654 #ifndef pmd_access_permitted
655 #define pmd_access_permitted(pmd, write) \
656 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
657 #endif
658
659 #ifndef pud_access_permitted
660 #define pud_access_permitted(pud, write) \
661 (pud_present(pud) && (!(write) || pud_write(pud)))
662 #endif
663
664 #ifndef p4d_access_permitted
665 #define p4d_access_permitted(p4d, write) \
666 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
667 #endif
668
669 #ifndef pgd_access_permitted
670 #define pgd_access_permitted(pgd, write) \
671 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
672 #endif
673
674 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)675 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
676 {
677 return pmd_val(pmd_a) == pmd_val(pmd_b);
678 }
679
pud_same(pud_t pud_a,pud_t pud_b)680 static inline int pud_same(pud_t pud_a, pud_t pud_b)
681 {
682 return pud_val(pud_a) == pud_val(pud_b);
683 }
684 #endif
685
686 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)687 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
688 {
689 return p4d_val(p4d_a) == p4d_val(p4d_b);
690 }
691 #endif
692
693 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)694 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
695 {
696 return pgd_val(pgd_a) == pgd_val(pgd_b);
697 }
698 #endif
699
700 /*
701 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
702 * TLB flush will be required as a result of the "set". For example, use
703 * in scenarios where it is known ahead of time that the routine is
704 * setting non-present entries, or re-setting an existing entry to the
705 * same value. Otherwise, use the typical "set" helpers and flush the
706 * TLB.
707 */
708 #define set_pte_safe(ptep, pte) \
709 ({ \
710 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
711 set_pte(ptep, pte); \
712 })
713
714 #define set_pmd_safe(pmdp, pmd) \
715 ({ \
716 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
717 set_pmd(pmdp, pmd); \
718 })
719
720 #define set_pud_safe(pudp, pud) \
721 ({ \
722 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
723 set_pud(pudp, pud); \
724 })
725
726 #define set_p4d_safe(p4dp, p4d) \
727 ({ \
728 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
729 set_p4d(p4dp, p4d); \
730 })
731
732 #define set_pgd_safe(pgdp, pgd) \
733 ({ \
734 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
735 set_pgd(pgdp, pgd); \
736 })
737
738 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
739 /*
740 * Some architectures support metadata associated with a page. When a
741 * page is being swapped out, this metadata must be saved so it can be
742 * restored when the page is swapped back in. SPARC M7 and newer
743 * processors support an ADI (Application Data Integrity) tag for the
744 * page as metadata for the page. arch_do_swap_page() can restore this
745 * metadata when a page is swapped back in.
746 */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)747 static inline void arch_do_swap_page(struct mm_struct *mm,
748 struct vm_area_struct *vma,
749 unsigned long addr,
750 pte_t pte, pte_t oldpte)
751 {
752
753 }
754 #endif
755
756 #ifndef __HAVE_ARCH_UNMAP_ONE
757 /*
758 * Some architectures support metadata associated with a page. When a
759 * page is being swapped out, this metadata must be saved so it can be
760 * restored when the page is swapped back in. SPARC M7 and newer
761 * processors support an ADI (Application Data Integrity) tag for the
762 * page as metadata for the page. arch_unmap_one() can save this
763 * metadata on a swap-out of a page.
764 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)765 static inline int arch_unmap_one(struct mm_struct *mm,
766 struct vm_area_struct *vma,
767 unsigned long addr,
768 pte_t orig_pte)
769 {
770 return 0;
771 }
772 #endif
773
774 /*
775 * Allow architectures to preserve additional metadata associated with
776 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
777 * prototypes must be defined in the arch-specific asm/pgtable.h file.
778 */
779 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)780 static inline int arch_prepare_to_swap(struct page *page)
781 {
782 return 0;
783 }
784 #endif
785
786 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)787 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
788 {
789 }
790
arch_swap_invalidate_area(int type)791 static inline void arch_swap_invalidate_area(int type)
792 {
793 }
794 #endif
795
796 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)797 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
798 {
799 }
800 #endif
801
802 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
803 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
804 #endif
805
806 #ifndef __HAVE_ARCH_MOVE_PTE
807 #define move_pte(pte, prot, old_addr, new_addr) (pte)
808 #endif
809
810 #ifndef pte_accessible
811 # define pte_accessible(mm, pte) ((void)(pte), 1)
812 #endif
813
814 #ifndef flush_tlb_fix_spurious_fault
815 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
816 #endif
817
818 /*
819 * When walking page tables, get the address of the next boundary,
820 * or the end address of the range if that comes earlier. Although no
821 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
822 */
823
824 #define pgd_addr_end(addr, end) \
825 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
826 (__boundary - 1 < (end) - 1)? __boundary: (end); \
827 })
828
829 #ifndef p4d_addr_end
830 #define p4d_addr_end(addr, end) \
831 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
832 (__boundary - 1 < (end) - 1)? __boundary: (end); \
833 })
834 #endif
835
836 #ifndef pud_addr_end
837 #define pud_addr_end(addr, end) \
838 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
839 (__boundary - 1 < (end) - 1)? __boundary: (end); \
840 })
841 #endif
842
843 #ifndef pmd_addr_end
844 #define pmd_addr_end(addr, end) \
845 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
846 (__boundary - 1 < (end) - 1)? __boundary: (end); \
847 })
848 #endif
849
850 /*
851 * When walking page tables, we usually want to skip any p?d_none entries;
852 * and any p?d_bad entries - reporting the error before resetting to none.
853 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
854 */
855 void pgd_clear_bad(pgd_t *);
856
857 #ifndef __PAGETABLE_P4D_FOLDED
858 void p4d_clear_bad(p4d_t *);
859 #else
860 #define p4d_clear_bad(p4d) do { } while (0)
861 #endif
862
863 #ifndef __PAGETABLE_PUD_FOLDED
864 void pud_clear_bad(pud_t *);
865 #else
866 #define pud_clear_bad(p4d) do { } while (0)
867 #endif
868
869 void pmd_clear_bad(pmd_t *);
870
pgd_none_or_clear_bad(pgd_t * pgd)871 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
872 {
873 if (pgd_none(*pgd))
874 return 1;
875 if (unlikely(pgd_bad(*pgd))) {
876 pgd_clear_bad(pgd);
877 return 1;
878 }
879 return 0;
880 }
881
p4d_none_or_clear_bad(p4d_t * p4d)882 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
883 {
884 if (p4d_none(*p4d))
885 return 1;
886 if (unlikely(p4d_bad(*p4d))) {
887 p4d_clear_bad(p4d);
888 return 1;
889 }
890 return 0;
891 }
892
pud_none_or_clear_bad(pud_t * pud)893 static inline int pud_none_or_clear_bad(pud_t *pud)
894 {
895 if (pud_none(*pud))
896 return 1;
897 if (unlikely(pud_bad(*pud))) {
898 pud_clear_bad(pud);
899 return 1;
900 }
901 return 0;
902 }
903
pmd_none_or_clear_bad(pmd_t * pmd)904 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
905 {
906 if (pmd_none(*pmd))
907 return 1;
908 if (unlikely(pmd_bad(*pmd))) {
909 pmd_clear_bad(pmd);
910 return 1;
911 }
912 return 0;
913 }
914
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)915 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
916 unsigned long addr,
917 pte_t *ptep)
918 {
919 /*
920 * Get the current pte state, but zero it out to make it
921 * non-present, preventing the hardware from asynchronously
922 * updating it.
923 */
924 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
925 }
926
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)927 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
928 unsigned long addr,
929 pte_t *ptep, pte_t pte)
930 {
931 /*
932 * The pte is non-present, so there's no hardware state to
933 * preserve.
934 */
935 set_pte_at(vma->vm_mm, addr, ptep, pte);
936 }
937
938 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
939 /*
940 * Start a pte protection read-modify-write transaction, which
941 * protects against asynchronous hardware modifications to the pte.
942 * The intention is not to prevent the hardware from making pte
943 * updates, but to prevent any updates it may make from being lost.
944 *
945 * This does not protect against other software modifications of the
946 * pte; the appropriate pte lock must be held over the transaction.
947 *
948 * Note that this interface is intended to be batchable, meaning that
949 * ptep_modify_prot_commit may not actually update the pte, but merely
950 * queue the update to be done at some later time. The update must be
951 * actually committed before the pte lock is released, however.
952 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)953 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
954 unsigned long addr,
955 pte_t *ptep)
956 {
957 return __ptep_modify_prot_start(vma, addr, ptep);
958 }
959
960 /*
961 * Commit an update to a pte, leaving any hardware-controlled bits in
962 * the PTE unmodified.
963 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)964 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
965 unsigned long addr,
966 pte_t *ptep, pte_t old_pte, pte_t pte)
967 {
968 __ptep_modify_prot_commit(vma, addr, ptep, pte);
969 }
970 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
971 #endif /* CONFIG_MMU */
972
973 /*
974 * No-op macros that just return the current protection value. Defined here
975 * because these macros can be used even if CONFIG_MMU is not defined.
976 */
977
978 #ifndef pgprot_nx
979 #define pgprot_nx(prot) (prot)
980 #endif
981
982 #ifndef pgprot_noncached
983 #define pgprot_noncached(prot) (prot)
984 #endif
985
986 #ifndef pgprot_writecombine
987 #define pgprot_writecombine pgprot_noncached
988 #endif
989
990 #ifndef pgprot_writethrough
991 #define pgprot_writethrough pgprot_noncached
992 #endif
993
994 #ifndef pgprot_device
995 #define pgprot_device pgprot_noncached
996 #endif
997
998 #ifndef pgprot_mhp
999 #define pgprot_mhp(prot) (prot)
1000 #endif
1001
1002 #ifdef CONFIG_MMU
1003 #ifndef pgprot_modify
1004 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)1005 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1006 {
1007 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1008 newprot = pgprot_noncached(newprot);
1009 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1010 newprot = pgprot_writecombine(newprot);
1011 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1012 newprot = pgprot_device(newprot);
1013 return newprot;
1014 }
1015 #endif
1016 #endif /* CONFIG_MMU */
1017
1018 #ifndef pgprot_encrypted
1019 #define pgprot_encrypted(prot) (prot)
1020 #endif
1021
1022 #ifndef pgprot_decrypted
1023 #define pgprot_decrypted(prot) (prot)
1024 #endif
1025
1026 /*
1027 * A facility to provide lazy MMU batching. This allows PTE updates and
1028 * page invalidations to be delayed until a call to leave lazy MMU mode
1029 * is issued. Some architectures may benefit from doing this, and it is
1030 * beneficial for both shadow and direct mode hypervisors, which may batch
1031 * the PTE updates which happen during this window. Note that using this
1032 * interface requires that read hazards be removed from the code. A read
1033 * hazard could result in the direct mode hypervisor case, since the actual
1034 * write to the page tables may not yet have taken place, so reads though
1035 * a raw PTE pointer after it has been modified are not guaranteed to be
1036 * up to date. This mode can only be entered and left under the protection of
1037 * the page table locks for all page tables which may be modified. In the UP
1038 * case, this is required so that preemption is disabled, and in the SMP case,
1039 * it must synchronize the delayed page table writes properly on other CPUs.
1040 */
1041 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1042 #define arch_enter_lazy_mmu_mode() do {} while (0)
1043 #define arch_leave_lazy_mmu_mode() do {} while (0)
1044 #define arch_flush_lazy_mmu_mode() do {} while (0)
1045 #endif
1046
1047 /*
1048 * A facility to provide batching of the reload of page tables and
1049 * other process state with the actual context switch code for
1050 * paravirtualized guests. By convention, only one of the batched
1051 * update (lazy) modes (CPU, MMU) should be active at any given time,
1052 * entry should never be nested, and entry and exits should always be
1053 * paired. This is for sanity of maintaining and reasoning about the
1054 * kernel code. In this case, the exit (end of the context switch) is
1055 * in architecture-specific code, and so doesn't need a generic
1056 * definition.
1057 */
1058 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1059 #define arch_start_context_switch(prev) do {} while (0)
1060 #endif
1061
1062 /*
1063 * When replacing an anonymous page by a real (!non) swap entry, we clear
1064 * PG_anon_exclusive from the page and instead remember whether the flag was
1065 * set in the swp pte. During fork(), we have to mark the entry as !exclusive
1066 * (possibly shared). On swapin, we use that information to restore
1067 * PG_anon_exclusive, which is very helpful in cases where we might have
1068 * additional (e.g., FOLL_GET) references on a page and wouldn't be able to
1069 * detect exclusivity.
1070 *
1071 * These functions don't apply to non-swap entries (e.g., migration, hwpoison,
1072 * ...).
1073 */
1074 #ifndef __HAVE_ARCH_PTE_SWP_EXCLUSIVE
pte_swp_mkexclusive(pte_t pte)1075 static inline pte_t pte_swp_mkexclusive(pte_t pte)
1076 {
1077 return pte;
1078 }
1079
pte_swp_exclusive(pte_t pte)1080 static inline int pte_swp_exclusive(pte_t pte)
1081 {
1082 return false;
1083 }
1084
pte_swp_clear_exclusive(pte_t pte)1085 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1086 {
1087 return pte;
1088 }
1089 #endif
1090
1091 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1092 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1093 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1094 {
1095 return pmd;
1096 }
1097
pmd_swp_soft_dirty(pmd_t pmd)1098 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1099 {
1100 return 0;
1101 }
1102
pmd_swp_clear_soft_dirty(pmd_t pmd)1103 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1104 {
1105 return pmd;
1106 }
1107 #endif
1108 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1109 static inline int pte_soft_dirty(pte_t pte)
1110 {
1111 return 0;
1112 }
1113
pmd_soft_dirty(pmd_t pmd)1114 static inline int pmd_soft_dirty(pmd_t pmd)
1115 {
1116 return 0;
1117 }
1118
pte_mksoft_dirty(pte_t pte)1119 static inline pte_t pte_mksoft_dirty(pte_t pte)
1120 {
1121 return pte;
1122 }
1123
pmd_mksoft_dirty(pmd_t pmd)1124 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1125 {
1126 return pmd;
1127 }
1128
pte_clear_soft_dirty(pte_t pte)1129 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1130 {
1131 return pte;
1132 }
1133
pmd_clear_soft_dirty(pmd_t pmd)1134 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1135 {
1136 return pmd;
1137 }
1138
pte_swp_mksoft_dirty(pte_t pte)1139 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1140 {
1141 return pte;
1142 }
1143
pte_swp_soft_dirty(pte_t pte)1144 static inline int pte_swp_soft_dirty(pte_t pte)
1145 {
1146 return 0;
1147 }
1148
pte_swp_clear_soft_dirty(pte_t pte)1149 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1150 {
1151 return pte;
1152 }
1153
pmd_swp_mksoft_dirty(pmd_t pmd)1154 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1155 {
1156 return pmd;
1157 }
1158
pmd_swp_soft_dirty(pmd_t pmd)1159 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1160 {
1161 return 0;
1162 }
1163
pmd_swp_clear_soft_dirty(pmd_t pmd)1164 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1165 {
1166 return pmd;
1167 }
1168 #endif
1169
1170 #ifndef __HAVE_PFNMAP_TRACKING
1171 /*
1172 * Interfaces that can be used by architecture code to keep track of
1173 * memory type of pfn mappings specified by the remap_pfn_range,
1174 * vmf_insert_pfn.
1175 */
1176
1177 /*
1178 * track_pfn_remap is called when a _new_ pfn mapping is being established
1179 * by remap_pfn_range() for physical range indicated by pfn and size.
1180 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1181 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1182 unsigned long pfn, unsigned long addr,
1183 unsigned long size)
1184 {
1185 return 0;
1186 }
1187
1188 /*
1189 * track_pfn_insert is called when a _new_ single pfn is established
1190 * by vmf_insert_pfn().
1191 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1192 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1193 pfn_t pfn)
1194 {
1195 }
1196
1197 /*
1198 * track_pfn_copy is called when vma that is covering the pfnmap gets
1199 * copied through copy_page_range().
1200 */
track_pfn_copy(struct vm_area_struct * vma)1201 static inline int track_pfn_copy(struct vm_area_struct *vma)
1202 {
1203 return 0;
1204 }
1205
1206 /*
1207 * untrack_pfn is called while unmapping a pfnmap for a region.
1208 * untrack can be called for a specific region indicated by pfn and size or
1209 * can be for the entire vma (in which case pfn, size are zero).
1210 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1211 static inline void untrack_pfn(struct vm_area_struct *vma,
1212 unsigned long pfn, unsigned long size)
1213 {
1214 }
1215
1216 /*
1217 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1218 */
untrack_pfn_moved(struct vm_area_struct * vma)1219 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1220 {
1221 }
1222 #else
1223 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1224 unsigned long pfn, unsigned long addr,
1225 unsigned long size);
1226 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1227 pfn_t pfn);
1228 extern int track_pfn_copy(struct vm_area_struct *vma);
1229 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1230 unsigned long size);
1231 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1232 #endif
1233
1234 #ifdef CONFIG_MMU
1235 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1236 static inline int is_zero_pfn(unsigned long pfn)
1237 {
1238 extern unsigned long zero_pfn;
1239 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1240 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1241 }
1242
1243 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1244
1245 #else
is_zero_pfn(unsigned long pfn)1246 static inline int is_zero_pfn(unsigned long pfn)
1247 {
1248 extern unsigned long zero_pfn;
1249 return pfn == zero_pfn;
1250 }
1251
my_zero_pfn(unsigned long addr)1252 static inline unsigned long my_zero_pfn(unsigned long addr)
1253 {
1254 extern unsigned long zero_pfn;
1255 return zero_pfn;
1256 }
1257 #endif
1258 #else
is_zero_pfn(unsigned long pfn)1259 static inline int is_zero_pfn(unsigned long pfn)
1260 {
1261 return 0;
1262 }
1263
my_zero_pfn(unsigned long addr)1264 static inline unsigned long my_zero_pfn(unsigned long addr)
1265 {
1266 return 0;
1267 }
1268 #endif /* CONFIG_MMU */
1269
1270 #ifdef CONFIG_MMU
1271
1272 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1273 static inline int pmd_trans_huge(pmd_t pmd)
1274 {
1275 return 0;
1276 }
1277 #ifndef pmd_write
pmd_write(pmd_t pmd)1278 static inline int pmd_write(pmd_t pmd)
1279 {
1280 BUG();
1281 return 0;
1282 }
1283 #endif /* pmd_write */
1284 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1285
1286 #ifndef pud_write
pud_write(pud_t pud)1287 static inline int pud_write(pud_t pud)
1288 {
1289 BUG();
1290 return 0;
1291 }
1292 #endif /* pud_write */
1293
1294 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1295 static inline int pmd_devmap(pmd_t pmd)
1296 {
1297 return 0;
1298 }
pud_devmap(pud_t pud)1299 static inline int pud_devmap(pud_t pud)
1300 {
1301 return 0;
1302 }
pgd_devmap(pgd_t pgd)1303 static inline int pgd_devmap(pgd_t pgd)
1304 {
1305 return 0;
1306 }
1307 #endif
1308
1309 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1310 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_trans_huge(pud_t pud)1311 static inline int pud_trans_huge(pud_t pud)
1312 {
1313 return 0;
1314 }
1315 #endif
1316
1317 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t * pud)1318 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1319 {
1320 pud_t pudval = READ_ONCE(*pud);
1321
1322 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1323 return 1;
1324 if (unlikely(pud_bad(pudval))) {
1325 pud_clear_bad(pud);
1326 return 1;
1327 }
1328 return 0;
1329 }
1330
1331 /* See pmd_trans_unstable for discussion. */
pud_trans_unstable(pud_t * pud)1332 static inline int pud_trans_unstable(pud_t *pud)
1333 {
1334 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1335 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1336 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1337 #else
1338 return 0;
1339 #endif
1340 }
1341
1342 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)1343 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1344 {
1345 /*
1346 * Depend on compiler for an atomic pmd read. NOTE: this is
1347 * only going to work, if the pmdval_t isn't larger than
1348 * an unsigned long.
1349 */
1350 return *pmdp;
1351 }
1352 #endif
1353
1354 #ifndef arch_needs_pgtable_deposit
1355 #define arch_needs_pgtable_deposit() (false)
1356 #endif
1357 /*
1358 * This function is meant to be used by sites walking pagetables with
1359 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1360 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1361 * into a null pmd and the transhuge page fault can convert a null pmd
1362 * into an hugepmd or into a regular pmd (if the hugepage allocation
1363 * fails). While holding the mmap_lock in read mode the pmd becomes
1364 * stable and stops changing under us only if it's not null and not a
1365 * transhuge pmd. When those races occurs and this function makes a
1366 * difference vs the standard pmd_none_or_clear_bad, the result is
1367 * undefined so behaving like if the pmd was none is safe (because it
1368 * can return none anyway). The compiler level barrier() is critically
1369 * important to compute the two checks atomically on the same pmdval.
1370 *
1371 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1372 * care of reading the pmd atomically to avoid SMP race conditions
1373 * against pmd_populate() when the mmap_lock is hold for reading by the
1374 * caller (a special atomic read not done by "gcc" as in the generic
1375 * version above, is also needed when THP is disabled because the page
1376 * fault can populate the pmd from under us).
1377 */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)1378 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1379 {
1380 pmd_t pmdval = pmd_read_atomic(pmd);
1381 /*
1382 * The barrier will stabilize the pmdval in a register or on
1383 * the stack so that it will stop changing under the code.
1384 *
1385 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1386 * pmd_read_atomic is allowed to return a not atomic pmdval
1387 * (for example pointing to an hugepage that has never been
1388 * mapped in the pmd). The below checks will only care about
1389 * the low part of the pmd with 32bit PAE x86 anyway, with the
1390 * exception of pmd_none(). So the important thing is that if
1391 * the low part of the pmd is found null, the high part will
1392 * be also null or the pmd_none() check below would be
1393 * confused.
1394 */
1395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1396 barrier();
1397 #endif
1398 /*
1399 * !pmd_present() checks for pmd migration entries
1400 *
1401 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1402 * But using that requires moving current function and pmd_trans_unstable()
1403 * to linux/swapops.h to resolve dependency, which is too much code move.
1404 *
1405 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1406 * because !pmd_present() pages can only be under migration not swapped
1407 * out.
1408 *
1409 * pmd_none() is preserved for future condition checks on pmd migration
1410 * entries and not confusing with this function name, although it is
1411 * redundant with !pmd_present().
1412 */
1413 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1414 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1415 return 1;
1416 if (unlikely(pmd_bad(pmdval))) {
1417 pmd_clear_bad(pmd);
1418 return 1;
1419 }
1420 return 0;
1421 }
1422
1423 /*
1424 * This is a noop if Transparent Hugepage Support is not built into
1425 * the kernel. Otherwise it is equivalent to
1426 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1427 * places that already verified the pmd is not none and they want to
1428 * walk ptes while holding the mmap sem in read mode (write mode don't
1429 * need this). If THP is not enabled, the pmd can't go away under the
1430 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1431 * run a pmd_trans_unstable before walking the ptes after
1432 * split_huge_pmd returns (because it may have run when the pmd become
1433 * null, but then a page fault can map in a THP and not a regular page).
1434 */
pmd_trans_unstable(pmd_t * pmd)1435 static inline int pmd_trans_unstable(pmd_t *pmd)
1436 {
1437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1438 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1439 #else
1440 return 0;
1441 #endif
1442 }
1443
1444 /*
1445 * the ordering of these checks is important for pmds with _page_devmap set.
1446 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1447 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1448 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1449 */
pmd_devmap_trans_unstable(pmd_t * pmd)1450 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1451 {
1452 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1453 }
1454
1455 #ifndef CONFIG_NUMA_BALANCING
1456 /*
1457 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1458 * the only case the kernel cares is for NUMA balancing and is only ever set
1459 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1460 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1461 * is the responsibility of the caller to distinguish between PROT_NONE
1462 * protections and NUMA hinting fault protections.
1463 */
pte_protnone(pte_t pte)1464 static inline int pte_protnone(pte_t pte)
1465 {
1466 return 0;
1467 }
1468
pmd_protnone(pmd_t pmd)1469 static inline int pmd_protnone(pmd_t pmd)
1470 {
1471 return 0;
1472 }
1473 #endif /* CONFIG_NUMA_BALANCING */
1474
1475 #endif /* CONFIG_MMU */
1476
1477 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1478
1479 #ifndef __PAGETABLE_P4D_FOLDED
1480 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1481 void p4d_clear_huge(p4d_t *p4d);
1482 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1483 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1484 {
1485 return 0;
1486 }
p4d_clear_huge(p4d_t * p4d)1487 static inline void p4d_clear_huge(p4d_t *p4d) { }
1488 #endif /* !__PAGETABLE_P4D_FOLDED */
1489
1490 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1491 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1492 int pud_clear_huge(pud_t *pud);
1493 int pmd_clear_huge(pmd_t *pmd);
1494 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1495 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1496 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1497 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1498 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1499 {
1500 return 0;
1501 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1502 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1503 {
1504 return 0;
1505 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1506 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1507 {
1508 return 0;
1509 }
p4d_clear_huge(p4d_t * p4d)1510 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1511 static inline int pud_clear_huge(pud_t *pud)
1512 {
1513 return 0;
1514 }
pmd_clear_huge(pmd_t * pmd)1515 static inline int pmd_clear_huge(pmd_t *pmd)
1516 {
1517 return 0;
1518 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1519 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1520 {
1521 return 0;
1522 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1523 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1524 {
1525 return 0;
1526 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1527 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1528 {
1529 return 0;
1530 }
1531 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1532
1533 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1535 /*
1536 * ARCHes with special requirements for evicting THP backing TLB entries can
1537 * implement this. Otherwise also, it can help optimize normal TLB flush in
1538 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1539 * entire TLB if flush span is greater than a threshold, which will
1540 * likely be true for a single huge page. Thus a single THP flush will
1541 * invalidate the entire TLB which is not desirable.
1542 * e.g. see arch/arc: flush_pmd_tlb_range
1543 */
1544 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1545 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1546 #else
1547 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1548 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1549 #endif
1550 #endif
1551
1552 struct file;
1553 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1554 unsigned long size, pgprot_t *vma_prot);
1555
1556 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1557 static inline void init_espfix_bsp(void) { }
1558 #endif
1559
1560 extern void __init pgtable_cache_init(void);
1561
1562 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1563 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1564 {
1565 return true;
1566 }
1567
arch_has_pfn_modify_check(void)1568 static inline bool arch_has_pfn_modify_check(void)
1569 {
1570 return false;
1571 }
1572 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1573
1574 /*
1575 * Architecture PAGE_KERNEL_* fallbacks
1576 *
1577 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1578 * because they really don't support them, or the port needs to be updated to
1579 * reflect the required functionality. Below are a set of relatively safe
1580 * fallbacks, as best effort, which we can count on in lieu of the architectures
1581 * not defining them on their own yet.
1582 */
1583
1584 #ifndef PAGE_KERNEL_RO
1585 # define PAGE_KERNEL_RO PAGE_KERNEL
1586 #endif
1587
1588 #ifndef PAGE_KERNEL_EXEC
1589 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1590 #endif
1591
1592 /*
1593 * Page Table Modification bits for pgtbl_mod_mask.
1594 *
1595 * These are used by the p?d_alloc_track*() set of functions an in the generic
1596 * vmalloc/ioremap code to track at which page-table levels entries have been
1597 * modified. Based on that the code can better decide when vmalloc and ioremap
1598 * mapping changes need to be synchronized to other page-tables in the system.
1599 */
1600 #define __PGTBL_PGD_MODIFIED 0
1601 #define __PGTBL_P4D_MODIFIED 1
1602 #define __PGTBL_PUD_MODIFIED 2
1603 #define __PGTBL_PMD_MODIFIED 3
1604 #define __PGTBL_PTE_MODIFIED 4
1605
1606 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1607 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1608 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1609 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1610 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1611
1612 /* Page-Table Modification Mask */
1613 typedef unsigned int pgtbl_mod_mask;
1614
1615 #endif /* !__ASSEMBLY__ */
1616
1617 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1618 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1619 /*
1620 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1621 * with physical address space extension, but falls back to
1622 * BITS_PER_LONG otherwise.
1623 */
1624 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1625 #else
1626 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1627 #endif
1628 #endif
1629
1630 #ifndef has_transparent_hugepage
1631 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1632 #endif
1633
1634 /*
1635 * On some architectures it depends on the mm if the p4d/pud or pmd
1636 * layer of the page table hierarchy is folded or not.
1637 */
1638 #ifndef mm_p4d_folded
1639 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1640 #endif
1641
1642 #ifndef mm_pud_folded
1643 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1644 #endif
1645
1646 #ifndef mm_pmd_folded
1647 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1648 #endif
1649
1650 #ifndef p4d_offset_lockless
1651 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1652 #endif
1653 #ifndef pud_offset_lockless
1654 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1655 #endif
1656 #ifndef pmd_offset_lockless
1657 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1658 #endif
1659
1660 /*
1661 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1662 * This differs from p?d_huge() by the fact that they are always available (if
1663 * the architecture supports large pages at the appropriate level) even
1664 * if CONFIG_HUGETLB_PAGE is not defined.
1665 * Only meaningful when called on a valid entry.
1666 */
1667 #ifndef pgd_leaf
1668 #define pgd_leaf(x) 0
1669 #endif
1670 #ifndef p4d_leaf
1671 #define p4d_leaf(x) 0
1672 #endif
1673 #ifndef pud_leaf
1674 #define pud_leaf(x) 0
1675 #endif
1676 #ifndef pmd_leaf
1677 #define pmd_leaf(x) 0
1678 #endif
1679
1680 #ifndef pgd_leaf_size
1681 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1682 #endif
1683 #ifndef p4d_leaf_size
1684 #define p4d_leaf_size(x) P4D_SIZE
1685 #endif
1686 #ifndef pud_leaf_size
1687 #define pud_leaf_size(x) PUD_SIZE
1688 #endif
1689 #ifndef pmd_leaf_size
1690 #define pmd_leaf_size(x) PMD_SIZE
1691 #endif
1692 #ifndef pte_leaf_size
1693 #define pte_leaf_size(x) PAGE_SIZE
1694 #endif
1695
1696 /*
1697 * Some architectures have MMUs that are configurable or selectable at boot
1698 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1699 * helps to have a static maximum value.
1700 */
1701
1702 #ifndef MAX_PTRS_PER_PTE
1703 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1704 #endif
1705
1706 #ifndef MAX_PTRS_PER_PMD
1707 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1708 #endif
1709
1710 #ifndef MAX_PTRS_PER_PUD
1711 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1712 #endif
1713
1714 #ifndef MAX_PTRS_PER_P4D
1715 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1716 #endif
1717
1718 /* description of effects of mapping type and prot in current implementation.
1719 * this is due to the limited x86 page protection hardware. The expected
1720 * behavior is in parens:
1721 *
1722 * map_type prot
1723 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1724 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1725 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1726 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1727 *
1728 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1729 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1730 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1731 *
1732 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1733 * MAP_PRIVATE (with Enhanced PAN supported):
1734 * r: (no) no
1735 * w: (no) no
1736 * x: (yes) yes
1737 */
1738 #define DECLARE_VM_GET_PAGE_PROT \
1739 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1740 { \
1741 return protection_map[vm_flags & \
1742 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1743 } \
1744 EXPORT_SYMBOL(vm_get_page_prot);
1745
1746 #endif /* _LINUX_PGTABLE_H */
1747