1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * IEEE 802.11 defines
4  *
5  * Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
6  * <jkmaline@cc.hut.fi>
7  * Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
8  * Copyright (c) 2005, Devicescape Software, Inc.
9  * Copyright (c) 2006, Michael Wu <flamingice@sourmilk.net>
10  * Copyright (c) 2013 - 2014 Intel Mobile Communications GmbH
11  * Copyright (c) 2016 - 2017 Intel Deutschland GmbH
12  * Copyright (c) 2018 - 2023 Intel Corporation
13  */
14 
15 #ifndef LINUX_IEEE80211_H
16 #define LINUX_IEEE80211_H
17 
18 #include <linux/types.h>
19 #include <linux/if_ether.h>
20 #include <linux/etherdevice.h>
21 #include <linux/bitfield.h>
22 #include <asm/byteorder.h>
23 #include <asm/unaligned.h>
24 
25 /*
26  * DS bit usage
27  *
28  * TA = transmitter address
29  * RA = receiver address
30  * DA = destination address
31  * SA = source address
32  *
33  * ToDS    FromDS  A1(RA)  A2(TA)  A3      A4      Use
34  * -----------------------------------------------------------------
35  *  0       0       DA      SA      BSSID   -       IBSS/DLS
36  *  0       1       DA      BSSID   SA      -       AP -> STA
37  *  1       0       BSSID   SA      DA      -       AP <- STA
38  *  1       1       RA      TA      DA      SA      unspecified (WDS)
39  */
40 
41 #define FCS_LEN 4
42 
43 #define IEEE80211_FCTL_VERS		0x0003
44 #define IEEE80211_FCTL_FTYPE		0x000c
45 #define IEEE80211_FCTL_STYPE		0x00f0
46 #define IEEE80211_FCTL_TODS		0x0100
47 #define IEEE80211_FCTL_FROMDS		0x0200
48 #define IEEE80211_FCTL_MOREFRAGS	0x0400
49 #define IEEE80211_FCTL_RETRY		0x0800
50 #define IEEE80211_FCTL_PM		0x1000
51 #define IEEE80211_FCTL_MOREDATA		0x2000
52 #define IEEE80211_FCTL_PROTECTED	0x4000
53 #define IEEE80211_FCTL_ORDER		0x8000
54 #define IEEE80211_FCTL_CTL_EXT		0x0f00
55 
56 #define IEEE80211_SCTL_FRAG		0x000F
57 #define IEEE80211_SCTL_SEQ		0xFFF0
58 
59 #define IEEE80211_FTYPE_MGMT		0x0000
60 #define IEEE80211_FTYPE_CTL		0x0004
61 #define IEEE80211_FTYPE_DATA		0x0008
62 #define IEEE80211_FTYPE_EXT		0x000c
63 
64 /* management */
65 #define IEEE80211_STYPE_ASSOC_REQ	0x0000
66 #define IEEE80211_STYPE_ASSOC_RESP	0x0010
67 #define IEEE80211_STYPE_REASSOC_REQ	0x0020
68 #define IEEE80211_STYPE_REASSOC_RESP	0x0030
69 #define IEEE80211_STYPE_PROBE_REQ	0x0040
70 #define IEEE80211_STYPE_PROBE_RESP	0x0050
71 #define IEEE80211_STYPE_BEACON		0x0080
72 #define IEEE80211_STYPE_ATIM		0x0090
73 #define IEEE80211_STYPE_DISASSOC	0x00A0
74 #define IEEE80211_STYPE_AUTH		0x00B0
75 #define IEEE80211_STYPE_DEAUTH		0x00C0
76 #define IEEE80211_STYPE_ACTION		0x00D0
77 
78 /* control */
79 #define IEEE80211_STYPE_TRIGGER		0x0020
80 #define IEEE80211_STYPE_CTL_EXT		0x0060
81 #define IEEE80211_STYPE_BACK_REQ	0x0080
82 #define IEEE80211_STYPE_BACK		0x0090
83 #define IEEE80211_STYPE_PSPOLL		0x00A0
84 #define IEEE80211_STYPE_RTS		0x00B0
85 #define IEEE80211_STYPE_CTS		0x00C0
86 #define IEEE80211_STYPE_ACK		0x00D0
87 #define IEEE80211_STYPE_CFEND		0x00E0
88 #define IEEE80211_STYPE_CFENDACK	0x00F0
89 
90 /* data */
91 #define IEEE80211_STYPE_DATA			0x0000
92 #define IEEE80211_STYPE_DATA_CFACK		0x0010
93 #define IEEE80211_STYPE_DATA_CFPOLL		0x0020
94 #define IEEE80211_STYPE_DATA_CFACKPOLL		0x0030
95 #define IEEE80211_STYPE_NULLFUNC		0x0040
96 #define IEEE80211_STYPE_CFACK			0x0050
97 #define IEEE80211_STYPE_CFPOLL			0x0060
98 #define IEEE80211_STYPE_CFACKPOLL		0x0070
99 #define IEEE80211_STYPE_QOS_DATA		0x0080
100 #define IEEE80211_STYPE_QOS_DATA_CFACK		0x0090
101 #define IEEE80211_STYPE_QOS_DATA_CFPOLL		0x00A0
102 #define IEEE80211_STYPE_QOS_DATA_CFACKPOLL	0x00B0
103 #define IEEE80211_STYPE_QOS_NULLFUNC		0x00C0
104 #define IEEE80211_STYPE_QOS_CFACK		0x00D0
105 #define IEEE80211_STYPE_QOS_CFPOLL		0x00E0
106 #define IEEE80211_STYPE_QOS_CFACKPOLL		0x00F0
107 
108 /* extension, added by 802.11ad */
109 #define IEEE80211_STYPE_DMG_BEACON		0x0000
110 #define IEEE80211_STYPE_S1G_BEACON		0x0010
111 
112 /* bits unique to S1G beacon */
113 #define IEEE80211_S1G_BCN_NEXT_TBTT	0x100
114 
115 /* see 802.11ah-2016 9.9 NDP CMAC frames */
116 #define IEEE80211_S1G_1MHZ_NDP_BITS	25
117 #define IEEE80211_S1G_1MHZ_NDP_BYTES	4
118 #define IEEE80211_S1G_2MHZ_NDP_BITS	37
119 #define IEEE80211_S1G_2MHZ_NDP_BYTES	5
120 
121 #define IEEE80211_NDP_FTYPE_CTS			0
122 #define IEEE80211_NDP_FTYPE_CF_END		0
123 #define IEEE80211_NDP_FTYPE_PS_POLL		1
124 #define IEEE80211_NDP_FTYPE_ACK			2
125 #define IEEE80211_NDP_FTYPE_PS_POLL_ACK		3
126 #define IEEE80211_NDP_FTYPE_BA			4
127 #define IEEE80211_NDP_FTYPE_BF_REPORT_POLL	5
128 #define IEEE80211_NDP_FTYPE_PAGING		6
129 #define IEEE80211_NDP_FTYPE_PREQ		7
130 
131 #define SM64(f, v)	((((u64)v) << f##_S) & f)
132 
133 /* NDP CMAC frame fields */
134 #define IEEE80211_NDP_FTYPE                    0x0000000000000007
135 #define IEEE80211_NDP_FTYPE_S                  0x0000000000000000
136 
137 /* 1M Probe Request 11ah 9.9.3.1.1 */
138 #define IEEE80211_NDP_1M_PREQ_ANO      0x0000000000000008
139 #define IEEE80211_NDP_1M_PREQ_ANO_S                     3
140 #define IEEE80211_NDP_1M_PREQ_CSSID    0x00000000000FFFF0
141 #define IEEE80211_NDP_1M_PREQ_CSSID_S                   4
142 #define IEEE80211_NDP_1M_PREQ_RTYPE    0x0000000000100000
143 #define IEEE80211_NDP_1M_PREQ_RTYPE_S                  20
144 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
145 #define IEEE80211_NDP_1M_PREQ_RSV      0x0000000001E00000
146 /* 2M Probe Request 11ah 9.9.3.1.2 */
147 #define IEEE80211_NDP_2M_PREQ_ANO      0x0000000000000008
148 #define IEEE80211_NDP_2M_PREQ_ANO_S                     3
149 #define IEEE80211_NDP_2M_PREQ_CSSID    0x0000000FFFFFFFF0
150 #define IEEE80211_NDP_2M_PREQ_CSSID_S                   4
151 #define IEEE80211_NDP_2M_PREQ_RTYPE    0x0000001000000000
152 #define IEEE80211_NDP_2M_PREQ_RTYPE_S                  36
153 
154 #define IEEE80211_ANO_NETTYPE_WILD              15
155 
156 /* bits unique to S1G beacon */
157 #define IEEE80211_S1G_BCN_NEXT_TBTT    0x100
158 
159 /* control extension - for IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTL_EXT */
160 #define IEEE80211_CTL_EXT_POLL		0x2000
161 #define IEEE80211_CTL_EXT_SPR		0x3000
162 #define IEEE80211_CTL_EXT_GRANT	0x4000
163 #define IEEE80211_CTL_EXT_DMG_CTS	0x5000
164 #define IEEE80211_CTL_EXT_DMG_DTS	0x6000
165 #define IEEE80211_CTL_EXT_SSW		0x8000
166 #define IEEE80211_CTL_EXT_SSW_FBACK	0x9000
167 #define IEEE80211_CTL_EXT_SSW_ACK	0xa000
168 
169 
170 #define IEEE80211_SN_MASK		((IEEE80211_SCTL_SEQ) >> 4)
171 #define IEEE80211_MAX_SN		IEEE80211_SN_MASK
172 #define IEEE80211_SN_MODULO		(IEEE80211_MAX_SN + 1)
173 
174 
175 /* PV1 Layout 11ah 9.8.3.1 */
176 #define IEEE80211_PV1_FCTL_VERS		0x0003
177 #define IEEE80211_PV1_FCTL_FTYPE	0x001c
178 #define IEEE80211_PV1_FCTL_STYPE	0x00e0
179 #define IEEE80211_PV1_FCTL_TODS		0x0100
180 #define IEEE80211_PV1_FCTL_MOREFRAGS	0x0200
181 #define IEEE80211_PV1_FCTL_PM		0x0400
182 #define IEEE80211_PV1_FCTL_MOREDATA	0x0800
183 #define IEEE80211_PV1_FCTL_PROTECTED	0x1000
184 #define IEEE80211_PV1_FCTL_END_SP       0x2000
185 #define IEEE80211_PV1_FCTL_RELAYED      0x4000
186 #define IEEE80211_PV1_FCTL_ACK_POLICY   0x8000
187 #define IEEE80211_PV1_FCTL_CTL_EXT	0x0f00
188 
ieee80211_sn_less(u16 sn1,u16 sn2)189 static inline bool ieee80211_sn_less(u16 sn1, u16 sn2)
190 {
191 	return ((sn1 - sn2) & IEEE80211_SN_MASK) > (IEEE80211_SN_MODULO >> 1);
192 }
193 
ieee80211_sn_add(u16 sn1,u16 sn2)194 static inline u16 ieee80211_sn_add(u16 sn1, u16 sn2)
195 {
196 	return (sn1 + sn2) & IEEE80211_SN_MASK;
197 }
198 
ieee80211_sn_inc(u16 sn)199 static inline u16 ieee80211_sn_inc(u16 sn)
200 {
201 	return ieee80211_sn_add(sn, 1);
202 }
203 
ieee80211_sn_sub(u16 sn1,u16 sn2)204 static inline u16 ieee80211_sn_sub(u16 sn1, u16 sn2)
205 {
206 	return (sn1 - sn2) & IEEE80211_SN_MASK;
207 }
208 
209 #define IEEE80211_SEQ_TO_SN(seq)	(((seq) & IEEE80211_SCTL_SEQ) >> 4)
210 #define IEEE80211_SN_TO_SEQ(ssn)	(((ssn) << 4) & IEEE80211_SCTL_SEQ)
211 
212 /* miscellaneous IEEE 802.11 constants */
213 #define IEEE80211_MAX_FRAG_THRESHOLD	2352
214 #define IEEE80211_MAX_RTS_THRESHOLD	2353
215 #define IEEE80211_MAX_AID		2007
216 #define IEEE80211_MAX_AID_S1G		8191
217 #define IEEE80211_MAX_TIM_LEN		251
218 #define IEEE80211_MAX_MESH_PEERINGS	63
219 /* Maximum size for the MA-UNITDATA primitive, 802.11 standard section
220    6.2.1.1.2.
221 
222    802.11e clarifies the figure in section 7.1.2. The frame body is
223    up to 2304 octets long (maximum MSDU size) plus any crypt overhead. */
224 #define IEEE80211_MAX_DATA_LEN		2304
225 /* 802.11ad extends maximum MSDU size for DMG (freq > 40Ghz) networks
226  * to 7920 bytes, see 8.2.3 General frame format
227  */
228 #define IEEE80211_MAX_DATA_LEN_DMG	7920
229 /* 30 byte 4 addr hdr, 2 byte QoS, 2304 byte MSDU, 12 byte crypt, 4 byte FCS */
230 #define IEEE80211_MAX_FRAME_LEN		2352
231 
232 /* Maximal size of an A-MSDU that can be transported in a HT BA session */
233 #define IEEE80211_MAX_MPDU_LEN_HT_BA		4095
234 
235 /* Maximal size of an A-MSDU */
236 #define IEEE80211_MAX_MPDU_LEN_HT_3839		3839
237 #define IEEE80211_MAX_MPDU_LEN_HT_7935		7935
238 
239 #define IEEE80211_MAX_MPDU_LEN_VHT_3895		3895
240 #define IEEE80211_MAX_MPDU_LEN_VHT_7991		7991
241 #define IEEE80211_MAX_MPDU_LEN_VHT_11454	11454
242 
243 #define IEEE80211_MAX_SSID_LEN		32
244 
245 #define IEEE80211_MAX_MESH_ID_LEN	32
246 
247 #define IEEE80211_FIRST_TSPEC_TSID	8
248 #define IEEE80211_NUM_TIDS		16
249 
250 /* number of user priorities 802.11 uses */
251 #define IEEE80211_NUM_UPS		8
252 /* number of ACs */
253 #define IEEE80211_NUM_ACS		4
254 
255 #define IEEE80211_QOS_CTL_LEN		2
256 /* 1d tag mask */
257 #define IEEE80211_QOS_CTL_TAG1D_MASK		0x0007
258 /* TID mask */
259 #define IEEE80211_QOS_CTL_TID_MASK		0x000f
260 /* EOSP */
261 #define IEEE80211_QOS_CTL_EOSP			0x0010
262 /* ACK policy */
263 #define IEEE80211_QOS_CTL_ACK_POLICY_NORMAL	0x0000
264 #define IEEE80211_QOS_CTL_ACK_POLICY_NOACK	0x0020
265 #define IEEE80211_QOS_CTL_ACK_POLICY_NO_EXPL	0x0040
266 #define IEEE80211_QOS_CTL_ACK_POLICY_BLOCKACK	0x0060
267 #define IEEE80211_QOS_CTL_ACK_POLICY_MASK	0x0060
268 /* A-MSDU 802.11n */
269 #define IEEE80211_QOS_CTL_A_MSDU_PRESENT	0x0080
270 /* Mesh Control 802.11s */
271 #define IEEE80211_QOS_CTL_MESH_CONTROL_PRESENT  0x0100
272 
273 /* Mesh Power Save Level */
274 #define IEEE80211_QOS_CTL_MESH_PS_LEVEL		0x0200
275 /* Mesh Receiver Service Period Initiated */
276 #define IEEE80211_QOS_CTL_RSPI			0x0400
277 
278 /* U-APSD queue for WMM IEs sent by AP */
279 #define IEEE80211_WMM_IE_AP_QOSINFO_UAPSD	(1<<7)
280 #define IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK	0x0f
281 
282 /* U-APSD queues for WMM IEs sent by STA */
283 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VO	(1<<0)
284 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_VI	(1<<1)
285 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BK	(1<<2)
286 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_BE	(1<<3)
287 #define IEEE80211_WMM_IE_STA_QOSINFO_AC_MASK	0x0f
288 
289 /* U-APSD max SP length for WMM IEs sent by STA */
290 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_ALL	0x00
291 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_2	0x01
292 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_4	0x02
293 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_6	0x03
294 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_MASK	0x03
295 #define IEEE80211_WMM_IE_STA_QOSINFO_SP_SHIFT	5
296 
297 #define IEEE80211_HT_CTL_LEN		4
298 
299 /* trigger type within common_info of trigger frame */
300 #define IEEE80211_TRIGGER_TYPE_MASK		0xf
301 #define IEEE80211_TRIGGER_TYPE_BASIC		0x0
302 #define IEEE80211_TRIGGER_TYPE_BFRP		0x1
303 #define IEEE80211_TRIGGER_TYPE_MU_BAR		0x2
304 #define IEEE80211_TRIGGER_TYPE_MU_RTS		0x3
305 #define IEEE80211_TRIGGER_TYPE_BSRP		0x4
306 #define IEEE80211_TRIGGER_TYPE_GCR_MU_BAR	0x5
307 #define IEEE80211_TRIGGER_TYPE_BQRP		0x6
308 #define IEEE80211_TRIGGER_TYPE_NFRP		0x7
309 
310 struct ieee80211_hdr {
311 	__le16 frame_control;
312 	__le16 duration_id;
313 	struct_group(addrs,
314 		u8 addr1[ETH_ALEN];
315 		u8 addr2[ETH_ALEN];
316 		u8 addr3[ETH_ALEN];
317 	);
318 	__le16 seq_ctrl;
319 	u8 addr4[ETH_ALEN];
320 } __packed __aligned(2);
321 
322 struct ieee80211_hdr_3addr {
323 	__le16 frame_control;
324 	__le16 duration_id;
325 	u8 addr1[ETH_ALEN];
326 	u8 addr2[ETH_ALEN];
327 	u8 addr3[ETH_ALEN];
328 	__le16 seq_ctrl;
329 } __packed __aligned(2);
330 
331 struct ieee80211_qos_hdr {
332 	__le16 frame_control;
333 	__le16 duration_id;
334 	u8 addr1[ETH_ALEN];
335 	u8 addr2[ETH_ALEN];
336 	u8 addr3[ETH_ALEN];
337 	__le16 seq_ctrl;
338 	__le16 qos_ctrl;
339 } __packed __aligned(2);
340 
341 struct ieee80211_qos_hdr_4addr {
342 	__le16 frame_control;
343 	__le16 duration_id;
344 	u8 addr1[ETH_ALEN];
345 	u8 addr2[ETH_ALEN];
346 	u8 addr3[ETH_ALEN];
347 	__le16 seq_ctrl;
348 	u8 addr4[ETH_ALEN];
349 	__le16 qos_ctrl;
350 } __packed __aligned(2);
351 
352 struct ieee80211_trigger {
353 	__le16 frame_control;
354 	__le16 duration;
355 	u8 ra[ETH_ALEN];
356 	u8 ta[ETH_ALEN];
357 	__le64 common_info;
358 	u8 variable[];
359 } __packed __aligned(2);
360 
361 /**
362  * ieee80211_has_tods - check if IEEE80211_FCTL_TODS is set
363  * @fc: frame control bytes in little-endian byteorder
364  */
ieee80211_has_tods(__le16 fc)365 static inline bool ieee80211_has_tods(__le16 fc)
366 {
367 	return (fc & cpu_to_le16(IEEE80211_FCTL_TODS)) != 0;
368 }
369 
370 /**
371  * ieee80211_has_fromds - check if IEEE80211_FCTL_FROMDS is set
372  * @fc: frame control bytes in little-endian byteorder
373  */
ieee80211_has_fromds(__le16 fc)374 static inline bool ieee80211_has_fromds(__le16 fc)
375 {
376 	return (fc & cpu_to_le16(IEEE80211_FCTL_FROMDS)) != 0;
377 }
378 
379 /**
380  * ieee80211_has_a4 - check if IEEE80211_FCTL_TODS and IEEE80211_FCTL_FROMDS are set
381  * @fc: frame control bytes in little-endian byteorder
382  */
ieee80211_has_a4(__le16 fc)383 static inline bool ieee80211_has_a4(__le16 fc)
384 {
385 	__le16 tmp = cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS);
386 	return (fc & tmp) == tmp;
387 }
388 
389 /**
390  * ieee80211_has_morefrags - check if IEEE80211_FCTL_MOREFRAGS is set
391  * @fc: frame control bytes in little-endian byteorder
392  */
ieee80211_has_morefrags(__le16 fc)393 static inline bool ieee80211_has_morefrags(__le16 fc)
394 {
395 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREFRAGS)) != 0;
396 }
397 
398 /**
399  * ieee80211_has_retry - check if IEEE80211_FCTL_RETRY is set
400  * @fc: frame control bytes in little-endian byteorder
401  */
ieee80211_has_retry(__le16 fc)402 static inline bool ieee80211_has_retry(__le16 fc)
403 {
404 	return (fc & cpu_to_le16(IEEE80211_FCTL_RETRY)) != 0;
405 }
406 
407 /**
408  * ieee80211_has_pm - check if IEEE80211_FCTL_PM is set
409  * @fc: frame control bytes in little-endian byteorder
410  */
ieee80211_has_pm(__le16 fc)411 static inline bool ieee80211_has_pm(__le16 fc)
412 {
413 	return (fc & cpu_to_le16(IEEE80211_FCTL_PM)) != 0;
414 }
415 
416 /**
417  * ieee80211_has_moredata - check if IEEE80211_FCTL_MOREDATA is set
418  * @fc: frame control bytes in little-endian byteorder
419  */
ieee80211_has_moredata(__le16 fc)420 static inline bool ieee80211_has_moredata(__le16 fc)
421 {
422 	return (fc & cpu_to_le16(IEEE80211_FCTL_MOREDATA)) != 0;
423 }
424 
425 /**
426  * ieee80211_has_protected - check if IEEE80211_FCTL_PROTECTED is set
427  * @fc: frame control bytes in little-endian byteorder
428  */
ieee80211_has_protected(__le16 fc)429 static inline bool ieee80211_has_protected(__le16 fc)
430 {
431 	return (fc & cpu_to_le16(IEEE80211_FCTL_PROTECTED)) != 0;
432 }
433 
434 /**
435  * ieee80211_has_order - check if IEEE80211_FCTL_ORDER is set
436  * @fc: frame control bytes in little-endian byteorder
437  */
ieee80211_has_order(__le16 fc)438 static inline bool ieee80211_has_order(__le16 fc)
439 {
440 	return (fc & cpu_to_le16(IEEE80211_FCTL_ORDER)) != 0;
441 }
442 
443 /**
444  * ieee80211_is_mgmt - check if type is IEEE80211_FTYPE_MGMT
445  * @fc: frame control bytes in little-endian byteorder
446  */
ieee80211_is_mgmt(__le16 fc)447 static inline bool ieee80211_is_mgmt(__le16 fc)
448 {
449 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
450 	       cpu_to_le16(IEEE80211_FTYPE_MGMT);
451 }
452 
453 /**
454  * ieee80211_is_ctl - check if type is IEEE80211_FTYPE_CTL
455  * @fc: frame control bytes in little-endian byteorder
456  */
ieee80211_is_ctl(__le16 fc)457 static inline bool ieee80211_is_ctl(__le16 fc)
458 {
459 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
460 	       cpu_to_le16(IEEE80211_FTYPE_CTL);
461 }
462 
463 /**
464  * ieee80211_is_data - check if type is IEEE80211_FTYPE_DATA
465  * @fc: frame control bytes in little-endian byteorder
466  */
ieee80211_is_data(__le16 fc)467 static inline bool ieee80211_is_data(__le16 fc)
468 {
469 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
470 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
471 }
472 
473 /**
474  * ieee80211_is_ext - check if type is IEEE80211_FTYPE_EXT
475  * @fc: frame control bytes in little-endian byteorder
476  */
ieee80211_is_ext(__le16 fc)477 static inline bool ieee80211_is_ext(__le16 fc)
478 {
479 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE)) ==
480 	       cpu_to_le16(IEEE80211_FTYPE_EXT);
481 }
482 
483 
484 /**
485  * ieee80211_is_data_qos - check if type is IEEE80211_FTYPE_DATA and IEEE80211_STYPE_QOS_DATA is set
486  * @fc: frame control bytes in little-endian byteorder
487  */
ieee80211_is_data_qos(__le16 fc)488 static inline bool ieee80211_is_data_qos(__le16 fc)
489 {
490 	/*
491 	 * mask with QOS_DATA rather than IEEE80211_FCTL_STYPE as we just need
492 	 * to check the one bit
493 	 */
494 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_STYPE_QOS_DATA)) ==
495 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_DATA);
496 }
497 
498 /**
499  * ieee80211_is_data_present - check if type is IEEE80211_FTYPE_DATA and has data
500  * @fc: frame control bytes in little-endian byteorder
501  */
ieee80211_is_data_present(__le16 fc)502 static inline bool ieee80211_is_data_present(__le16 fc)
503 {
504 	/*
505 	 * mask with 0x40 and test that that bit is clear to only return true
506 	 * for the data-containing substypes.
507 	 */
508 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | 0x40)) ==
509 	       cpu_to_le16(IEEE80211_FTYPE_DATA);
510 }
511 
512 /**
513  * ieee80211_is_assoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_REQ
514  * @fc: frame control bytes in little-endian byteorder
515  */
ieee80211_is_assoc_req(__le16 fc)516 static inline bool ieee80211_is_assoc_req(__le16 fc)
517 {
518 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
519 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_REQ);
520 }
521 
522 /**
523  * ieee80211_is_assoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ASSOC_RESP
524  * @fc: frame control bytes in little-endian byteorder
525  */
ieee80211_is_assoc_resp(__le16 fc)526 static inline bool ieee80211_is_assoc_resp(__le16 fc)
527 {
528 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
529 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ASSOC_RESP);
530 }
531 
532 /**
533  * ieee80211_is_reassoc_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_REQ
534  * @fc: frame control bytes in little-endian byteorder
535  */
ieee80211_is_reassoc_req(__le16 fc)536 static inline bool ieee80211_is_reassoc_req(__le16 fc)
537 {
538 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
539 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_REQ);
540 }
541 
542 /**
543  * ieee80211_is_reassoc_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_REASSOC_RESP
544  * @fc: frame control bytes in little-endian byteorder
545  */
ieee80211_is_reassoc_resp(__le16 fc)546 static inline bool ieee80211_is_reassoc_resp(__le16 fc)
547 {
548 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
549 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_REASSOC_RESP);
550 }
551 
552 /**
553  * ieee80211_is_probe_req - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_REQ
554  * @fc: frame control bytes in little-endian byteorder
555  */
ieee80211_is_probe_req(__le16 fc)556 static inline bool ieee80211_is_probe_req(__le16 fc)
557 {
558 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
559 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ);
560 }
561 
562 /**
563  * ieee80211_is_probe_resp - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_PROBE_RESP
564  * @fc: frame control bytes in little-endian byteorder
565  */
ieee80211_is_probe_resp(__le16 fc)566 static inline bool ieee80211_is_probe_resp(__le16 fc)
567 {
568 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
569 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_RESP);
570 }
571 
572 /**
573  * ieee80211_is_beacon - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_BEACON
574  * @fc: frame control bytes in little-endian byteorder
575  */
ieee80211_is_beacon(__le16 fc)576 static inline bool ieee80211_is_beacon(__le16 fc)
577 {
578 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
579 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON);
580 }
581 
582 /**
583  * ieee80211_is_s1g_beacon - check if IEEE80211_FTYPE_EXT &&
584  * IEEE80211_STYPE_S1G_BEACON
585  * @fc: frame control bytes in little-endian byteorder
586  */
ieee80211_is_s1g_beacon(__le16 fc)587 static inline bool ieee80211_is_s1g_beacon(__le16 fc)
588 {
589 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE |
590 				 IEEE80211_FCTL_STYPE)) ==
591 	       cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON);
592 }
593 
594 /**
595  * ieee80211_next_tbtt_present - check if IEEE80211_FTYPE_EXT &&
596  * IEEE80211_STYPE_S1G_BEACON && IEEE80211_S1G_BCN_NEXT_TBTT
597  * @fc: frame control bytes in little-endian byteorder
598  */
ieee80211_next_tbtt_present(__le16 fc)599 static inline bool ieee80211_next_tbtt_present(__le16 fc)
600 {
601 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
602 	       cpu_to_le16(IEEE80211_FTYPE_EXT | IEEE80211_STYPE_S1G_BEACON) &&
603 	       fc & cpu_to_le16(IEEE80211_S1G_BCN_NEXT_TBTT);
604 }
605 
606 /**
607  * ieee80211_is_s1g_short_beacon - check if next tbtt present bit is set. Only
608  * true for S1G beacons when they're short.
609  * @fc: frame control bytes in little-endian byteorder
610  */
ieee80211_is_s1g_short_beacon(__le16 fc)611 static inline bool ieee80211_is_s1g_short_beacon(__le16 fc)
612 {
613 	return ieee80211_is_s1g_beacon(fc) && ieee80211_next_tbtt_present(fc);
614 }
615 
616 /**
617  * ieee80211_is_atim - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ATIM
618  * @fc: frame control bytes in little-endian byteorder
619  */
ieee80211_is_atim(__le16 fc)620 static inline bool ieee80211_is_atim(__le16 fc)
621 {
622 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
623 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ATIM);
624 }
625 
626 /**
627  * ieee80211_is_disassoc - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DISASSOC
628  * @fc: frame control bytes in little-endian byteorder
629  */
ieee80211_is_disassoc(__le16 fc)630 static inline bool ieee80211_is_disassoc(__le16 fc)
631 {
632 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
633 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DISASSOC);
634 }
635 
636 /**
637  * ieee80211_is_auth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_AUTH
638  * @fc: frame control bytes in little-endian byteorder
639  */
ieee80211_is_auth(__le16 fc)640 static inline bool ieee80211_is_auth(__le16 fc)
641 {
642 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
643 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_AUTH);
644 }
645 
646 /**
647  * ieee80211_is_deauth - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_DEAUTH
648  * @fc: frame control bytes in little-endian byteorder
649  */
ieee80211_is_deauth(__le16 fc)650 static inline bool ieee80211_is_deauth(__le16 fc)
651 {
652 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
653 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_DEAUTH);
654 }
655 
656 /**
657  * ieee80211_is_action - check if IEEE80211_FTYPE_MGMT && IEEE80211_STYPE_ACTION
658  * @fc: frame control bytes in little-endian byteorder
659  */
ieee80211_is_action(__le16 fc)660 static inline bool ieee80211_is_action(__le16 fc)
661 {
662 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
663 	       cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_ACTION);
664 }
665 
666 /**
667  * ieee80211_is_back_req - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK_REQ
668  * @fc: frame control bytes in little-endian byteorder
669  */
ieee80211_is_back_req(__le16 fc)670 static inline bool ieee80211_is_back_req(__le16 fc)
671 {
672 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
673 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK_REQ);
674 }
675 
676 /**
677  * ieee80211_is_back - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_BACK
678  * @fc: frame control bytes in little-endian byteorder
679  */
ieee80211_is_back(__le16 fc)680 static inline bool ieee80211_is_back(__le16 fc)
681 {
682 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
683 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_BACK);
684 }
685 
686 /**
687  * ieee80211_is_pspoll - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_PSPOLL
688  * @fc: frame control bytes in little-endian byteorder
689  */
ieee80211_is_pspoll(__le16 fc)690 static inline bool ieee80211_is_pspoll(__le16 fc)
691 {
692 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
693 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL);
694 }
695 
696 /**
697  * ieee80211_is_rts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_RTS
698  * @fc: frame control bytes in little-endian byteorder
699  */
ieee80211_is_rts(__le16 fc)700 static inline bool ieee80211_is_rts(__le16 fc)
701 {
702 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
703 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS);
704 }
705 
706 /**
707  * ieee80211_is_cts - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CTS
708  * @fc: frame control bytes in little-endian byteorder
709  */
ieee80211_is_cts(__le16 fc)710 static inline bool ieee80211_is_cts(__le16 fc)
711 {
712 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
713 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS);
714 }
715 
716 /**
717  * ieee80211_is_ack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_ACK
718  * @fc: frame control bytes in little-endian byteorder
719  */
ieee80211_is_ack(__le16 fc)720 static inline bool ieee80211_is_ack(__le16 fc)
721 {
722 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
723 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_ACK);
724 }
725 
726 /**
727  * ieee80211_is_cfend - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFEND
728  * @fc: frame control bytes in little-endian byteorder
729  */
ieee80211_is_cfend(__le16 fc)730 static inline bool ieee80211_is_cfend(__le16 fc)
731 {
732 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
733 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFEND);
734 }
735 
736 /**
737  * ieee80211_is_cfendack - check if IEEE80211_FTYPE_CTL && IEEE80211_STYPE_CFENDACK
738  * @fc: frame control bytes in little-endian byteorder
739  */
ieee80211_is_cfendack(__le16 fc)740 static inline bool ieee80211_is_cfendack(__le16 fc)
741 {
742 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
743 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CFENDACK);
744 }
745 
746 /**
747  * ieee80211_is_nullfunc - check if frame is a regular (non-QoS) nullfunc frame
748  * @fc: frame control bytes in little-endian byteorder
749  */
ieee80211_is_nullfunc(__le16 fc)750 static inline bool ieee80211_is_nullfunc(__le16 fc)
751 {
752 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
753 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC);
754 }
755 
756 /**
757  * ieee80211_is_qos_nullfunc - check if frame is a QoS nullfunc frame
758  * @fc: frame control bytes in little-endian byteorder
759  */
ieee80211_is_qos_nullfunc(__le16 fc)760 static inline bool ieee80211_is_qos_nullfunc(__le16 fc)
761 {
762 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
763 	       cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_QOS_NULLFUNC);
764 }
765 
766 /**
767  * ieee80211_is_trigger - check if frame is trigger frame
768  * @fc: frame control field in little-endian byteorder
769  */
ieee80211_is_trigger(__le16 fc)770 static inline bool ieee80211_is_trigger(__le16 fc)
771 {
772 	return (fc & cpu_to_le16(IEEE80211_FCTL_FTYPE | IEEE80211_FCTL_STYPE)) ==
773 	       cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_TRIGGER);
774 }
775 
776 /**
777  * ieee80211_is_any_nullfunc - check if frame is regular or QoS nullfunc frame
778  * @fc: frame control bytes in little-endian byteorder
779  */
ieee80211_is_any_nullfunc(__le16 fc)780 static inline bool ieee80211_is_any_nullfunc(__le16 fc)
781 {
782 	return (ieee80211_is_nullfunc(fc) || ieee80211_is_qos_nullfunc(fc));
783 }
784 
785 /**
786  * ieee80211_is_first_frag - check if IEEE80211_SCTL_FRAG is not set
787  * @seq_ctrl: frame sequence control bytes in little-endian byteorder
788  */
ieee80211_is_first_frag(__le16 seq_ctrl)789 static inline bool ieee80211_is_first_frag(__le16 seq_ctrl)
790 {
791 	return (seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG)) == 0;
792 }
793 
794 /**
795  * ieee80211_is_frag - check if a frame is a fragment
796  * @hdr: 802.11 header of the frame
797  */
ieee80211_is_frag(struct ieee80211_hdr * hdr)798 static inline bool ieee80211_is_frag(struct ieee80211_hdr *hdr)
799 {
800 	return ieee80211_has_morefrags(hdr->frame_control) ||
801 	       hdr->seq_ctrl & cpu_to_le16(IEEE80211_SCTL_FRAG);
802 }
803 
804 struct ieee80211s_hdr {
805 	u8 flags;
806 	u8 ttl;
807 	__le32 seqnum;
808 	u8 eaddr1[ETH_ALEN];
809 	u8 eaddr2[ETH_ALEN];
810 } __packed __aligned(2);
811 
812 /* Mesh flags */
813 #define MESH_FLAGS_AE_A4 	0x1
814 #define MESH_FLAGS_AE_A5_A6	0x2
815 #define MESH_FLAGS_AE		0x3
816 #define MESH_FLAGS_PS_DEEP	0x4
817 
818 /**
819  * enum ieee80211_preq_flags - mesh PREQ element flags
820  *
821  * @IEEE80211_PREQ_PROACTIVE_PREP_FLAG: proactive PREP subfield
822  */
823 enum ieee80211_preq_flags {
824 	IEEE80211_PREQ_PROACTIVE_PREP_FLAG	= 1<<2,
825 };
826 
827 /**
828  * enum ieee80211_preq_target_flags - mesh PREQ element per target flags
829  *
830  * @IEEE80211_PREQ_TO_FLAG: target only subfield
831  * @IEEE80211_PREQ_USN_FLAG: unknown target HWMP sequence number subfield
832  */
833 enum ieee80211_preq_target_flags {
834 	IEEE80211_PREQ_TO_FLAG	= 1<<0,
835 	IEEE80211_PREQ_USN_FLAG	= 1<<2,
836 };
837 
838 /**
839  * struct ieee80211_quiet_ie - Quiet element
840  * @count: Quiet Count
841  * @period: Quiet Period
842  * @duration: Quiet Duration
843  * @offset: Quiet Offset
844  *
845  * This structure represents the payload of the "Quiet element" as
846  * described in IEEE Std 802.11-2020 section 9.4.2.22.
847  */
848 struct ieee80211_quiet_ie {
849 	u8 count;
850 	u8 period;
851 	__le16 duration;
852 	__le16 offset;
853 } __packed;
854 
855 /**
856  * struct ieee80211_msrment_ie - Measurement element
857  * @token: Measurement Token
858  * @mode: Measurement Report Mode
859  * @type: Measurement Type
860  * @request: Measurement Request or Measurement Report
861  *
862  * This structure represents the payload of both the "Measurement
863  * Request element" and the "Measurement Report element" as described
864  * in IEEE Std 802.11-2020 sections 9.4.2.20 and 9.4.2.21.
865  */
866 struct ieee80211_msrment_ie {
867 	u8 token;
868 	u8 mode;
869 	u8 type;
870 	u8 request[];
871 } __packed;
872 
873 /**
874  * struct ieee80211_channel_sw_ie - Channel Switch Announcement element
875  * @mode: Channel Switch Mode
876  * @new_ch_num: New Channel Number
877  * @count: Channel Switch Count
878  *
879  * This structure represents the payload of the "Channel Switch
880  * Announcement element" as described in IEEE Std 802.11-2020 section
881  * 9.4.2.18.
882  */
883 struct ieee80211_channel_sw_ie {
884 	u8 mode;
885 	u8 new_ch_num;
886 	u8 count;
887 } __packed;
888 
889 /**
890  * struct ieee80211_ext_chansw_ie - Extended Channel Switch Announcement element
891  * @mode: Channel Switch Mode
892  * @new_operating_class: New Operating Class
893  * @new_ch_num: New Channel Number
894  * @count: Channel Switch Count
895  *
896  * This structure represents the "Extended Channel Switch Announcement
897  * element" as described in IEEE Std 802.11-2020 section 9.4.2.52.
898  */
899 struct ieee80211_ext_chansw_ie {
900 	u8 mode;
901 	u8 new_operating_class;
902 	u8 new_ch_num;
903 	u8 count;
904 } __packed;
905 
906 /**
907  * struct ieee80211_sec_chan_offs_ie - secondary channel offset IE
908  * @sec_chan_offs: secondary channel offset, uses IEEE80211_HT_PARAM_CHA_SEC_*
909  *	values here
910  * This structure represents the "Secondary Channel Offset element"
911  */
912 struct ieee80211_sec_chan_offs_ie {
913 	u8 sec_chan_offs;
914 } __packed;
915 
916 /**
917  * struct ieee80211_mesh_chansw_params_ie - mesh channel switch parameters IE
918  * @mesh_ttl: Time To Live
919  * @mesh_flags: Flags
920  * @mesh_reason: Reason Code
921  * @mesh_pre_value: Precedence Value
922  *
923  * This structure represents the payload of the "Mesh Channel Switch
924  * Parameters element" as described in IEEE Std 802.11-2020 section
925  * 9.4.2.102.
926  */
927 struct ieee80211_mesh_chansw_params_ie {
928 	u8 mesh_ttl;
929 	u8 mesh_flags;
930 	__le16 mesh_reason;
931 	__le16 mesh_pre_value;
932 } __packed;
933 
934 /**
935  * struct ieee80211_wide_bw_chansw_ie - wide bandwidth channel switch IE
936  * @new_channel_width: New Channel Width
937  * @new_center_freq_seg0: New Channel Center Frequency Segment 0
938  * @new_center_freq_seg1: New Channel Center Frequency Segment 1
939  *
940  * This structure represents the payload of the "Wide Bandwidth
941  * Channel Switch element" as described in IEEE Std 802.11-2020
942  * section 9.4.2.160.
943  */
944 struct ieee80211_wide_bw_chansw_ie {
945 	u8 new_channel_width;
946 	u8 new_center_freq_seg0, new_center_freq_seg1;
947 } __packed;
948 
949 /**
950  * struct ieee80211_tim_ie - Traffic Indication Map information element
951  * @dtim_count: DTIM Count
952  * @dtim_period: DTIM Period
953  * @bitmap_ctrl: Bitmap Control
954  * @virtual_map: Partial Virtual Bitmap
955  *
956  * This structure represents the payload of the "TIM element" as
957  * described in IEEE Std 802.11-2020 section 9.4.2.5.
958  */
959 struct ieee80211_tim_ie {
960 	u8 dtim_count;
961 	u8 dtim_period;
962 	u8 bitmap_ctrl;
963 	/* variable size: 1 - 251 bytes */
964 	u8 virtual_map[1];
965 } __packed;
966 
967 /**
968  * struct ieee80211_meshconf_ie - Mesh Configuration element
969  * @meshconf_psel: Active Path Selection Protocol Identifier
970  * @meshconf_pmetric: Active Path Selection Metric Identifier
971  * @meshconf_congest: Congestion Control Mode Identifier
972  * @meshconf_synch: Synchronization Method Identifier
973  * @meshconf_auth: Authentication Protocol Identifier
974  * @meshconf_form: Mesh Formation Info
975  * @meshconf_cap: Mesh Capability (see &enum mesh_config_capab_flags)
976  *
977  * This structure represents the payload of the "Mesh Configuration
978  * element" as described in IEEE Std 802.11-2020 section 9.4.2.97.
979  */
980 struct ieee80211_meshconf_ie {
981 	u8 meshconf_psel;
982 	u8 meshconf_pmetric;
983 	u8 meshconf_congest;
984 	u8 meshconf_synch;
985 	u8 meshconf_auth;
986 	u8 meshconf_form;
987 	u8 meshconf_cap;
988 } __packed;
989 
990 /**
991  * enum mesh_config_capab_flags - Mesh Configuration IE capability field flags
992  *
993  * @IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS: STA is willing to establish
994  *	additional mesh peerings with other mesh STAs
995  * @IEEE80211_MESHCONF_CAPAB_FORWARDING: the STA forwards MSDUs
996  * @IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING: TBTT adjustment procedure
997  *	is ongoing
998  * @IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL: STA is in deep sleep mode or has
999  *	neighbors in deep sleep mode
1000  *
1001  * Enumerates the "Mesh Capability" as described in IEEE Std
1002  * 802.11-2020 section 9.4.2.97.7.
1003  */
1004 enum mesh_config_capab_flags {
1005 	IEEE80211_MESHCONF_CAPAB_ACCEPT_PLINKS		= 0x01,
1006 	IEEE80211_MESHCONF_CAPAB_FORWARDING		= 0x08,
1007 	IEEE80211_MESHCONF_CAPAB_TBTT_ADJUSTING		= 0x20,
1008 	IEEE80211_MESHCONF_CAPAB_POWER_SAVE_LEVEL	= 0x40,
1009 };
1010 
1011 #define IEEE80211_MESHCONF_FORM_CONNECTED_TO_GATE 0x1
1012 
1013 /*
1014  * mesh channel switch parameters element's flag indicator
1015  *
1016  */
1017 #define WLAN_EID_CHAN_SWITCH_PARAM_TX_RESTRICT BIT(0)
1018 #define WLAN_EID_CHAN_SWITCH_PARAM_INITIATOR BIT(1)
1019 #define WLAN_EID_CHAN_SWITCH_PARAM_REASON BIT(2)
1020 
1021 /**
1022  * struct ieee80211_rann_ie - RANN (root announcement) element
1023  * @rann_flags: Flags
1024  * @rann_hopcount: Hop Count
1025  * @rann_ttl: Element TTL
1026  * @rann_addr: Root Mesh STA Address
1027  * @rann_seq: HWMP Sequence Number
1028  * @rann_interval: Interval
1029  * @rann_metric: Metric
1030  *
1031  * This structure represents the payload of the "RANN element" as
1032  * described in IEEE Std 802.11-2020 section 9.4.2.111.
1033  */
1034 struct ieee80211_rann_ie {
1035 	u8 rann_flags;
1036 	u8 rann_hopcount;
1037 	u8 rann_ttl;
1038 	u8 rann_addr[ETH_ALEN];
1039 	__le32 rann_seq;
1040 	__le32 rann_interval;
1041 	__le32 rann_metric;
1042 } __packed;
1043 
1044 enum ieee80211_rann_flags {
1045 	RANN_FLAG_IS_GATE = 1 << 0,
1046 };
1047 
1048 enum ieee80211_ht_chanwidth_values {
1049 	IEEE80211_HT_CHANWIDTH_20MHZ = 0,
1050 	IEEE80211_HT_CHANWIDTH_ANY = 1,
1051 };
1052 
1053 /**
1054  * enum ieee80211_vht_opmode_bits - VHT operating mode field bits
1055  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK: channel width mask
1056  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ: 20 MHz channel width
1057  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ: 40 MHz channel width
1058  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ: 80 MHz channel width
1059  * @IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ: 160 MHz or 80+80 MHz channel width
1060  * @IEEE80211_OPMODE_NOTIF_BW_160_80P80: 160 / 80+80 MHz indicator flag
1061  * @IEEE80211_OPMODE_NOTIF_RX_NSS_MASK: number of spatial streams mask
1062  *	(the NSS value is the value of this field + 1)
1063  * @IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT: number of spatial streams shift
1064  * @IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF: indicates streams in SU-MIMO PPDU
1065  *	using a beamforming steering matrix
1066  */
1067 enum ieee80211_vht_opmode_bits {
1068 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_MASK	= 0x03,
1069 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_20MHZ	= 0,
1070 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_40MHZ	= 1,
1071 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_80MHZ	= 2,
1072 	IEEE80211_OPMODE_NOTIF_CHANWIDTH_160MHZ	= 3,
1073 	IEEE80211_OPMODE_NOTIF_BW_160_80P80	= 0x04,
1074 	IEEE80211_OPMODE_NOTIF_RX_NSS_MASK	= 0x70,
1075 	IEEE80211_OPMODE_NOTIF_RX_NSS_SHIFT	= 4,
1076 	IEEE80211_OPMODE_NOTIF_RX_NSS_TYPE_BF	= 0x80,
1077 };
1078 
1079 /**
1080  * enum ieee80211_s1g_chanwidth
1081  * These are defined in IEEE802.11-2016ah Table 10-20
1082  * as BSS Channel Width
1083  *
1084  * @IEEE80211_S1G_CHANWIDTH_1MHZ: 1MHz operating channel
1085  * @IEEE80211_S1G_CHANWIDTH_2MHZ: 2MHz operating channel
1086  * @IEEE80211_S1G_CHANWIDTH_4MHZ: 4MHz operating channel
1087  * @IEEE80211_S1G_CHANWIDTH_8MHZ: 8MHz operating channel
1088  * @IEEE80211_S1G_CHANWIDTH_16MHZ: 16MHz operating channel
1089  */
1090 enum ieee80211_s1g_chanwidth {
1091 	IEEE80211_S1G_CHANWIDTH_1MHZ = 0,
1092 	IEEE80211_S1G_CHANWIDTH_2MHZ = 1,
1093 	IEEE80211_S1G_CHANWIDTH_4MHZ = 3,
1094 	IEEE80211_S1G_CHANWIDTH_8MHZ = 7,
1095 	IEEE80211_S1G_CHANWIDTH_16MHZ = 15,
1096 };
1097 
1098 #define WLAN_SA_QUERY_TR_ID_LEN 2
1099 #define WLAN_MEMBERSHIP_LEN 8
1100 #define WLAN_USER_POSITION_LEN 16
1101 
1102 /**
1103  * struct ieee80211_tpc_report_ie - TPC Report element
1104  * @tx_power: Transmit Power
1105  * @link_margin: Link Margin
1106  *
1107  * This structure represents the payload of the "TPC Report element" as
1108  * described in IEEE Std 802.11-2020 section 9.4.2.16.
1109  */
1110 struct ieee80211_tpc_report_ie {
1111 	u8 tx_power;
1112 	u8 link_margin;
1113 } __packed;
1114 
1115 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_MASK	GENMASK(2, 1)
1116 #define IEEE80211_ADDBA_EXT_FRAG_LEVEL_SHIFT	1
1117 #define IEEE80211_ADDBA_EXT_NO_FRAG		BIT(0)
1118 #define IEEE80211_ADDBA_EXT_BUF_SIZE_MASK	GENMASK(7, 5)
1119 #define IEEE80211_ADDBA_EXT_BUF_SIZE_SHIFT	10
1120 
1121 struct ieee80211_addba_ext_ie {
1122 	u8 data;
1123 } __packed;
1124 
1125 /**
1126  * struct ieee80211_s1g_bcn_compat_ie - S1G Beacon Compatibility element
1127  * @compat_info: Compatibility Information
1128  * @beacon_int: Beacon Interval
1129  * @tsf_completion: TSF Completion
1130  *
1131  * This structure represents the payload of the "S1G Beacon
1132  * Compatibility element" as described in IEEE Std 802.11-2020 section
1133  * 9.4.2.196.
1134  */
1135 struct ieee80211_s1g_bcn_compat_ie {
1136 	__le16 compat_info;
1137 	__le16 beacon_int;
1138 	__le32 tsf_completion;
1139 } __packed;
1140 
1141 /**
1142  * struct ieee80211_s1g_oper_ie - S1G Operation element
1143  * @ch_width: S1G Operation Information Channel Width
1144  * @oper_class: S1G Operation Information Operating Class
1145  * @primary_ch: S1G Operation Information Primary Channel Number
1146  * @oper_ch: S1G Operation Information  Channel Center Frequency
1147  * @basic_mcs_nss: Basic S1G-MCS and NSS Set
1148  *
1149  * This structure represents the payload of the "S1G Operation
1150  * element" as described in IEEE Std 802.11-2020 section 9.4.2.212.
1151  */
1152 struct ieee80211_s1g_oper_ie {
1153 	u8 ch_width;
1154 	u8 oper_class;
1155 	u8 primary_ch;
1156 	u8 oper_ch;
1157 	__le16 basic_mcs_nss;
1158 } __packed;
1159 
1160 /**
1161  * struct ieee80211_aid_response_ie - AID Response element
1162  * @aid: AID/Group AID
1163  * @switch_count: AID Switch Count
1164  * @response_int: AID Response Interval
1165  *
1166  * This structure represents the payload of the "AID Response element"
1167  * as described in IEEE Std 802.11-2020 section 9.4.2.194.
1168  */
1169 struct ieee80211_aid_response_ie {
1170 	__le16 aid;
1171 	u8 switch_count;
1172 	__le16 response_int;
1173 } __packed;
1174 
1175 struct ieee80211_s1g_cap {
1176 	u8 capab_info[10];
1177 	u8 supp_mcs_nss[5];
1178 } __packed;
1179 
1180 struct ieee80211_ext {
1181 	__le16 frame_control;
1182 	__le16 duration;
1183 	union {
1184 		struct {
1185 			u8 sa[ETH_ALEN];
1186 			__le32 timestamp;
1187 			u8 change_seq;
1188 			u8 variable[0];
1189 		} __packed s1g_beacon;
1190 		struct {
1191 			u8 sa[ETH_ALEN];
1192 			__le32 timestamp;
1193 			u8 change_seq;
1194 			u8 next_tbtt[3];
1195 			u8 variable[0];
1196 		} __packed s1g_short_beacon;
1197 	} u;
1198 } __packed __aligned(2);
1199 
1200 #define IEEE80211_TWT_CONTROL_NDP			BIT(0)
1201 #define IEEE80211_TWT_CONTROL_RESP_MODE			BIT(1)
1202 #define IEEE80211_TWT_CONTROL_NEG_TYPE_BROADCAST	BIT(3)
1203 #define IEEE80211_TWT_CONTROL_RX_DISABLED		BIT(4)
1204 #define IEEE80211_TWT_CONTROL_WAKE_DUR_UNIT		BIT(5)
1205 
1206 #define IEEE80211_TWT_REQTYPE_REQUEST			BIT(0)
1207 #define IEEE80211_TWT_REQTYPE_SETUP_CMD			GENMASK(3, 1)
1208 #define IEEE80211_TWT_REQTYPE_TRIGGER			BIT(4)
1209 #define IEEE80211_TWT_REQTYPE_IMPLICIT			BIT(5)
1210 #define IEEE80211_TWT_REQTYPE_FLOWTYPE			BIT(6)
1211 #define IEEE80211_TWT_REQTYPE_FLOWID			GENMASK(9, 7)
1212 #define IEEE80211_TWT_REQTYPE_WAKE_INT_EXP		GENMASK(14, 10)
1213 #define IEEE80211_TWT_REQTYPE_PROTECTION		BIT(15)
1214 
1215 enum ieee80211_twt_setup_cmd {
1216 	TWT_SETUP_CMD_REQUEST,
1217 	TWT_SETUP_CMD_SUGGEST,
1218 	TWT_SETUP_CMD_DEMAND,
1219 	TWT_SETUP_CMD_GROUPING,
1220 	TWT_SETUP_CMD_ACCEPT,
1221 	TWT_SETUP_CMD_ALTERNATE,
1222 	TWT_SETUP_CMD_DICTATE,
1223 	TWT_SETUP_CMD_REJECT,
1224 };
1225 
1226 struct ieee80211_twt_params {
1227 	__le16 req_type;
1228 	__le64 twt;
1229 	u8 min_twt_dur;
1230 	__le16 mantissa;
1231 	u8 channel;
1232 } __packed;
1233 
1234 struct ieee80211_twt_setup {
1235 	u8 dialog_token;
1236 	u8 element_id;
1237 	u8 length;
1238 	u8 control;
1239 	u8 params[];
1240 } __packed;
1241 
1242 struct ieee80211_mgmt {
1243 	__le16 frame_control;
1244 	__le16 duration;
1245 	u8 da[ETH_ALEN];
1246 	u8 sa[ETH_ALEN];
1247 	u8 bssid[ETH_ALEN];
1248 	__le16 seq_ctrl;
1249 	union {
1250 		struct {
1251 			__le16 auth_alg;
1252 			__le16 auth_transaction;
1253 			__le16 status_code;
1254 			/* possibly followed by Challenge text */
1255 			u8 variable[];
1256 		} __packed auth;
1257 		struct {
1258 			__le16 reason_code;
1259 		} __packed deauth;
1260 		struct {
1261 			__le16 capab_info;
1262 			__le16 listen_interval;
1263 			/* followed by SSID and Supported rates */
1264 			u8 variable[];
1265 		} __packed assoc_req;
1266 		struct {
1267 			__le16 capab_info;
1268 			__le16 status_code;
1269 			__le16 aid;
1270 			/* followed by Supported rates */
1271 			u8 variable[];
1272 		} __packed assoc_resp, reassoc_resp;
1273 		struct {
1274 			__le16 capab_info;
1275 			__le16 status_code;
1276 			u8 variable[];
1277 		} __packed s1g_assoc_resp, s1g_reassoc_resp;
1278 		struct {
1279 			__le16 capab_info;
1280 			__le16 listen_interval;
1281 			u8 current_ap[ETH_ALEN];
1282 			/* followed by SSID and Supported rates */
1283 			u8 variable[];
1284 		} __packed reassoc_req;
1285 		struct {
1286 			__le16 reason_code;
1287 		} __packed disassoc;
1288 		struct {
1289 			__le64 timestamp;
1290 			__le16 beacon_int;
1291 			__le16 capab_info;
1292 			/* followed by some of SSID, Supported rates,
1293 			 * FH Params, DS Params, CF Params, IBSS Params, TIM */
1294 			u8 variable[];
1295 		} __packed beacon;
1296 		struct {
1297 			/* only variable items: SSID, Supported rates */
1298 			DECLARE_FLEX_ARRAY(u8, variable);
1299 		} __packed probe_req;
1300 		struct {
1301 			__le64 timestamp;
1302 			__le16 beacon_int;
1303 			__le16 capab_info;
1304 			/* followed by some of SSID, Supported rates,
1305 			 * FH Params, DS Params, CF Params, IBSS Params */
1306 			u8 variable[];
1307 		} __packed probe_resp;
1308 		struct {
1309 			u8 category;
1310 			union {
1311 				struct {
1312 					u8 action_code;
1313 					u8 dialog_token;
1314 					u8 status_code;
1315 					u8 variable[];
1316 				} __packed wme_action;
1317 				struct{
1318 					u8 action_code;
1319 					u8 variable[];
1320 				} __packed chan_switch;
1321 				struct{
1322 					u8 action_code;
1323 					struct ieee80211_ext_chansw_ie data;
1324 					u8 variable[];
1325 				} __packed ext_chan_switch;
1326 				struct{
1327 					u8 action_code;
1328 					u8 dialog_token;
1329 					u8 element_id;
1330 					u8 length;
1331 					struct ieee80211_msrment_ie msr_elem;
1332 				} __packed measurement;
1333 				struct{
1334 					u8 action_code;
1335 					u8 dialog_token;
1336 					__le16 capab;
1337 					__le16 timeout;
1338 					__le16 start_seq_num;
1339 					/* followed by BA Extension */
1340 					u8 variable[];
1341 				} __packed addba_req;
1342 				struct{
1343 					u8 action_code;
1344 					u8 dialog_token;
1345 					__le16 status;
1346 					__le16 capab;
1347 					__le16 timeout;
1348 				} __packed addba_resp;
1349 				struct{
1350 					u8 action_code;
1351 					__le16 params;
1352 					__le16 reason_code;
1353 				} __packed delba;
1354 				struct {
1355 					u8 action_code;
1356 					u8 variable[];
1357 				} __packed self_prot;
1358 				struct{
1359 					u8 action_code;
1360 					u8 variable[];
1361 				} __packed mesh_action;
1362 				struct {
1363 					u8 action;
1364 					u8 trans_id[WLAN_SA_QUERY_TR_ID_LEN];
1365 				} __packed sa_query;
1366 				struct {
1367 					u8 action;
1368 					u8 smps_control;
1369 				} __packed ht_smps;
1370 				struct {
1371 					u8 action_code;
1372 					u8 chanwidth;
1373 				} __packed ht_notify_cw;
1374 				struct {
1375 					u8 action_code;
1376 					u8 dialog_token;
1377 					__le16 capability;
1378 					u8 variable[0];
1379 				} __packed tdls_discover_resp;
1380 				struct {
1381 					u8 action_code;
1382 					u8 operating_mode;
1383 				} __packed vht_opmode_notif;
1384 				struct {
1385 					u8 action_code;
1386 					u8 membership[WLAN_MEMBERSHIP_LEN];
1387 					u8 position[WLAN_USER_POSITION_LEN];
1388 				} __packed vht_group_notif;
1389 				struct {
1390 					u8 action_code;
1391 					u8 dialog_token;
1392 					u8 tpc_elem_id;
1393 					u8 tpc_elem_length;
1394 					struct ieee80211_tpc_report_ie tpc;
1395 				} __packed tpc_report;
1396 				struct {
1397 					u8 action_code;
1398 					u8 dialog_token;
1399 					u8 follow_up;
1400 					u8 tod[6];
1401 					u8 toa[6];
1402 					__le16 tod_error;
1403 					__le16 toa_error;
1404 					u8 variable[];
1405 				} __packed ftm;
1406 				struct {
1407 					u8 action_code;
1408 					u8 variable[];
1409 				} __packed s1g;
1410 				struct {
1411 					u8 action_code;
1412 					u8 dialog_token;
1413 					u8 follow_up;
1414 					u32 tod;
1415 					u32 toa;
1416 					u8 max_tod_error;
1417 					u8 max_toa_error;
1418 				} __packed wnm_timing_msr;
1419 			} u;
1420 		} __packed action;
1421 		DECLARE_FLEX_ARRAY(u8, body); /* Generic frame body */
1422 	} u;
1423 } __packed __aligned(2);
1424 
1425 /* Supported rates membership selectors */
1426 #define BSS_MEMBERSHIP_SELECTOR_HT_PHY	127
1427 #define BSS_MEMBERSHIP_SELECTOR_VHT_PHY	126
1428 #define BSS_MEMBERSHIP_SELECTOR_GLK	125
1429 #define BSS_MEMBERSHIP_SELECTOR_EPS	124
1430 #define BSS_MEMBERSHIP_SELECTOR_SAE_H2E 123
1431 #define BSS_MEMBERSHIP_SELECTOR_HE_PHY	122
1432 #define BSS_MEMBERSHIP_SELECTOR_EHT_PHY	121
1433 
1434 /* mgmt header + 1 byte category code */
1435 #define IEEE80211_MIN_ACTION_SIZE offsetof(struct ieee80211_mgmt, u.action.u)
1436 
1437 
1438 /* Management MIC information element (IEEE 802.11w) */
1439 struct ieee80211_mmie {
1440 	u8 element_id;
1441 	u8 length;
1442 	__le16 key_id;
1443 	u8 sequence_number[6];
1444 	u8 mic[8];
1445 } __packed;
1446 
1447 /* Management MIC information element (IEEE 802.11w) for GMAC and CMAC-256 */
1448 struct ieee80211_mmie_16 {
1449 	u8 element_id;
1450 	u8 length;
1451 	__le16 key_id;
1452 	u8 sequence_number[6];
1453 	u8 mic[16];
1454 } __packed;
1455 
1456 struct ieee80211_vendor_ie {
1457 	u8 element_id;
1458 	u8 len;
1459 	u8 oui[3];
1460 	u8 oui_type;
1461 } __packed;
1462 
1463 struct ieee80211_wmm_ac_param {
1464 	u8 aci_aifsn; /* AIFSN, ACM, ACI */
1465 	u8 cw; /* ECWmin, ECWmax (CW = 2^ECW - 1) */
1466 	__le16 txop_limit;
1467 } __packed;
1468 
1469 struct ieee80211_wmm_param_ie {
1470 	u8 element_id; /* Element ID: 221 (0xdd); */
1471 	u8 len; /* Length: 24 */
1472 	/* required fields for WMM version 1 */
1473 	u8 oui[3]; /* 00:50:f2 */
1474 	u8 oui_type; /* 2 */
1475 	u8 oui_subtype; /* 1 */
1476 	u8 version; /* 1 for WMM version 1.0 */
1477 	u8 qos_info; /* AP/STA specific QoS info */
1478 	u8 reserved; /* 0 */
1479 	/* AC_BE, AC_BK, AC_VI, AC_VO */
1480 	struct ieee80211_wmm_ac_param ac[4];
1481 } __packed;
1482 
1483 /* Control frames */
1484 struct ieee80211_rts {
1485 	__le16 frame_control;
1486 	__le16 duration;
1487 	u8 ra[ETH_ALEN];
1488 	u8 ta[ETH_ALEN];
1489 } __packed __aligned(2);
1490 
1491 struct ieee80211_cts {
1492 	__le16 frame_control;
1493 	__le16 duration;
1494 	u8 ra[ETH_ALEN];
1495 } __packed __aligned(2);
1496 
1497 struct ieee80211_pspoll {
1498 	__le16 frame_control;
1499 	__le16 aid;
1500 	u8 bssid[ETH_ALEN];
1501 	u8 ta[ETH_ALEN];
1502 } __packed __aligned(2);
1503 
1504 /* TDLS */
1505 
1506 /* Channel switch timing */
1507 struct ieee80211_ch_switch_timing {
1508 	__le16 switch_time;
1509 	__le16 switch_timeout;
1510 } __packed;
1511 
1512 /* Link-id information element */
1513 struct ieee80211_tdls_lnkie {
1514 	u8 ie_type; /* Link Identifier IE */
1515 	u8 ie_len;
1516 	u8 bssid[ETH_ALEN];
1517 	u8 init_sta[ETH_ALEN];
1518 	u8 resp_sta[ETH_ALEN];
1519 } __packed;
1520 
1521 struct ieee80211_tdls_data {
1522 	u8 da[ETH_ALEN];
1523 	u8 sa[ETH_ALEN];
1524 	__be16 ether_type;
1525 	u8 payload_type;
1526 	u8 category;
1527 	u8 action_code;
1528 	union {
1529 		struct {
1530 			u8 dialog_token;
1531 			__le16 capability;
1532 			u8 variable[0];
1533 		} __packed setup_req;
1534 		struct {
1535 			__le16 status_code;
1536 			u8 dialog_token;
1537 			__le16 capability;
1538 			u8 variable[0];
1539 		} __packed setup_resp;
1540 		struct {
1541 			__le16 status_code;
1542 			u8 dialog_token;
1543 			u8 variable[0];
1544 		} __packed setup_cfm;
1545 		struct {
1546 			__le16 reason_code;
1547 			u8 variable[0];
1548 		} __packed teardown;
1549 		struct {
1550 			u8 dialog_token;
1551 			u8 variable[0];
1552 		} __packed discover_req;
1553 		struct {
1554 			u8 target_channel;
1555 			u8 oper_class;
1556 			u8 variable[0];
1557 		} __packed chan_switch_req;
1558 		struct {
1559 			__le16 status_code;
1560 			u8 variable[0];
1561 		} __packed chan_switch_resp;
1562 	} u;
1563 } __packed;
1564 
1565 /*
1566  * Peer-to-Peer IE attribute related definitions.
1567  */
1568 /*
1569  * enum ieee80211_p2p_attr_id - identifies type of peer-to-peer attribute.
1570  */
1571 enum ieee80211_p2p_attr_id {
1572 	IEEE80211_P2P_ATTR_STATUS = 0,
1573 	IEEE80211_P2P_ATTR_MINOR_REASON,
1574 	IEEE80211_P2P_ATTR_CAPABILITY,
1575 	IEEE80211_P2P_ATTR_DEVICE_ID,
1576 	IEEE80211_P2P_ATTR_GO_INTENT,
1577 	IEEE80211_P2P_ATTR_GO_CONFIG_TIMEOUT,
1578 	IEEE80211_P2P_ATTR_LISTEN_CHANNEL,
1579 	IEEE80211_P2P_ATTR_GROUP_BSSID,
1580 	IEEE80211_P2P_ATTR_EXT_LISTEN_TIMING,
1581 	IEEE80211_P2P_ATTR_INTENDED_IFACE_ADDR,
1582 	IEEE80211_P2P_ATTR_MANAGABILITY,
1583 	IEEE80211_P2P_ATTR_CHANNEL_LIST,
1584 	IEEE80211_P2P_ATTR_ABSENCE_NOTICE,
1585 	IEEE80211_P2P_ATTR_DEVICE_INFO,
1586 	IEEE80211_P2P_ATTR_GROUP_INFO,
1587 	IEEE80211_P2P_ATTR_GROUP_ID,
1588 	IEEE80211_P2P_ATTR_INTERFACE,
1589 	IEEE80211_P2P_ATTR_OPER_CHANNEL,
1590 	IEEE80211_P2P_ATTR_INVITE_FLAGS,
1591 	/* 19 - 220: Reserved */
1592 	IEEE80211_P2P_ATTR_VENDOR_SPECIFIC = 221,
1593 
1594 	IEEE80211_P2P_ATTR_MAX
1595 };
1596 
1597 /* Notice of Absence attribute - described in P2P spec 4.1.14 */
1598 /* Typical max value used here */
1599 #define IEEE80211_P2P_NOA_DESC_MAX	4
1600 
1601 struct ieee80211_p2p_noa_desc {
1602 	u8 count;
1603 	__le32 duration;
1604 	__le32 interval;
1605 	__le32 start_time;
1606 } __packed;
1607 
1608 struct ieee80211_p2p_noa_attr {
1609 	u8 index;
1610 	u8 oppps_ctwindow;
1611 	struct ieee80211_p2p_noa_desc desc[IEEE80211_P2P_NOA_DESC_MAX];
1612 } __packed;
1613 
1614 #define IEEE80211_P2P_OPPPS_ENABLE_BIT		BIT(7)
1615 #define IEEE80211_P2P_OPPPS_CTWINDOW_MASK	0x7F
1616 
1617 /**
1618  * struct ieee80211_bar - Block Ack Request frame format
1619  * @frame_control: Frame Control
1620  * @duration: Duration
1621  * @ra: RA
1622  * @ta: TA
1623  * @control: BAR Control
1624  * @start_seq_num: Starting Sequence Number (see Figure 9-37)
1625  *
1626  * This structure represents the "BlockAckReq frame format"
1627  * as described in IEEE Std 802.11-2020 section 9.3.1.7.
1628 */
1629 struct ieee80211_bar {
1630 	__le16 frame_control;
1631 	__le16 duration;
1632 	__u8 ra[ETH_ALEN];
1633 	__u8 ta[ETH_ALEN];
1634 	__le16 control;
1635 	__le16 start_seq_num;
1636 } __packed;
1637 
1638 /* 802.11 BAR control masks */
1639 #define IEEE80211_BAR_CTRL_ACK_POLICY_NORMAL	0x0000
1640 #define IEEE80211_BAR_CTRL_MULTI_TID		0x0002
1641 #define IEEE80211_BAR_CTRL_CBMTID_COMPRESSED_BA	0x0004
1642 #define IEEE80211_BAR_CTRL_TID_INFO_MASK	0xf000
1643 #define IEEE80211_BAR_CTRL_TID_INFO_SHIFT	12
1644 
1645 #define IEEE80211_HT_MCS_MASK_LEN		10
1646 
1647 /**
1648  * struct ieee80211_mcs_info - Supported MCS Set field
1649  * @rx_mask: RX mask
1650  * @rx_highest: highest supported RX rate. If set represents
1651  *	the highest supported RX data rate in units of 1 Mbps.
1652  *	If this field is 0 this value should not be used to
1653  *	consider the highest RX data rate supported.
1654  * @tx_params: TX parameters
1655  * @reserved: Reserved bits
1656  *
1657  * This structure represents the "Supported MCS Set field" as
1658  * described in IEEE Std 802.11-2020 section 9.4.2.55.4.
1659  */
1660 struct ieee80211_mcs_info {
1661 	u8 rx_mask[IEEE80211_HT_MCS_MASK_LEN];
1662 	__le16 rx_highest;
1663 	u8 tx_params;
1664 	u8 reserved[3];
1665 } __packed;
1666 
1667 /* 802.11n HT capability MSC set */
1668 #define IEEE80211_HT_MCS_RX_HIGHEST_MASK	0x3ff
1669 #define IEEE80211_HT_MCS_TX_DEFINED		0x01
1670 #define IEEE80211_HT_MCS_TX_RX_DIFF		0x02
1671 /* value 0 == 1 stream etc */
1672 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK	0x0C
1673 #define IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT	2
1674 #define		IEEE80211_HT_MCS_TX_MAX_STREAMS	4
1675 #define IEEE80211_HT_MCS_TX_UNEQUAL_MODULATION	0x10
1676 
1677 /*
1678  * 802.11n D5.0 20.3.5 / 20.6 says:
1679  * - indices 0 to 7 and 32 are single spatial stream
1680  * - 8 to 31 are multiple spatial streams using equal modulation
1681  *   [8..15 for two streams, 16..23 for three and 24..31 for four]
1682  * - remainder are multiple spatial streams using unequal modulation
1683  */
1684 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START 33
1685 #define IEEE80211_HT_MCS_UNEQUAL_MODULATION_START_BYTE \
1686 	(IEEE80211_HT_MCS_UNEQUAL_MODULATION_START / 8)
1687 
1688 /**
1689  * struct ieee80211_ht_cap - HT capabilities element
1690  * @cap_info: HT Capability Information
1691  * @ampdu_params_info: A-MPDU Parameters
1692  * @mcs: Supported MCS Set
1693  * @extended_ht_cap_info: HT Extended Capabilities
1694  * @tx_BF_cap_info: Transmit Beamforming Capabilities
1695  * @antenna_selection_info: ASEL Capability
1696  *
1697  * This structure represents the payload of the "HT Capabilities
1698  * element" as described in IEEE Std 802.11-2020 section 9.4.2.55.
1699  */
1700 struct ieee80211_ht_cap {
1701 	__le16 cap_info;
1702 	u8 ampdu_params_info;
1703 
1704 	/* 16 bytes MCS information */
1705 	struct ieee80211_mcs_info mcs;
1706 
1707 	__le16 extended_ht_cap_info;
1708 	__le32 tx_BF_cap_info;
1709 	u8 antenna_selection_info;
1710 } __packed;
1711 
1712 /* 802.11n HT capabilities masks (for cap_info) */
1713 #define IEEE80211_HT_CAP_LDPC_CODING		0x0001
1714 #define IEEE80211_HT_CAP_SUP_WIDTH_20_40	0x0002
1715 #define IEEE80211_HT_CAP_SM_PS			0x000C
1716 #define		IEEE80211_HT_CAP_SM_PS_SHIFT	2
1717 #define IEEE80211_HT_CAP_GRN_FLD		0x0010
1718 #define IEEE80211_HT_CAP_SGI_20			0x0020
1719 #define IEEE80211_HT_CAP_SGI_40			0x0040
1720 #define IEEE80211_HT_CAP_TX_STBC		0x0080
1721 #define IEEE80211_HT_CAP_RX_STBC		0x0300
1722 #define		IEEE80211_HT_CAP_RX_STBC_SHIFT	8
1723 #define IEEE80211_HT_CAP_DELAY_BA		0x0400
1724 #define IEEE80211_HT_CAP_MAX_AMSDU		0x0800
1725 #define IEEE80211_HT_CAP_DSSSCCK40		0x1000
1726 #define IEEE80211_HT_CAP_RESERVED		0x2000
1727 #define IEEE80211_HT_CAP_40MHZ_INTOLERANT	0x4000
1728 #define IEEE80211_HT_CAP_LSIG_TXOP_PROT		0x8000
1729 
1730 /* 802.11n HT extended capabilities masks (for extended_ht_cap_info) */
1731 #define IEEE80211_HT_EXT_CAP_PCO		0x0001
1732 #define IEEE80211_HT_EXT_CAP_PCO_TIME		0x0006
1733 #define		IEEE80211_HT_EXT_CAP_PCO_TIME_SHIFT	1
1734 #define IEEE80211_HT_EXT_CAP_MCS_FB		0x0300
1735 #define		IEEE80211_HT_EXT_CAP_MCS_FB_SHIFT	8
1736 #define IEEE80211_HT_EXT_CAP_HTC_SUP		0x0400
1737 #define IEEE80211_HT_EXT_CAP_RD_RESPONDER	0x0800
1738 
1739 /* 802.11n HT capability AMPDU settings (for ampdu_params_info) */
1740 #define IEEE80211_HT_AMPDU_PARM_FACTOR		0x03
1741 #define IEEE80211_HT_AMPDU_PARM_DENSITY		0x1C
1742 #define		IEEE80211_HT_AMPDU_PARM_DENSITY_SHIFT	2
1743 
1744 /*
1745  * Maximum length of AMPDU that the STA can receive in high-throughput (HT).
1746  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1747  */
1748 enum ieee80211_max_ampdu_length_exp {
1749 	IEEE80211_HT_MAX_AMPDU_8K = 0,
1750 	IEEE80211_HT_MAX_AMPDU_16K = 1,
1751 	IEEE80211_HT_MAX_AMPDU_32K = 2,
1752 	IEEE80211_HT_MAX_AMPDU_64K = 3
1753 };
1754 
1755 /*
1756  * Maximum length of AMPDU that the STA can receive in VHT.
1757  * Length = 2 ^ (13 + max_ampdu_length_exp) - 1 (octets)
1758  */
1759 enum ieee80211_vht_max_ampdu_length_exp {
1760 	IEEE80211_VHT_MAX_AMPDU_8K = 0,
1761 	IEEE80211_VHT_MAX_AMPDU_16K = 1,
1762 	IEEE80211_VHT_MAX_AMPDU_32K = 2,
1763 	IEEE80211_VHT_MAX_AMPDU_64K = 3,
1764 	IEEE80211_VHT_MAX_AMPDU_128K = 4,
1765 	IEEE80211_VHT_MAX_AMPDU_256K = 5,
1766 	IEEE80211_VHT_MAX_AMPDU_512K = 6,
1767 	IEEE80211_VHT_MAX_AMPDU_1024K = 7
1768 };
1769 
1770 #define IEEE80211_HT_MAX_AMPDU_FACTOR 13
1771 
1772 /* Minimum MPDU start spacing */
1773 enum ieee80211_min_mpdu_spacing {
1774 	IEEE80211_HT_MPDU_DENSITY_NONE = 0,	/* No restriction */
1775 	IEEE80211_HT_MPDU_DENSITY_0_25 = 1,	/* 1/4 usec */
1776 	IEEE80211_HT_MPDU_DENSITY_0_5 = 2,	/* 1/2 usec */
1777 	IEEE80211_HT_MPDU_DENSITY_1 = 3,	/* 1 usec */
1778 	IEEE80211_HT_MPDU_DENSITY_2 = 4,	/* 2 usec */
1779 	IEEE80211_HT_MPDU_DENSITY_4 = 5,	/* 4 usec */
1780 	IEEE80211_HT_MPDU_DENSITY_8 = 6,	/* 8 usec */
1781 	IEEE80211_HT_MPDU_DENSITY_16 = 7	/* 16 usec */
1782 };
1783 
1784 /**
1785  * struct ieee80211_ht_operation - HT operation IE
1786  * @primary_chan: Primary Channel
1787  * @ht_param: HT Operation Information parameters
1788  * @operation_mode: HT Operation Information operation mode
1789  * @stbc_param: HT Operation Information STBC params
1790  * @basic_set: Basic HT-MCS Set
1791  *
1792  * This structure represents the payload of the "HT Operation
1793  * element" as described in IEEE Std 802.11-2020 section 9.4.2.56.
1794  */
1795 struct ieee80211_ht_operation {
1796 	u8 primary_chan;
1797 	u8 ht_param;
1798 	__le16 operation_mode;
1799 	__le16 stbc_param;
1800 	u8 basic_set[16];
1801 } __packed;
1802 
1803 /* for ht_param */
1804 #define IEEE80211_HT_PARAM_CHA_SEC_OFFSET		0x03
1805 #define		IEEE80211_HT_PARAM_CHA_SEC_NONE		0x00
1806 #define		IEEE80211_HT_PARAM_CHA_SEC_ABOVE	0x01
1807 #define		IEEE80211_HT_PARAM_CHA_SEC_BELOW	0x03
1808 #define IEEE80211_HT_PARAM_CHAN_WIDTH_ANY		0x04
1809 #define IEEE80211_HT_PARAM_RIFS_MODE			0x08
1810 
1811 /* for operation_mode */
1812 #define IEEE80211_HT_OP_MODE_PROTECTION			0x0003
1813 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONE		0
1814 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER	1
1815 #define		IEEE80211_HT_OP_MODE_PROTECTION_20MHZ		2
1816 #define		IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED	3
1817 #define IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT		0x0004
1818 #define IEEE80211_HT_OP_MODE_NON_HT_STA_PRSNT		0x0010
1819 #define IEEE80211_HT_OP_MODE_CCFS2_SHIFT		5
1820 #define IEEE80211_HT_OP_MODE_CCFS2_MASK			0x1fe0
1821 
1822 /* for stbc_param */
1823 #define IEEE80211_HT_STBC_PARAM_DUAL_BEACON		0x0040
1824 #define IEEE80211_HT_STBC_PARAM_DUAL_CTS_PROT		0x0080
1825 #define IEEE80211_HT_STBC_PARAM_STBC_BEACON		0x0100
1826 #define IEEE80211_HT_STBC_PARAM_LSIG_TXOP_FULLPROT	0x0200
1827 #define IEEE80211_HT_STBC_PARAM_PCO_ACTIVE		0x0400
1828 #define IEEE80211_HT_STBC_PARAM_PCO_PHASE		0x0800
1829 
1830 
1831 /* block-ack parameters */
1832 #define IEEE80211_ADDBA_PARAM_AMSDU_MASK 0x0001
1833 #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
1834 #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
1835 #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFC0
1836 #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
1837 #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
1838 
1839 /*
1840  * A-MPDU buffer sizes
1841  * According to HT size varies from 8 to 64 frames
1842  * HE adds the ability to have up to 256 frames.
1843  * EHT adds the ability to have up to 1K frames.
1844  */
1845 #define IEEE80211_MIN_AMPDU_BUF		0x8
1846 #define IEEE80211_MAX_AMPDU_BUF_HT	0x40
1847 #define IEEE80211_MAX_AMPDU_BUF_HE	0x100
1848 #define IEEE80211_MAX_AMPDU_BUF_EHT	0x400
1849 
1850 
1851 /* Spatial Multiplexing Power Save Modes (for capability) */
1852 #define WLAN_HT_CAP_SM_PS_STATIC	0
1853 #define WLAN_HT_CAP_SM_PS_DYNAMIC	1
1854 #define WLAN_HT_CAP_SM_PS_INVALID	2
1855 #define WLAN_HT_CAP_SM_PS_DISABLED	3
1856 
1857 /* for SM power control field lower two bits */
1858 #define WLAN_HT_SMPS_CONTROL_DISABLED	0
1859 #define WLAN_HT_SMPS_CONTROL_STATIC	1
1860 #define WLAN_HT_SMPS_CONTROL_DYNAMIC	3
1861 
1862 /**
1863  * struct ieee80211_vht_mcs_info - VHT MCS information
1864  * @rx_mcs_map: RX MCS map 2 bits for each stream, total 8 streams
1865  * @rx_highest: Indicates highest long GI VHT PPDU data rate
1866  *	STA can receive. Rate expressed in units of 1 Mbps.
1867  *	If this field is 0 this value should not be used to
1868  *	consider the highest RX data rate supported.
1869  *	The top 3 bits of this field indicate the Maximum NSTS,total
1870  *	(a beamformee capability.)
1871  * @tx_mcs_map: TX MCS map 2 bits for each stream, total 8 streams
1872  * @tx_highest: Indicates highest long GI VHT PPDU data rate
1873  *	STA can transmit. Rate expressed in units of 1 Mbps.
1874  *	If this field is 0 this value should not be used to
1875  *	consider the highest TX data rate supported.
1876  *	The top 2 bits of this field are reserved, the
1877  *	3rd bit from the top indiciates VHT Extended NSS BW
1878  *	Capability.
1879  */
1880 struct ieee80211_vht_mcs_info {
1881 	__le16 rx_mcs_map;
1882 	__le16 rx_highest;
1883 	__le16 tx_mcs_map;
1884 	__le16 tx_highest;
1885 } __packed;
1886 
1887 /* for rx_highest */
1888 #define IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT	13
1889 #define IEEE80211_VHT_MAX_NSTS_TOTAL_MASK	(7 << IEEE80211_VHT_MAX_NSTS_TOTAL_SHIFT)
1890 
1891 /* for tx_highest */
1892 #define IEEE80211_VHT_EXT_NSS_BW_CAPABLE	(1 << 13)
1893 
1894 /**
1895  * enum ieee80211_vht_mcs_support - VHT MCS support definitions
1896  * @IEEE80211_VHT_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
1897  *	number of streams
1898  * @IEEE80211_VHT_MCS_SUPPORT_0_8: MCSes 0-8 are supported
1899  * @IEEE80211_VHT_MCS_SUPPORT_0_9: MCSes 0-9 are supported
1900  * @IEEE80211_VHT_MCS_NOT_SUPPORTED: This number of streams isn't supported
1901  *
1902  * These definitions are used in each 2-bit subfield of the @rx_mcs_map
1903  * and @tx_mcs_map fields of &struct ieee80211_vht_mcs_info, which are
1904  * both split into 8 subfields by number of streams. These values indicate
1905  * which MCSes are supported for the number of streams the value appears
1906  * for.
1907  */
1908 enum ieee80211_vht_mcs_support {
1909 	IEEE80211_VHT_MCS_SUPPORT_0_7	= 0,
1910 	IEEE80211_VHT_MCS_SUPPORT_0_8	= 1,
1911 	IEEE80211_VHT_MCS_SUPPORT_0_9	= 2,
1912 	IEEE80211_VHT_MCS_NOT_SUPPORTED	= 3,
1913 };
1914 
1915 /**
1916  * struct ieee80211_vht_cap - VHT capabilities
1917  *
1918  * This structure is the "VHT capabilities element" as
1919  * described in 802.11ac D3.0 8.4.2.160
1920  * @vht_cap_info: VHT capability info
1921  * @supp_mcs: VHT MCS supported rates
1922  */
1923 struct ieee80211_vht_cap {
1924 	__le32 vht_cap_info;
1925 	struct ieee80211_vht_mcs_info supp_mcs;
1926 } __packed;
1927 
1928 /**
1929  * enum ieee80211_vht_chanwidth - VHT channel width
1930  * @IEEE80211_VHT_CHANWIDTH_USE_HT: use the HT operation IE to
1931  *	determine the channel width (20 or 40 MHz)
1932  * @IEEE80211_VHT_CHANWIDTH_80MHZ: 80 MHz bandwidth
1933  * @IEEE80211_VHT_CHANWIDTH_160MHZ: 160 MHz bandwidth
1934  * @IEEE80211_VHT_CHANWIDTH_80P80MHZ: 80+80 MHz bandwidth
1935  */
1936 enum ieee80211_vht_chanwidth {
1937 	IEEE80211_VHT_CHANWIDTH_USE_HT		= 0,
1938 	IEEE80211_VHT_CHANWIDTH_80MHZ		= 1,
1939 	IEEE80211_VHT_CHANWIDTH_160MHZ		= 2,
1940 	IEEE80211_VHT_CHANWIDTH_80P80MHZ	= 3,
1941 };
1942 
1943 /**
1944  * struct ieee80211_vht_operation - VHT operation IE
1945  *
1946  * This structure is the "VHT operation element" as
1947  * described in 802.11ac D3.0 8.4.2.161
1948  * @chan_width: Operating channel width
1949  * @center_freq_seg0_idx: center freq segment 0 index
1950  * @center_freq_seg1_idx: center freq segment 1 index
1951  * @basic_mcs_set: VHT Basic MCS rate set
1952  */
1953 struct ieee80211_vht_operation {
1954 	u8 chan_width;
1955 	u8 center_freq_seg0_idx;
1956 	u8 center_freq_seg1_idx;
1957 	__le16 basic_mcs_set;
1958 } __packed;
1959 
1960 /**
1961  * struct ieee80211_he_cap_elem - HE capabilities element
1962  * @mac_cap_info: HE MAC Capabilities Information
1963  * @phy_cap_info: HE PHY Capabilities Information
1964  *
1965  * This structure represents the fixed fields of the payload of the
1966  * "HE capabilities element" as described in IEEE Std 802.11ax-2021
1967  * sections 9.4.2.248.2 and 9.4.2.248.3.
1968  */
1969 struct ieee80211_he_cap_elem {
1970 	u8 mac_cap_info[6];
1971 	u8 phy_cap_info[11];
1972 } __packed;
1973 
1974 #define IEEE80211_TX_RX_MCS_NSS_DESC_MAX_LEN	5
1975 
1976 /**
1977  * enum ieee80211_he_mcs_support - HE MCS support definitions
1978  * @IEEE80211_HE_MCS_SUPPORT_0_7: MCSes 0-7 are supported for the
1979  *	number of streams
1980  * @IEEE80211_HE_MCS_SUPPORT_0_9: MCSes 0-9 are supported
1981  * @IEEE80211_HE_MCS_SUPPORT_0_11: MCSes 0-11 are supported
1982  * @IEEE80211_HE_MCS_NOT_SUPPORTED: This number of streams isn't supported
1983  *
1984  * These definitions are used in each 2-bit subfield of the rx_mcs_*
1985  * and tx_mcs_* fields of &struct ieee80211_he_mcs_nss_supp, which are
1986  * both split into 8 subfields by number of streams. These values indicate
1987  * which MCSes are supported for the number of streams the value appears
1988  * for.
1989  */
1990 enum ieee80211_he_mcs_support {
1991 	IEEE80211_HE_MCS_SUPPORT_0_7	= 0,
1992 	IEEE80211_HE_MCS_SUPPORT_0_9	= 1,
1993 	IEEE80211_HE_MCS_SUPPORT_0_11	= 2,
1994 	IEEE80211_HE_MCS_NOT_SUPPORTED	= 3,
1995 };
1996 
1997 /**
1998  * struct ieee80211_he_mcs_nss_supp - HE Tx/Rx HE MCS NSS Support Field
1999  *
2000  * This structure holds the data required for the Tx/Rx HE MCS NSS Support Field
2001  * described in P802.11ax_D2.0 section 9.4.2.237.4
2002  *
2003  * @rx_mcs_80: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2004  *     widths less than 80MHz.
2005  * @tx_mcs_80: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2006  *     widths less than 80MHz.
2007  * @rx_mcs_160: Rx MCS map 2 bits for each stream, total 8 streams, for channel
2008  *     width 160MHz.
2009  * @tx_mcs_160: Tx MCS map 2 bits for each stream, total 8 streams, for channel
2010  *     width 160MHz.
2011  * @rx_mcs_80p80: Rx MCS map 2 bits for each stream, total 8 streams, for
2012  *     channel width 80p80MHz.
2013  * @tx_mcs_80p80: Tx MCS map 2 bits for each stream, total 8 streams, for
2014  *     channel width 80p80MHz.
2015  */
2016 struct ieee80211_he_mcs_nss_supp {
2017 	__le16 rx_mcs_80;
2018 	__le16 tx_mcs_80;
2019 	__le16 rx_mcs_160;
2020 	__le16 tx_mcs_160;
2021 	__le16 rx_mcs_80p80;
2022 	__le16 tx_mcs_80p80;
2023 } __packed;
2024 
2025 /**
2026  * struct ieee80211_he_operation - HE Operation element
2027  * @he_oper_params: HE Operation Parameters + BSS Color Information
2028  * @he_mcs_nss_set: Basic HE-MCS And NSS Set
2029  * @optional: Optional fields VHT Operation Information, Max Co-Hosted
2030  *            BSSID Indicator, and 6 GHz Operation Information
2031  *
2032  * This structure represents the payload of the "HE Operation
2033  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.249.
2034  */
2035 struct ieee80211_he_operation {
2036 	__le32 he_oper_params;
2037 	__le16 he_mcs_nss_set;
2038 	u8 optional[];
2039 } __packed;
2040 
2041 /**
2042  * struct ieee80211_he_spr - Spatial Reuse Parameter Set element
2043  * @he_sr_control: SR Control
2044  * @optional: Optional fields Non-SRG OBSS PD Max Offset, SRG OBSS PD
2045  *            Min Offset, SRG OBSS PD Max Offset, SRG BSS Color
2046  *            Bitmap, and SRG Partial BSSID Bitmap
2047  *
2048  * This structure represents the payload of the "Spatial Reuse
2049  * Parameter Set element" as described in IEEE Std 802.11ax-2021
2050  * section 9.4.2.252.
2051  */
2052 struct ieee80211_he_spr {
2053 	u8 he_sr_control;
2054 	u8 optional[];
2055 } __packed;
2056 
2057 /**
2058  * struct ieee80211_he_mu_edca_param_ac_rec - MU AC Parameter Record field
2059  * @aifsn: ACI/AIFSN
2060  * @ecw_min_max: ECWmin/ECWmax
2061  * @mu_edca_timer: MU EDCA Timer
2062  *
2063  * This structure represents the "MU AC Parameter Record" as described
2064  * in IEEE Std 802.11ax-2021 section 9.4.2.251, Figure 9-788p.
2065  */
2066 struct ieee80211_he_mu_edca_param_ac_rec {
2067 	u8 aifsn;
2068 	u8 ecw_min_max;
2069 	u8 mu_edca_timer;
2070 } __packed;
2071 
2072 /**
2073  * struct ieee80211_mu_edca_param_set - MU EDCA Parameter Set element
2074  * @mu_qos_info: QoS Info
2075  * @ac_be: MU AC_BE Parameter Record
2076  * @ac_bk: MU AC_BK Parameter Record
2077  * @ac_vi: MU AC_VI Parameter Record
2078  * @ac_vo: MU AC_VO Parameter Record
2079  *
2080  * This structure represents the payload of the "MU EDCA Parameter Set
2081  * element" as described in IEEE Std 802.11ax-2021 section 9.4.2.251.
2082  */
2083 struct ieee80211_mu_edca_param_set {
2084 	u8 mu_qos_info;
2085 	struct ieee80211_he_mu_edca_param_ac_rec ac_be;
2086 	struct ieee80211_he_mu_edca_param_ac_rec ac_bk;
2087 	struct ieee80211_he_mu_edca_param_ac_rec ac_vi;
2088 	struct ieee80211_he_mu_edca_param_ac_rec ac_vo;
2089 } __packed;
2090 
2091 #define IEEE80211_EHT_MCS_NSS_RX 0x0f
2092 #define IEEE80211_EHT_MCS_NSS_TX 0xf0
2093 
2094 /**
2095  * struct ieee80211_eht_mcs_nss_supp_20mhz_only - EHT 20MHz only station max
2096  * supported NSS for per MCS.
2097  *
2098  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2099  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2100  * for Tx.
2101  *
2102  * @rx_tx_mcs7_max_nss: indicates the maximum number of spatial streams
2103  *     supported for reception and the maximum number of spatial streams
2104  *     supported for transmission for MCS 0 - 7.
2105  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2106  *     supported for reception and the maximum number of spatial streams
2107  *     supported for transmission for MCS 8 - 9.
2108  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2109  *     supported for reception and the maximum number of spatial streams
2110  *     supported for transmission for MCS 10 - 11.
2111  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2112  *     supported for reception and the maximum number of spatial streams
2113  *     supported for transmission for MCS 12 - 13.
2114  * @rx_tx_max_nss: array of the previous fields for easier loop access
2115  */
2116 struct ieee80211_eht_mcs_nss_supp_20mhz_only {
2117 	union {
2118 		struct {
2119 			u8 rx_tx_mcs7_max_nss;
2120 			u8 rx_tx_mcs9_max_nss;
2121 			u8 rx_tx_mcs11_max_nss;
2122 			u8 rx_tx_mcs13_max_nss;
2123 		};
2124 		u8 rx_tx_max_nss[4];
2125 	};
2126 };
2127 
2128 /**
2129  * struct ieee80211_eht_mcs_nss_supp_bw - EHT max supported NSS per MCS (except
2130  * 20MHz only stations).
2131  *
2132  * For each field below, bits 0 - 3 indicate the maximal number of spatial
2133  * streams for Rx, and bits 4 - 7 indicate the maximal number of spatial streams
2134  * for Tx.
2135  *
2136  * @rx_tx_mcs9_max_nss: indicates the maximum number of spatial streams
2137  *     supported for reception and the maximum number of spatial streams
2138  *     supported for transmission for MCS 0 - 9.
2139  * @rx_tx_mcs11_max_nss: indicates the maximum number of spatial streams
2140  *     supported for reception and the maximum number of spatial streams
2141  *     supported for transmission for MCS 10 - 11.
2142  * @rx_tx_mcs13_max_nss: indicates the maximum number of spatial streams
2143  *     supported for reception and the maximum number of spatial streams
2144  *     supported for transmission for MCS 12 - 13.
2145  * @rx_tx_max_nss: array of the previous fields for easier loop access
2146  */
2147 struct ieee80211_eht_mcs_nss_supp_bw {
2148 	union {
2149 		struct {
2150 			u8 rx_tx_mcs9_max_nss;
2151 			u8 rx_tx_mcs11_max_nss;
2152 			u8 rx_tx_mcs13_max_nss;
2153 		};
2154 		u8 rx_tx_max_nss[3];
2155 	};
2156 };
2157 
2158 /**
2159  * struct ieee80211_eht_cap_elem_fixed - EHT capabilities fixed data
2160  *
2161  * This structure is the "EHT Capabilities element" fixed fields as
2162  * described in P802.11be_D2.0 section 9.4.2.313.
2163  *
2164  * @mac_cap_info: MAC capabilities, see IEEE80211_EHT_MAC_CAP*
2165  * @phy_cap_info: PHY capabilities, see IEEE80211_EHT_PHY_CAP*
2166  */
2167 struct ieee80211_eht_cap_elem_fixed {
2168 	u8 mac_cap_info[2];
2169 	u8 phy_cap_info[9];
2170 } __packed;
2171 
2172 /**
2173  * struct ieee80211_eht_cap_elem - EHT capabilities element
2174  * @fixed: fixed parts, see &ieee80211_eht_cap_elem_fixed
2175  * @optional: optional parts
2176  */
2177 struct ieee80211_eht_cap_elem {
2178 	struct ieee80211_eht_cap_elem_fixed fixed;
2179 
2180 	/*
2181 	 * Followed by:
2182 	 * Supported EHT-MCS And NSS Set field: 4, 3, 6 or 9 octets.
2183 	 * EHT PPE Thresholds field: variable length.
2184 	 */
2185 	u8 optional[];
2186 } __packed;
2187 
2188 #define IEEE80211_EHT_OPER_INFO_PRESENT	                        0x01
2189 #define IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT	0x02
2190 #define IEEE80211_EHT_OPER_EHT_DEF_PE_DURATION	                0x04
2191 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_LIMIT         0x08
2192 #define IEEE80211_EHT_OPER_GROUP_ADDRESSED_BU_IND_EXP_MASK      0x30
2193 
2194 /**
2195  * struct ieee80211_eht_operation - eht operation element
2196  *
2197  * This structure is the "EHT Operation Element" fields as
2198  * described in P802.11be_D2.0 section 9.4.2.311
2199  *
2200  * @params: EHT operation element parameters. See &IEEE80211_EHT_OPER_*
2201  * @basic_mcs_nss: indicates the EHT-MCSs for each number of spatial streams in
2202  *     EHT PPDUs that are supported by all EHT STAs in the BSS in transmit and
2203  *     receive.
2204  * @optional: optional parts
2205  */
2206 struct ieee80211_eht_operation {
2207 	u8 params;
2208 	struct ieee80211_eht_mcs_nss_supp_20mhz_only basic_mcs_nss;
2209 	u8 optional[];
2210 } __packed;
2211 
2212 /**
2213  * struct ieee80211_eht_operation_info - eht operation information
2214  *
2215  * @control: EHT operation information control.
2216  * @ccfs0: defines a channel center frequency for a 20, 40, 80, 160, or 320 MHz
2217  *     EHT BSS.
2218  * @ccfs1: defines a channel center frequency for a 160 or 320 MHz EHT BSS.
2219  * @optional: optional parts
2220  */
2221 struct ieee80211_eht_operation_info {
2222 	u8 control;
2223 	u8 ccfs0;
2224 	u8 ccfs1;
2225 	u8 optional[];
2226 } __packed;
2227 
2228 /* 802.11ac VHT Capabilities */
2229 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895			0x00000000
2230 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991			0x00000001
2231 #define IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454			0x00000002
2232 #define IEEE80211_VHT_CAP_MAX_MPDU_MASK				0x00000003
2233 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ		0x00000004
2234 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ	0x00000008
2235 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK			0x0000000C
2236 #define IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_SHIFT			2
2237 #define IEEE80211_VHT_CAP_RXLDPC				0x00000010
2238 #define IEEE80211_VHT_CAP_SHORT_GI_80				0x00000020
2239 #define IEEE80211_VHT_CAP_SHORT_GI_160				0x00000040
2240 #define IEEE80211_VHT_CAP_TXSTBC				0x00000080
2241 #define IEEE80211_VHT_CAP_RXSTBC_1				0x00000100
2242 #define IEEE80211_VHT_CAP_RXSTBC_2				0x00000200
2243 #define IEEE80211_VHT_CAP_RXSTBC_3				0x00000300
2244 #define IEEE80211_VHT_CAP_RXSTBC_4				0x00000400
2245 #define IEEE80211_VHT_CAP_RXSTBC_MASK				0x00000700
2246 #define IEEE80211_VHT_CAP_RXSTBC_SHIFT				8
2247 #define IEEE80211_VHT_CAP_SU_BEAMFORMER_CAPABLE			0x00000800
2248 #define IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE			0x00001000
2249 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT                  13
2250 #define IEEE80211_VHT_CAP_BEAMFORMEE_STS_MASK			\
2251 		(7 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT)
2252 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT		16
2253 #define IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_MASK		\
2254 		(7 << IEEE80211_VHT_CAP_SOUNDING_DIMENSIONS_SHIFT)
2255 #define IEEE80211_VHT_CAP_MU_BEAMFORMER_CAPABLE			0x00080000
2256 #define IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE			0x00100000
2257 #define IEEE80211_VHT_CAP_VHT_TXOP_PS				0x00200000
2258 #define IEEE80211_VHT_CAP_HTC_VHT				0x00400000
2259 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT	23
2260 #define IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK	\
2261 		(7 << IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT)
2262 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_UNSOL_MFB	0x08000000
2263 #define IEEE80211_VHT_CAP_VHT_LINK_ADAPTATION_VHT_MRQ_MFB	0x0c000000
2264 #define IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN			0x10000000
2265 #define IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN			0x20000000
2266 #define IEEE80211_VHT_CAP_EXT_NSS_BW_SHIFT			30
2267 #define IEEE80211_VHT_CAP_EXT_NSS_BW_MASK			0xc0000000
2268 
2269 /**
2270  * ieee80211_get_vht_max_nss - return max NSS for a given bandwidth/MCS
2271  * @cap: VHT capabilities of the peer
2272  * @bw: bandwidth to use
2273  * @mcs: MCS index to use
2274  * @ext_nss_bw_capable: indicates whether or not the local transmitter
2275  *	(rate scaling algorithm) can deal with the new logic
2276  *	(dot11VHTExtendedNSSBWCapable)
2277  * @max_vht_nss: current maximum NSS as advertised by the STA in
2278  *	operating mode notification, can be 0 in which case the
2279  *	capability data will be used to derive this (from MCS support)
2280  *
2281  * Due to the VHT Extended NSS Bandwidth Support, the maximum NSS can
2282  * vary for a given BW/MCS. This function parses the data.
2283  *
2284  * Note: This function is exported by cfg80211.
2285  */
2286 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2287 			      enum ieee80211_vht_chanwidth bw,
2288 			      int mcs, bool ext_nss_bw_capable,
2289 			      unsigned int max_vht_nss);
2290 
2291 /**
2292  * enum ieee80211_ap_reg_power - regulatory power for a Access Point
2293  *
2294  * @IEEE80211_REG_UNSET_AP: Access Point has no regulatory power mode
2295  * @IEEE80211_REG_LPI_AP: Indoor Access Point
2296  * @IEEE80211_REG_SP_AP: Standard power Access Point
2297  * @IEEE80211_REG_VLP_AP: Very low power Access Point
2298  * @IEEE80211_REG_AP_POWER_AFTER_LAST: internal
2299  * @IEEE80211_REG_AP_POWER_MAX: maximum value
2300  */
2301 enum ieee80211_ap_reg_power {
2302 	IEEE80211_REG_UNSET_AP,
2303 	IEEE80211_REG_LPI_AP,
2304 	IEEE80211_REG_SP_AP,
2305 	IEEE80211_REG_VLP_AP,
2306 	IEEE80211_REG_AP_POWER_AFTER_LAST,
2307 	IEEE80211_REG_AP_POWER_MAX =
2308 		IEEE80211_REG_AP_POWER_AFTER_LAST - 1,
2309 };
2310 
2311 /**
2312  * enum ieee80211_client_reg_power - regulatory power for a client
2313  *
2314  * @IEEE80211_REG_UNSET_CLIENT: Client has no regulatory power mode
2315  * @IEEE80211_REG_DEFAULT_CLIENT: Default Client
2316  * @IEEE80211_REG_SUBORDINATE_CLIENT: Subordinate Client
2317  * @IEEE80211_REG_CLIENT_POWER_AFTER_LAST: internal
2318  * @IEEE80211_REG_CLIENT_POWER_MAX: maximum value
2319  */
2320 enum ieee80211_client_reg_power {
2321 	IEEE80211_REG_UNSET_CLIENT,
2322 	IEEE80211_REG_DEFAULT_CLIENT,
2323 	IEEE80211_REG_SUBORDINATE_CLIENT,
2324 	IEEE80211_REG_CLIENT_POWER_AFTER_LAST,
2325 	IEEE80211_REG_CLIENT_POWER_MAX =
2326 		IEEE80211_REG_CLIENT_POWER_AFTER_LAST - 1,
2327 };
2328 
2329 /* 802.11ax HE MAC capabilities */
2330 #define IEEE80211_HE_MAC_CAP0_HTC_HE				0x01
2331 #define IEEE80211_HE_MAC_CAP0_TWT_REQ				0x02
2332 #define IEEE80211_HE_MAC_CAP0_TWT_RES				0x04
2333 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_NOT_SUPP		0x00
2334 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_1		0x08
2335 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_2		0x10
2336 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_LEVEL_3		0x18
2337 #define IEEE80211_HE_MAC_CAP0_DYNAMIC_FRAG_MASK			0x18
2338 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_1		0x00
2339 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_2		0x20
2340 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_4		0x40
2341 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_8		0x60
2342 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_16		0x80
2343 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_32		0xa0
2344 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_64		0xc0
2345 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_UNLIMITED	0xe0
2346 #define IEEE80211_HE_MAC_CAP0_MAX_NUM_FRAG_MSDU_MASK		0xe0
2347 
2348 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_UNLIMITED		0x00
2349 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_128			0x01
2350 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_256			0x02
2351 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_512			0x03
2352 #define IEEE80211_HE_MAC_CAP1_MIN_FRAG_SIZE_MASK		0x03
2353 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_0US		0x00
2354 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_8US		0x04
2355 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US		0x08
2356 #define IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_MASK		0x0c
2357 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_1		0x00
2358 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_2		0x10
2359 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_3		0x20
2360 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_4		0x30
2361 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_5		0x40
2362 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_6		0x50
2363 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_7		0x60
2364 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8		0x70
2365 #define IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_MASK		0x70
2366 
2367 /* Link adaptation is split between byte HE_MAC_CAP1 and
2368  * HE_MAC_CAP2. It should be set only if IEEE80211_HE_MAC_CAP0_HTC_HE
2369  * in which case the following values apply:
2370  * 0 = No feedback.
2371  * 1 = reserved.
2372  * 2 = Unsolicited feedback.
2373  * 3 = both
2374  */
2375 #define IEEE80211_HE_MAC_CAP1_LINK_ADAPTATION			0x80
2376 
2377 #define IEEE80211_HE_MAC_CAP2_LINK_ADAPTATION			0x01
2378 #define IEEE80211_HE_MAC_CAP2_ALL_ACK				0x02
2379 #define IEEE80211_HE_MAC_CAP2_TRS				0x04
2380 #define IEEE80211_HE_MAC_CAP2_BSR				0x08
2381 #define IEEE80211_HE_MAC_CAP2_BCAST_TWT				0x10
2382 #define IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP			0x20
2383 #define IEEE80211_HE_MAC_CAP2_MU_CASCADING			0x40
2384 #define IEEE80211_HE_MAC_CAP2_ACK_EN				0x80
2385 
2386 #define IEEE80211_HE_MAC_CAP3_OMI_CONTROL			0x02
2387 #define IEEE80211_HE_MAC_CAP3_OFDMA_RA				0x04
2388 
2389 /* The maximum length of an A-MDPU is defined by the combination of the Maximum
2390  * A-MDPU Length Exponent field in the HT capabilities, VHT capabilities and the
2391  * same field in the HE capabilities.
2392  */
2393 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_0		0x00
2394 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1		0x08
2395 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2		0x10
2396 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3		0x18
2397 #define IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_MASK		0x18
2398 #define IEEE80211_HE_MAC_CAP3_AMSDU_FRAG			0x20
2399 #define IEEE80211_HE_MAC_CAP3_FLEX_TWT_SCHED			0x40
2400 #define IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS		0x80
2401 
2402 #define IEEE80211_HE_MAC_CAP4_BSRP_BQRP_A_MPDU_AGG		0x01
2403 #define IEEE80211_HE_MAC_CAP4_QTP				0x02
2404 #define IEEE80211_HE_MAC_CAP4_BQR				0x04
2405 #define IEEE80211_HE_MAC_CAP4_PSR_RESP				0x08
2406 #define IEEE80211_HE_MAC_CAP4_NDP_FB_REP			0x10
2407 #define IEEE80211_HE_MAC_CAP4_OPS				0x20
2408 #define IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU			0x40
2409 /* Multi TID agg TX is split between byte #4 and #5
2410  * The value is a combination of B39,B40,B41
2411  */
2412 #define IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39		0x80
2413 
2414 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40		0x01
2415 #define IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41		0x02
2416 #define IEEE80211_HE_MAC_CAP5_SUBCHAN_SELECTIVE_TRANSMISSION	0x04
2417 #define IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU			0x08
2418 #define IEEE80211_HE_MAC_CAP5_OM_CTRL_UL_MU_DATA_DIS_RX		0x10
2419 #define IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS			0x20
2420 #define IEEE80211_HE_MAC_CAP5_PUNCTURED_SOUNDING		0x40
2421 #define IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX		0x80
2422 
2423 #define IEEE80211_HE_VHT_MAX_AMPDU_FACTOR	20
2424 #define IEEE80211_HE_HT_MAX_AMPDU_FACTOR	16
2425 #define IEEE80211_HE_6GHZ_MAX_AMPDU_FACTOR	13
2426 
2427 /* 802.11ax HE PHY capabilities */
2428 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G		0x02
2429 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G	0x04
2430 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G		0x08
2431 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G	0x10
2432 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK_ALL		0x1e
2433 
2434 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_2G	0x20
2435 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_RU_MAPPING_IN_5G	0x40
2436 #define IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_MASK			0xfe
2437 
2438 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_20MHZ	0x01
2439 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_80MHZ_ONLY_SECOND_40MHZ	0x02
2440 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_20MHZ	0x04
2441 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_160MHZ_ONLY_SECOND_40MHZ	0x08
2442 #define IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK			0x0f
2443 #define IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A				0x10
2444 #define IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD			0x20
2445 #define IEEE80211_HE_PHY_CAP1_HE_LTF_AND_GI_FOR_HE_PPDUS_0_8US		0x40
2446 /* Midamble RX/TX Max NSTS is split between byte #2 and byte #3 */
2447 #define IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS			0x80
2448 
2449 #define IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS			0x01
2450 #define IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US			0x02
2451 #define IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ			0x04
2452 #define IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ			0x08
2453 #define IEEE80211_HE_PHY_CAP2_DOPPLER_TX				0x10
2454 #define IEEE80211_HE_PHY_CAP2_DOPPLER_RX				0x20
2455 
2456 /* Note that the meaning of UL MU below is different between an AP and a non-AP
2457  * sta, where in the AP case it indicates support for Rx and in the non-AP sta
2458  * case it indicates support for Tx.
2459  */
2460 #define IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO			0x40
2461 #define IEEE80211_HE_PHY_CAP2_UL_MU_PARTIAL_MU_MIMO			0x80
2462 
2463 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_NO_DCM			0x00
2464 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK			0x01
2465 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_QPSK			0x02
2466 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_16_QAM			0x03
2467 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_MASK			0x03
2468 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1				0x00
2469 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_2				0x04
2470 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_NO_DCM			0x00
2471 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK			0x08
2472 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_QPSK			0x10
2473 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_16_QAM			0x18
2474 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_MASK			0x18
2475 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1				0x00
2476 #define IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_2				0x20
2477 #define IEEE80211_HE_PHY_CAP3_RX_PARTIAL_BW_SU_IN_20MHZ_MU		0x40
2478 #define IEEE80211_HE_PHY_CAP3_SU_BEAMFORMER				0x80
2479 
2480 #define IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE				0x01
2481 #define IEEE80211_HE_PHY_CAP4_MU_BEAMFORMER				0x02
2482 
2483 /* Minimal allowed value of Max STS under 80MHz is 3 */
2484 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_4		0x0c
2485 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_5		0x10
2486 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_6		0x14
2487 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_7		0x18
2488 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8		0x1c
2489 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_MASK	0x1c
2490 
2491 /* Minimal allowed value of Max STS above 80MHz is 3 */
2492 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_4		0x60
2493 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_5		0x80
2494 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_6		0xa0
2495 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_7		0xc0
2496 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8		0xe0
2497 #define IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_MASK	0xe0
2498 
2499 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_1	0x00
2500 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2	0x01
2501 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_3	0x02
2502 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_4	0x03
2503 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_5	0x04
2504 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_6	0x05
2505 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_7	0x06
2506 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_8	0x07
2507 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_MASK	0x07
2508 
2509 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_1	0x00
2510 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2	0x08
2511 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_3	0x10
2512 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_4	0x18
2513 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_5	0x20
2514 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_6	0x28
2515 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_7	0x30
2516 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_8	0x38
2517 #define IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_MASK	0x38
2518 
2519 #define IEEE80211_HE_PHY_CAP5_NG16_SU_FEEDBACK				0x40
2520 #define IEEE80211_HE_PHY_CAP5_NG16_MU_FEEDBACK				0x80
2521 
2522 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_42_SU			0x01
2523 #define IEEE80211_HE_PHY_CAP6_CODEBOOK_SIZE_75_MU			0x02
2524 #define IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB			0x04
2525 #define IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB		0x08
2526 #define IEEE80211_HE_PHY_CAP6_TRIG_CQI_FB				0x10
2527 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BW_EXT_RANGE			0x20
2528 #define IEEE80211_HE_PHY_CAP6_PARTIAL_BANDWIDTH_DL_MUMIMO		0x40
2529 #define IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT			0x80
2530 
2531 #define IEEE80211_HE_PHY_CAP7_PSR_BASED_SR				0x01
2532 #define IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP			0x02
2533 #define IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI		0x04
2534 #define IEEE80211_HE_PHY_CAP7_MAX_NC_1					0x08
2535 #define IEEE80211_HE_PHY_CAP7_MAX_NC_2					0x10
2536 #define IEEE80211_HE_PHY_CAP7_MAX_NC_3					0x18
2537 #define IEEE80211_HE_PHY_CAP7_MAX_NC_4					0x20
2538 #define IEEE80211_HE_PHY_CAP7_MAX_NC_5					0x28
2539 #define IEEE80211_HE_PHY_CAP7_MAX_NC_6					0x30
2540 #define IEEE80211_HE_PHY_CAP7_MAX_NC_7					0x38
2541 #define IEEE80211_HE_PHY_CAP7_MAX_NC_MASK				0x38
2542 #define IEEE80211_HE_PHY_CAP7_STBC_TX_ABOVE_80MHZ			0x40
2543 #define IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ			0x80
2544 
2545 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI		0x01
2546 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G		0x02
2547 #define IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU			0x04
2548 #define IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU			0x08
2549 #define IEEE80211_HE_PHY_CAP8_HE_ER_SU_1XLTF_AND_08_US_GI		0x10
2550 #define IEEE80211_HE_PHY_CAP8_MIDAMBLE_RX_TX_2X_AND_1XLTF		0x20
2551 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242				0x00
2552 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_484				0x40
2553 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_996				0x80
2554 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_2x996				0xc0
2555 #define IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_MASK				0xc0
2556 
2557 #define IEEE80211_HE_PHY_CAP9_LONGER_THAN_16_SIGB_OFDM_SYM		0x01
2558 #define IEEE80211_HE_PHY_CAP9_NON_TRIGGERED_CQI_FEEDBACK		0x02
2559 #define IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU		0x04
2560 #define IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU		0x08
2561 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB	0x10
2562 #define IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB	0x20
2563 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_0US			0x0
2564 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_8US			0x1
2565 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_16US			0x2
2566 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED		0x3
2567 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS			6
2568 #define IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_MASK			0xc0
2569 
2570 #define IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF			0x01
2571 
2572 /* 802.11ax HE TX/RX MCS NSS Support  */
2573 #define IEEE80211_TX_RX_MCS_NSS_SUPP_HIGHEST_MCS_POS			(3)
2574 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_POS			(6)
2575 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_POS			(11)
2576 #define IEEE80211_TX_RX_MCS_NSS_SUPP_TX_BITMAP_MASK			0x07c0
2577 #define IEEE80211_TX_RX_MCS_NSS_SUPP_RX_BITMAP_MASK			0xf800
2578 
2579 /* TX/RX HE MCS Support field Highest MCS subfield encoding */
2580 enum ieee80211_he_highest_mcs_supported_subfield_enc {
2581 	HIGHEST_MCS_SUPPORTED_MCS7 = 0,
2582 	HIGHEST_MCS_SUPPORTED_MCS8,
2583 	HIGHEST_MCS_SUPPORTED_MCS9,
2584 	HIGHEST_MCS_SUPPORTED_MCS10,
2585 	HIGHEST_MCS_SUPPORTED_MCS11,
2586 };
2587 
2588 /* Calculate 802.11ax HE capabilities IE Tx/Rx HE MCS NSS Support Field size */
2589 static inline u8
ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap)2590 ieee80211_he_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap)
2591 {
2592 	u8 count = 4;
2593 
2594 	if (he_cap->phy_cap_info[0] &
2595 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
2596 		count += 4;
2597 
2598 	if (he_cap->phy_cap_info[0] &
2599 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_80PLUS80_MHZ_IN_5G)
2600 		count += 4;
2601 
2602 	return count;
2603 }
2604 
2605 /* 802.11ax HE PPE Thresholds */
2606 #define IEEE80211_PPE_THRES_NSS_SUPPORT_2NSS			(1)
2607 #define IEEE80211_PPE_THRES_NSS_POS				(0)
2608 #define IEEE80211_PPE_THRES_NSS_MASK				(7)
2609 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_2x966_AND_966_RU	\
2610 	(BIT(5) | BIT(6))
2611 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK		0x78
2612 #define IEEE80211_PPE_THRES_RU_INDEX_BITMASK_POS		(3)
2613 #define IEEE80211_PPE_THRES_INFO_PPET_SIZE			(3)
2614 #define IEEE80211_HE_PPE_THRES_INFO_HEADER_SIZE			(7)
2615 
2616 /*
2617  * Calculate 802.11ax HE capabilities IE PPE field size
2618  * Input: Header byte of ppe_thres (first byte), and HE capa IE's PHY cap u8*
2619  */
2620 static inline u8
ieee80211_he_ppe_size(u8 ppe_thres_hdr,const u8 * phy_cap_info)2621 ieee80211_he_ppe_size(u8 ppe_thres_hdr, const u8 *phy_cap_info)
2622 {
2623 	u8 n;
2624 
2625 	if ((phy_cap_info[6] &
2626 	     IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) == 0)
2627 		return 0;
2628 
2629 	n = hweight8(ppe_thres_hdr &
2630 		     IEEE80211_PPE_THRES_RU_INDEX_BITMASK_MASK);
2631 	n *= (1 + ((ppe_thres_hdr & IEEE80211_PPE_THRES_NSS_MASK) >>
2632 		   IEEE80211_PPE_THRES_NSS_POS));
2633 
2634 	/*
2635 	 * Each pair is 6 bits, and we need to add the 7 "header" bits to the
2636 	 * total size.
2637 	 */
2638 	n = (n * IEEE80211_PPE_THRES_INFO_PPET_SIZE * 2) + 7;
2639 	n = DIV_ROUND_UP(n, 8);
2640 
2641 	return n;
2642 }
2643 
ieee80211_he_capa_size_ok(const u8 * data,u8 len)2644 static inline bool ieee80211_he_capa_size_ok(const u8 *data, u8 len)
2645 {
2646 	const struct ieee80211_he_cap_elem *he_cap_ie_elem = (const void *)data;
2647 	u8 needed = sizeof(*he_cap_ie_elem);
2648 
2649 	if (len < needed)
2650 		return false;
2651 
2652 	needed += ieee80211_he_mcs_nss_size(he_cap_ie_elem);
2653 	if (len < needed)
2654 		return false;
2655 
2656 	if (he_cap_ie_elem->phy_cap_info[6] &
2657 			IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT) {
2658 		if (len < needed + 1)
2659 			return false;
2660 		needed += ieee80211_he_ppe_size(data[needed],
2661 						he_cap_ie_elem->phy_cap_info);
2662 	}
2663 
2664 	return len >= needed;
2665 }
2666 
2667 /* HE Operation defines */
2668 #define IEEE80211_HE_OPERATION_DFLT_PE_DURATION_MASK		0x00000007
2669 #define IEEE80211_HE_OPERATION_TWT_REQUIRED			0x00000008
2670 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_MASK		0x00003ff0
2671 #define IEEE80211_HE_OPERATION_RTS_THRESHOLD_OFFSET		4
2672 #define IEEE80211_HE_OPERATION_VHT_OPER_INFO			0x00004000
2673 #define IEEE80211_HE_OPERATION_CO_HOSTED_BSS			0x00008000
2674 #define IEEE80211_HE_OPERATION_ER_SU_DISABLE			0x00010000
2675 #define IEEE80211_HE_OPERATION_6GHZ_OP_INFO			0x00020000
2676 #define IEEE80211_HE_OPERATION_BSS_COLOR_MASK			0x3f000000
2677 #define IEEE80211_HE_OPERATION_BSS_COLOR_OFFSET			24
2678 #define IEEE80211_HE_OPERATION_PARTIAL_BSS_COLOR		0x40000000
2679 #define IEEE80211_HE_OPERATION_BSS_COLOR_DISABLED		0x80000000
2680 
2681 #define IEEE80211_6GHZ_CTRL_REG_LPI_AP	0
2682 #define IEEE80211_6GHZ_CTRL_REG_SP_AP	1
2683 
2684 /**
2685  * struct ieee80211_he_6ghz_oper - HE 6 GHz operation Information field
2686  * @primary: primary channel
2687  * @control: control flags
2688  * @ccfs0: channel center frequency segment 0
2689  * @ccfs1: channel center frequency segment 1
2690  * @minrate: minimum rate (in 1 Mbps units)
2691  */
2692 struct ieee80211_he_6ghz_oper {
2693 	u8 primary;
2694 #define IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH	0x3
2695 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_20MHZ	0
2696 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_40MHZ	1
2697 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_80MHZ	2
2698 #define		IEEE80211_HE_6GHZ_OPER_CTRL_CHANWIDTH_160MHZ	3
2699 #define IEEE80211_HE_6GHZ_OPER_CTRL_DUP_BEACON	0x4
2700 #define IEEE80211_HE_6GHZ_OPER_CTRL_REG_INFO	0x38
2701 	u8 control;
2702 	u8 ccfs0;
2703 	u8 ccfs1;
2704 	u8 minrate;
2705 } __packed;
2706 
2707 /*
2708  * In "9.4.2.161 Transmit Power Envelope element" of "IEEE Std 802.11ax-2021",
2709  * it show four types in "Table 9-275a-Maximum Transmit Power Interpretation
2710  * subfield encoding", and two category for each type in "Table E-12-Regulatory
2711  * Info subfield encoding in the United States".
2712  * So it it totally max 8 Transmit Power Envelope element.
2713  */
2714 #define IEEE80211_TPE_MAX_IE_COUNT	8
2715 /*
2716  * In "Table 9-277—Meaning of Maximum Transmit Power Count subfield"
2717  * of "IEEE Std 802.11ax™‐2021", the max power level is 8.
2718  */
2719 #define IEEE80211_MAX_NUM_PWR_LEVEL	8
2720 
2721 #define IEEE80211_TPE_MAX_POWER_COUNT	8
2722 
2723 /* transmit power interpretation type of transmit power envelope element */
2724 enum ieee80211_tx_power_intrpt_type {
2725 	IEEE80211_TPE_LOCAL_EIRP,
2726 	IEEE80211_TPE_LOCAL_EIRP_PSD,
2727 	IEEE80211_TPE_REG_CLIENT_EIRP,
2728 	IEEE80211_TPE_REG_CLIENT_EIRP_PSD,
2729 };
2730 
2731 /**
2732  * struct ieee80211_tx_pwr_env - Transmit Power Envelope
2733  * @tx_power_info: Transmit Power Information field
2734  * @tx_power: Maximum Transmit Power field
2735  *
2736  * This structure represents the payload of the "Transmit Power
2737  * Envelope element" as described in IEEE Std 802.11ax-2021 section
2738  * 9.4.2.161
2739  */
2740 struct ieee80211_tx_pwr_env {
2741 	u8 tx_power_info;
2742 	s8 tx_power[IEEE80211_TPE_MAX_POWER_COUNT];
2743 } __packed;
2744 
2745 #define IEEE80211_TX_PWR_ENV_INFO_COUNT 0x7
2746 #define IEEE80211_TX_PWR_ENV_INFO_INTERPRET 0x38
2747 #define IEEE80211_TX_PWR_ENV_INFO_CATEGORY 0xC0
2748 
2749 /*
2750  * ieee80211_he_oper_size - calculate 802.11ax HE Operations IE size
2751  * @he_oper_ie: byte data of the He Operations IE, stating from the byte
2752  *	after the ext ID byte. It is assumed that he_oper_ie has at least
2753  *	sizeof(struct ieee80211_he_operation) bytes, the caller must have
2754  *	validated this.
2755  * @return the actual size of the IE data (not including header), or 0 on error
2756  */
2757 static inline u8
ieee80211_he_oper_size(const u8 * he_oper_ie)2758 ieee80211_he_oper_size(const u8 *he_oper_ie)
2759 {
2760 	const struct ieee80211_he_operation *he_oper = (const void *)he_oper_ie;
2761 	u8 oper_len = sizeof(struct ieee80211_he_operation);
2762 	u32 he_oper_params;
2763 
2764 	/* Make sure the input is not NULL */
2765 	if (!he_oper_ie)
2766 		return 0;
2767 
2768 	/* Calc required length */
2769 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2770 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2771 		oper_len += 3;
2772 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2773 		oper_len++;
2774 	if (he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO)
2775 		oper_len += sizeof(struct ieee80211_he_6ghz_oper);
2776 
2777 	/* Add the first byte (extension ID) to the total length */
2778 	oper_len++;
2779 
2780 	return oper_len;
2781 }
2782 
2783 /**
2784  * ieee80211_he_6ghz_oper - obtain 6 GHz operation field
2785  * @he_oper: HE operation element (must be pre-validated for size)
2786  *	but may be %NULL
2787  *
2788  * Return: a pointer to the 6 GHz operation field, or %NULL
2789  */
2790 static inline const struct ieee80211_he_6ghz_oper *
ieee80211_he_6ghz_oper(const struct ieee80211_he_operation * he_oper)2791 ieee80211_he_6ghz_oper(const struct ieee80211_he_operation *he_oper)
2792 {
2793 	const u8 *ret;
2794 	u32 he_oper_params;
2795 
2796 	if (!he_oper)
2797 		return NULL;
2798 
2799 	ret = (const void *)&he_oper->optional;
2800 
2801 	he_oper_params = le32_to_cpu(he_oper->he_oper_params);
2802 
2803 	if (!(he_oper_params & IEEE80211_HE_OPERATION_6GHZ_OP_INFO))
2804 		return NULL;
2805 	if (he_oper_params & IEEE80211_HE_OPERATION_VHT_OPER_INFO)
2806 		ret += 3;
2807 	if (he_oper_params & IEEE80211_HE_OPERATION_CO_HOSTED_BSS)
2808 		ret++;
2809 
2810 	return (const void *)ret;
2811 }
2812 
2813 /* HE Spatial Reuse defines */
2814 #define IEEE80211_HE_SPR_PSR_DISALLOWED				BIT(0)
2815 #define IEEE80211_HE_SPR_NON_SRG_OBSS_PD_SR_DISALLOWED		BIT(1)
2816 #define IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT			BIT(2)
2817 #define IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT		BIT(3)
2818 #define IEEE80211_HE_SPR_HESIGA_SR_VAL15_ALLOWED		BIT(4)
2819 
2820 /*
2821  * ieee80211_he_spr_size - calculate 802.11ax HE Spatial Reuse IE size
2822  * @he_spr_ie: byte data of the He Spatial Reuse IE, stating from the byte
2823  *	after the ext ID byte. It is assumed that he_spr_ie has at least
2824  *	sizeof(struct ieee80211_he_spr) bytes, the caller must have validated
2825  *	this
2826  * @return the actual size of the IE data (not including header), or 0 on error
2827  */
2828 static inline u8
ieee80211_he_spr_size(const u8 * he_spr_ie)2829 ieee80211_he_spr_size(const u8 *he_spr_ie)
2830 {
2831 	const struct ieee80211_he_spr *he_spr = (const void *)he_spr_ie;
2832 	u8 spr_len = sizeof(struct ieee80211_he_spr);
2833 	u8 he_spr_params;
2834 
2835 	/* Make sure the input is not NULL */
2836 	if (!he_spr_ie)
2837 		return 0;
2838 
2839 	/* Calc required length */
2840 	he_spr_params = he_spr->he_sr_control;
2841 	if (he_spr_params & IEEE80211_HE_SPR_NON_SRG_OFFSET_PRESENT)
2842 		spr_len++;
2843 	if (he_spr_params & IEEE80211_HE_SPR_SRG_INFORMATION_PRESENT)
2844 		spr_len += 18;
2845 
2846 	/* Add the first byte (extension ID) to the total length */
2847 	spr_len++;
2848 
2849 	return spr_len;
2850 }
2851 
2852 /* S1G Capabilities Information field */
2853 #define IEEE80211_S1G_CAPABILITY_LEN	15
2854 
2855 #define S1G_CAP0_S1G_LONG	BIT(0)
2856 #define S1G_CAP0_SGI_1MHZ	BIT(1)
2857 #define S1G_CAP0_SGI_2MHZ	BIT(2)
2858 #define S1G_CAP0_SGI_4MHZ	BIT(3)
2859 #define S1G_CAP0_SGI_8MHZ	BIT(4)
2860 #define S1G_CAP0_SGI_16MHZ	BIT(5)
2861 #define S1G_CAP0_SUPP_CH_WIDTH	GENMASK(7, 6)
2862 
2863 #define S1G_SUPP_CH_WIDTH_2	0
2864 #define S1G_SUPP_CH_WIDTH_4	1
2865 #define S1G_SUPP_CH_WIDTH_8	2
2866 #define S1G_SUPP_CH_WIDTH_16	3
2867 #define S1G_SUPP_CH_WIDTH_MAX(cap) ((1 << FIELD_GET(S1G_CAP0_SUPP_CH_WIDTH, \
2868 						    cap[0])) << 1)
2869 
2870 #define S1G_CAP1_RX_LDPC	BIT(0)
2871 #define S1G_CAP1_TX_STBC	BIT(1)
2872 #define S1G_CAP1_RX_STBC	BIT(2)
2873 #define S1G_CAP1_SU_BFER	BIT(3)
2874 #define S1G_CAP1_SU_BFEE	BIT(4)
2875 #define S1G_CAP1_BFEE_STS	GENMASK(7, 5)
2876 
2877 #define S1G_CAP2_SOUNDING_DIMENSIONS	GENMASK(2, 0)
2878 #define S1G_CAP2_MU_BFER		BIT(3)
2879 #define S1G_CAP2_MU_BFEE		BIT(4)
2880 #define S1G_CAP2_PLUS_HTC_VHT		BIT(5)
2881 #define S1G_CAP2_TRAVELING_PILOT	GENMASK(7, 6)
2882 
2883 #define S1G_CAP3_RD_RESPONDER		BIT(0)
2884 #define S1G_CAP3_HT_DELAYED_BA		BIT(1)
2885 #define S1G_CAP3_MAX_MPDU_LEN		BIT(2)
2886 #define S1G_CAP3_MAX_AMPDU_LEN_EXP	GENMASK(4, 3)
2887 #define S1G_CAP3_MIN_MPDU_START		GENMASK(7, 5)
2888 
2889 #define S1G_CAP4_UPLINK_SYNC	BIT(0)
2890 #define S1G_CAP4_DYNAMIC_AID	BIT(1)
2891 #define S1G_CAP4_BAT		BIT(2)
2892 #define S1G_CAP4_TIME_ADE	BIT(3)
2893 #define S1G_CAP4_NON_TIM	BIT(4)
2894 #define S1G_CAP4_GROUP_AID	BIT(5)
2895 #define S1G_CAP4_STA_TYPE	GENMASK(7, 6)
2896 
2897 #define S1G_CAP5_CENT_AUTH_CONTROL	BIT(0)
2898 #define S1G_CAP5_DIST_AUTH_CONTROL	BIT(1)
2899 #define S1G_CAP5_AMSDU			BIT(2)
2900 #define S1G_CAP5_AMPDU			BIT(3)
2901 #define S1G_CAP5_ASYMMETRIC_BA		BIT(4)
2902 #define S1G_CAP5_FLOW_CONTROL		BIT(5)
2903 #define S1G_CAP5_SECTORIZED_BEAM	GENMASK(7, 6)
2904 
2905 #define S1G_CAP6_OBSS_MITIGATION	BIT(0)
2906 #define S1G_CAP6_FRAGMENT_BA		BIT(1)
2907 #define S1G_CAP6_NDP_PS_POLL		BIT(2)
2908 #define S1G_CAP6_RAW_OPERATION		BIT(3)
2909 #define S1G_CAP6_PAGE_SLICING		BIT(4)
2910 #define S1G_CAP6_TXOP_SHARING_IMP_ACK	BIT(5)
2911 #define S1G_CAP6_VHT_LINK_ADAPT		GENMASK(7, 6)
2912 
2913 #define S1G_CAP7_TACK_AS_PS_POLL		BIT(0)
2914 #define S1G_CAP7_DUP_1MHZ			BIT(1)
2915 #define S1G_CAP7_MCS_NEGOTIATION		BIT(2)
2916 #define S1G_CAP7_1MHZ_CTL_RESPONSE_PREAMBLE	BIT(3)
2917 #define S1G_CAP7_NDP_BFING_REPORT_POLL		BIT(4)
2918 #define S1G_CAP7_UNSOLICITED_DYN_AID		BIT(5)
2919 #define S1G_CAP7_SECTOR_TRAINING_OPERATION	BIT(6)
2920 #define S1G_CAP7_TEMP_PS_MODE_SWITCH		BIT(7)
2921 
2922 #define S1G_CAP8_TWT_GROUPING	BIT(0)
2923 #define S1G_CAP8_BDT		BIT(1)
2924 #define S1G_CAP8_COLOR		GENMASK(4, 2)
2925 #define S1G_CAP8_TWT_REQUEST	BIT(5)
2926 #define S1G_CAP8_TWT_RESPOND	BIT(6)
2927 #define S1G_CAP8_PV1_FRAME	BIT(7)
2928 
2929 #define S1G_CAP9_LINK_ADAPT_PER_CONTROL_RESPONSE BIT(0)
2930 
2931 #define S1G_OPER_CH_WIDTH_PRIMARY_1MHZ	BIT(0)
2932 #define S1G_OPER_CH_WIDTH_OPER		GENMASK(4, 1)
2933 
2934 /* EHT MAC capabilities as defined in P802.11be_D2.0 section 9.4.2.313.2 */
2935 #define IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS			0x01
2936 #define IEEE80211_EHT_MAC_CAP0_OM_CONTROL			0x02
2937 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1		0x04
2938 #define IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2		0x08
2939 #define IEEE80211_EHT_MAC_CAP0_RESTRICTED_TWT			0x10
2940 #define IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC			0x20
2941 #define IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK		0xc0
2942 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_3895	        0
2943 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_7991	        1
2944 #define	IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454	        2
2945 
2946 #define IEEE80211_EHT_MAC_CAP1_MAX_AMPDU_LEN_MASK		0x01
2947 
2948 /* EHT PHY capabilities as defined in P802.11be_D2.0 section 9.4.2.313.3 */
2949 #define IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ			0x02
2950 #define IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ		0x04
2951 #define IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI		0x08
2952 #define IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO		0x10
2953 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMER			0x20
2954 #define IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE			0x40
2955 
2956 /* EHT beamformee number of spatial streams <= 80MHz is split */
2957 #define IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK		0x80
2958 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK		0x03
2959 
2960 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK	0x1c
2961 #define IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK	0xe0
2962 
2963 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_80MHZ_MASK		0x07
2964 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_160MHZ_MASK		0x38
2965 
2966 /* EHT number of sounding dimensions for 320MHz is split */
2967 #define IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK		0xc0
2968 #define IEEE80211_EHT_PHY_CAP3_SOUNDING_DIM_320MHZ_MASK		0x01
2969 #define IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK		0x02
2970 #define IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK		0x04
2971 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK		0x08
2972 #define IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK		0x10
2973 #define IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK			0x20
2974 #define IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK		0x40
2975 #define IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK			0x80
2976 
2977 #define IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO		0x01
2978 #define IEEE80211_EHT_PHY_CAP4_PSR_SR_SUPP			0x02
2979 #define IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP		0x04
2980 #define IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI	0x08
2981 #define IEEE80211_EHT_PHY_CAP4_MAX_NC_MASK			0xf0
2982 
2983 #define IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK		0x01
2984 #define IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP		0x02
2985 #define IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP		0x04
2986 #define IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT		0x08
2987 #define IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK	0x30
2988 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_0US	0
2989 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_8US	1
2990 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US	2
2991 #define   IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_20US	3
2992 
2993 /* Maximum number of supported EHT LTF is split */
2994 #define IEEE80211_EHT_PHY_CAP5_MAX_NUM_SUPP_EHT_LTF_MASK	0xc0
2995 #define IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF		0x40
2996 #define IEEE80211_EHT_PHY_CAP6_MAX_NUM_SUPP_EHT_LTF_MASK	0x07
2997 
2998 #define IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK			0x78
2999 #define IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP		0x80
3000 
3001 #define IEEE80211_EHT_PHY_CAP7_20MHZ_STA_RX_NDP_WIDER_BW	0x01
3002 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_80MHZ	0x02
3003 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_160MHZ	0x04
3004 #define IEEE80211_EHT_PHY_CAP7_NON_OFDMA_UL_MU_MIMO_320MHZ	0x08
3005 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_80MHZ		0x10
3006 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_160MHZ		0x20
3007 #define IEEE80211_EHT_PHY_CAP7_MU_BEAMFORMER_320MHZ		0x40
3008 #define IEEE80211_EHT_PHY_CAP7_TB_SOUNDING_FDBK_RATE_LIMIT	0x80
3009 
3010 #define IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA	0x01
3011 #define IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA	0x02
3012 
3013 /*
3014  * EHT operation channel width as defined in P802.11be_D2.0 section 9.4.2.311
3015  */
3016 #define IEEE80211_EHT_OPER_CHAN_WIDTH		0x7
3017 #define IEEE80211_EHT_OPER_CHAN_WIDTH_20MHZ	0
3018 #define IEEE80211_EHT_OPER_CHAN_WIDTH_40MHZ	1
3019 #define IEEE80211_EHT_OPER_CHAN_WIDTH_80MHZ	2
3020 #define IEEE80211_EHT_OPER_CHAN_WIDTH_160MHZ	3
3021 #define IEEE80211_EHT_OPER_CHAN_WIDTH_320MHZ	4
3022 
3023 /* Calculate 802.11be EHT capabilities IE Tx/Rx EHT MCS NSS Support Field size */
3024 static inline u8
ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem * he_cap,const struct ieee80211_eht_cap_elem_fixed * eht_cap,bool from_ap)3025 ieee80211_eht_mcs_nss_size(const struct ieee80211_he_cap_elem *he_cap,
3026 			   const struct ieee80211_eht_cap_elem_fixed *eht_cap,
3027 			   bool from_ap)
3028 {
3029 	u8 count = 0;
3030 
3031 	/* on 2.4 GHz, if it supports 40 MHz, the result is 3 */
3032 	if (he_cap->phy_cap_info[0] &
3033 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G)
3034 		return 3;
3035 
3036 	/* on 2.4 GHz, these three bits are reserved, so should be 0 */
3037 	if (he_cap->phy_cap_info[0] &
3038 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G)
3039 		count += 3;
3040 
3041 	if (he_cap->phy_cap_info[0] &
3042 	    IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G)
3043 		count += 3;
3044 
3045 	if (eht_cap->phy_cap_info[0] & IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ)
3046 		count += 3;
3047 
3048 	if (count)
3049 		return count;
3050 
3051 	return from_ap ? 3 : 4;
3052 }
3053 
3054 /* 802.11be EHT PPE Thresholds */
3055 #define IEEE80211_EHT_PPE_THRES_NSS_POS			0
3056 #define IEEE80211_EHT_PPE_THRES_NSS_MASK		0xf
3057 #define IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK	0x1f0
3058 #define IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE		3
3059 #define IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE	9
3060 
3061 /*
3062  * Calculate 802.11be EHT capabilities IE EHT field size
3063  */
3064 static inline u8
ieee80211_eht_ppe_size(u16 ppe_thres_hdr,const u8 * phy_cap_info)3065 ieee80211_eht_ppe_size(u16 ppe_thres_hdr, const u8 *phy_cap_info)
3066 {
3067 	u32 n;
3068 
3069 	if (!(phy_cap_info[5] &
3070 	      IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT))
3071 		return 0;
3072 
3073 	n = hweight16(ppe_thres_hdr &
3074 		      IEEE80211_EHT_PPE_THRES_RU_INDEX_BITMASK_MASK);
3075 	n *= 1 + u16_get_bits(ppe_thres_hdr, IEEE80211_EHT_PPE_THRES_NSS_MASK);
3076 
3077 	/*
3078 	 * Each pair is 6 bits, and we need to add the 9 "header" bits to the
3079 	 * total size.
3080 	 */
3081 	n = n * IEEE80211_EHT_PPE_THRES_INFO_PPET_SIZE * 2 +
3082 	    IEEE80211_EHT_PPE_THRES_INFO_HEADER_SIZE;
3083 	return DIV_ROUND_UP(n, 8);
3084 }
3085 
3086 static inline bool
ieee80211_eht_capa_size_ok(const u8 * he_capa,const u8 * data,u8 len,bool from_ap)3087 ieee80211_eht_capa_size_ok(const u8 *he_capa, const u8 *data, u8 len,
3088 			   bool from_ap)
3089 {
3090 	const struct ieee80211_eht_cap_elem_fixed *elem = (const void *)data;
3091 	u8 needed = sizeof(struct ieee80211_eht_cap_elem_fixed);
3092 
3093 	if (len < needed || !he_capa)
3094 		return false;
3095 
3096 	needed += ieee80211_eht_mcs_nss_size((const void *)he_capa,
3097 					     (const void *)data,
3098 					     from_ap);
3099 	if (len < needed)
3100 		return false;
3101 
3102 	if (elem->phy_cap_info[5] &
3103 			IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT) {
3104 		u16 ppe_thres_hdr;
3105 
3106 		if (len < needed + sizeof(ppe_thres_hdr))
3107 			return false;
3108 
3109 		ppe_thres_hdr = get_unaligned_le16(data + needed);
3110 		needed += ieee80211_eht_ppe_size(ppe_thres_hdr,
3111 						 elem->phy_cap_info);
3112 	}
3113 
3114 	return len >= needed;
3115 }
3116 
3117 static inline bool
ieee80211_eht_oper_size_ok(const u8 * data,u8 len)3118 ieee80211_eht_oper_size_ok(const u8 *data, u8 len)
3119 {
3120 	const struct ieee80211_eht_operation *elem = (const void *)data;
3121 	u8 needed = sizeof(*elem);
3122 
3123 	if (len < needed)
3124 		return false;
3125 
3126 	if (elem->params & IEEE80211_EHT_OPER_INFO_PRESENT) {
3127 		needed += 3;
3128 
3129 		if (elem->params &
3130 		    IEEE80211_EHT_OPER_DISABLED_SUBCHANNEL_BITMAP_PRESENT)
3131 			needed += 2;
3132 	}
3133 
3134 	return len >= needed;
3135 }
3136 
3137 #define LISTEN_INT_USF	GENMASK(15, 14)
3138 #define LISTEN_INT_UI	GENMASK(13, 0)
3139 
3140 #define IEEE80211_MAX_USF	FIELD_MAX(LISTEN_INT_USF)
3141 #define IEEE80211_MAX_UI	FIELD_MAX(LISTEN_INT_UI)
3142 
3143 /* Authentication algorithms */
3144 #define WLAN_AUTH_OPEN 0
3145 #define WLAN_AUTH_SHARED_KEY 1
3146 #define WLAN_AUTH_FT 2
3147 #define WLAN_AUTH_SAE 3
3148 #define WLAN_AUTH_FILS_SK 4
3149 #define WLAN_AUTH_FILS_SK_PFS 5
3150 #define WLAN_AUTH_FILS_PK 6
3151 #define WLAN_AUTH_LEAP 128
3152 
3153 #define WLAN_AUTH_CHALLENGE_LEN 128
3154 
3155 #define WLAN_CAPABILITY_ESS		(1<<0)
3156 #define WLAN_CAPABILITY_IBSS		(1<<1)
3157 
3158 /*
3159  * A mesh STA sets the ESS and IBSS capability bits to zero.
3160  * however, this holds true for p2p probe responses (in the p2p_find
3161  * phase) as well.
3162  */
3163 #define WLAN_CAPABILITY_IS_STA_BSS(cap)	\
3164 	(!((cap) & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)))
3165 
3166 #define WLAN_CAPABILITY_CF_POLLABLE	(1<<2)
3167 #define WLAN_CAPABILITY_CF_POLL_REQUEST	(1<<3)
3168 #define WLAN_CAPABILITY_PRIVACY		(1<<4)
3169 #define WLAN_CAPABILITY_SHORT_PREAMBLE	(1<<5)
3170 #define WLAN_CAPABILITY_PBCC		(1<<6)
3171 #define WLAN_CAPABILITY_CHANNEL_AGILITY	(1<<7)
3172 
3173 /* 802.11h */
3174 #define WLAN_CAPABILITY_SPECTRUM_MGMT	(1<<8)
3175 #define WLAN_CAPABILITY_QOS		(1<<9)
3176 #define WLAN_CAPABILITY_SHORT_SLOT_TIME	(1<<10)
3177 #define WLAN_CAPABILITY_APSD		(1<<11)
3178 #define WLAN_CAPABILITY_RADIO_MEASURE	(1<<12)
3179 #define WLAN_CAPABILITY_DSSS_OFDM	(1<<13)
3180 #define WLAN_CAPABILITY_DEL_BACK	(1<<14)
3181 #define WLAN_CAPABILITY_IMM_BACK	(1<<15)
3182 
3183 /* DMG (60gHz) 802.11ad */
3184 /* type - bits 0..1 */
3185 #define WLAN_CAPABILITY_DMG_TYPE_MASK		(3<<0)
3186 #define WLAN_CAPABILITY_DMG_TYPE_IBSS		(1<<0) /* Tx by: STA */
3187 #define WLAN_CAPABILITY_DMG_TYPE_PBSS		(2<<0) /* Tx by: PCP */
3188 #define WLAN_CAPABILITY_DMG_TYPE_AP		(3<<0) /* Tx by: AP */
3189 
3190 #define WLAN_CAPABILITY_DMG_CBAP_ONLY		(1<<2)
3191 #define WLAN_CAPABILITY_DMG_CBAP_SOURCE		(1<<3)
3192 #define WLAN_CAPABILITY_DMG_PRIVACY		(1<<4)
3193 #define WLAN_CAPABILITY_DMG_ECPAC		(1<<5)
3194 
3195 #define WLAN_CAPABILITY_DMG_SPECTRUM_MGMT	(1<<8)
3196 #define WLAN_CAPABILITY_DMG_RADIO_MEASURE	(1<<12)
3197 
3198 /* measurement */
3199 #define IEEE80211_SPCT_MSR_RPRT_MODE_LATE	(1<<0)
3200 #define IEEE80211_SPCT_MSR_RPRT_MODE_INCAPABLE	(1<<1)
3201 #define IEEE80211_SPCT_MSR_RPRT_MODE_REFUSED	(1<<2)
3202 
3203 #define IEEE80211_SPCT_MSR_RPRT_TYPE_BASIC	0
3204 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CCA	1
3205 #define IEEE80211_SPCT_MSR_RPRT_TYPE_RPI	2
3206 #define IEEE80211_SPCT_MSR_RPRT_TYPE_LCI	8
3207 #define IEEE80211_SPCT_MSR_RPRT_TYPE_CIVIC	11
3208 
3209 /* 802.11g ERP information element */
3210 #define WLAN_ERP_NON_ERP_PRESENT (1<<0)
3211 #define WLAN_ERP_USE_PROTECTION (1<<1)
3212 #define WLAN_ERP_BARKER_PREAMBLE (1<<2)
3213 
3214 /* WLAN_ERP_BARKER_PREAMBLE values */
3215 enum {
3216 	WLAN_ERP_PREAMBLE_SHORT = 0,
3217 	WLAN_ERP_PREAMBLE_LONG = 1,
3218 };
3219 
3220 /* Band ID, 802.11ad #8.4.1.45 */
3221 enum {
3222 	IEEE80211_BANDID_TV_WS = 0, /* TV white spaces */
3223 	IEEE80211_BANDID_SUB1  = 1, /* Sub-1 GHz (excluding TV white spaces) */
3224 	IEEE80211_BANDID_2G    = 2, /* 2.4 GHz */
3225 	IEEE80211_BANDID_3G    = 3, /* 3.6 GHz */
3226 	IEEE80211_BANDID_5G    = 4, /* 4.9 and 5 GHz */
3227 	IEEE80211_BANDID_60G   = 5, /* 60 GHz */
3228 };
3229 
3230 /* Status codes */
3231 enum ieee80211_statuscode {
3232 	WLAN_STATUS_SUCCESS = 0,
3233 	WLAN_STATUS_UNSPECIFIED_FAILURE = 1,
3234 	WLAN_STATUS_CAPS_UNSUPPORTED = 10,
3235 	WLAN_STATUS_REASSOC_NO_ASSOC = 11,
3236 	WLAN_STATUS_ASSOC_DENIED_UNSPEC = 12,
3237 	WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG = 13,
3238 	WLAN_STATUS_UNKNOWN_AUTH_TRANSACTION = 14,
3239 	WLAN_STATUS_CHALLENGE_FAIL = 15,
3240 	WLAN_STATUS_AUTH_TIMEOUT = 16,
3241 	WLAN_STATUS_AP_UNABLE_TO_HANDLE_NEW_STA = 17,
3242 	WLAN_STATUS_ASSOC_DENIED_RATES = 18,
3243 	/* 802.11b */
3244 	WLAN_STATUS_ASSOC_DENIED_NOSHORTPREAMBLE = 19,
3245 	WLAN_STATUS_ASSOC_DENIED_NOPBCC = 20,
3246 	WLAN_STATUS_ASSOC_DENIED_NOAGILITY = 21,
3247 	/* 802.11h */
3248 	WLAN_STATUS_ASSOC_DENIED_NOSPECTRUM = 22,
3249 	WLAN_STATUS_ASSOC_REJECTED_BAD_POWER = 23,
3250 	WLAN_STATUS_ASSOC_REJECTED_BAD_SUPP_CHAN = 24,
3251 	/* 802.11g */
3252 	WLAN_STATUS_ASSOC_DENIED_NOSHORTTIME = 25,
3253 	WLAN_STATUS_ASSOC_DENIED_NODSSSOFDM = 26,
3254 	/* 802.11w */
3255 	WLAN_STATUS_ASSOC_REJECTED_TEMPORARILY = 30,
3256 	WLAN_STATUS_ROBUST_MGMT_FRAME_POLICY_VIOLATION = 31,
3257 	/* 802.11i */
3258 	WLAN_STATUS_INVALID_IE = 40,
3259 	WLAN_STATUS_INVALID_GROUP_CIPHER = 41,
3260 	WLAN_STATUS_INVALID_PAIRWISE_CIPHER = 42,
3261 	WLAN_STATUS_INVALID_AKMP = 43,
3262 	WLAN_STATUS_UNSUPP_RSN_VERSION = 44,
3263 	WLAN_STATUS_INVALID_RSN_IE_CAP = 45,
3264 	WLAN_STATUS_CIPHER_SUITE_REJECTED = 46,
3265 	/* 802.11e */
3266 	WLAN_STATUS_UNSPECIFIED_QOS = 32,
3267 	WLAN_STATUS_ASSOC_DENIED_NOBANDWIDTH = 33,
3268 	WLAN_STATUS_ASSOC_DENIED_LOWACK = 34,
3269 	WLAN_STATUS_ASSOC_DENIED_UNSUPP_QOS = 35,
3270 	WLAN_STATUS_REQUEST_DECLINED = 37,
3271 	WLAN_STATUS_INVALID_QOS_PARAM = 38,
3272 	WLAN_STATUS_CHANGE_TSPEC = 39,
3273 	WLAN_STATUS_WAIT_TS_DELAY = 47,
3274 	WLAN_STATUS_NO_DIRECT_LINK = 48,
3275 	WLAN_STATUS_STA_NOT_PRESENT = 49,
3276 	WLAN_STATUS_STA_NOT_QSTA = 50,
3277 	/* 802.11s */
3278 	WLAN_STATUS_ANTI_CLOG_REQUIRED = 76,
3279 	WLAN_STATUS_FCG_NOT_SUPP = 78,
3280 	WLAN_STATUS_STA_NO_TBTT = 78,
3281 	/* 802.11ad */
3282 	WLAN_STATUS_REJECTED_WITH_SUGGESTED_CHANGES = 39,
3283 	WLAN_STATUS_REJECTED_FOR_DELAY_PERIOD = 47,
3284 	WLAN_STATUS_REJECT_WITH_SCHEDULE = 83,
3285 	WLAN_STATUS_PENDING_ADMITTING_FST_SESSION = 86,
3286 	WLAN_STATUS_PERFORMING_FST_NOW = 87,
3287 	WLAN_STATUS_PENDING_GAP_IN_BA_WINDOW = 88,
3288 	WLAN_STATUS_REJECT_U_PID_SETTING = 89,
3289 	WLAN_STATUS_REJECT_DSE_BAND = 96,
3290 	WLAN_STATUS_DENIED_WITH_SUGGESTED_BAND_AND_CHANNEL = 99,
3291 	WLAN_STATUS_DENIED_DUE_TO_SPECTRUM_MANAGEMENT = 103,
3292 	/* 802.11ai */
3293 	WLAN_STATUS_FILS_AUTHENTICATION_FAILURE = 108,
3294 	WLAN_STATUS_UNKNOWN_AUTHENTICATION_SERVER = 109,
3295 	WLAN_STATUS_SAE_HASH_TO_ELEMENT = 126,
3296 	WLAN_STATUS_SAE_PK = 127,
3297 };
3298 
3299 
3300 /* Reason codes */
3301 enum ieee80211_reasoncode {
3302 	WLAN_REASON_UNSPECIFIED = 1,
3303 	WLAN_REASON_PREV_AUTH_NOT_VALID = 2,
3304 	WLAN_REASON_DEAUTH_LEAVING = 3,
3305 	WLAN_REASON_DISASSOC_DUE_TO_INACTIVITY = 4,
3306 	WLAN_REASON_DISASSOC_AP_BUSY = 5,
3307 	WLAN_REASON_CLASS2_FRAME_FROM_NONAUTH_STA = 6,
3308 	WLAN_REASON_CLASS3_FRAME_FROM_NONASSOC_STA = 7,
3309 	WLAN_REASON_DISASSOC_STA_HAS_LEFT = 8,
3310 	WLAN_REASON_STA_REQ_ASSOC_WITHOUT_AUTH = 9,
3311 	/* 802.11h */
3312 	WLAN_REASON_DISASSOC_BAD_POWER = 10,
3313 	WLAN_REASON_DISASSOC_BAD_SUPP_CHAN = 11,
3314 	/* 802.11i */
3315 	WLAN_REASON_INVALID_IE = 13,
3316 	WLAN_REASON_MIC_FAILURE = 14,
3317 	WLAN_REASON_4WAY_HANDSHAKE_TIMEOUT = 15,
3318 	WLAN_REASON_GROUP_KEY_HANDSHAKE_TIMEOUT = 16,
3319 	WLAN_REASON_IE_DIFFERENT = 17,
3320 	WLAN_REASON_INVALID_GROUP_CIPHER = 18,
3321 	WLAN_REASON_INVALID_PAIRWISE_CIPHER = 19,
3322 	WLAN_REASON_INVALID_AKMP = 20,
3323 	WLAN_REASON_UNSUPP_RSN_VERSION = 21,
3324 	WLAN_REASON_INVALID_RSN_IE_CAP = 22,
3325 	WLAN_REASON_IEEE8021X_FAILED = 23,
3326 	WLAN_REASON_CIPHER_SUITE_REJECTED = 24,
3327 	/* TDLS (802.11z) */
3328 	WLAN_REASON_TDLS_TEARDOWN_UNREACHABLE = 25,
3329 	WLAN_REASON_TDLS_TEARDOWN_UNSPECIFIED = 26,
3330 	/* 802.11e */
3331 	WLAN_REASON_DISASSOC_UNSPECIFIED_QOS = 32,
3332 	WLAN_REASON_DISASSOC_QAP_NO_BANDWIDTH = 33,
3333 	WLAN_REASON_DISASSOC_LOW_ACK = 34,
3334 	WLAN_REASON_DISASSOC_QAP_EXCEED_TXOP = 35,
3335 	WLAN_REASON_QSTA_LEAVE_QBSS = 36,
3336 	WLAN_REASON_QSTA_NOT_USE = 37,
3337 	WLAN_REASON_QSTA_REQUIRE_SETUP = 38,
3338 	WLAN_REASON_QSTA_TIMEOUT = 39,
3339 	WLAN_REASON_QSTA_CIPHER_NOT_SUPP = 45,
3340 	/* 802.11s */
3341 	WLAN_REASON_MESH_PEER_CANCELED = 52,
3342 	WLAN_REASON_MESH_MAX_PEERS = 53,
3343 	WLAN_REASON_MESH_CONFIG = 54,
3344 	WLAN_REASON_MESH_CLOSE = 55,
3345 	WLAN_REASON_MESH_MAX_RETRIES = 56,
3346 	WLAN_REASON_MESH_CONFIRM_TIMEOUT = 57,
3347 	WLAN_REASON_MESH_INVALID_GTK = 58,
3348 	WLAN_REASON_MESH_INCONSISTENT_PARAM = 59,
3349 	WLAN_REASON_MESH_INVALID_SECURITY = 60,
3350 	WLAN_REASON_MESH_PATH_ERROR = 61,
3351 	WLAN_REASON_MESH_PATH_NOFORWARD = 62,
3352 	WLAN_REASON_MESH_PATH_DEST_UNREACHABLE = 63,
3353 	WLAN_REASON_MAC_EXISTS_IN_MBSS = 64,
3354 	WLAN_REASON_MESH_CHAN_REGULATORY = 65,
3355 	WLAN_REASON_MESH_CHAN = 66,
3356 };
3357 
3358 
3359 /* Information Element IDs */
3360 enum ieee80211_eid {
3361 	WLAN_EID_SSID = 0,
3362 	WLAN_EID_SUPP_RATES = 1,
3363 	WLAN_EID_FH_PARAMS = 2, /* reserved now */
3364 	WLAN_EID_DS_PARAMS = 3,
3365 	WLAN_EID_CF_PARAMS = 4,
3366 	WLAN_EID_TIM = 5,
3367 	WLAN_EID_IBSS_PARAMS = 6,
3368 	WLAN_EID_COUNTRY = 7,
3369 	/* 8, 9 reserved */
3370 	WLAN_EID_REQUEST = 10,
3371 	WLAN_EID_QBSS_LOAD = 11,
3372 	WLAN_EID_EDCA_PARAM_SET = 12,
3373 	WLAN_EID_TSPEC = 13,
3374 	WLAN_EID_TCLAS = 14,
3375 	WLAN_EID_SCHEDULE = 15,
3376 	WLAN_EID_CHALLENGE = 16,
3377 	/* 17-31 reserved for challenge text extension */
3378 	WLAN_EID_PWR_CONSTRAINT = 32,
3379 	WLAN_EID_PWR_CAPABILITY = 33,
3380 	WLAN_EID_TPC_REQUEST = 34,
3381 	WLAN_EID_TPC_REPORT = 35,
3382 	WLAN_EID_SUPPORTED_CHANNELS = 36,
3383 	WLAN_EID_CHANNEL_SWITCH = 37,
3384 	WLAN_EID_MEASURE_REQUEST = 38,
3385 	WLAN_EID_MEASURE_REPORT = 39,
3386 	WLAN_EID_QUIET = 40,
3387 	WLAN_EID_IBSS_DFS = 41,
3388 	WLAN_EID_ERP_INFO = 42,
3389 	WLAN_EID_TS_DELAY = 43,
3390 	WLAN_EID_TCLAS_PROCESSING = 44,
3391 	WLAN_EID_HT_CAPABILITY = 45,
3392 	WLAN_EID_QOS_CAPA = 46,
3393 	/* 47 reserved for Broadcom */
3394 	WLAN_EID_RSN = 48,
3395 	WLAN_EID_802_15_COEX = 49,
3396 	WLAN_EID_EXT_SUPP_RATES = 50,
3397 	WLAN_EID_AP_CHAN_REPORT = 51,
3398 	WLAN_EID_NEIGHBOR_REPORT = 52,
3399 	WLAN_EID_RCPI = 53,
3400 	WLAN_EID_MOBILITY_DOMAIN = 54,
3401 	WLAN_EID_FAST_BSS_TRANSITION = 55,
3402 	WLAN_EID_TIMEOUT_INTERVAL = 56,
3403 	WLAN_EID_RIC_DATA = 57,
3404 	WLAN_EID_DSE_REGISTERED_LOCATION = 58,
3405 	WLAN_EID_SUPPORTED_REGULATORY_CLASSES = 59,
3406 	WLAN_EID_EXT_CHANSWITCH_ANN = 60,
3407 	WLAN_EID_HT_OPERATION = 61,
3408 	WLAN_EID_SECONDARY_CHANNEL_OFFSET = 62,
3409 	WLAN_EID_BSS_AVG_ACCESS_DELAY = 63,
3410 	WLAN_EID_ANTENNA_INFO = 64,
3411 	WLAN_EID_RSNI = 65,
3412 	WLAN_EID_MEASUREMENT_PILOT_TX_INFO = 66,
3413 	WLAN_EID_BSS_AVAILABLE_CAPACITY = 67,
3414 	WLAN_EID_BSS_AC_ACCESS_DELAY = 68,
3415 	WLAN_EID_TIME_ADVERTISEMENT = 69,
3416 	WLAN_EID_RRM_ENABLED_CAPABILITIES = 70,
3417 	WLAN_EID_MULTIPLE_BSSID = 71,
3418 	WLAN_EID_BSS_COEX_2040 = 72,
3419 	WLAN_EID_BSS_INTOLERANT_CHL_REPORT = 73,
3420 	WLAN_EID_OVERLAP_BSS_SCAN_PARAM = 74,
3421 	WLAN_EID_RIC_DESCRIPTOR = 75,
3422 	WLAN_EID_MMIE = 76,
3423 	WLAN_EID_ASSOC_COMEBACK_TIME = 77,
3424 	WLAN_EID_EVENT_REQUEST = 78,
3425 	WLAN_EID_EVENT_REPORT = 79,
3426 	WLAN_EID_DIAGNOSTIC_REQUEST = 80,
3427 	WLAN_EID_DIAGNOSTIC_REPORT = 81,
3428 	WLAN_EID_LOCATION_PARAMS = 82,
3429 	WLAN_EID_NON_TX_BSSID_CAP =  83,
3430 	WLAN_EID_SSID_LIST = 84,
3431 	WLAN_EID_MULTI_BSSID_IDX = 85,
3432 	WLAN_EID_FMS_DESCRIPTOR = 86,
3433 	WLAN_EID_FMS_REQUEST = 87,
3434 	WLAN_EID_FMS_RESPONSE = 88,
3435 	WLAN_EID_QOS_TRAFFIC_CAPA = 89,
3436 	WLAN_EID_BSS_MAX_IDLE_PERIOD = 90,
3437 	WLAN_EID_TSF_REQUEST = 91,
3438 	WLAN_EID_TSF_RESPOSNE = 92,
3439 	WLAN_EID_WNM_SLEEP_MODE = 93,
3440 	WLAN_EID_TIM_BCAST_REQ = 94,
3441 	WLAN_EID_TIM_BCAST_RESP = 95,
3442 	WLAN_EID_COLL_IF_REPORT = 96,
3443 	WLAN_EID_CHANNEL_USAGE = 97,
3444 	WLAN_EID_TIME_ZONE = 98,
3445 	WLAN_EID_DMS_REQUEST = 99,
3446 	WLAN_EID_DMS_RESPONSE = 100,
3447 	WLAN_EID_LINK_ID = 101,
3448 	WLAN_EID_WAKEUP_SCHEDUL = 102,
3449 	/* 103 reserved */
3450 	WLAN_EID_CHAN_SWITCH_TIMING = 104,
3451 	WLAN_EID_PTI_CONTROL = 105,
3452 	WLAN_EID_PU_BUFFER_STATUS = 106,
3453 	WLAN_EID_INTERWORKING = 107,
3454 	WLAN_EID_ADVERTISEMENT_PROTOCOL = 108,
3455 	WLAN_EID_EXPEDITED_BW_REQ = 109,
3456 	WLAN_EID_QOS_MAP_SET = 110,
3457 	WLAN_EID_ROAMING_CONSORTIUM = 111,
3458 	WLAN_EID_EMERGENCY_ALERT = 112,
3459 	WLAN_EID_MESH_CONFIG = 113,
3460 	WLAN_EID_MESH_ID = 114,
3461 	WLAN_EID_LINK_METRIC_REPORT = 115,
3462 	WLAN_EID_CONGESTION_NOTIFICATION = 116,
3463 	WLAN_EID_PEER_MGMT = 117,
3464 	WLAN_EID_CHAN_SWITCH_PARAM = 118,
3465 	WLAN_EID_MESH_AWAKE_WINDOW = 119,
3466 	WLAN_EID_BEACON_TIMING = 120,
3467 	WLAN_EID_MCCAOP_SETUP_REQ = 121,
3468 	WLAN_EID_MCCAOP_SETUP_RESP = 122,
3469 	WLAN_EID_MCCAOP_ADVERT = 123,
3470 	WLAN_EID_MCCAOP_TEARDOWN = 124,
3471 	WLAN_EID_GANN = 125,
3472 	WLAN_EID_RANN = 126,
3473 	WLAN_EID_EXT_CAPABILITY = 127,
3474 	/* 128, 129 reserved for Agere */
3475 	WLAN_EID_PREQ = 130,
3476 	WLAN_EID_PREP = 131,
3477 	WLAN_EID_PERR = 132,
3478 	/* 133-136 reserved for Cisco */
3479 	WLAN_EID_PXU = 137,
3480 	WLAN_EID_PXUC = 138,
3481 	WLAN_EID_AUTH_MESH_PEER_EXCH = 139,
3482 	WLAN_EID_MIC = 140,
3483 	WLAN_EID_DESTINATION_URI = 141,
3484 	WLAN_EID_UAPSD_COEX = 142,
3485 	WLAN_EID_WAKEUP_SCHEDULE = 143,
3486 	WLAN_EID_EXT_SCHEDULE = 144,
3487 	WLAN_EID_STA_AVAILABILITY = 145,
3488 	WLAN_EID_DMG_TSPEC = 146,
3489 	WLAN_EID_DMG_AT = 147,
3490 	WLAN_EID_DMG_CAP = 148,
3491 	/* 149 reserved for Cisco */
3492 	WLAN_EID_CISCO_VENDOR_SPECIFIC = 150,
3493 	WLAN_EID_DMG_OPERATION = 151,
3494 	WLAN_EID_DMG_BSS_PARAM_CHANGE = 152,
3495 	WLAN_EID_DMG_BEAM_REFINEMENT = 153,
3496 	WLAN_EID_CHANNEL_MEASURE_FEEDBACK = 154,
3497 	/* 155-156 reserved for Cisco */
3498 	WLAN_EID_AWAKE_WINDOW = 157,
3499 	WLAN_EID_MULTI_BAND = 158,
3500 	WLAN_EID_ADDBA_EXT = 159,
3501 	WLAN_EID_NEXT_PCP_LIST = 160,
3502 	WLAN_EID_PCP_HANDOVER = 161,
3503 	WLAN_EID_DMG_LINK_MARGIN = 162,
3504 	WLAN_EID_SWITCHING_STREAM = 163,
3505 	WLAN_EID_SESSION_TRANSITION = 164,
3506 	WLAN_EID_DYN_TONE_PAIRING_REPORT = 165,
3507 	WLAN_EID_CLUSTER_REPORT = 166,
3508 	WLAN_EID_RELAY_CAP = 167,
3509 	WLAN_EID_RELAY_XFER_PARAM_SET = 168,
3510 	WLAN_EID_BEAM_LINK_MAINT = 169,
3511 	WLAN_EID_MULTIPLE_MAC_ADDR = 170,
3512 	WLAN_EID_U_PID = 171,
3513 	WLAN_EID_DMG_LINK_ADAPT_ACK = 172,
3514 	/* 173 reserved for Symbol */
3515 	WLAN_EID_MCCAOP_ADV_OVERVIEW = 174,
3516 	WLAN_EID_QUIET_PERIOD_REQ = 175,
3517 	/* 176 reserved for Symbol */
3518 	WLAN_EID_QUIET_PERIOD_RESP = 177,
3519 	/* 178-179 reserved for Symbol */
3520 	/* 180 reserved for ISO/IEC 20011 */
3521 	WLAN_EID_EPAC_POLICY = 182,
3522 	WLAN_EID_CLISTER_TIME_OFF = 183,
3523 	WLAN_EID_INTER_AC_PRIO = 184,
3524 	WLAN_EID_SCS_DESCRIPTOR = 185,
3525 	WLAN_EID_QLOAD_REPORT = 186,
3526 	WLAN_EID_HCCA_TXOP_UPDATE_COUNT = 187,
3527 	WLAN_EID_HL_STREAM_ID = 188,
3528 	WLAN_EID_GCR_GROUP_ADDR = 189,
3529 	WLAN_EID_ANTENNA_SECTOR_ID_PATTERN = 190,
3530 	WLAN_EID_VHT_CAPABILITY = 191,
3531 	WLAN_EID_VHT_OPERATION = 192,
3532 	WLAN_EID_EXTENDED_BSS_LOAD = 193,
3533 	WLAN_EID_WIDE_BW_CHANNEL_SWITCH = 194,
3534 	WLAN_EID_TX_POWER_ENVELOPE = 195,
3535 	WLAN_EID_CHANNEL_SWITCH_WRAPPER = 196,
3536 	WLAN_EID_AID = 197,
3537 	WLAN_EID_QUIET_CHANNEL = 198,
3538 	WLAN_EID_OPMODE_NOTIF = 199,
3539 
3540 	WLAN_EID_REDUCED_NEIGHBOR_REPORT = 201,
3541 
3542 	WLAN_EID_AID_REQUEST = 210,
3543 	WLAN_EID_AID_RESPONSE = 211,
3544 	WLAN_EID_S1G_BCN_COMPAT = 213,
3545 	WLAN_EID_S1G_SHORT_BCN_INTERVAL = 214,
3546 	WLAN_EID_S1G_TWT = 216,
3547 	WLAN_EID_S1G_CAPABILITIES = 217,
3548 	WLAN_EID_VENDOR_SPECIFIC = 221,
3549 	WLAN_EID_QOS_PARAMETER = 222,
3550 	WLAN_EID_S1G_OPERATION = 232,
3551 	WLAN_EID_CAG_NUMBER = 237,
3552 	WLAN_EID_AP_CSN = 239,
3553 	WLAN_EID_FILS_INDICATION = 240,
3554 	WLAN_EID_DILS = 241,
3555 	WLAN_EID_FRAGMENT = 242,
3556 	WLAN_EID_RSNX = 244,
3557 	WLAN_EID_EXTENSION = 255
3558 };
3559 
3560 /* Element ID Extensions for Element ID 255 */
3561 enum ieee80211_eid_ext {
3562 	WLAN_EID_EXT_ASSOC_DELAY_INFO = 1,
3563 	WLAN_EID_EXT_FILS_REQ_PARAMS = 2,
3564 	WLAN_EID_EXT_FILS_KEY_CONFIRM = 3,
3565 	WLAN_EID_EXT_FILS_SESSION = 4,
3566 	WLAN_EID_EXT_FILS_HLP_CONTAINER = 5,
3567 	WLAN_EID_EXT_FILS_IP_ADDR_ASSIGN = 6,
3568 	WLAN_EID_EXT_KEY_DELIVERY = 7,
3569 	WLAN_EID_EXT_FILS_WRAPPED_DATA = 8,
3570 	WLAN_EID_EXT_FILS_PUBLIC_KEY = 12,
3571 	WLAN_EID_EXT_FILS_NONCE = 13,
3572 	WLAN_EID_EXT_FUTURE_CHAN_GUIDANCE = 14,
3573 	WLAN_EID_EXT_HE_CAPABILITY = 35,
3574 	WLAN_EID_EXT_HE_OPERATION = 36,
3575 	WLAN_EID_EXT_UORA = 37,
3576 	WLAN_EID_EXT_HE_MU_EDCA = 38,
3577 	WLAN_EID_EXT_HE_SPR = 39,
3578 	WLAN_EID_EXT_NDP_FEEDBACK_REPORT_PARAMSET = 41,
3579 	WLAN_EID_EXT_BSS_COLOR_CHG_ANN = 42,
3580 	WLAN_EID_EXT_QUIET_TIME_PERIOD_SETUP = 43,
3581 	WLAN_EID_EXT_ESS_REPORT = 45,
3582 	WLAN_EID_EXT_OPS = 46,
3583 	WLAN_EID_EXT_HE_BSS_LOAD = 47,
3584 	WLAN_EID_EXT_MAX_CHANNEL_SWITCH_TIME = 52,
3585 	WLAN_EID_EXT_MULTIPLE_BSSID_CONFIGURATION = 55,
3586 	WLAN_EID_EXT_NON_INHERITANCE = 56,
3587 	WLAN_EID_EXT_KNOWN_BSSID = 57,
3588 	WLAN_EID_EXT_SHORT_SSID_LIST = 58,
3589 	WLAN_EID_EXT_HE_6GHZ_CAPA = 59,
3590 	WLAN_EID_EXT_UL_MU_POWER_CAPA = 60,
3591 	WLAN_EID_EXT_EHT_OPERATION = 106,
3592 	WLAN_EID_EXT_EHT_MULTI_LINK = 107,
3593 	WLAN_EID_EXT_EHT_CAPABILITY = 108,
3594 };
3595 
3596 /* Action category code */
3597 enum ieee80211_category {
3598 	WLAN_CATEGORY_SPECTRUM_MGMT = 0,
3599 	WLAN_CATEGORY_QOS = 1,
3600 	WLAN_CATEGORY_DLS = 2,
3601 	WLAN_CATEGORY_BACK = 3,
3602 	WLAN_CATEGORY_PUBLIC = 4,
3603 	WLAN_CATEGORY_RADIO_MEASUREMENT = 5,
3604 	WLAN_CATEGORY_FAST_BBS_TRANSITION = 6,
3605 	WLAN_CATEGORY_HT = 7,
3606 	WLAN_CATEGORY_SA_QUERY = 8,
3607 	WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION = 9,
3608 	WLAN_CATEGORY_WNM = 10,
3609 	WLAN_CATEGORY_WNM_UNPROTECTED = 11,
3610 	WLAN_CATEGORY_TDLS = 12,
3611 	WLAN_CATEGORY_MESH_ACTION = 13,
3612 	WLAN_CATEGORY_MULTIHOP_ACTION = 14,
3613 	WLAN_CATEGORY_SELF_PROTECTED = 15,
3614 	WLAN_CATEGORY_DMG = 16,
3615 	WLAN_CATEGORY_WMM = 17,
3616 	WLAN_CATEGORY_FST = 18,
3617 	WLAN_CATEGORY_UNPROT_DMG = 20,
3618 	WLAN_CATEGORY_VHT = 21,
3619 	WLAN_CATEGORY_S1G = 22,
3620 	WLAN_CATEGORY_VENDOR_SPECIFIC_PROTECTED = 126,
3621 	WLAN_CATEGORY_VENDOR_SPECIFIC = 127,
3622 };
3623 
3624 /* SPECTRUM_MGMT action code */
3625 enum ieee80211_spectrum_mgmt_actioncode {
3626 	WLAN_ACTION_SPCT_MSR_REQ = 0,
3627 	WLAN_ACTION_SPCT_MSR_RPRT = 1,
3628 	WLAN_ACTION_SPCT_TPC_REQ = 2,
3629 	WLAN_ACTION_SPCT_TPC_RPRT = 3,
3630 	WLAN_ACTION_SPCT_CHL_SWITCH = 4,
3631 };
3632 
3633 /* HT action codes */
3634 enum ieee80211_ht_actioncode {
3635 	WLAN_HT_ACTION_NOTIFY_CHANWIDTH = 0,
3636 	WLAN_HT_ACTION_SMPS = 1,
3637 	WLAN_HT_ACTION_PSMP = 2,
3638 	WLAN_HT_ACTION_PCO_PHASE = 3,
3639 	WLAN_HT_ACTION_CSI = 4,
3640 	WLAN_HT_ACTION_NONCOMPRESSED_BF = 5,
3641 	WLAN_HT_ACTION_COMPRESSED_BF = 6,
3642 	WLAN_HT_ACTION_ASEL_IDX_FEEDBACK = 7,
3643 };
3644 
3645 /* VHT action codes */
3646 enum ieee80211_vht_actioncode {
3647 	WLAN_VHT_ACTION_COMPRESSED_BF = 0,
3648 	WLAN_VHT_ACTION_GROUPID_MGMT = 1,
3649 	WLAN_VHT_ACTION_OPMODE_NOTIF = 2,
3650 };
3651 
3652 /* Self Protected Action codes */
3653 enum ieee80211_self_protected_actioncode {
3654 	WLAN_SP_RESERVED = 0,
3655 	WLAN_SP_MESH_PEERING_OPEN = 1,
3656 	WLAN_SP_MESH_PEERING_CONFIRM = 2,
3657 	WLAN_SP_MESH_PEERING_CLOSE = 3,
3658 	WLAN_SP_MGK_INFORM = 4,
3659 	WLAN_SP_MGK_ACK = 5,
3660 };
3661 
3662 /* Mesh action codes */
3663 enum ieee80211_mesh_actioncode {
3664 	WLAN_MESH_ACTION_LINK_METRIC_REPORT,
3665 	WLAN_MESH_ACTION_HWMP_PATH_SELECTION,
3666 	WLAN_MESH_ACTION_GATE_ANNOUNCEMENT,
3667 	WLAN_MESH_ACTION_CONGESTION_CONTROL_NOTIFICATION,
3668 	WLAN_MESH_ACTION_MCCA_SETUP_REQUEST,
3669 	WLAN_MESH_ACTION_MCCA_SETUP_REPLY,
3670 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT_REQUEST,
3671 	WLAN_MESH_ACTION_MCCA_ADVERTISEMENT,
3672 	WLAN_MESH_ACTION_MCCA_TEARDOWN,
3673 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_REQUEST,
3674 	WLAN_MESH_ACTION_TBTT_ADJUSTMENT_RESPONSE,
3675 };
3676 
3677 /* Unprotected WNM action codes */
3678 enum ieee80211_unprotected_wnm_actioncode {
3679 	WLAN_UNPROTECTED_WNM_ACTION_TIM = 0,
3680 	WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE = 1,
3681 };
3682 
3683 /* Security key length */
3684 enum ieee80211_key_len {
3685 	WLAN_KEY_LEN_WEP40 = 5,
3686 	WLAN_KEY_LEN_WEP104 = 13,
3687 	WLAN_KEY_LEN_CCMP = 16,
3688 	WLAN_KEY_LEN_CCMP_256 = 32,
3689 	WLAN_KEY_LEN_TKIP = 32,
3690 	WLAN_KEY_LEN_AES_CMAC = 16,
3691 	WLAN_KEY_LEN_SMS4 = 32,
3692 	WLAN_KEY_LEN_GCMP = 16,
3693 	WLAN_KEY_LEN_GCMP_256 = 32,
3694 	WLAN_KEY_LEN_BIP_CMAC_256 = 32,
3695 	WLAN_KEY_LEN_BIP_GMAC_128 = 16,
3696 	WLAN_KEY_LEN_BIP_GMAC_256 = 32,
3697 };
3698 
3699 enum ieee80211_s1g_actioncode {
3700 	WLAN_S1G_AID_SWITCH_REQUEST,
3701 	WLAN_S1G_AID_SWITCH_RESPONSE,
3702 	WLAN_S1G_SYNC_CONTROL,
3703 	WLAN_S1G_STA_INFO_ANNOUNCE,
3704 	WLAN_S1G_EDCA_PARAM_SET,
3705 	WLAN_S1G_EL_OPERATION,
3706 	WLAN_S1G_TWT_SETUP,
3707 	WLAN_S1G_TWT_TEARDOWN,
3708 	WLAN_S1G_SECT_GROUP_ID_LIST,
3709 	WLAN_S1G_SECT_ID_FEEDBACK,
3710 	WLAN_S1G_TWT_INFORMATION = 11,
3711 };
3712 
3713 #define IEEE80211_WEP_IV_LEN		4
3714 #define IEEE80211_WEP_ICV_LEN		4
3715 #define IEEE80211_CCMP_HDR_LEN		8
3716 #define IEEE80211_CCMP_MIC_LEN		8
3717 #define IEEE80211_CCMP_PN_LEN		6
3718 #define IEEE80211_CCMP_256_HDR_LEN	8
3719 #define IEEE80211_CCMP_256_MIC_LEN	16
3720 #define IEEE80211_CCMP_256_PN_LEN	6
3721 #define IEEE80211_TKIP_IV_LEN		8
3722 #define IEEE80211_TKIP_ICV_LEN		4
3723 #define IEEE80211_CMAC_PN_LEN		6
3724 #define IEEE80211_GMAC_PN_LEN		6
3725 #define IEEE80211_GCMP_HDR_LEN		8
3726 #define IEEE80211_GCMP_MIC_LEN		16
3727 #define IEEE80211_GCMP_PN_LEN		6
3728 
3729 #define FILS_NONCE_LEN			16
3730 #define FILS_MAX_KEK_LEN		64
3731 
3732 #define FILS_ERP_MAX_USERNAME_LEN	16
3733 #define FILS_ERP_MAX_REALM_LEN		253
3734 #define FILS_ERP_MAX_RRK_LEN		64
3735 
3736 #define PMK_MAX_LEN			64
3737 #define SAE_PASSWORD_MAX_LEN		128
3738 
3739 /* Public action codes (IEEE Std 802.11-2016, 9.6.8.1, Table 9-307) */
3740 enum ieee80211_pub_actioncode {
3741 	WLAN_PUB_ACTION_20_40_BSS_COEX = 0,
3742 	WLAN_PUB_ACTION_DSE_ENABLEMENT = 1,
3743 	WLAN_PUB_ACTION_DSE_DEENABLEMENT = 2,
3744 	WLAN_PUB_ACTION_DSE_REG_LOC_ANN = 3,
3745 	WLAN_PUB_ACTION_EXT_CHANSW_ANN = 4,
3746 	WLAN_PUB_ACTION_DSE_MSMT_REQ = 5,
3747 	WLAN_PUB_ACTION_DSE_MSMT_RESP = 6,
3748 	WLAN_PUB_ACTION_MSMT_PILOT = 7,
3749 	WLAN_PUB_ACTION_DSE_PC = 8,
3750 	WLAN_PUB_ACTION_VENDOR_SPECIFIC = 9,
3751 	WLAN_PUB_ACTION_GAS_INITIAL_REQ = 10,
3752 	WLAN_PUB_ACTION_GAS_INITIAL_RESP = 11,
3753 	WLAN_PUB_ACTION_GAS_COMEBACK_REQ = 12,
3754 	WLAN_PUB_ACTION_GAS_COMEBACK_RESP = 13,
3755 	WLAN_PUB_ACTION_TDLS_DISCOVER_RES = 14,
3756 	WLAN_PUB_ACTION_LOC_TRACK_NOTI = 15,
3757 	WLAN_PUB_ACTION_QAB_REQUEST_FRAME = 16,
3758 	WLAN_PUB_ACTION_QAB_RESPONSE_FRAME = 17,
3759 	WLAN_PUB_ACTION_QMF_POLICY = 18,
3760 	WLAN_PUB_ACTION_QMF_POLICY_CHANGE = 19,
3761 	WLAN_PUB_ACTION_QLOAD_REQUEST = 20,
3762 	WLAN_PUB_ACTION_QLOAD_REPORT = 21,
3763 	WLAN_PUB_ACTION_HCCA_TXOP_ADVERT = 22,
3764 	WLAN_PUB_ACTION_HCCA_TXOP_RESPONSE = 23,
3765 	WLAN_PUB_ACTION_PUBLIC_KEY = 24,
3766 	WLAN_PUB_ACTION_CHANNEL_AVAIL_QUERY = 25,
3767 	WLAN_PUB_ACTION_CHANNEL_SCHEDULE_MGMT = 26,
3768 	WLAN_PUB_ACTION_CONTACT_VERI_SIGNAL = 27,
3769 	WLAN_PUB_ACTION_GDD_ENABLEMENT_REQ = 28,
3770 	WLAN_PUB_ACTION_GDD_ENABLEMENT_RESP = 29,
3771 	WLAN_PUB_ACTION_NETWORK_CHANNEL_CONTROL = 30,
3772 	WLAN_PUB_ACTION_WHITE_SPACE_MAP_ANN = 31,
3773 	WLAN_PUB_ACTION_FTM_REQUEST = 32,
3774 	WLAN_PUB_ACTION_FTM_RESPONSE = 33,
3775 	WLAN_PUB_ACTION_FILS_DISCOVERY = 34,
3776 };
3777 
3778 /* TDLS action codes */
3779 enum ieee80211_tdls_actioncode {
3780 	WLAN_TDLS_SETUP_REQUEST = 0,
3781 	WLAN_TDLS_SETUP_RESPONSE = 1,
3782 	WLAN_TDLS_SETUP_CONFIRM = 2,
3783 	WLAN_TDLS_TEARDOWN = 3,
3784 	WLAN_TDLS_PEER_TRAFFIC_INDICATION = 4,
3785 	WLAN_TDLS_CHANNEL_SWITCH_REQUEST = 5,
3786 	WLAN_TDLS_CHANNEL_SWITCH_RESPONSE = 6,
3787 	WLAN_TDLS_PEER_PSM_REQUEST = 7,
3788 	WLAN_TDLS_PEER_PSM_RESPONSE = 8,
3789 	WLAN_TDLS_PEER_TRAFFIC_RESPONSE = 9,
3790 	WLAN_TDLS_DISCOVERY_REQUEST = 10,
3791 };
3792 
3793 /* Extended Channel Switching capability to be set in the 1st byte of
3794  * the @WLAN_EID_EXT_CAPABILITY information element
3795  */
3796 #define WLAN_EXT_CAPA1_EXT_CHANNEL_SWITCHING	BIT(2)
3797 
3798 /* Multiple BSSID capability is set in the 6th bit of 3rd byte of the
3799  * @WLAN_EID_EXT_CAPABILITY information element
3800  */
3801 #define WLAN_EXT_CAPA3_MULTI_BSSID_SUPPORT	BIT(6)
3802 
3803 /* Timing Measurement protocol for time sync is set in the 7th bit of 3rd byte
3804  * of the @WLAN_EID_EXT_CAPABILITY information element
3805  */
3806 #define WLAN_EXT_CAPA3_TIMING_MEASUREMENT_SUPPORT	BIT(7)
3807 
3808 /* TDLS capabilities in the 4th byte of @WLAN_EID_EXT_CAPABILITY */
3809 #define WLAN_EXT_CAPA4_TDLS_BUFFER_STA		BIT(4)
3810 #define WLAN_EXT_CAPA4_TDLS_PEER_PSM		BIT(5)
3811 #define WLAN_EXT_CAPA4_TDLS_CHAN_SWITCH		BIT(6)
3812 
3813 /* Interworking capabilities are set in 7th bit of 4th byte of the
3814  * @WLAN_EID_EXT_CAPABILITY information element
3815  */
3816 #define WLAN_EXT_CAPA4_INTERWORKING_ENABLED	BIT(7)
3817 
3818 /*
3819  * TDLS capabililites to be enabled in the 5th byte of the
3820  * @WLAN_EID_EXT_CAPABILITY information element
3821  */
3822 #define WLAN_EXT_CAPA5_TDLS_ENABLED	BIT(5)
3823 #define WLAN_EXT_CAPA5_TDLS_PROHIBITED	BIT(6)
3824 #define WLAN_EXT_CAPA5_TDLS_CH_SW_PROHIBITED	BIT(7)
3825 
3826 #define WLAN_EXT_CAPA8_TDLS_WIDE_BW_ENABLED	BIT(5)
3827 #define WLAN_EXT_CAPA8_OPMODE_NOTIF	BIT(6)
3828 
3829 /* Defines the maximal number of MSDUs in an A-MSDU. */
3830 #define WLAN_EXT_CAPA8_MAX_MSDU_IN_AMSDU_LSB	BIT(7)
3831 #define WLAN_EXT_CAPA9_MAX_MSDU_IN_AMSDU_MSB	BIT(0)
3832 
3833 /*
3834  * Fine Timing Measurement Initiator - bit 71 of @WLAN_EID_EXT_CAPABILITY
3835  * information element
3836  */
3837 #define WLAN_EXT_CAPA9_FTM_INITIATOR	BIT(7)
3838 
3839 /* Defines support for TWT Requester and TWT Responder */
3840 #define WLAN_EXT_CAPA10_TWT_REQUESTER_SUPPORT	BIT(5)
3841 #define WLAN_EXT_CAPA10_TWT_RESPONDER_SUPPORT	BIT(6)
3842 
3843 /*
3844  * When set, indicates that the AP is able to tolerate 26-tone RU UL
3845  * OFDMA transmissions using HE TB PPDU from OBSS (not falsely classify the
3846  * 26-tone RU UL OFDMA transmissions as radar pulses).
3847  */
3848 #define WLAN_EXT_CAPA10_OBSS_NARROW_BW_RU_TOLERANCE_SUPPORT BIT(7)
3849 
3850 /* Defines support for enhanced multi-bssid advertisement*/
3851 #define WLAN_EXT_CAPA11_EMA_SUPPORT	BIT(3)
3852 
3853 /* TDLS specific payload type in the LLC/SNAP header */
3854 #define WLAN_TDLS_SNAP_RFTYPE	0x2
3855 
3856 /* BSS Coex IE information field bits */
3857 #define WLAN_BSS_COEX_INFORMATION_REQUEST	BIT(0)
3858 
3859 /**
3860  * enum ieee80211_mesh_sync_method - mesh synchronization method identifier
3861  *
3862  * @IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET: the default synchronization method
3863  * @IEEE80211_SYNC_METHOD_VENDOR: a vendor specific synchronization method
3864  *	that will be specified in a vendor specific information element
3865  */
3866 enum ieee80211_mesh_sync_method {
3867 	IEEE80211_SYNC_METHOD_NEIGHBOR_OFFSET = 1,
3868 	IEEE80211_SYNC_METHOD_VENDOR = 255,
3869 };
3870 
3871 /**
3872  * enum ieee80211_mesh_path_protocol - mesh path selection protocol identifier
3873  *
3874  * @IEEE80211_PATH_PROTOCOL_HWMP: the default path selection protocol
3875  * @IEEE80211_PATH_PROTOCOL_VENDOR: a vendor specific protocol that will
3876  *	be specified in a vendor specific information element
3877  */
3878 enum ieee80211_mesh_path_protocol {
3879 	IEEE80211_PATH_PROTOCOL_HWMP = 1,
3880 	IEEE80211_PATH_PROTOCOL_VENDOR = 255,
3881 };
3882 
3883 /**
3884  * enum ieee80211_mesh_path_metric - mesh path selection metric identifier
3885  *
3886  * @IEEE80211_PATH_METRIC_AIRTIME: the default path selection metric
3887  * @IEEE80211_PATH_METRIC_VENDOR: a vendor specific metric that will be
3888  *	specified in a vendor specific information element
3889  */
3890 enum ieee80211_mesh_path_metric {
3891 	IEEE80211_PATH_METRIC_AIRTIME = 1,
3892 	IEEE80211_PATH_METRIC_VENDOR = 255,
3893 };
3894 
3895 /**
3896  * enum ieee80211_root_mode_identifier - root mesh STA mode identifier
3897  *
3898  * These attribute are used by dot11MeshHWMPRootMode to set root mesh STA mode
3899  *
3900  * @IEEE80211_ROOTMODE_NO_ROOT: the mesh STA is not a root mesh STA (default)
3901  * @IEEE80211_ROOTMODE_ROOT: the mesh STA is a root mesh STA if greater than
3902  *	this value
3903  * @IEEE80211_PROACTIVE_PREQ_NO_PREP: the mesh STA is a root mesh STA supports
3904  *	the proactive PREQ with proactive PREP subfield set to 0
3905  * @IEEE80211_PROACTIVE_PREQ_WITH_PREP: the mesh STA is a root mesh STA
3906  *	supports the proactive PREQ with proactive PREP subfield set to 1
3907  * @IEEE80211_PROACTIVE_RANN: the mesh STA is a root mesh STA supports
3908  *	the proactive RANN
3909  */
3910 enum ieee80211_root_mode_identifier {
3911 	IEEE80211_ROOTMODE_NO_ROOT = 0,
3912 	IEEE80211_ROOTMODE_ROOT = 1,
3913 	IEEE80211_PROACTIVE_PREQ_NO_PREP = 2,
3914 	IEEE80211_PROACTIVE_PREQ_WITH_PREP = 3,
3915 	IEEE80211_PROACTIVE_RANN = 4,
3916 };
3917 
3918 /*
3919  * IEEE 802.11-2007 7.3.2.9 Country information element
3920  *
3921  * Minimum length is 8 octets, ie len must be evenly
3922  * divisible by 2
3923  */
3924 
3925 /* Although the spec says 8 I'm seeing 6 in practice */
3926 #define IEEE80211_COUNTRY_IE_MIN_LEN	6
3927 
3928 /* The Country String field of the element shall be 3 octets in length */
3929 #define IEEE80211_COUNTRY_STRING_LEN	3
3930 
3931 /*
3932  * For regulatory extension stuff see IEEE 802.11-2007
3933  * Annex I (page 1141) and Annex J (page 1147). Also
3934  * review 7.3.2.9.
3935  *
3936  * When dot11RegulatoryClassesRequired is true and the
3937  * first_channel/reg_extension_id is >= 201 then the IE
3938  * compromises of the 'ext' struct represented below:
3939  *
3940  *  - Regulatory extension ID - when generating IE this just needs
3941  *    to be monotonically increasing for each triplet passed in
3942  *    the IE
3943  *  - Regulatory class - index into set of rules
3944  *  - Coverage class - index into air propagation time (Table 7-27),
3945  *    in microseconds, you can compute the air propagation time from
3946  *    the index by multiplying by 3, so index 10 yields a propagation
3947  *    of 10 us. Valid values are 0-31, values 32-255 are not defined
3948  *    yet. A value of 0 inicates air propagation of <= 1 us.
3949  *
3950  *  See also Table I.2 for Emission limit sets and table
3951  *  I.3 for Behavior limit sets. Table J.1 indicates how to map
3952  *  a reg_class to an emission limit set and behavior limit set.
3953  */
3954 #define IEEE80211_COUNTRY_EXTENSION_ID 201
3955 
3956 /*
3957  *  Channels numbers in the IE must be monotonically increasing
3958  *  if dot11RegulatoryClassesRequired is not true.
3959  *
3960  *  If dot11RegulatoryClassesRequired is true consecutive
3961  *  subband triplets following a regulatory triplet shall
3962  *  have monotonically increasing first_channel number fields.
3963  *
3964  *  Channel numbers shall not overlap.
3965  *
3966  *  Note that max_power is signed.
3967  */
3968 struct ieee80211_country_ie_triplet {
3969 	union {
3970 		struct {
3971 			u8 first_channel;
3972 			u8 num_channels;
3973 			s8 max_power;
3974 		} __packed chans;
3975 		struct {
3976 			u8 reg_extension_id;
3977 			u8 reg_class;
3978 			u8 coverage_class;
3979 		} __packed ext;
3980 	};
3981 } __packed;
3982 
3983 enum ieee80211_timeout_interval_type {
3984 	WLAN_TIMEOUT_REASSOC_DEADLINE = 1 /* 802.11r */,
3985 	WLAN_TIMEOUT_KEY_LIFETIME = 2 /* 802.11r */,
3986 	WLAN_TIMEOUT_ASSOC_COMEBACK = 3 /* 802.11w */,
3987 };
3988 
3989 /**
3990  * struct ieee80211_timeout_interval_ie - Timeout Interval element
3991  * @type: type, see &enum ieee80211_timeout_interval_type
3992  * @value: timeout interval value
3993  */
3994 struct ieee80211_timeout_interval_ie {
3995 	u8 type;
3996 	__le32 value;
3997 } __packed;
3998 
3999 /**
4000  * enum ieee80211_idle_options - BSS idle options
4001  * @WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE: the station should send an RSN
4002  *	protected frame to the AP to reset the idle timer at the AP for
4003  *	the station.
4004  */
4005 enum ieee80211_idle_options {
4006 	WLAN_IDLE_OPTIONS_PROTECTED_KEEP_ALIVE = BIT(0),
4007 };
4008 
4009 /**
4010  * struct ieee80211_bss_max_idle_period_ie
4011  *
4012  * This structure refers to "BSS Max idle period element"
4013  *
4014  * @max_idle_period: indicates the time period during which a station can
4015  *	refrain from transmitting frames to its associated AP without being
4016  *	disassociated. In units of 1000 TUs.
4017  * @idle_options: indicates the options associated with the BSS idle capability
4018  *	as specified in &enum ieee80211_idle_options.
4019  */
4020 struct ieee80211_bss_max_idle_period_ie {
4021 	__le16 max_idle_period;
4022 	u8 idle_options;
4023 } __packed;
4024 
4025 /* BACK action code */
4026 enum ieee80211_back_actioncode {
4027 	WLAN_ACTION_ADDBA_REQ = 0,
4028 	WLAN_ACTION_ADDBA_RESP = 1,
4029 	WLAN_ACTION_DELBA = 2,
4030 };
4031 
4032 /* BACK (block-ack) parties */
4033 enum ieee80211_back_parties {
4034 	WLAN_BACK_RECIPIENT = 0,
4035 	WLAN_BACK_INITIATOR = 1,
4036 };
4037 
4038 /* SA Query action */
4039 enum ieee80211_sa_query_action {
4040 	WLAN_ACTION_SA_QUERY_REQUEST = 0,
4041 	WLAN_ACTION_SA_QUERY_RESPONSE = 1,
4042 };
4043 
4044 /**
4045  * struct ieee80211_bssid_index
4046  *
4047  * This structure refers to "Multiple BSSID-index element"
4048  *
4049  * @bssid_index: BSSID index
4050  * @dtim_period: optional, overrides transmitted BSS dtim period
4051  * @dtim_count: optional, overrides transmitted BSS dtim count
4052  */
4053 struct ieee80211_bssid_index {
4054 	u8 bssid_index;
4055 	u8 dtim_period;
4056 	u8 dtim_count;
4057 };
4058 
4059 /**
4060  * struct ieee80211_multiple_bssid_configuration
4061  *
4062  * This structure refers to "Multiple BSSID Configuration element"
4063  *
4064  * @bssid_count: total number of active BSSIDs in the set
4065  * @profile_periodicity: the least number of beacon frames need to be received
4066  *	in order to discover all the nontransmitted BSSIDs in the set.
4067  */
4068 struct ieee80211_multiple_bssid_configuration {
4069 	u8 bssid_count;
4070 	u8 profile_periodicity;
4071 };
4072 
4073 #define SUITE(oui, id)	(((oui) << 8) | (id))
4074 
4075 /* cipher suite selectors */
4076 #define WLAN_CIPHER_SUITE_USE_GROUP	SUITE(0x000FAC, 0)
4077 #define WLAN_CIPHER_SUITE_WEP40		SUITE(0x000FAC, 1)
4078 #define WLAN_CIPHER_SUITE_TKIP		SUITE(0x000FAC, 2)
4079 /* reserved: 				SUITE(0x000FAC, 3) */
4080 #define WLAN_CIPHER_SUITE_CCMP		SUITE(0x000FAC, 4)
4081 #define WLAN_CIPHER_SUITE_WEP104	SUITE(0x000FAC, 5)
4082 #define WLAN_CIPHER_SUITE_AES_CMAC	SUITE(0x000FAC, 6)
4083 #define WLAN_CIPHER_SUITE_GCMP		SUITE(0x000FAC, 8)
4084 #define WLAN_CIPHER_SUITE_GCMP_256	SUITE(0x000FAC, 9)
4085 #define WLAN_CIPHER_SUITE_CCMP_256	SUITE(0x000FAC, 10)
4086 #define WLAN_CIPHER_SUITE_BIP_GMAC_128	SUITE(0x000FAC, 11)
4087 #define WLAN_CIPHER_SUITE_BIP_GMAC_256	SUITE(0x000FAC, 12)
4088 #define WLAN_CIPHER_SUITE_BIP_CMAC_256	SUITE(0x000FAC, 13)
4089 
4090 #define WLAN_CIPHER_SUITE_SMS4		SUITE(0x001472, 1)
4091 
4092 /* AKM suite selectors */
4093 #define WLAN_AKM_SUITE_8021X			SUITE(0x000FAC, 1)
4094 #define WLAN_AKM_SUITE_PSK			SUITE(0x000FAC, 2)
4095 #define WLAN_AKM_SUITE_FT_8021X			SUITE(0x000FAC, 3)
4096 #define WLAN_AKM_SUITE_FT_PSK			SUITE(0x000FAC, 4)
4097 #define WLAN_AKM_SUITE_8021X_SHA256		SUITE(0x000FAC, 5)
4098 #define WLAN_AKM_SUITE_PSK_SHA256		SUITE(0x000FAC, 6)
4099 #define WLAN_AKM_SUITE_TDLS			SUITE(0x000FAC, 7)
4100 #define WLAN_AKM_SUITE_SAE			SUITE(0x000FAC, 8)
4101 #define WLAN_AKM_SUITE_FT_OVER_SAE		SUITE(0x000FAC, 9)
4102 #define WLAN_AKM_SUITE_AP_PEER_KEY		SUITE(0x000FAC, 10)
4103 #define WLAN_AKM_SUITE_8021X_SUITE_B		SUITE(0x000FAC, 11)
4104 #define WLAN_AKM_SUITE_8021X_SUITE_B_192	SUITE(0x000FAC, 12)
4105 #define WLAN_AKM_SUITE_FT_8021X_SHA384		SUITE(0x000FAC, 13)
4106 #define WLAN_AKM_SUITE_FILS_SHA256		SUITE(0x000FAC, 14)
4107 #define WLAN_AKM_SUITE_FILS_SHA384		SUITE(0x000FAC, 15)
4108 #define WLAN_AKM_SUITE_FT_FILS_SHA256		SUITE(0x000FAC, 16)
4109 #define WLAN_AKM_SUITE_FT_FILS_SHA384		SUITE(0x000FAC, 17)
4110 #define WLAN_AKM_SUITE_OWE			SUITE(0x000FAC, 18)
4111 #define WLAN_AKM_SUITE_FT_PSK_SHA384		SUITE(0x000FAC, 19)
4112 #define WLAN_AKM_SUITE_PSK_SHA384		SUITE(0x000FAC, 20)
4113 
4114 #define WLAN_AKM_SUITE_WFA_DPP			SUITE(WLAN_OUI_WFA, 2)
4115 
4116 #define WLAN_MAX_KEY_LEN		32
4117 
4118 #define WLAN_PMK_NAME_LEN		16
4119 #define WLAN_PMKID_LEN			16
4120 #define WLAN_PMK_LEN_EAP_LEAP		16
4121 #define WLAN_PMK_LEN			32
4122 #define WLAN_PMK_LEN_SUITE_B_192	48
4123 
4124 #define WLAN_OUI_WFA			0x506f9a
4125 #define WLAN_OUI_TYPE_WFA_P2P		9
4126 #define WLAN_OUI_TYPE_WFA_DPP		0x1A
4127 #define WLAN_OUI_MICROSOFT		0x0050f2
4128 #define WLAN_OUI_TYPE_MICROSOFT_WPA	1
4129 #define WLAN_OUI_TYPE_MICROSOFT_WMM	2
4130 #define WLAN_OUI_TYPE_MICROSOFT_WPS	4
4131 #define WLAN_OUI_TYPE_MICROSOFT_TPC	8
4132 
4133 /*
4134  * WMM/802.11e Tspec Element
4135  */
4136 #define IEEE80211_WMM_IE_TSPEC_TID_MASK		0x0F
4137 #define IEEE80211_WMM_IE_TSPEC_TID_SHIFT	1
4138 
4139 enum ieee80211_tspec_status_code {
4140 	IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED = 0,
4141 	IEEE80211_TSPEC_STATUS_ADDTS_INVAL_PARAMS = 0x1,
4142 };
4143 
4144 struct ieee80211_tspec_ie {
4145 	u8 element_id;
4146 	u8 len;
4147 	u8 oui[3];
4148 	u8 oui_type;
4149 	u8 oui_subtype;
4150 	u8 version;
4151 	__le16 tsinfo;
4152 	u8 tsinfo_resvd;
4153 	__le16 nominal_msdu;
4154 	__le16 max_msdu;
4155 	__le32 min_service_int;
4156 	__le32 max_service_int;
4157 	__le32 inactivity_int;
4158 	__le32 suspension_int;
4159 	__le32 service_start_time;
4160 	__le32 min_data_rate;
4161 	__le32 mean_data_rate;
4162 	__le32 peak_data_rate;
4163 	__le32 max_burst_size;
4164 	__le32 delay_bound;
4165 	__le32 min_phy_rate;
4166 	__le16 sba;
4167 	__le16 medium_time;
4168 } __packed;
4169 
4170 struct ieee80211_he_6ghz_capa {
4171 	/* uses IEEE80211_HE_6GHZ_CAP_* below */
4172 	__le16 capa;
4173 } __packed;
4174 
4175 /* HE 6 GHz band capabilities */
4176 /* uses enum ieee80211_min_mpdu_spacing values */
4177 #define IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START	0x0007
4178 /* uses enum ieee80211_vht_max_ampdu_length_exp values */
4179 #define IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP	0x0038
4180 /* uses IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_* values */
4181 #define IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN	0x00c0
4182 /* WLAN_HT_CAP_SM_PS_* values */
4183 #define IEEE80211_HE_6GHZ_CAP_SM_PS		0x0600
4184 #define IEEE80211_HE_6GHZ_CAP_RD_RESPONDER	0x0800
4185 #define IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS	0x1000
4186 #define IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS	0x2000
4187 
4188 /**
4189  * ieee80211_get_qos_ctl - get pointer to qos control bytes
4190  * @hdr: the frame
4191  *
4192  * The qos ctrl bytes come after the frame_control, duration, seq_num
4193  * and 3 or 4 addresses of length ETH_ALEN. Checks frame_control to choose
4194  * between struct ieee80211_qos_hdr_4addr and struct ieee80211_qos_hdr.
4195  */
ieee80211_get_qos_ctl(struct ieee80211_hdr * hdr)4196 static inline u8 *ieee80211_get_qos_ctl(struct ieee80211_hdr *hdr)
4197 {
4198 	union {
4199 		struct ieee80211_qos_hdr	addr3;
4200 		struct ieee80211_qos_hdr_4addr	addr4;
4201 	} *qos;
4202 
4203 	qos = (void *)hdr;
4204 	if (ieee80211_has_a4(qos->addr3.frame_control))
4205 		return (u8 *)&qos->addr4.qos_ctrl;
4206 	else
4207 		return (u8 *)&qos->addr3.qos_ctrl;
4208 }
4209 
4210 /**
4211  * ieee80211_get_tid - get qos TID
4212  * @hdr: the frame
4213  */
ieee80211_get_tid(struct ieee80211_hdr * hdr)4214 static inline u8 ieee80211_get_tid(struct ieee80211_hdr *hdr)
4215 {
4216 	u8 *qc = ieee80211_get_qos_ctl(hdr);
4217 
4218 	return qc[0] & IEEE80211_QOS_CTL_TID_MASK;
4219 }
4220 
4221 /**
4222  * ieee80211_get_SA - get pointer to SA
4223  * @hdr: the frame
4224  *
4225  * Given an 802.11 frame, this function returns the offset
4226  * to the source address (SA). It does not verify that the
4227  * header is long enough to contain the address, and the
4228  * header must be long enough to contain the frame control
4229  * field.
4230  */
ieee80211_get_SA(struct ieee80211_hdr * hdr)4231 static inline u8 *ieee80211_get_SA(struct ieee80211_hdr *hdr)
4232 {
4233 	if (ieee80211_has_a4(hdr->frame_control))
4234 		return hdr->addr4;
4235 	if (ieee80211_has_fromds(hdr->frame_control))
4236 		return hdr->addr3;
4237 	return hdr->addr2;
4238 }
4239 
4240 /**
4241  * ieee80211_get_DA - get pointer to DA
4242  * @hdr: the frame
4243  *
4244  * Given an 802.11 frame, this function returns the offset
4245  * to the destination address (DA). It does not verify that
4246  * the header is long enough to contain the address, and the
4247  * header must be long enough to contain the frame control
4248  * field.
4249  */
ieee80211_get_DA(struct ieee80211_hdr * hdr)4250 static inline u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr)
4251 {
4252 	if (ieee80211_has_tods(hdr->frame_control))
4253 		return hdr->addr3;
4254 	else
4255 		return hdr->addr1;
4256 }
4257 
4258 /**
4259  * ieee80211_is_bufferable_mmpdu - check if frame is bufferable MMPDU
4260  * @skb: the skb to check, starting with the 802.11 header
4261  */
ieee80211_is_bufferable_mmpdu(struct sk_buff * skb)4262 static inline bool ieee80211_is_bufferable_mmpdu(struct sk_buff *skb)
4263 {
4264 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4265 	__le16 fc = mgmt->frame_control;
4266 
4267 	/*
4268 	 * IEEE 802.11 REVme D2.0 definition of bufferable MMPDU;
4269 	 * note that this ignores the IBSS special case.
4270 	 */
4271 	if (!ieee80211_is_mgmt(fc))
4272 		return false;
4273 
4274 	if (ieee80211_is_disassoc(fc) || ieee80211_is_deauth(fc))
4275 		return true;
4276 
4277 	if (!ieee80211_is_action(fc))
4278 		return false;
4279 
4280 	if (skb->len < offsetofend(typeof(*mgmt), u.action.u.ftm.action_code))
4281 		return true;
4282 
4283 	/* action frame - additionally check for non-bufferable FTM */
4284 
4285 	if (mgmt->u.action.category != WLAN_CATEGORY_PUBLIC &&
4286 	    mgmt->u.action.category != WLAN_CATEGORY_PROTECTED_DUAL_OF_ACTION)
4287 		return true;
4288 
4289 	if (mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_REQUEST ||
4290 	    mgmt->u.action.u.ftm.action_code == WLAN_PUB_ACTION_FTM_RESPONSE)
4291 		return false;
4292 
4293 	return true;
4294 }
4295 
4296 /**
4297  * _ieee80211_is_robust_mgmt_frame - check if frame is a robust management frame
4298  * @hdr: the frame (buffer must include at least the first octet of payload)
4299  */
_ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr * hdr)4300 static inline bool _ieee80211_is_robust_mgmt_frame(struct ieee80211_hdr *hdr)
4301 {
4302 	if (ieee80211_is_disassoc(hdr->frame_control) ||
4303 	    ieee80211_is_deauth(hdr->frame_control))
4304 		return true;
4305 
4306 	if (ieee80211_is_action(hdr->frame_control)) {
4307 		u8 *category;
4308 
4309 		/*
4310 		 * Action frames, excluding Public Action frames, are Robust
4311 		 * Management Frames. However, if we are looking at a Protected
4312 		 * frame, skip the check since the data may be encrypted and
4313 		 * the frame has already been found to be a Robust Management
4314 		 * Frame (by the other end).
4315 		 */
4316 		if (ieee80211_has_protected(hdr->frame_control))
4317 			return true;
4318 		category = ((u8 *) hdr) + 24;
4319 		return *category != WLAN_CATEGORY_PUBLIC &&
4320 			*category != WLAN_CATEGORY_HT &&
4321 			*category != WLAN_CATEGORY_WNM_UNPROTECTED &&
4322 			*category != WLAN_CATEGORY_SELF_PROTECTED &&
4323 			*category != WLAN_CATEGORY_UNPROT_DMG &&
4324 			*category != WLAN_CATEGORY_VHT &&
4325 			*category != WLAN_CATEGORY_S1G &&
4326 			*category != WLAN_CATEGORY_VENDOR_SPECIFIC;
4327 	}
4328 
4329 	return false;
4330 }
4331 
4332 /**
4333  * ieee80211_is_robust_mgmt_frame - check if skb contains a robust mgmt frame
4334  * @skb: the skb containing the frame, length will be checked
4335  */
ieee80211_is_robust_mgmt_frame(struct sk_buff * skb)4336 static inline bool ieee80211_is_robust_mgmt_frame(struct sk_buff *skb)
4337 {
4338 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4339 		return false;
4340 	return _ieee80211_is_robust_mgmt_frame((void *)skb->data);
4341 }
4342 
4343 /**
4344  * ieee80211_is_public_action - check if frame is a public action frame
4345  * @hdr: the frame
4346  * @len: length of the frame
4347  */
ieee80211_is_public_action(struct ieee80211_hdr * hdr,size_t len)4348 static inline bool ieee80211_is_public_action(struct ieee80211_hdr *hdr,
4349 					      size_t len)
4350 {
4351 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4352 
4353 	if (len < IEEE80211_MIN_ACTION_SIZE)
4354 		return false;
4355 	if (!ieee80211_is_action(hdr->frame_control))
4356 		return false;
4357 	return mgmt->u.action.category == WLAN_CATEGORY_PUBLIC;
4358 }
4359 
4360 /**
4361  * ieee80211_is_protected_dual_of_public_action - check if skb contains a
4362  * protected dual of public action management frame
4363  * @skb: the skb containing the frame, length will be checked
4364  *
4365  * Return: true if the skb contains a protected dual of public action
4366  * management frame, false otherwise.
4367  */
4368 static inline bool
ieee80211_is_protected_dual_of_public_action(struct sk_buff * skb)4369 ieee80211_is_protected_dual_of_public_action(struct sk_buff *skb)
4370 {
4371 	u8 action;
4372 
4373 	if (!ieee80211_is_public_action((void *)skb->data, skb->len) ||
4374 	    skb->len < IEEE80211_MIN_ACTION_SIZE + 1)
4375 		return false;
4376 
4377 	action = *(u8 *)(skb->data + IEEE80211_MIN_ACTION_SIZE);
4378 
4379 	return action != WLAN_PUB_ACTION_20_40_BSS_COEX &&
4380 		action != WLAN_PUB_ACTION_DSE_REG_LOC_ANN &&
4381 		action != WLAN_PUB_ACTION_MSMT_PILOT &&
4382 		action != WLAN_PUB_ACTION_TDLS_DISCOVER_RES &&
4383 		action != WLAN_PUB_ACTION_LOC_TRACK_NOTI &&
4384 		action != WLAN_PUB_ACTION_FTM_REQUEST &&
4385 		action != WLAN_PUB_ACTION_FTM_RESPONSE &&
4386 		action != WLAN_PUB_ACTION_FILS_DISCOVERY &&
4387 		action != WLAN_PUB_ACTION_VENDOR_SPECIFIC;
4388 }
4389 
4390 /**
4391  * _ieee80211_is_group_privacy_action - check if frame is a group addressed
4392  * privacy action frame
4393  * @hdr: the frame
4394  */
_ieee80211_is_group_privacy_action(struct ieee80211_hdr * hdr)4395 static inline bool _ieee80211_is_group_privacy_action(struct ieee80211_hdr *hdr)
4396 {
4397 	struct ieee80211_mgmt *mgmt = (void *)hdr;
4398 
4399 	if (!ieee80211_is_action(hdr->frame_control) ||
4400 	    !is_multicast_ether_addr(hdr->addr1))
4401 		return false;
4402 
4403 	return mgmt->u.action.category == WLAN_CATEGORY_MESH_ACTION ||
4404 	       mgmt->u.action.category == WLAN_CATEGORY_MULTIHOP_ACTION;
4405 }
4406 
4407 /**
4408  * ieee80211_is_group_privacy_action - check if frame is a group addressed
4409  * privacy action frame
4410  * @skb: the skb containing the frame, length will be checked
4411  */
ieee80211_is_group_privacy_action(struct sk_buff * skb)4412 static inline bool ieee80211_is_group_privacy_action(struct sk_buff *skb)
4413 {
4414 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4415 		return false;
4416 	return _ieee80211_is_group_privacy_action((void *)skb->data);
4417 }
4418 
4419 /**
4420  * ieee80211_tu_to_usec - convert time units (TU) to microseconds
4421  * @tu: the TUs
4422  */
ieee80211_tu_to_usec(unsigned long tu)4423 static inline unsigned long ieee80211_tu_to_usec(unsigned long tu)
4424 {
4425 	return 1024 * tu;
4426 }
4427 
4428 /**
4429  * ieee80211_check_tim - check if AID bit is set in TIM
4430  * @tim: the TIM IE
4431  * @tim_len: length of the TIM IE
4432  * @aid: the AID to look for
4433  */
ieee80211_check_tim(const struct ieee80211_tim_ie * tim,u8 tim_len,u16 aid)4434 static inline bool ieee80211_check_tim(const struct ieee80211_tim_ie *tim,
4435 				       u8 tim_len, u16 aid)
4436 {
4437 	u8 mask;
4438 	u8 index, indexn1, indexn2;
4439 
4440 	if (unlikely(!tim || tim_len < sizeof(*tim)))
4441 		return false;
4442 
4443 	aid &= 0x3fff;
4444 	index = aid / 8;
4445 	mask  = 1 << (aid & 7);
4446 
4447 	indexn1 = tim->bitmap_ctrl & 0xfe;
4448 	indexn2 = tim_len + indexn1 - 4;
4449 
4450 	if (index < indexn1 || index > indexn2)
4451 		return false;
4452 
4453 	index -= indexn1;
4454 
4455 	return !!(tim->virtual_map[index] & mask);
4456 }
4457 
4458 /**
4459  * ieee80211_get_tdls_action - get tdls packet action (or -1, if not tdls packet)
4460  * @skb: the skb containing the frame, length will not be checked
4461  * @hdr_size: the size of the ieee80211_hdr that starts at skb->data
4462  *
4463  * This function assumes the frame is a data frame, and that the network header
4464  * is in the correct place.
4465  */
ieee80211_get_tdls_action(struct sk_buff * skb,u32 hdr_size)4466 static inline int ieee80211_get_tdls_action(struct sk_buff *skb, u32 hdr_size)
4467 {
4468 	if (!skb_is_nonlinear(skb) &&
4469 	    skb->len > (skb_network_offset(skb) + 2)) {
4470 		/* Point to where the indication of TDLS should start */
4471 		const u8 *tdls_data = skb_network_header(skb) - 2;
4472 
4473 		if (get_unaligned_be16(tdls_data) == ETH_P_TDLS &&
4474 		    tdls_data[2] == WLAN_TDLS_SNAP_RFTYPE &&
4475 		    tdls_data[3] == WLAN_CATEGORY_TDLS)
4476 			return tdls_data[4];
4477 	}
4478 
4479 	return -1;
4480 }
4481 
4482 /* convert time units */
4483 #define TU_TO_JIFFIES(x)	(usecs_to_jiffies((x) * 1024))
4484 #define TU_TO_EXP_TIME(x)	(jiffies + TU_TO_JIFFIES(x))
4485 
4486 /* convert frequencies */
4487 #define MHZ_TO_KHZ(freq) ((freq) * 1000)
4488 #define KHZ_TO_MHZ(freq) ((freq) / 1000)
4489 #define PR_KHZ(f) KHZ_TO_MHZ(f), f % 1000
4490 #define KHZ_F "%d.%03d"
4491 
4492 /* convert powers */
4493 #define DBI_TO_MBI(gain) ((gain) * 100)
4494 #define MBI_TO_DBI(gain) ((gain) / 100)
4495 #define DBM_TO_MBM(gain) ((gain) * 100)
4496 #define MBM_TO_DBM(gain) ((gain) / 100)
4497 
4498 /**
4499  * ieee80211_action_contains_tpc - checks if the frame contains TPC element
4500  * @skb: the skb containing the frame, length will be checked
4501  *
4502  * This function checks if it's either TPC report action frame or Link
4503  * Measurement report action frame as defined in IEEE Std. 802.11-2012 8.5.2.5
4504  * and 8.5.7.5 accordingly.
4505  */
ieee80211_action_contains_tpc(struct sk_buff * skb)4506 static inline bool ieee80211_action_contains_tpc(struct sk_buff *skb)
4507 {
4508 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4509 
4510 	if (!ieee80211_is_action(mgmt->frame_control))
4511 		return false;
4512 
4513 	if (skb->len < IEEE80211_MIN_ACTION_SIZE +
4514 		       sizeof(mgmt->u.action.u.tpc_report))
4515 		return false;
4516 
4517 	/*
4518 	 * TPC report - check that:
4519 	 * category = 0 (Spectrum Management) or 5 (Radio Measurement)
4520 	 * spectrum management action = 3 (TPC/Link Measurement report)
4521 	 * TPC report EID = 35
4522 	 * TPC report element length = 2
4523 	 *
4524 	 * The spectrum management's tpc_report struct is used here both for
4525 	 * parsing tpc_report and radio measurement's link measurement report
4526 	 * frame, since the relevant part is identical in both frames.
4527 	 */
4528 	if (mgmt->u.action.category != WLAN_CATEGORY_SPECTRUM_MGMT &&
4529 	    mgmt->u.action.category != WLAN_CATEGORY_RADIO_MEASUREMENT)
4530 		return false;
4531 
4532 	/* both spectrum mgmt and link measurement have same action code */
4533 	if (mgmt->u.action.u.tpc_report.action_code !=
4534 	    WLAN_ACTION_SPCT_TPC_RPRT)
4535 		return false;
4536 
4537 	if (mgmt->u.action.u.tpc_report.tpc_elem_id != WLAN_EID_TPC_REPORT ||
4538 	    mgmt->u.action.u.tpc_report.tpc_elem_length !=
4539 	    sizeof(struct ieee80211_tpc_report_ie))
4540 		return false;
4541 
4542 	return true;
4543 }
4544 
ieee80211_is_timing_measurement(struct sk_buff * skb)4545 static inline bool ieee80211_is_timing_measurement(struct sk_buff *skb)
4546 {
4547 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4548 
4549 	if (skb->len < IEEE80211_MIN_ACTION_SIZE)
4550 		return false;
4551 
4552 	if (!ieee80211_is_action(mgmt->frame_control))
4553 		return false;
4554 
4555 	if (mgmt->u.action.category == WLAN_CATEGORY_WNM_UNPROTECTED &&
4556 	    mgmt->u.action.u.wnm_timing_msr.action_code ==
4557 		WLAN_UNPROTECTED_WNM_ACTION_TIMING_MEASUREMENT_RESPONSE &&
4558 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.wnm_timing_msr))
4559 		return true;
4560 
4561 	return false;
4562 }
4563 
ieee80211_is_ftm(struct sk_buff * skb)4564 static inline bool ieee80211_is_ftm(struct sk_buff *skb)
4565 {
4566 	struct ieee80211_mgmt *mgmt = (void *)skb->data;
4567 
4568 	if (!ieee80211_is_public_action((void *)mgmt, skb->len))
4569 		return false;
4570 
4571 	if (mgmt->u.action.u.ftm.action_code ==
4572 		WLAN_PUB_ACTION_FTM_RESPONSE &&
4573 	    skb->len >= offsetofend(typeof(*mgmt), u.action.u.ftm))
4574 		return true;
4575 
4576 	return false;
4577 }
4578 
4579 struct element {
4580 	u8 id;
4581 	u8 datalen;
4582 	u8 data[];
4583 } __packed;
4584 
4585 /* element iteration helpers */
4586 #define for_each_element(_elem, _data, _datalen)			\
4587 	for (_elem = (const struct element *)(_data);			\
4588 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4589 		(int)sizeof(*_elem) &&					\
4590 	     (const u8 *)(_data) + (_datalen) - (const u8 *)_elem >=	\
4591 		(int)sizeof(*_elem) + _elem->datalen;			\
4592 	     _elem = (const struct element *)(_elem->data + _elem->datalen))
4593 
4594 #define for_each_element_id(element, _id, data, datalen)		\
4595 	for_each_element(element, data, datalen)			\
4596 		if (element->id == (_id))
4597 
4598 #define for_each_element_extid(element, extid, _data, _datalen)		\
4599 	for_each_element(element, _data, _datalen)			\
4600 		if (element->id == WLAN_EID_EXTENSION &&		\
4601 		    element->datalen > 0 &&				\
4602 		    element->data[0] == (extid))
4603 
4604 #define for_each_subelement(sub, element)				\
4605 	for_each_element(sub, (element)->data, (element)->datalen)
4606 
4607 #define for_each_subelement_id(sub, id, element)			\
4608 	for_each_element_id(sub, id, (element)->data, (element)->datalen)
4609 
4610 #define for_each_subelement_extid(sub, extid, element)			\
4611 	for_each_element_extid(sub, extid, (element)->data, (element)->datalen)
4612 
4613 /**
4614  * for_each_element_completed - determine if element parsing consumed all data
4615  * @element: element pointer after for_each_element() or friends
4616  * @data: same data pointer as passed to for_each_element() or friends
4617  * @datalen: same data length as passed to for_each_element() or friends
4618  *
4619  * This function returns %true if all the data was parsed or considered
4620  * while walking the elements. Only use this if your for_each_element()
4621  * loop cannot be broken out of, otherwise it always returns %false.
4622  *
4623  * If some data was malformed, this returns %false since the last parsed
4624  * element will not fill the whole remaining data.
4625  */
for_each_element_completed(const struct element * element,const void * data,size_t datalen)4626 static inline bool for_each_element_completed(const struct element *element,
4627 					      const void *data, size_t datalen)
4628 {
4629 	return (const u8 *)element == (const u8 *)data + datalen;
4630 }
4631 
4632 /*
4633  * RSNX Capabilities:
4634  * bits 0-3: Field length (n-1)
4635  */
4636 #define WLAN_RSNX_CAPA_PROTECTED_TWT BIT(4)
4637 #define WLAN_RSNX_CAPA_SAE_H2E BIT(5)
4638 
4639 /*
4640  * reduced neighbor report, based on Draft P802.11ax_D6.1,
4641  * section 9.4.2.170 and accepted contributions.
4642  */
4643 #define IEEE80211_AP_INFO_TBTT_HDR_TYPE				0x03
4644 #define IEEE80211_AP_INFO_TBTT_HDR_FILTERED			0x04
4645 #define IEEE80211_AP_INFO_TBTT_HDR_COLOC			0x08
4646 #define IEEE80211_AP_INFO_TBTT_HDR_COUNT			0xF0
4647 #define IEEE80211_TBTT_INFO_TYPE_TBTT				0
4648 #define IEEE80211_TBTT_INFO_TYPE_MLD				1
4649 
4650 #define IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED		0x01
4651 #define IEEE80211_RNR_TBTT_PARAMS_SAME_SSID			0x02
4652 #define IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID			0x04
4653 #define IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID		0x08
4654 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS			0x10
4655 #define IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE			0x20
4656 #define IEEE80211_RNR_TBTT_PARAMS_COLOC_AP			0x40
4657 
4658 #define IEEE80211_RNR_TBTT_PARAMS_PSD_NO_LIMIT			127
4659 #define IEEE80211_RNR_TBTT_PARAMS_PSD_RESERVED			-128
4660 
4661 struct ieee80211_neighbor_ap_info {
4662 	u8 tbtt_info_hdr;
4663 	u8 tbtt_info_len;
4664 	u8 op_class;
4665 	u8 channel;
4666 } __packed;
4667 
4668 enum ieee80211_range_params_max_total_ltf {
4669 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_4 = 0,
4670 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_8,
4671 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_16,
4672 	IEEE80211_RANGE_PARAMS_MAX_TOTAL_LTF_UNSPECIFIED,
4673 };
4674 
4675 /*
4676  * reduced neighbor report, based on Draft P802.11be_D3.0,
4677  * section 9.4.2.170.2.
4678  */
4679 struct ieee80211_rnr_mld_params {
4680 	u8 mld_id;
4681 	__le16 params;
4682 } __packed;
4683 
4684 #define IEEE80211_RNR_MLD_PARAMS_LINK_ID			0x000F
4685 #define IEEE80211_RNR_MLD_PARAMS_BSS_CHANGE_COUNT		0x0FF0
4686 #define IEEE80211_RNR_MLD_PARAMS_UPDATES_INCLUDED		0x1000
4687 #define IEEE80211_RNR_MLD_PARAMS_DISABLED_LINK			0x2000
4688 
4689 /* Format of the TBTT information element if it has 7, 8 or 9 bytes */
4690 struct ieee80211_tbtt_info_7_8_9 {
4691 	u8 tbtt_offset;
4692 	u8 bssid[ETH_ALEN];
4693 
4694 	/* The following element is optional, structure may not grow */
4695 	u8 bss_params;
4696 	s8 psd_20;
4697 } __packed;
4698 
4699 /* Format of the TBTT information element if it has >= 11 bytes */
4700 struct ieee80211_tbtt_info_ge_11 {
4701 	u8 tbtt_offset;
4702 	u8 bssid[ETH_ALEN];
4703 	__le32 short_ssid;
4704 
4705 	/* The following elements are optional, structure may grow */
4706 	u8 bss_params;
4707 	s8 psd_20;
4708 	struct ieee80211_rnr_mld_params mld_params;
4709 } __packed;
4710 
4711 /* multi-link device */
4712 #define IEEE80211_MLD_MAX_NUM_LINKS	15
4713 
4714 #define IEEE80211_ML_CONTROL_TYPE			0x0007
4715 #define IEEE80211_ML_CONTROL_TYPE_BASIC			0
4716 #define IEEE80211_ML_CONTROL_TYPE_PREQ			1
4717 #define IEEE80211_ML_CONTROL_TYPE_RECONF		2
4718 #define IEEE80211_ML_CONTROL_TYPE_TDLS			3
4719 #define IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS		4
4720 #define IEEE80211_ML_CONTROL_PRESENCE_MASK		0xfff0
4721 
4722 struct ieee80211_multi_link_elem {
4723 	__le16 control;
4724 	u8 variable[];
4725 } __packed;
4726 
4727 #define IEEE80211_MLC_BASIC_PRES_LINK_ID		0x0010
4728 #define IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT	0x0020
4729 #define IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY		0x0040
4730 #define IEEE80211_MLC_BASIC_PRES_EML_CAPA		0x0080
4731 #define IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP		0x0100
4732 #define IEEE80211_MLC_BASIC_PRES_MLD_ID			0x0200
4733 
4734 #define IEEE80211_MED_SYNC_DELAY_DURATION		0x00ff
4735 #define IEEE80211_MED_SYNC_DELAY_SYNC_OFDM_ED_THRESH	0x0f00
4736 #define IEEE80211_MED_SYNC_DELAY_SYNC_MAX_NUM_TXOPS	0xf000
4737 
4738 /*
4739  * Described in P802.11be_D3.0
4740  * dot11MSDTimerDuration should default to 5484 (i.e. 171.375)
4741  * dot11MSDOFDMEDthreshold defaults to -72 (i.e. 0)
4742  * dot11MSDTXOPMAX defaults to 1
4743  */
4744 #define IEEE80211_MED_SYNC_DELAY_DEFAULT		0x10ac
4745 
4746 #define IEEE80211_EML_CAP_EMLSR_SUPP			0x0001
4747 #define IEEE80211_EML_CAP_EMLSR_PADDING_DELAY		0x000e
4748 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_0US		0
4749 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_32US		1
4750 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_64US		2
4751 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_128US		3
4752 #define  IEEE80211_EML_CAP_EMLSR_PADDING_DELAY_256US		4
4753 #define IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY	0x0070
4754 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_0US		0
4755 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_16US		1
4756 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_32US		2
4757 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_64US		3
4758 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_128US		4
4759 #define  IEEE80211_EML_CAP_EMLSR_TRANSITION_DELAY_256US		5
4760 #define IEEE80211_EML_CAP_EMLMR_SUPPORT			0x0080
4761 #define IEEE80211_EML_CAP_EMLMR_DELAY			0x0700
4762 #define  IEEE80211_EML_CAP_EMLMR_DELAY_0US			0
4763 #define  IEEE80211_EML_CAP_EMLMR_DELAY_32US			1
4764 #define  IEEE80211_EML_CAP_EMLMR_DELAY_64US			2
4765 #define  IEEE80211_EML_CAP_EMLMR_DELAY_128US			3
4766 #define  IEEE80211_EML_CAP_EMLMR_DELAY_256US			4
4767 #define IEEE80211_EML_CAP_TRANSITION_TIMEOUT		0x7800
4768 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_0			0
4769 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128US		1
4770 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_256US		2
4771 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_512US		3
4772 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_1TU		4
4773 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_2TU		5
4774 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_4TU		6
4775 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_8TU		7
4776 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_16TU		8
4777 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_32TU		9
4778 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_64TU		10
4779 #define  IEEE80211_EML_CAP_TRANSITION_TIMEOUT_128TU		11
4780 
4781 #define IEEE80211_MLD_CAP_OP_MAX_SIMUL_LINKS		0x000f
4782 #define IEEE80211_MLD_CAP_OP_SRS_SUPPORT		0x0010
4783 #define IEEE80211_MLD_CAP_OP_TID_TO_LINK_MAP_NEG_SUPP	0x0060
4784 #define IEEE80211_MLD_CAP_OP_FREQ_SEP_TYPE_IND		0x0f80
4785 #define IEEE80211_MLD_CAP_OP_AAR_SUPPORT		0x1000
4786 
4787 struct ieee80211_mle_basic_common_info {
4788 	u8 len;
4789 	u8 mld_mac_addr[ETH_ALEN];
4790 	u8 variable[];
4791 } __packed;
4792 
4793 #define IEEE80211_MLC_PREQ_PRES_MLD_ID			0x0010
4794 
4795 struct ieee80211_mle_preq_common_info {
4796 	u8 len;
4797 	u8 variable[];
4798 } __packed;
4799 
4800 #define IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR		0x0010
4801 
4802 /* no fixed fields in RECONF */
4803 
4804 struct ieee80211_mle_tdls_common_info {
4805 	u8 len;
4806 	u8 ap_mld_mac_addr[ETH_ALEN];
4807 } __packed;
4808 
4809 #define IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR	0x0010
4810 
4811 /* no fixed fields in PRIO_ACCESS */
4812 
4813 /**
4814  * ieee80211_mle_common_size - check multi-link element common size
4815  * @data: multi-link element, must already be checked for size using
4816  *	ieee80211_mle_size_ok()
4817  */
ieee80211_mle_common_size(const u8 * data)4818 static inline u8 ieee80211_mle_common_size(const u8 *data)
4819 {
4820 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
4821 	u16 control = le16_to_cpu(mle->control);
4822 	u8 common = 0;
4823 
4824 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
4825 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
4826 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
4827 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
4828 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
4829 		/*
4830 		 * The length is the first octet pointed by mle->variable so no
4831 		 * need to add anything
4832 		 */
4833 		break;
4834 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
4835 		if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR)
4836 			common += ETH_ALEN;
4837 		return common;
4838 	default:
4839 		WARN_ON(1);
4840 		return 0;
4841 	}
4842 
4843 	return sizeof(*mle) + common + mle->variable[0];
4844 }
4845 
4846 /**
4847  * ieee80211_mle_get_bss_param_ch_cnt - returns the BSS parameter change count
4848  * @mle: the basic multi link element
4849  *
4850  * The element is assumed to be of the correct type (BASIC) and big enough,
4851  * this must be checked using ieee80211_mle_type_ok().
4852  *
4853  * If the BSS parameter change count value can't be found (the presence bit
4854  * for it is clear), 0 will be returned.
4855  */
4856 static inline u8
ieee80211_mle_get_bss_param_ch_cnt(const struct ieee80211_multi_link_elem * mle)4857 ieee80211_mle_get_bss_param_ch_cnt(const struct ieee80211_multi_link_elem *mle)
4858 {
4859 	u16 control = le16_to_cpu(mle->control);
4860 	const u8 *common = mle->variable;
4861 
4862 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
4863 	common += sizeof(struct ieee80211_mle_basic_common_info);
4864 
4865 	if (!(control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT))
4866 		return 0;
4867 
4868 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4869 		common += 1;
4870 
4871 	return *common;
4872 }
4873 
4874 /**
4875  * ieee80211_mle_get_eml_med_sync_delay - returns the medium sync delay
4876  * @data: pointer to the multi link EHT IE
4877  *
4878  * The element is assumed to be of the correct type (BASIC) and big enough,
4879  * this must be checked using ieee80211_mle_type_ok().
4880  *
4881  * If the medium synchronization is not present, then the default value is
4882  * returned.
4883  */
ieee80211_mle_get_eml_med_sync_delay(const u8 * data)4884 static inline u16 ieee80211_mle_get_eml_med_sync_delay(const u8 *data)
4885 {
4886 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
4887 	u16 control = le16_to_cpu(mle->control);
4888 	const u8 *common = mle->variable;
4889 
4890 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
4891 	common += sizeof(struct ieee80211_mle_basic_common_info);
4892 
4893 	if (!(control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY))
4894 		return IEEE80211_MED_SYNC_DELAY_DEFAULT;
4895 
4896 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4897 		common += 1;
4898 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
4899 		common += 1;
4900 
4901 	return get_unaligned_le16(common);
4902 }
4903 
4904 /**
4905  * ieee80211_mle_get_eml_cap - returns the EML capability
4906  * @data: pointer to the multi link EHT IE
4907  *
4908  * The element is assumed to be of the correct type (BASIC) and big enough,
4909  * this must be checked using ieee80211_mle_type_ok().
4910  *
4911  * If the EML capability is not present, 0 will be returned.
4912  */
ieee80211_mle_get_eml_cap(const u8 * data)4913 static inline u16 ieee80211_mle_get_eml_cap(const u8 *data)
4914 {
4915 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
4916 	u16 control = le16_to_cpu(mle->control);
4917 	const u8 *common = mle->variable;
4918 
4919 	/* common points now at the beginning of ieee80211_mle_basic_common_info */
4920 	common += sizeof(struct ieee80211_mle_basic_common_info);
4921 
4922 	if (!(control & IEEE80211_MLC_BASIC_PRES_EML_CAPA))
4923 		return 0;
4924 
4925 	if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4926 		common += 1;
4927 	if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
4928 		common += 1;
4929 	if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
4930 		common += 2;
4931 
4932 	return get_unaligned_le16(common);
4933 }
4934 
4935 /**
4936  * ieee80211_mle_size_ok - validate multi-link element size
4937  * @data: pointer to the element data
4938  * @len: length of the containing element
4939  */
ieee80211_mle_size_ok(const u8 * data,size_t len)4940 static inline bool ieee80211_mle_size_ok(const u8 *data, size_t len)
4941 {
4942 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
4943 	u8 fixed = sizeof(*mle);
4944 	u8 common = 0;
4945 	bool check_common_len = false;
4946 	u16 control;
4947 
4948 	if (len < fixed)
4949 		return false;
4950 
4951 	control = le16_to_cpu(mle->control);
4952 
4953 	switch (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE)) {
4954 	case IEEE80211_ML_CONTROL_TYPE_BASIC:
4955 		common += sizeof(struct ieee80211_mle_basic_common_info);
4956 		check_common_len = true;
4957 		if (control & IEEE80211_MLC_BASIC_PRES_LINK_ID)
4958 			common += 1;
4959 		if (control & IEEE80211_MLC_BASIC_PRES_BSS_PARAM_CH_CNT)
4960 			common += 1;
4961 		if (control & IEEE80211_MLC_BASIC_PRES_MED_SYNC_DELAY)
4962 			common += 2;
4963 		if (control & IEEE80211_MLC_BASIC_PRES_EML_CAPA)
4964 			common += 2;
4965 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_CAPA_OP)
4966 			common += 2;
4967 		if (control & IEEE80211_MLC_BASIC_PRES_MLD_ID)
4968 			common += 1;
4969 		break;
4970 	case IEEE80211_ML_CONTROL_TYPE_PREQ:
4971 		common += sizeof(struct ieee80211_mle_preq_common_info);
4972 		if (control & IEEE80211_MLC_PREQ_PRES_MLD_ID)
4973 			common += 1;
4974 		check_common_len = true;
4975 		break;
4976 	case IEEE80211_ML_CONTROL_TYPE_RECONF:
4977 		if (control & IEEE80211_MLC_RECONF_PRES_MLD_MAC_ADDR)
4978 			common += ETH_ALEN;
4979 		break;
4980 	case IEEE80211_ML_CONTROL_TYPE_TDLS:
4981 		common += sizeof(struct ieee80211_mle_tdls_common_info);
4982 		check_common_len = true;
4983 		break;
4984 	case IEEE80211_ML_CONTROL_TYPE_PRIO_ACCESS:
4985 		if (control & IEEE80211_MLC_PRIO_ACCESS_PRES_AP_MLD_MAC_ADDR)
4986 			common += ETH_ALEN;
4987 		break;
4988 	default:
4989 		/* we don't know this type */
4990 		return true;
4991 	}
4992 
4993 	if (len < fixed + common)
4994 		return false;
4995 
4996 	if (!check_common_len)
4997 		return true;
4998 
4999 	/* if present, common length is the first octet there */
5000 	return mle->variable[0] >= common;
5001 }
5002 
5003 /**
5004  * ieee80211_mle_type_ok - validate multi-link element type and size
5005  * @data: pointer to the element data
5006  * @type: expected type of the element
5007  * @len: length of the containing element
5008  */
ieee80211_mle_type_ok(const u8 * data,u8 type,size_t len)5009 static inline bool ieee80211_mle_type_ok(const u8 *data, u8 type, size_t len)
5010 {
5011 	const struct ieee80211_multi_link_elem *mle = (const void *)data;
5012 	u16 control;
5013 
5014 	if (!ieee80211_mle_size_ok(data, len))
5015 		return false;
5016 
5017 	control = le16_to_cpu(mle->control);
5018 
5019 	if (u16_get_bits(control, IEEE80211_ML_CONTROL_TYPE) == type)
5020 		return true;
5021 
5022 	return false;
5023 }
5024 
5025 enum ieee80211_mle_subelems {
5026 	IEEE80211_MLE_SUBELEM_PER_STA_PROFILE		= 0,
5027 	IEEE80211_MLE_SUBELEM_FRAGMENT		        = 254,
5028 };
5029 
5030 #define IEEE80211_MLE_STA_CONTROL_LINK_ID			0x000f
5031 #define IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE		0x0010
5032 #define IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5033 #define IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT		0x0040
5034 #define IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT		0x0080
5035 #define IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT		0x0100
5036 #define IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT	0x0200
5037 #define IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE		0x0400
5038 #define IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT	0x0800
5039 
5040 struct ieee80211_mle_per_sta_profile {
5041 	__le16 control;
5042 	u8 sta_info_len;
5043 	u8 variable[];
5044 } __packed;
5045 
5046 /**
5047  * ieee80211_mle_basic_sta_prof_size_ok - validate basic multi-link element sta
5048  *	profile size
5049  * @data: pointer to the sub element data
5050  * @len: length of the containing sub element
5051  */
ieee80211_mle_basic_sta_prof_size_ok(const u8 * data,size_t len)5052 static inline bool ieee80211_mle_basic_sta_prof_size_ok(const u8 *data,
5053 							size_t len)
5054 {
5055 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5056 	u16 control;
5057 	u8 fixed = sizeof(*prof);
5058 	u8 info_len = 1;
5059 
5060 	if (len < fixed)
5061 		return false;
5062 
5063 	control = le16_to_cpu(prof->control);
5064 
5065 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5066 		info_len += 6;
5067 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5068 		info_len += 2;
5069 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5070 		info_len += 8;
5071 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5072 		info_len += 2;
5073 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5074 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5075 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5076 			info_len += 2;
5077 		else
5078 			info_len += 1;
5079 	}
5080 	if (control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT)
5081 		info_len += 1;
5082 
5083 	return prof->sta_info_len >= info_len &&
5084 	       fixed + prof->sta_info_len <= len;
5085 }
5086 
5087 /**
5088  * ieee80211_mle_basic_sta_prof_bss_param_ch_cnt - get per-STA profile BSS
5089  *	parameter change count
5090  * @prof: the per-STA profile, having been checked with
5091  *	ieee80211_mle_basic_sta_prof_size_ok() for the correct length
5092  *
5093  * Return: The BSS parameter change count value if present, 0 otherwise.
5094  */
5095 static inline u8
ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile * prof)5096 ieee80211_mle_basic_sta_prof_bss_param_ch_cnt(const struct ieee80211_mle_per_sta_profile *prof)
5097 {
5098 	u16 control = le16_to_cpu(prof->control);
5099 	const u8 *pos = prof->variable;
5100 
5101 	if (!(control & IEEE80211_MLE_STA_CONTROL_BSS_PARAM_CHANGE_CNT_PRESENT))
5102 		return 0;
5103 
5104 	if (control & IEEE80211_MLE_STA_CONTROL_STA_MAC_ADDR_PRESENT)
5105 		pos += 6;
5106 	if (control & IEEE80211_MLE_STA_CONTROL_BEACON_INT_PRESENT)
5107 		pos += 2;
5108 	if (control & IEEE80211_MLE_STA_CONTROL_TSF_OFFS_PRESENT)
5109 		pos += 8;
5110 	if (control & IEEE80211_MLE_STA_CONTROL_DTIM_INFO_PRESENT)
5111 		pos += 2;
5112 	if (control & IEEE80211_MLE_STA_CONTROL_COMPLETE_PROFILE &&
5113 	    control & IEEE80211_MLE_STA_CONTROL_NSTR_LINK_PAIR_PRESENT) {
5114 		if (control & IEEE80211_MLE_STA_CONTROL_NSTR_BITMAP_SIZE)
5115 			pos += 2;
5116 		else
5117 			pos += 1;
5118 	}
5119 
5120 	return *pos;
5121 }
5122 
5123 #define IEEE80211_MLE_STA_RECONF_CONTROL_LINK_ID			0x000f
5124 #define IEEE80211_MLE_STA_RECONF_CONTROL_COMPLETE_PROFILE		0x0010
5125 #define IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT		0x0020
5126 #define IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT		0x0040
5127 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_UPDATE_TYPE		0x0780
5128 #define IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT	0x0800
5129 
5130 /**
5131  * ieee80211_mle_reconf_sta_prof_size_ok - validate reconfiguration multi-link
5132  *	element sta profile size.
5133  * @data: pointer to the sub element data
5134  * @len: length of the containing sub element
5135  */
ieee80211_mle_reconf_sta_prof_size_ok(const u8 * data,size_t len)5136 static inline bool ieee80211_mle_reconf_sta_prof_size_ok(const u8 *data,
5137 							 size_t len)
5138 {
5139 	const struct ieee80211_mle_per_sta_profile *prof = (const void *)data;
5140 	u16 control;
5141 	u8 fixed = sizeof(*prof);
5142 	u8 info_len = 1;
5143 
5144 	if (len < fixed)
5145 		return false;
5146 
5147 	control = le16_to_cpu(prof->control);
5148 
5149 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_STA_MAC_ADDR_PRESENT)
5150 		info_len += ETH_ALEN;
5151 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_AP_REM_TIMER_PRESENT)
5152 		info_len += 2;
5153 	if (control & IEEE80211_MLE_STA_RECONF_CONTROL_OPERATION_PARAMS_PRESENT)
5154 		info_len += 2;
5155 
5156 	return prof->sta_info_len >= info_len &&
5157 	       fixed + prof->sta_info_len - 1 <= len;
5158 }
5159 
5160 #define for_each_mle_subelement(_elem, _data, _len)			\
5161 	if (ieee80211_mle_size_ok(_data, _len))				\
5162 		for_each_element(_elem,					\
5163 				 _data + ieee80211_mle_common_size(_data),\
5164 				 _len - ieee80211_mle_common_size(_data))
5165 
5166 #endif /* LINUX_IEEE80211_H */
5167